1
|
Kim J, Kadayat TM, Lee JE, Kwon S, Jung K, Hwang JS, Kwon OB, Kim YJ, Choi YK, Park KG, Hwang H, Cho SJ, Lee T, Jeon YH, Chin J. Discovery of the therapeutic potential of PPARδ agonist bearing 1,3,4- thiadiazole in inflammatory disorders. Eur J Med Chem 2024; 279:116856. [PMID: 39270454 DOI: 10.1016/j.ejmech.2024.116856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
As a defense mechanism against deleterious stimuli, inflammation plays a vital role in the development of many disorders, including atherosclerosis, inflammatory bowel disease, experimental autoimmune encephalomyelitis, septic and non-septic shock, and non-alcoholic fatty liver disease (NAFLD). Despite the serious adverse effects of extended usage, traditional anti-inflammatory medications, such as steroidal and non-steroidal anti-inflammatory medicines (NSAIDs), are commonly used for alleviating symptoms of inflammation. The PPARδ subtype of peroxisome proliferator-activated receptors (PPARs) has attracted interest because of its potential for reducing inflammation and related disorders. In this study, a series of 1,3,4-thiadiazole derivatives were designed, synthesized, and evaluated. Compound 11 exhibited potent PPARδ agonistic activity with EC50 values 20 nM and strong selectivity over PPARα and PPARγ. Furthermore, compound 11 demonstrated favorable in vitro and in vivo pharmacokinetic properties. In vivo experiments using labeled macrophages and paw thickness measurements confirmed compound 11's potential to reduce macrophage infiltration and alleviate inflammation. These findings highlight compound 11 as a potent and promising therapeutic candidate for the treatment of acute inflammatory diseases and warrant further investigation to explore various biological roles.
Collapse
Affiliation(s)
- Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Tara Man Kadayat
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Jae-Eon Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Sugyeong Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Kyungjin Jung
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Ji Sun Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Oh-Bin Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Ye Jin Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Yeon-Kyung Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea.
| | - Taeho Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea.
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea.
| |
Collapse
|
2
|
Lee SH, Kim JM. Genome to phenome Association for Pork Belly Parameters Elucidates Three Regulation Distinctions: Adipogenesis, muscle formation, and their transcription factors. Meat Sci 2024; 217:109617. [PMID: 39116533 DOI: 10.1016/j.meatsci.2024.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Genome to phenome analysis is necessary in livestock areas because of its various and complex phenotypes. Pork belly is a favorable part of meat worldwide, including East Asia. A previous study has suggested that the three key transcription factors (ZNF444, NFYA and PPARG) affecting pork belly traits include total volume, the volume of total fat and muscle, and component muscles of the corresponding slice. However, other transcription factor genes affecting each slice other than pork belly component traits still needed to be identified. Thus, we aimed to analyze pork belly components at the genome to phenome level for identifying key transcription factor genes and their co-associated networks. The range of node numbers against each component trait via the association weight matrix was from 598 to 3020. Premised on the result, an in silico functional approach was performed. Each co-association network enriched three key transcription factors in adipogenesis and skeletal muscle proliferation, mesoderm development, metabolism, and gene transcription. The three key transcription factors and their related genes may be useful in comprehending their effect of pork belly construction.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
3
|
Blitek A, Szymanska M. Expression Profiles of Fatty Acid Transporters and the Role of n-3 and n-6 Polyunsaturated Fatty Acids in the Porcine Endometrium. Int J Mol Sci 2024; 25:11102. [PMID: 39456882 PMCID: PMC11507490 DOI: 10.3390/ijms252011102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Fatty acids (FAs) are important for cell membrane composition, eicosanoid synthesis, and metabolic processes. Membrane proteins that facilitate FA transport into cells include FA translocase (also known as CD36) and FA transporter proteins (encoded by SLC27A genes). The present study aimed to examine expression profiles of FA transporters in the endometrium of cyclic and early pregnant gilts on days 3 to 20 after estrus and the possible regulation by conceptus signals and polyunsaturated FAs (PUFAs). The effect of PUFAs on prostaglandin (PG) synthesis and transcript abundance of genes related to FA action and metabolism, angiogenesis, and immune response was also determined. Day after estrus and reproductive status of animals affected FA transporter expression, with greater levels of CD36, SLC27A1, and SLC27A4 observed in pregnant than in cyclic gilts. Conceptus-conditioned medium and/or estradiol-17β stimulated SLC27A1 and CD36 expression. Among PUFAs, linoleic acid decreased SLC27A1 and SLC27A6 mRNA expression, while arachidonic, docosahexaenoic, and eicosapentaenoic acids increased SLC27A4 transcript abundance. Moreover, arachidonic acid stimulated ACOX1, CPT1A, and IL1B expression and increased PGE2 and PGI2 secretion. In turn, α-linolenic acid up-regulated VEGFA, FGF2, FABP4, and PPARG mRNA expression. These results indicate the presence of an active transport of FAs in the porcine endometrium and the role of PUFAs as modulators of the uterine activity during conceptus implantation.
