1
|
Khwaja S, Kumar K, Das R, Negi AS. Microtubule associated proteins as targets for anticancer drug development. Bioorg Chem 2021; 116:105320. [PMID: 34492559 DOI: 10.1016/j.bioorg.2021.105320] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/28/2022]
Abstract
The dynamic equilibrium of tubulin-microtubule is an essential aspect of cell survivality. Modulation of this dynamics has become an important target for the cancer drug development. Tubulin exists in the alpha-beta dimer form which polymerizes to form microtubule and further depolymerizes back to tubulin dimer. The microtubule plays an essential role in mitosis and cell multiplication. Antitubulin drugs disturb the microtubule dynamics which is essentially required for DNA segregation and cell division during mitosis so killing the cancerous cells. Microtubule Associated Proteins (MAPs) interact with cellular cytoskeletal microtubules. MAPs bind to the either polymerized or depolymerized tubulin dimers within the cell and mostly causing stabilization of microtubules. Some of the tubulin binding drugs are in clinical use and others in clinical trial. MAPs inhibitors are also in clinical trial. Post-translational modification of lysine-40 either in histone or in alpha tubulin has an important role in gene expression and is balanced between histone deacetylases (HDACs) and histone acetyltransferases (HATs). HDAC inhibitors have the anticancer properties to form a drug for the treatment of cancer. They act by inducing cell cycle arrest and cell death. Some of the HDAC inhibitors are approved to be used as anticancer drug while others are under different phases of clinical trial. The present review updates on various MAPs, their role in cancer progression, MAPs inhibitors and their future prospects.
Collapse
Affiliation(s)
- Sadiya Khwaja
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kapil Kumar
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India
| | - Ranjana Das
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India
| | - Arvind Singh Negi
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Dutta R, Sarkar SR. Role of Dynein and Dynactin (DCTN-1) in Neurodegenerative Diseases. ACTA ACUST UNITED AC 2019. [DOI: 10.33805/2641-8991.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pathophysiology and concept of degeneration in central nervous system is very complex and overwhelming at times. There is a complex mechanism which exists among different molecules in the cytoplasm of cell bodies of neurons, antegrade and retrograde axonal transport of cargoes and accumulation of certain substances and proteins which can influence the excitatory neurotransmitter like glutamate initiating the process of neurodegeneration. Neurons have extensive processes and communication between those processes and the cell body is crucial to neuronal function, viability and survival over time with progression of age. Researchers believe neurons are uniquely dependent on microtubule-based cargo transport. There is enough evidence to support that deficits in retrograde axonal transport contribute to pathogenesis in multiple neurodegenerative diseases. Cytoplasmic dynein and its regulation by Dynactin (DCTN1) is the major molecular motor cargo involved in autophagy, mitosis and neuronal cell survival. Mutation in dynactin gene located in 2p13.1,is indeed studied very extensively and is considered to be involved directly or indirectly to various conditions like Perry syndrome, familial and sporadic Amyotrophic lateral sclerosis, Hereditary spastic paraplegia, Spinocerebellar Ataxia (SCA-5), Huntingtons disease, Alzheimers disease, Charcot marie tooth disease, Hereditary motor neuropathy 7B, prion disease, parkinsons disease, malformation of cortical development, polymicrogyria to name a few with exception of Multiple Sclerosis (MS).
Collapse
|
3
|
Enriched developmental biology molecular pathways impact on antipsychotics-induced weight gain. Pharmacogenet Genomics 2019; 30:9-20. [PMID: 31651721 DOI: 10.1097/fpc.0000000000000390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Psychotropic-induced weight gain (PIWG) may lead to increased risk for cardiovasculardiseases, metabolic disorders and treatment discontinuation. PIWG may be genetically driven. The analysis of complete molecular pathways may grant suffcient power to tackle the biologic variance of PIWG. Such identifcation would help to move a step forward in the direction of personalized treatment in psychiatry. A genetic sample from the CATIE trial (n = 765; M = 556, mean age = 40.93 ± 11.03) treated with diverse antipsychotic drugs was investigated. A molecular pathway analysis was conducted for the identifcation of the molecular pathways enriched in variations associated with PIWG. The developmental biology molecular pathway was signifcantly (P.adj = 0.018) enriched in genetic variations signifcantly (P < 0.01) associated with PIWG. A total of 18 genes were identifed and discussed. The developmental biology molecular pathway is involved in the regulation of β-cell development, and the transcriptional regulation of white adipocyte differentiation. Results from the current contribution correlate with previous evidence and it is consistent with our earlier result on the STAR*D sample. Furthermore, the involvement of the β-cell development and the transcriptional regulation of white adipocyte differentiation pathways stress the relevance of the peripheral tissue rearrangement, rather than increased food intake, in the biologic modifcations that follow psychotropic treatment and may lead to PIWG. Further research is warranted.
Collapse
|
4
|
|
5
|
Yan S, Guo C, Hou G, Zhang H, Lu X, Williams JC, Polenova T. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci U S A 2015; 112:14611-6. [PMID: 26604305 PMCID: PMC4664305 DOI: 10.1073/pnas.1509852112] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.
Collapse
Affiliation(s)
- Si Yan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Huilan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Xingyu Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - John Charles Williams
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716;
| |
Collapse
|
6
|
Soylu-Kucharz R, Adlesic N, Baldo B, Kirik D, Petersén Å. Hypothalamic overexpression of mutant huntingtin causes dysregulation of brown adipose tissue. Sci Rep 2015; 5:14598. [PMID: 26419281 PMCID: PMC4588570 DOI: 10.1038/srep14598] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/01/2015] [Indexed: 12/27/2022] Open
Abstract
Expression of mutant huntingtin (htt) protein has been shown to cause metabolic imbalance in animal models of Huntington disease (HD). The pathways involved are not fully understood but dysfunction of both the hypothalamus and brown adipose tissue (BAT) has been implicated. Here we show that targeted expression of mutant HTT in the hypothalamus leads to loss of the A13 dopaminergic cell group located in the zona incerta and reduced mRNA expression of neuropeptide Y1 receptor in the hypothalamus. Furthermore, this is accompanied by downregulation of uncoupling protein 1 expression and PPARγ coactivator-1 alpha in BAT and a rapid body weight gain. Taken together, our data might provide a mechanistic link between expression of mutant HTT, reduced activity of a hypothalamic dopaminergic pathway and dysfunction of BAT and in part explain the development of an obese phenotype in HD mouse models.
Collapse
Affiliation(s)
- Rana Soylu-Kucharz
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Natalie Adlesic
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Barbara Baldo
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S.) Unit, Department of Experimental Medical Sciences Lund University, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Sweden
| |
Collapse
|
7
|
Jiang P, Scarpa JR, Fitzpatrick K, Losic B, Gao VD, Hao K, Summa KC, Yang HS, Zhang B, Allada R, Vitaterna MH, Turek FW, Kasarskis A. A systems approach identifies networks and genes linking sleep and stress: implications for neuropsychiatric disorders. Cell Rep 2015; 11:835-48. [PMID: 25921536 DOI: 10.1016/j.celrep.2015.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/23/2014] [Accepted: 03/30/2015] [Indexed: 02/06/2023] Open
Abstract
Sleep dysfunction and stress susceptibility are comorbid complex traits that often precede and predispose patients to a variety of neuropsychiatric diseases. Here, we demonstrate multilevel organizations of genetic landscape, candidate genes, and molecular networks associated with 328 stress and sleep traits in a chronically stressed population of 338 (C57BL/6J × A/J) F2 mice. We constructed striatal gene co-expression networks, revealing functionally and cell-type-specific gene co-regulations important for stress and sleep. Using a composite ranking system, we identified network modules most relevant for 15 independent phenotypic categories, highlighting a mitochondria/synaptic module that links sleep and stress. The key network regulators of this module are overrepresented with genes implicated in neuropsychiatric diseases. Our work suggests that the interplay among sleep, stress, and neuropathology emerges from genetic influences on gene expression and their collective organization through complex molecular networks, providing a framework for interrogating the mechanisms underlying sleep, stress susceptibility, and related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Peng Jiang
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Joseph R Scarpa
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karrie Fitzpatrick
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Bojan Losic
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vance D Gao
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keith C Summa
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - He S Yang
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ravi Allada
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Martha H Vitaterna
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Fred W Turek
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| | - Andrew Kasarskis
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