Collapse
Affiliation(s)
- Agnieszka Blitek
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | | |
Collapse
|
4
|
Ruan M, Xu F, Li N, Yu J, Teng F, Tang J, Huang C, Zhu H. Free long-chain fatty acids trigger early postembryonic development in starved Caenorhabditis elegans by suppressing mTORC1. PLoS Biol 2024; 22:e3002841. [PMID: 39436954 PMCID: PMC11530034 DOI: 10.1371/journal.pbio.3002841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/01/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
Postembryonic development of animals has long been considered an internally predetermined program, while macronutrients were believed to be essential solely for providing biomatters and energy to support this process. However, in this study, by using a nematode Caenorhabditis elegans (abbreviated as C. elegans hereafter) model, we surprisingly discovered that dietary supplementation of palmitic acid alone, rather than other abundant essential nutrients such as glucose or amino acid mixture, was sufficient to initiate early postembryonic development even under complete macronutrient deprivation. Such a development was evidenced by changes in morphology, cellular markers in multiple tissues, behaviors, and the global transcription pattern and it occurred earlier than the well-known early L1 nutrient checkpoint. Mechanistically, palmitic acid did not function as a biomatter/energy provider, but rather as a ligand to activate the nuclear hormone receptor NHR-49/80, leading to the production of an unknown peroxisome-derived secretive hormone in the intestine. This hormonal signal was received by chemosensory neurons in the head, regulating the insulin-like neuropeptide secretion and its downstream nuclear receptor to orchestrate global development. Additionally, the nutrient-sensing hub mTORC1 played a negative role in this process. In conclusion, our data indicate that free fatty acids act as a primary nutrient signal to launch the early development in C. elegans, which suggests that specific nutrients, rather than the internal genetic program, serve as the first impetus for postembryonic development.
Collapse
Affiliation(s)
- Meiyu Ruan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fan Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fukang Teng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiawei Tang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
5
|
Aswani BS, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Tackling exosome and nuclear receptor interaction: an emerging paradigm in the treatment of chronic diseases. Mil Med Res 2024; 11:67. [PMID: 39327610 PMCID: PMC11426102 DOI: 10.1186/s40779-024-00564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/06/2024] [Indexed: 09/28/2024] Open
Abstract
Nuclear receptors (NRs) function as crucial transcription factors in orchestrating essential functions within the realms of development, host defense, and homeostasis of body. NRs have garnered increased attention due to their potential as therapeutic targets, with drugs directed at NRs demonstrating significant efficacy in impeding chronic disease progression. Consequently, these pharmacological agents hold promise for the treatment and management of various diseases. Accumulating evidence emphasizes the regulatory role of exosome-derived microRNAs (miRNAs) in chronic inflammation, disease progression, and therapy resistance, primarily by modulating transcription factors, particularly NRs. By exploiting inflammatory pathways such as protein kinase B (Akt)/mammalian target of rapamycin (mTOR), nuclear factor kappa-B (NF-κB), signal transducer and activator of transcription 3 (STAT3), and Wnt/β-catenin signaling, exosomes and NRs play a pivotal role in the panorama of development, physiology, and pathology. The internalization of exosomes modulates NRs and initiates diverse autocrine or paracrine signaling cascades, influencing various processes in recipient cells such as survival, proliferation, differentiation, metabolism, and cellular defense mechanisms. This comprehensive review meticulously examines the involvement of exosome-mediated NR regulation in the pathogenesis of chronic ailments, including atherosclerosis, cancer, diabetes, liver diseases, and respiratory conditions. Additionally, it elucidates the molecular intricacies of exosome-mediated communication between host and recipient cells via NRs, leading to immunomodulation. Furthermore, it outlines the implications of exosome-modulated NR pathways in the prophylaxis of chronic inflammation, delineates current limitations, and provides insights into future perspectives. This review also presents existing evidence on the role of exosomes and their components in the emergence of therapeutic resistance.
Collapse
Affiliation(s)
- Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Yang Y, Rivera L, Fang S, Cavalier M, Suris A, Zhou Y, Huang Y. Maternal high-fat diet alters Tet-mediated epigenetic regulation during heart development. iScience 2024; 27:110631. [PMID: 39262804 PMCID: PMC11388159 DOI: 10.1016/j.isci.2024.110631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/24/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024] Open
Abstract
Imbalanced dietary intake, such as a high-fat diet (HFD) during pregnancy, has been associated with adverse offspring outcomes. Metabolic stress from imbalanced food intake alters the function of epigenetic regulators, resulting in abnormal transcriptional outputs in embryos to cause congenital disorders. We report herein that maternal HFD exposure causes metabolic changes in pregnant mice and non-compaction cardiomyopathy (NCC) in E15.5 embryos, accompanied by decreased 5-hydroxymethylcytosine (5hmC) levels and altered chromatin accessibility in embryonic heart tissues. Remarkably, maternal vitamin C supplementation mitigates these detrimental effects, likely by restoring iron, a cofactor for Tet enzymes, in a reduced state. Using a genetic approach, we further demonstrated that the cardioprotective benefits of vitamin C under HFD conditions are attributable to enhanced Tet activity. Our results highlight an interaction between maternal diet, specifically HFD or vitamin C, and epigenetic modifications during early heart development, emphasizing the importance of balanced maternal nutrition for healthy embryonic development.