8
|
McCourt AC, Parker J, Silajdžić E, Haider S, Sethi H, Tabrizi SJ, Warner TT, Björkqvist M. Analysis of White Adipose Tissue Gene Expression Reveals CREB1 Pathway Altered in Huntington's Disease. J Huntingtons Dis 2015; 4:371-82. [PMID: 26756592 DOI: 10.3233/jhd-150172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In addition to classical neurological symptoms, Huntington's disease (HD) is complicated by peripheral pathology and both the mutant gene and the protein are found in cells and tissues throughout the body. Despite the adipose tissue gene expression alterations described in HD mouse models, adipose tissue and its gene expression signature have not been previously explored in human HD. OBJECTIVE We investigated gene expression signatures in subcutaneous adipose tissue obtained from control subjects, premanifest HD gene carriers and manifest HD subjects with the aim to identify gene expression changes and signalling pathway alterations in adipose tissue relevant to HD. METHODS Gene expression was assessed using Affymetrix GeneChip® Human Gene 1.0 ST Array. Target genes were technically validated using real-time quantitative PCR and the expression signature was validated in an independent subject cohort. RESULTS In subcutaneous adipose tissue, more than 500 genes were significantly different in premanifest HD subjects as compared to healthy controls. Pathway analysis suggests that the differentially expressed genes found here in HD adipose tissue are involved in fatty acid metabolism pathways, angiotensin signalling pathways and immune pathways. Transcription factor analysis highlights CREB1. Using RT-qPCR, we found that MAL2, AGTR2, COBL and the transcription factor CREB1 were significantly upregulated, with CREB1 and AGT also being significantly upregulated in a separate cohort. CONCLUSIONS Distinct gene expression profiles can be seen in HD subcutaneous adipose tissue, with CREB1 highlighted as a key transcription factor.
Collapse
Affiliation(s)
- Andrew Christopher McCourt
- Brain Disease Biomarker unit, Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| | - Jennifer Parker
- Institute of Neurology, Department of Neurodegenerative Disease, UCL, London, UK
- Magnus Life Science, Rayne Building, 5 University Street, London, UK
| | - Edina Silajdžić
- Brain Disease Biomarker unit, Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Salman Haider
- Institute of Neurology, Department of Neurodegenerative Disease, UCL, London, UK
| | - Huma Sethi
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Sarah J Tabrizi
- Institute of Neurology, Department of Neurodegenerative Disease, UCL, London, UK
| | - Thomas T Warner
- Reta Lila Weston Institute, UCL Institute of Neurology, London, UK
| | - Maria Björkqvist
- Brain Disease Biomarker unit, Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Wiesner D, Sinniger J, Henriques A, Dieterlé S, Müller HP, Rasche V, Ferger B, Dirrig-Grosch S, Soylu-Kucharz R, Petersén A, Walther P, Linkus B, Kassubek J, Wong PC, Ludolph AC, Dupuis L. Low dietary protein content alleviates motor symptoms in mice with mutant dynactin/dynein-mediated neurodegeneration. Hum Mol Genet 2014; 24:2228-40. [PMID: 25552654 DOI: 10.1093/hmg/ddu741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mutations in components of the molecular motor dynein/dynactin lead to neurodegenerative diseases of the motor system or atypical parkinsonism. These mutations are associated with prominent accumulation of vesicles involved in autophagy and lysosomal pathways, and with protein inclusions. Whether alleviating these defects would affect motor symptoms remain unknown. Here, we show that a mouse model expressing low levels of disease linked-G59S mutant dynactin p150(Glued) develops motor dysfunction >8 months before loss of motor neurons or dopaminergic degeneration is observed. Abnormal accumulation of autophagosomes and protein inclusions were efficiently corrected by lowering dietary protein content, and this was associated with transcriptional upregulations of key players in autophagy. Most importantly this dietary modification partially rescued overall neurological symptoms in these mice after onset. Similar observations were made in another mouse strain carrying a point mutation in the dynein heavy chain gene. Collectively, our data suggest that stimulating the autophagy/lysosomal system through appropriate nutritional intervention has significant beneficial effects on motor symptoms of dynein/dynactin diseases even after symptom onset.
Collapse
Affiliation(s)
| | - Jérome Sinniger
- Inserm U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg F-67085, France, Université de Strasbourg, Fédération de Médecine Translationnelle (FMTS), UMRS1118, Strasbourg F-67085, France
| | - Alexandre Henriques
- Inserm U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg F-67085, France, Université de Strasbourg, Fédération de Médecine Translationnelle (FMTS), UMRS1118, Strasbourg F-67085, France
| | - Stéphane Dieterlé
- Inserm U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg F-67085, France, Université de Strasbourg, Fédération de Médecine Translationnelle (FMTS), UMRS1118, Strasbourg F-67085, France
| | | | | | - Boris Ferger
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Sylvie Dirrig-Grosch
- Inserm U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg F-67085, France, Université de Strasbourg, Fédération de Médecine Translationnelle (FMTS), UMRS1118, Strasbourg F-67085, France
| | - Rana Soylu-Kucharz
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, 22184 Lund, Sweden and
| | - Asa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, 22184 Lund, Sweden and
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | | | | | - Philip C Wong
- Department of Pathology and Neuroscience and Division of Neuropathology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | | | - Luc Dupuis
- Inserm U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg F-67085, France, Université de Strasbourg, Fédération de Médecine Translationnelle (FMTS), UMRS1118, Strasbourg F-67085, France,
| |
Collapse
|
10
|
Eschbach J, von Einem B, Müller K, Bayer H, Scheffold A, Morrison BE, Rudolph KL, Thal DR, Witting A, Weydt P, Otto M, Fauler M, Liss B, McLean PJ, Spada ARL, Ludolph AC, Weishaupt JH, Danzer KM. Mutual exacerbation of peroxisome proliferator-activated receptor γ coactivator 1α deregulation and α-synuclein oligomerization. Ann Neurol 2014; 77:15-32. [PMID: 25363075 DOI: 10.1002/ana.24294] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 09/29/2014] [Accepted: 10/05/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson disease (PD), with accumulating evidence that prefibrillar oligomers and protofibrils are the pathogenic species in PD and related synucleinopathies. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a key regulator of mitochondrial biogenesis and cellular energy metabolism, has recently been associated with the pathophysiology of PD. Despite extensive effort on studying the function of PGC-1α in mitochondria, no studies have addressed whether PGC-1α directly influences oligomerization of α-syn or whether α-syn oligomers impact PGC-1α expression. MATERIALS AND METHODS We tested whether pharmacological or genetic activation of PGC-1α or PGC-11α knockdown could modulate the oligomerization of α-syn in vitro by using an α-syn -fragment complementation assay. RESULTS In this study, we found that both PGC-1α reference gene (RG-PGC-1α) and the central nervous system (CNS)-specific PGC-1α (CNS-PGC-1α) are downregulated in human PD brain, in A30P α-syn transgenic animals, and in a cell culture model for α-syn oligomerization. Importantly, downregulation of both RG-PGC-1α and CNS-PGC-1α in cell culture or neurons from RG-PGC-1α-deficient mice leads to a strong induction of α-syn oligomerization and toxicity. In contrast, pharmacological activation or genetic overexpression of RG-PGC-1α reduced α-syn oligomerization and rescued α-syn-mediated toxicity. INTERPRETATION Based on our results, we propose that PGC-1α downregulation and α-syn oligomerization form a vicious circle, thereby influencing and/or potentiating each other. Our data indicate that restoration of PGC-1α is a promising approach for development of effective drugs for the treatment of PD and related synucleinopathies.
Collapse
Affiliation(s)
- Judith Eschbach
- Department of Neurology, Ulm University, Ulm, Germany; Inoviem Scientific, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wiggins LM. Morphological changes and altered expression of antioxidant proteins in a heterozygous dynein mutant; a mouse model of spinal muscular atrophy. ACTA ACUST UNITED AC 2014; 3:161-173. [PMID: 25866698 DOI: 10.5455/oams.310714.or.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE There is increased evidence that oxidative stress is involved in exacerbations of neurodegenerative diseases and spinal muscular atrophies. METHODS We examined changes in morphology and expression of antioxidant proteins and peroxiredoxins in motor neurons of lumbar spinal cord, dorsal root ganglion sensory neurons, macroglial cells and quadriceps muscles of newborn heterozygous Loa/+ mice ("legs at odd angles"), a mouse model for early onset of the spinal muscular atrophy with lower extremity predominance (SMA-LED). RESULTS Our data indicate that newborn Loa-mice develop: neuroinflammation of the sensory and motor neurons; muscular inflammation with atrophic and denervated myofibers; increased expression of neuronal mitochondrial peroxiredoxins (Prxs) 3, 5 and cytoplasmic Prx 6 in motor and sensory neurons, myofibers, fibroblasts of perimysium and chondrocytes of cartilage; and decreased expression of Prx 6 by glial cells and in extracellular space surrounding motor neurons. CONCLUSION The decrease in expression of Prx 6 by glial cells and extracellular Prx 6 secretion in early stages of the pathological conditions is consistent with the hypothesis that chronic oxidative stress may lead to neurodegeneration of motor neurons and exacerbation of the pathology.