Collapse
Affiliation(s)
- Yuhan Yang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Logan Rivera
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Shaohai Fang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Maryn Cavalier
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Ashley Suris
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
7
|
Sebastià C, Gallopin M, Ramayo-Caldas Y, Estellé J, Valdés-Hernández J, Castelló A, Sánchez A, Crespo-Piazuelo D, Folch JM. Gene co-expression network analysis for porcine intramuscular fatty acid composition. Animal 2024; 18:101259. [PMID: 39137614 DOI: 10.1016/j.animal.2024.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
In pigs, meat quality depends markedly on the fatty acid (FA) content and composition of the intramuscular fat, which is partly determined by the gene expression in this tissue. The aim of this work was to identify the link between muscle gene expression and its FA composition. In an (Iberian × Duroc) × Duroc backcrossed pig population, we identified modules of co-expressed genes, and correlation analyses were performed for each of them versus the phenotypes, finding four relevant modules. Two of the modules were positively correlated with saturated FAs (SFAs) and monounsaturated FAs (MUFAs), while negatively correlated with polyunsaturated FAs (PUFAs) and the omega-6/omega-3 ratio. The gene-enrichment analysis showed that these modules had over-representation of pathways related with the biosynthesis of unsaturated FAs, the Peroxisome proliferator-activated receptor signalling pathway and FA elongation. The two other relevant modules were positively correlated with PUFA and the n-6/n-3 ratio, but negatively correlated with SFA and MUFA. In this case, they had an over-representation of pathways related with fatty and amino acid degradation, and with oxidative phosphorylation. Using a graphical Gaussian model, we inferred a network of connections between the genes within each module. The first module had 52 genes with 87 connections, and the most connected genes were ADIPOQ, which is related with FA oxidation, and ELOVL6 and FABP4, both involved in FA metabolism. The second module showed 196 genes connected by 263 edges, being FN1 and MAP3K11 the most connected genes. On the other hand, the third module had 161 genes connected by 251 edges and ATG13 was the top neighbouring gene, while the fourth module had 224 genes and 655 connections, and its most connected genes were related with mitochondrial pathways. Overall, this work successfully identified relevant muscle gene networks and modules linked with FA composition, providing further insights on how the physiology of the pigs influences FA composition.
Collapse
Affiliation(s)
- C Sebastià
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain.
| | - M Gallopin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1, Avenue de la Terrasse, Bâtiment 21, 91190 Gif-sur-Yvette, France
| | - Y Ramayo-Caldas
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - J Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - J Valdés-Hernández
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain
| | - A Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain
| | - A Sánchez
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain
| | - D Crespo-Piazuelo
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain; R&D Department, Cuarte S.L., Grupo Jorge, Autov. Zaragoza-Logroño, km.9, 50120 Monzalbarba, Spain
| | - J M Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain
| |
Collapse
|
8
|
Meng X, Li W, Qian Y, Cai X, Wei J, Zhang L. Mechanisms of colon toxicity induced by long-term perfluorooctanoic acid exposure in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116762. [PMID: 39047366 DOI: 10.1016/j.ecoenv.2024.116762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Perfluorooctanoic acid (PFOA), a persistent organic pollutant known for its chemical stability, is widely dispersed in the environment, posing significant health risks to mammals through various exposure routes such as ingestion, inhalation, and dermal contact. In this study, mice were exposed to PFOA (0, 0.2, 2 mg/L) through drinking water for 180 days to investigate its toxic effects on the colon. We identified differentially expressed genes through RNA sequencing and validated the impact of PFOA on the expression of these genes in colon tissue. Our findings revealed that long-term exposure to PFOA caused inflammatory bowel disease (IBD)-like damage to the mouse colon. We found PFOA could induce damage to the intestinal barrier. Inhibition of the Wnt signaling pathway following PFOA exposure results in impaired stem cell function in the colon of mice. Furthermore, PFOA activated the PPAR signaling pathway, disrupting cellular lipid metabolism in colon tissues. Additionally, PFOA induced inflammatory responses in colon tissue, facilitating NLR family, pyrin domain containing 3 (NLRP3) inflammasome activation and cell apoptosis. This study offers a thorough understanding of the mechanisms responsible for the damage to mouse colon tissue resulting from long-term exposure to PFOA.