Collapse
Affiliation(s)
- Larisa M Wiggins
- Department of Physiology and Cell Biology, University of Nevada, Reno
| |
Collapse
|
12
|
Rona-Voros K, Eschbach J, Vernay A, Wiesner D, Schwalenstocker B, Geniquet P, Mousson De Camaret B, Echaniz-Laguna A, Loeffler JP, Ludolph AC, Weydt P, Dupuis L. Full-length PGC-1α salvages the phenotype of a mouse model of human neuropathy through mitochondrial proliferation. Hum Mol Genet 2013; 22:5096-106. [DOI: 10.1093/hmg/ddt359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
Eschbach J, Sinniger J, Bouitbir J, Fergani A, Schlagowski AI, Zoll J, Geny B, René F, Larmet Y, Marion V, Baloh RH, Harms MB, Shy ME, Messadeq N, Weydt P, Loeffler JP, Ludolph AC, Dupuis L. Dynein mutations associated with hereditary motor neuropathies impair mitochondrial morphology and function with age. Neurobiol Dis 2013; 58:220-30. [PMID: 23742762 DOI: 10.1016/j.nbd.2013.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/10/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022] Open
Abstract
Mutations in the DYNC1H1 gene encoding for dynein heavy chain cause two closely related human motor neuropathies, dominant spinal muscular atrophy with lower extremity predominance (SMA-LED) and axonal Charcot-Marie-Tooth (CMT) disease, and lead to sensory neuropathy and striatal atrophy in mutant mice. Dynein is the molecular motor carrying mitochondria retrogradely on microtubules, yet the consequences of dynein mutations on mitochondrial physiology have not been explored. Here, we show that mouse fibroblasts bearing heterozygous or homozygous point mutation in Dync1h1, similar to human mutations, show profoundly abnormal mitochondrial morphology associated with the loss of mitofusin 1. Furthermore, heterozygous Dync1h1 mutant mice display progressive mitochondrial dysfunction in muscle and mitochondria progressively increase in size and invade sarcomeres. As a likely consequence of systemic mitochondrial dysfunction, Dync1h1 mutant mice develop hyperinsulinemia and hyperglycemia and progress to glucose intolerance with age. Similar defects in mitochondrial morphology and mitofusin levels are observed in fibroblasts from patients with SMA-LED. Last, we show that Dync1h1 mutant fibroblasts show impaired perinuclear clustering of mitochondria in response to mitochondrial uncoupling. Our results show that dynein function is required for the maintenance of mitochondrial morphology and function with aging and suggest that mitochondrial dysfunction contributes to dynein-dependent neurological diseases, such as SMA-LED.
Collapse
|
14
|
Zhang L, Wang S, Lin J. Clinical and molecular research of neuroacanthocytosis. Neural Regen Res 2013; 8:833-42. [PMID: 25206731 PMCID: PMC4146083 DOI: 10.3969/j.issn.1673-5374.2013.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 12/23/2012] [Indexed: 11/18/2022] Open
Abstract
Neuroacanthocytosis is an autosomal recessive or dominant inherited disease characterized by widespread, non-specific nervous system symptoms, or spiculated "acanthocytic" red blood cells. The clinical manifestations typically involve chorea and dystonia, or a range of other movement disorders. Psychiatric and cognitive symptoms may also be present. The two core neuroacanthocytosis syndromes, in which acanthocytosis is atypical, are autosomal recessive chorea-acanthocytosis and X-linked McLeod syndrome. Acanthocytes are found in a smaller proportion of patients with Huntington's disease-like 2 and pantothenate kinase-associated neurodegeneration. Because the clinical manifestations are diverse and complicated, in this review we present features of inheritance, age of onset, neuroimaging and laboratory findings, as well as the spectrum of central and peripheral neurological abnormalities and extraneuronal involvement to help distinguish the four specific syndromes.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Neurology, Dalian Municipal Central Hospital, Affiliated Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Suping Wang
- Department of Neurology, Dalian Municipal Central Hospital, Affiliated Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Jianwen Lin
- Department of Neurology, Dalian Municipal Central Hospital, Affiliated Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| |
Collapse
|
15
|
Kabashi E, El Oussini H, Bercier V, Gros-Louis F, Valdmanis PN, McDearmid J, Mejier IA, Dion PA, Dupre N, Hollinger D, Sinniger J, Dirrig-Grosch S, Camu W, Meininger V, Loeffler JP, René F, Drapeau P, Rouleau GA, Dupuis L. Investigating the contribution of VAPB/ALS8 loss of function in amyotrophic lateral sclerosis. Hum Mol Genet 2013; 22:2350-60. [DOI: 10.1093/hmg/ddt080] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