Collapse
Affiliation(s)
- Xiannan Meng
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Wei Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Yongjing Qian
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Xiaojing Cai
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Jianfeng Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Ling Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
9
|
Tripathi A, Alnakhala H, Brontesi L, Selkoe D, Dettmer U. RXR nuclear receptor signaling modulates lipid metabolism and triggers lysosomal clearance of alpha-synuclein in neuronal models of synucleinopathy. Cell Mol Life Sci 2024; 81:362. [PMID: 39162859 PMCID: PMC11336128 DOI: 10.1007/s00018-024-05373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Disease-modifying strategies for Parkinson disease (PD), the most common synucleinopathy, represent a critical unmet medical need. Accumulation of the neuronal protein alpha-synuclein (αS) and abnormal lipid metabolism have each been implicated in PD pathogenesis. Here, we elucidate how retinoid-X-receptor (RXR) nuclear receptor signaling impacts these two aspects of PD pathogenesis. We find that activated RXR differentially regulates fatty acid desaturases, significantly reducing the transcript levels of the largely brain-specific desaturase SCD5 in human cultured neural cells and PD patient-derived neurons. This was associated with reduced perilipin-2 protein levels in patient neurons, reversal of αS-induced increases in lipid droplet (LD) size, and a reduction of triglyceride levels in human cultured cells. With regard to αS proteostasis, our study reveals that RXR agonism stimulates lysosomal clearance of αS. Our data support the involvement of Polo-like kinase 2 activity and αS S129 phosphorylation in mediating this benefit. The lowering of cellular αS levels was associated with reduced cytotoxicity. Compared to RXR activation, the RXR antagonist HX531 had the opposite effects on LD size, SCD, αS turnover, and cytotoxicity, all supporting pathway specificity. Together, our findings show that RXR-activating ligands can modulate fatty acid metabolism and αS turnover to confer benefit in cellular models of PD, including patient neurons. We offer a new paradigm to investigate nuclear receptor ligands as a promising strategy for PD and related synucleinopathies.
Collapse
Affiliation(s)
- Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA.
| | - Heba Alnakhala
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA
| | - Lisa Brontesi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA
| | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA.
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Kashobwe L, Sadrabadi F, Brunken L, Coelho ACMF, Sandanger TM, Braeuning A, Buhrke T, Öberg M, Hamers T, Leonards PEG. Legacy and alternative per- and polyfluoroalkyl substances (PFAS) alter the lipid profile of HepaRG cells. Toxicology 2024; 506:153862. [PMID: 38866127 DOI: 10.1016/j.tox.2024.153862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used in various industrial and consumer products. They have gained attention due to their ubiquitous occurrence in the environment and potential for adverse effects on human health, often linked to immune suppression, hepatotoxicity, and altered cholesterol metabolism. This study aimed to explore the impact of ten individual PFAS, 3 H-perfluoro-3-[(3-methoxypropoxy) propanoic acid] (PMPP/Adona), ammonium perfluoro-(2-methyl-3-oxahexanoate) (HFPO-DA/GenX), perfluorobutanoic acid (PFBA), perfluorobutanesulfonic acid (PFBS), perfluorodecanoic acid (PFDA), perfluorohexanoic acid (PFHxA), perfluorohexanesulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS) on the lipid metabolism in human hepatocyte-like cells (HepaRG). These cells were exposed to different concentrations of PFAS ranging from 10 µM to 5000 µM. Lipids were extracted and analyzed using liquid chromatography coupled with mass spectrometry (LC- MS-QTOF). PFOS at 10 µM and PFOA at 25 µM increased the levels of ceramide (Cer), diacylglycerol (DAG), N-acylethanolamine (NAE), phosphatidylcholine (PC), and triacylglycerol (TAG) lipids, while PMPP/Adona, HFPO-DA/GenX, PFBA, PFBS, PFHxA, and PFHxS decreased the levels of these lipids. Furthermore, PFOA and PFOS markedly reduced the levels of palmitic acid (FA 16.0). The present study shows distinct concentration-dependent effects of PFAS on various lipid species, shedding light on the implications of PFAS for essential cellular functions. Our study revealed that the investigated legacy PFAS (PFOS, PFOA, PFBA, PFDA, PFHxA, PFHxS, and PFNA) and alternative PFAS (PMPP/Adona, HFPO-DA/GenX and PFBS) can potentially disrupt lipid homeostasis and metabolism in hepatic cells. This research offers a comprehensive insight into the impacts of legacy and alternative PFAS on lipid composition in HepaRG cells.
Collapse
Affiliation(s)
- Lackson Kashobwe
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1105, Amsterdam, Netherlands
| | - Faezeh Sadrabadi
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Lars Brunken
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ana Carolina M F Coelho
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Mattias Öberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Timo Hamers
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1105, Amsterdam, Netherlands
| | - Pim E G Leonards
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1105, Amsterdam, Netherlands.
| |
Collapse
|
11
|
Khan A, Khan B, Hussain S, Wang Y, Mai W, Hou Y. Permethrin exposure impacts zebrafish lipid metabolism via the KRAS-PPAR-GLUT signaling pathway, which is mediated by oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107021. [PMID: 38996480 DOI: 10.1016/j.aquatox.2024.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Permethrin (Per) is a widely used and frequently detected pyrethroid pesticide in agricultural products and the environment. It may pose potential toxicity to non-target organisms. Per has been reported to affect lipid homeostasis, although the mechanism is undefined. This study aims to explore the characteristic transcriptomic profiles and clarify the underlying signaling pathways of Per-induced lipid metabolism disorder in zebrafish liver. The results showed that environmental exposure to Per caused changes in the liver index, histopathology, and oxidative stress in zebrafish. Moreover, transcriptome results showed that Per heavily altered the pathways involved in metabolism, the immune system, and the endocrine system. We conducted a more in-depth analysis of the genes associated with lipid metabolism. Our findings revealed that exposure to Per led to a disruption in lipid metabolism by activating the KRAS-PPAR-GLUT signaling pathways through oxidative stress. The disruption of lipid homeostasis caused by exposure to Per may also contribute to obesity, hepatitis, and other diseases. The results may provide new insights for the risk of Permethrin to aquatic organisms and new horizons for the pathogenesis of hepatotoxicity.
Collapse
Affiliation(s)
- Afrasyab Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Bibimaryam Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Shakeel Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Yuhan Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Weijun Mai
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013.
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013.
| |
Collapse
|
12
|
Jamerson LE, Bradshaw PC. The Roles of White Adipose Tissue and Liver NADPH in Dietary Restriction-Induced Longevity. Antioxidants (Basel) 2024; 13:820. [PMID: 39061889 PMCID: PMC11273496 DOI: 10.3390/antiox13070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary restriction (DR) protocols frequently employ intermittent fasting. Following a period of fasting, meal consumption increases lipogenic gene expression, including that of NADPH-generating enzymes that fuel lipogenesis in white adipose tissue (WAT) through the induction of transcriptional regulators SREBP-1c and CHREBP. SREBP-1c knockout mice, unlike controls, did not show an extended lifespan on the DR diet. WAT cytoplasmic NADPH is generated by both malic enzyme 1 (ME1) and the pentose phosphate pathway (PPP), while liver cytoplasmic NADPH is primarily synthesized by folate cycle enzymes provided one-carbon units through serine catabolism. During the daily fasting period of the DR diet, fatty acids are released from WAT and are transported to peripheral tissues, where they are used for beta-oxidation and for phospholipid and lipid droplet synthesis, where monounsaturated fatty acids (MUFAs) may activate Nrf1 and inhibit ferroptosis to promote longevity. Decreased WAT NADPH from PPP gene knockout stimulated the browning of WAT and protected from a high-fat diet, while high levels of NADPH-generating enzymes in WAT and macrophages are linked to obesity. But oscillations in WAT [NADPH]/[NADP+] from feeding and fasting cycles may play an important role in maintaining metabolic plasticity to drive longevity. Studies measuring the WAT malate/pyruvate as a proxy for the cytoplasmic [NADPH]/[NADP+], as well as studies using fluorescent biosensors expressed in the WAT of animal models to monitor the changes in cytoplasmic [NADPH]/[NADP+], are needed during ad libitum and DR diets to determine the changes that are associated with longevity.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
13
|
Wang R, Liao Y, Deng Y, Shuang R. Unraveling the Health Benefits and Mechanisms of Time-Restricted Feeding: Beyond Caloric Restriction. Nutr Rev 2024:nuae074. [PMID: 38954563 DOI: 10.1093/nutrit/nuae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Time-restricted feeding (TRF) is a lifestyle intervention that aims to maintain a consistent daily cycle of feeding and fasting to support robust circadian rhythms. Recently, it has gained scientific, medical, and public attention due to its potential to enhance body composition, extend lifespan, and improve overall health, as well as induce autophagy and alleviate symptoms of diseases like cardiovascular diseases, type 2 diabetes, neurodegenerative diseases, cancer, and ischemic injury. However, there is still considerable debate on the primary factors that contribute to the health benefits of TRF. Despite not imposing strict limitations on calorie intake, TRF consistently led to reductions in calorie intake. Therefore, while some studies suggest that the health benefits of TRF are primarily due to caloric restriction (CR), others argue that the key advantages of TRF arise not only from CR but also from factors like the duration of fasting, the timing of the feeding period, and alignment with circadian rhythms. To elucidate the roles and mechanisms of TRF beyond CR, this review incorporates TRF studies that did not use CR, as well as TRF studies with equivalent energy intake to CR, which addresses the previous lack of comprehensive research on TRF without CR and provides a framework for future research directions.
Collapse
Affiliation(s)
- Ruhan Wang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 43000, China
| | - Yan Deng
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Rong Shuang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| |
Collapse
|
14
|
Peeters R, Jellusova J. Lipid metabolism in B cell biology. Mol Oncol 2024; 18:1795-1813. [PMID: 38013654 PMCID: PMC11223608 DOI: 10.1002/1878-0261.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
In recent years, the field of immunometabolism has solidified its position as a prominent area of investigation within the realm of immunological research. An expanding body of scientific literature has unveiled the intricate interplay between energy homeostasis, signalling molecules, and metabolites in relation to fundamental aspects of our immune cells. It is now widely accepted that disruptions in metabolic equilibrium can give rise to a myriad of pathological conditions, ranging from autoimmune disorders to cancer. Emerging evidence, although sometimes fragmented and anecdotal, has highlighted the indispensable role of lipids in modulating the behaviour of immune cells, including B cells. In light of these findings, this review aims to provide a comprehensive overview of the current state of knowledge regarding lipid metabolism in the context of B cell biology.