16
|
Current world literature. Lipid metabolism. Curr Opin Lipidol 2012; 23:248-254. [PMID: 22576583 DOI: 10.1097/mol.0b013e3283543033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Fergani A, Eschbach J, Oudart H, Larmet Y, Schwalenstocker B, Ludolph AC, Loeffler JP, Dupuis L. A mutation in the dynein heavy chain gene compensates for energy deficit of mutant SOD1 mice and increases potentially neuroprotective IGF-1. Mol Neurodegener 2011; 6:26. [PMID: 21521523 PMCID: PMC3111394 DOI: 10.1186/1750-1326-6-26] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/26/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. ALS patients, as well as animal models such as mice overexpressing mutant SOD1s, are characterized by increased energy expenditure. In mice, this hypermetabolism leads to energy deficit and precipitates motor neuron degeneration. Recent studies have shown that mutations in the gene encoding the dynein heavy chain protein are able to extend lifespan of mutant SOD1 mice. It remains unknown whether the protection offered by these dynein mutations relies on a compensation of energy metabolism defects. RESULTS SOD1(G93A) mice were crossbred with mice harboring the dynein mutant Cramping allele (Cra/+ mice). Dynein mutation increased adipose stores in compound transgenic mice through increasing carbohydrate oxidation and sparing lipids. Metabolic changes that occurred in double transgenic mice were accompanied by the normalization of the expression of key mRNAs in the white adipose tissue and liver. Furthermore, Dynein Cra mutation rescued decreased post-prandial plasma triglycerides and decreased non esterified fatty acids upon fasting. In SOD1(G93A) mice, the dynein Cra mutation led to increased expression of IGF-1 in the liver, increased systemic IGF-1 and, most importantly, to increased spinal IGF-1 levels that are potentially neuroprotective. CONCLUSIONS These findings suggest that the protection against SOD1(G93A) offered by the Cramping mutation in the dynein gene is, at least partially, mediated by a reversal in energy deficit and increased IGF-1 availability to motor neurons.
Collapse
Affiliation(s)
- Anissa Fergani
- Inserm U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Strasbourg, F-67085 France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Eschbach J, Dupuis L. Cytoplasmic dynein in neurodegeneration. Pharmacol Ther 2011; 130:348-63. [PMID: 21420428 DOI: 10.1016/j.pharmthera.2011.03.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 12/11/2022]
Abstract
Cytoplasmic dynein 1 (later referred to as dynein) is the major molecular motor moving cargoes such as mitochondria, organelles and proteins towards the minus end of microtubules. Dynein is involved in multiple basic cellular functions, such as mitosis, autophagy and structure of endoplasmic reticulum and Golgi, but also in neuron specific functions in particular retrograde axonal transport. Dynein is regulated by a number of protein complexes, notably by dynactin. Several studies have supported indirectly the involvement of dynein in neurodegeneration associated with Alzheimer's disease, Parkinson's disease, Huntington's disease and motor neuron diseases. First, axonal transport disruption represents a common feature occurring in neurodegenerative diseases. Second, a number of dynein-dependent processes, including autophagy or clearance of aggregation-prone proteins, are found defective in most of these diseases. Third, a number of mutant genes in various neurodegenerative diseases are involved in the regulation of dynein transport. This includes notably mutations in the P150Glued subunit of dynactin that are found in Perry syndrome and motor neuron diseases. Interestingly, gene products that are mutant in Huntington's disease, Parkinson's disease, motor neuron disease or spino-cerebellar ataxia are also involved in the regulation of dynein motor activity or of cargo binding. Despite a constellation of indirect evidence, direct links between the motor itself and neurodegeneration are few, and this might be due to the requirement of fully active dynein for development. Here, we critically review the evidence of dynein involvement in different neurodegenerative diseases and discuss potential underlying mechanisms.
Collapse
Affiliation(s)
- Judith Eschbach
- Inserm U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Strasbourg, F-67085, France
| | | |
Collapse
|