Collapse
Affiliation(s)
- Rens Peeters
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| | - Julia Jellusova
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| |
Collapse
|
15
|
Ali NSM, Ngalimat MS, Saad MZ, Azmai MNA, Salleh A, Zulperi Z, Md Yasin IS. Expression of immuno-transcriptome response in red hybrid tilapia (Oreochromis sp.) hindgut following vaccination with feed-based bivalent vaccine. JOURNAL OF FISH DISEASES 2024; 47:e13943. [PMID: 38481095 DOI: 10.1111/jfd.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 06/09/2024]
Abstract
Streptococcosis and aeromoniasis are the main obstacles to sustainable tilapia production. Vaccination offered an effective method to control microbial infections. Previously, a feed-based bivalent vaccine (FBBV) containing killed whole organisms of Streptococcus agalactiae and Aeromonas hydrophila mixed with 10% palm oil was successfully developed, which provided good protection against streptococcosis and aeromoniasis in Oreochromis sp. However, the mechanisms of immunities in vaccinated fish still need clarification. Here, the hindgut transcriptome of vaccinated and control fish was determined, as the gut displays higher affinity towards antigen uptake and nutrient absorption. The efficacy of FBBV to improve fish immunity was evaluated according to the expression of immune-related genes in the vaccinated fish hindgut throughout the 8-week experimental period using RT-qPCR. The vaccinated fish hindgut at week 6 was further subjected to transcriptomic analysis due to the high expression of immune-related genes and contained killed whole organisms. Results demonstrated the expression of immune-related genes was in correlation with the presence of killed whole organisms in the vaccinated fish hindgut. Transcriptomic analysis has allowed the prediction of robust immune-related pathways, including innate and adaptive immunological responses in vaccinated fish hindgut than control fish. Pathways related to the regulation of lipid metabolism and modulation of the immune system were also significantly enriched (p ≤ .05). Overall, results offer a fundamental study on understanding the immunological response in Oreochromis sp. following vaccination with the FBBV pellet and support further application to prevent bacterial diseases in aquaculture.
Collapse
Affiliation(s)
- Nur Shidaa Mohd Ali
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohamad Syazwan Ngalimat
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Zamri Saad
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohammad Noor Amal Azmai
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Annas Salleh
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zarirah Zulperi
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ina Salwany Md Yasin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
16
|
Wu Y, Xiao P, Sha H, Luo X, Zou G, Liang H. Transcriptome Analysis Reveals the Potential Key Genes in Nutritional Deposition in the Common Carp ( Cyprinus carpio). Animals (Basel) 2024; 14:1939. [PMID: 38998051 PMCID: PMC11240310 DOI: 10.3390/ani14131939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The common carp (Cyprinus carpio) is one of the most important aquaculture species in China, known for its remarkable adaptability and nutritional profile. However, the specific molecular response mechanisms regulating the nutritional deposition of carp remain inadequately elucidated. This study conducted a comprehensive analysis of muscle nutritional content and transcriptome data from liver and muscle tissues of three distinct carp varieties. The aim was to elucidate the key genes and signaling pathways that regulate muscle nutritional composition in carp. The findings revealed that FFRC carp (FFRC) exhibited significantly higher levels of crude fat, total n-3 polyunsaturated fatty acids, and total n-6 polyunsaturated fatty acids in muscle tissue compared to Ying carp (YC) and Huanghe carp (HC) (p < 0.05). Transcriptomic analyses correlated these elevated levels with a marked upregulation of genes involved in the activation and transportation of fatty acid (fabp7, acsl5, acsbg2) as well as biosynthesis and elongation of long-chain unsaturated fatty acids (elovl2, fads2) within the liver. Furthermore, the flavor amino acid, essential amino acids, and crude protein content in the muscle of HC were significantly higher than in FFRC and YC (p < 0.05). Transcriptomic analyses indicated that this was associated with significant changes in the expression of genes related to amino acid metabolism (asns, alt, ldha, glul, setd, prodh, l3hypdh, hoga1) within their muscle tissue. This research provides a theoretical foundation for the precise modulation of the muscle nutritional composition in carp.
Collapse
Affiliation(s)
- Yunya Wu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Pengfei Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hang Sha
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Xiangzhong Luo
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| |
Collapse
|
17
|
Briganti S, Mosca S, Di Nardo A, Flori E, Ottaviani M. New Insights into the Role of PPARγ in Skin Physiopathology. Biomolecules 2024; 14:728. [PMID: 38927131 PMCID: PMC11201613 DOI: 10.3390/biom14060728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor expressed in many tissues, including skin, where it is essential for maintaining skin barrier permeability, regulating cell proliferation/differentiation, and modulating antioxidant and inflammatory responses upon ligand binding. Therefore, PPARγ activation has important implications for skin homeostasis. Over the past 20 years, with increasing interest in the role of PPARs in skin physiopathology, considerable effort has been devoted to the development of PPARγ ligands as a therapeutic option for skin inflammatory disorders. In addition, PPARγ also regulates sebocyte differentiation and lipid production, making it a potential target for inflammatory sebaceous disorders such as acne. A large number of studies suggest that PPARγ also acts as a skin tumor suppressor in both melanoma and non-melanoma skin cancers, but its role in tumorigenesis remains controversial. In this review, we have summarized the current state of research into the role of PPARγ in skin health and disease and how this may provide a starting point for the development of more potent and selective PPARγ ligands with a low toxicity profile, thereby reducing unwanted side effects.
Collapse
Affiliation(s)
| | | | | | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.B.); (S.M.); (A.D.N.); (M.O.)
| | | |
Collapse
|
18
|
Liao Q, Wang F, Zhou W, Liao G, Zhang H, Shu Y, Chen Y. Identification of Causal Relationships between Gut Microbiota and Influenza a Virus Infection in Chinese by Mendelian Randomization. Microorganisms 2024; 12:1170. [PMID: 38930552 PMCID: PMC11205835 DOI: 10.3390/microorganisms12061170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Numerous studies have reported a correlation between gut microbiota and influenza A virus (IAV) infection and disease severity. However, the causal relationship between these factors remains inadequately explored. This investigation aimed to assess the influence of gut microbiota on susceptibility to human infection with H7N9 avian IAV and the severity of influenza A (H1N1)pdm09 infection. A two-sample Mendelian randomization analysis was conducted, integrating our in-house genome-wide association study (GWAS) on H7N9 susceptibility and H1N1pdm09 severity with a metagenomics GWAS dataset from a Chinese population. Twelve and fifteen gut microbiotas were causally associated with H7N9 susceptibility or H1N1pdm09 severity, separately. Notably, Clostridium hylemonae and Faecalibacterium prausnitzii were negative associated with H7N9 susceptibility and H1N1pdm09 severity, respectively. Moreover, Streptococcus peroris and Streptococcus sanguinis were associated with H7N9 susceptibility, while Streptococcus parasanguini and Streptococcus suis were correlated with H1N1pdm09 severity. These results provide novel insights into the interplay between gut microbiota and IAV pathogenesis as well as new clues for mechanism research regarding therapeutic interventions or IAV infections. Future studies should concentrate on clarifying the regulatory mechanisms of gut microbiota and developing efficacious approaches to reduce the incidence of IAV infections, which could improve strategy for preventing and treating IAV infection worldwide.
Collapse
Affiliation(s)
- Qijun Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Q.L.); (F.W.); (W.Z.); (G.L.)
- BGI Genomics, Shenzhen 518085, China
| | - Fuxiang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Q.L.); (F.W.); (W.Z.); (G.L.)
| | - Wudi Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Q.L.); (F.W.); (W.Z.); (G.L.)
| | - Guancheng Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Q.L.); (F.W.); (W.Z.); (G.L.)
| | - Haoyang Zhang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China;
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Q.L.); (F.W.); (W.Z.); (G.L.)
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Yongkun Chen
- Guangdong Provincial Key Laboratory of Infection Immunity and Inflammation, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
19
|
Moyer CL, Lanier A, Qian J, Coleman D, Hill J, Vuligonda V, Sanders ME, Mazumdar A, Brown PH. IRX4204 Induces Senescence and Cell Death in HER2-positive Breast Cancer and Synergizes with Anti-HER2 Therapy. Clin Cancer Res 2024; 30:2558-2570. [PMID: 38578278 PMCID: PMC11145169 DOI: 10.1158/1078-0432.ccr-23-3839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Rexinoids, agonists of nuclear retinoid X receptor (RXR), have been used for the treatment of cancers and are well tolerated in both animals and humans. However, the usefulness of rexinoids in treatment of breast cancer remains unknown. This study examines the efficacy of IRX4204, a highly specific rexinoid, in breast cancer cell lines and preclinical models to identify a biomarker for response and potential mechanism of action. EXPERIMENTAL DESIGN IRX4204 effects on breast cancer cell growth and viability were determined using cell lines, syngeneic mouse models, and primary patient-derived xenograft (PDX) tumors. In vitro assays of cell cycle, apoptosis, senescence, and lipid metabolism were used to uncover a potential mechanism of action. Standard anti-HER2 therapies were screened in combination with IRX4204 on a panel of breast cancer cell lines to determine drug synergy. RESULTS IRX4204 significantly inhibits the growth of HER2-positive breast cancer cell lines, including trastuzumab and lapatinib-resistant JIMT-1 and HCC1954. Treatment with IRX4204 reduced tumor growth rate in the MMTV-ErbB2 mouse and HER2-positive PDX model by 49% and 44%, respectively. Mechanistic studies revealed IRX4204 modulates lipid metabolism and induces senescence of HER2-positive cells. In addition, IRX4204 demonstrates additivity and synergy with HER2-targeted mAbs, tyrosine kinase inhibitors, and antibody-drug conjugates. CONCLUSIONS These findings identify HER2 as a biomarker for IRX4204 treatment response and demonstrate a novel use of RXR agonists to synergize with current anti-HER2 therapies. Furthermore, our results suggest that RXR agonists can be useful for the treatment of anti-HER2 resistant and metastatic HER2-positive breast cancer.
Collapse
Affiliation(s)
- Cassandra L. Moyer
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amanda Lanier
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Qian
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Darian Coleman
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jamal Hill
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Abhijit Mazumdar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Powel H. Brown
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
20
|
Wu J, Yu F, Di Z, Bian L, Yang J, Wang L, Jiang Q, Yin Y, Zhang L. Transcriptome analysis of adipose tissue and muscle of Laiwu and Duroc pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:134-143. [PMID: 38766520 PMCID: PMC11101945 DOI: 10.1016/j.aninu.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 05/22/2024]
Abstract
Fat content is an important trait in pig production. Adipose tissue and muscle are important sites for fat deposition and affect production efficiency and quality. To regulate the fat content in these tissues, we need to understand the mechanisms behind fat deposition. Laiwu pigs, a Chinese indigenous breed, have significantly higher fat content in both adipose tissue and muscle than commercial breeds such as Duroc. In this study, we analyzed the transcriptomes in adipose tissue and muscle of 21-d-old Laiwu and Duroc piglets. Results showed that there were 828 and 671 differentially expressed genes (DEG) in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT), respectively. Functional enrichment analysis showed that these DEG were enriched in metabolic pathways, especially carbohydrate and lipid metabolism. Additionally, in the longissimus muscle (LM) and psoas muscle (PM), 312 and 335 DEG were identified, demonstrating enrichment in the cell cycle and metabolic pathways. The protein-protein interaction (PPI) networks of these DEG were analyzed and potential hub genes were identified, such as FBP1 and SCD in adipose tissues and RRM2 and GADL1 in muscles. Meanwhile, results showed that there were common DEG between adipose tissue and muscle, such as LDHB, THRSP, and DGAT2. These findings showed that there are significant differences in the transcriptomes of the adipose tissue and muscle between Laiwu and Duroc piglets (P < 0.05), especially in metabolic patterns. This insight serves to advance our comprehensive understanding of metabolic regulation in these tissues and provide targets for fat content regulation.
Collapse
Affiliation(s)
- Jie Wu
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fangyuan Yu
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhaoyang Di
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liwen Bian
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lina Wang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Lin Zhang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
21
|
Bradić I, Vujić N, Kuentzel KB, Habisch H, Pirchheim A, Akhmetshina A, Henderson JD, Madl T, Deshmukh AS, Kratky D. Lanifibranor Reduces Inflammation and Improves Dyslipidemia in Lysosomal Acid Lipase-Deficient Mice. GASTRO HEP ADVANCES 2024; 3:711-723. [PMID: 39280921 PMCID: PMC11401563 DOI: 10.1016/j.gastha.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/15/2024] [Indexed: 09/18/2024]
Abstract
Background and Aims Recent studies showed that patients suffering from lysosomal acid lipase deficiency (LAL-D) benefit from enzyme replacement therapy; however, liver histopathology improved in some but not all patients. We hypothesized that the pan-peroxisome proliferator-activated receptor agonist lanifibranor may have beneficial effects on liver inflammation in LAL knockout (Lal-/-) mice based on its promising results in alleviating liver inflammation in patients with metabolic dysfunction-associated steatohepatitis. Methods Female Lal-/- mice were daily gavaged with lanifibranor or vehicle for 21 days. The effects of the treatment were assessed by measuring body and organ weights, plasma lipids and lipoproteins, as well as hematological parameters, followed by liver proteomics and metabolomics. Results Lanifibranor treatment slightly altered organ weights without affecting the total body weight of Lal-/- mice. We observed major changes in the proteome, with multiple proteins related to lipid metabolism, peroxisomal, and mitochondrial activities being upregulated and inflammation-related proteins being downregulated in the livers of treated mice. Hepatic lipid levels and histology remained unaltered, whereas plasma triacylglycerol and total cholesterol levels were decreased and the lipoprotein profile of lanifibranor-treated Lal-/- mice improved. Conclusion Lanifibranor treatment positively affected liver inflammation and dyslipidemia in Lal-/- mice. These findings suggest the necessity of a further combined study of lanifibranor with enzyme replacement therapy in Lal-/- mice to improve the phenotype. Moreover, there is a compelling rationale for conducting clinical trials to assess the efficacy of lanifibranor as a potential treatment option for LAL-D in humans.
Collapse
Affiliation(s)
- Ivan Bradić
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Nemanja Vujić
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Katharina B Kuentzel
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Hansjörg Habisch
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Anita Pirchheim
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Alena Akhmetshina
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - John D Henderson
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Madl
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Dagmar Kratky
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
22
|
Ali AH, Hachem M, Ahmmed MK. Docosahexaenoic acid-loaded nanoparticles: A state-of-the-art of preparation methods, characterization, functionality, and therapeutic applications. Heliyon 2024; 10:e30946. [PMID: 38774069 PMCID: PMC11107210 DOI: 10.1016/j.heliyon.2024.e30946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
Docosahexaenoic acid (DHA, C22:6 n-3), an omega-3 polyunsaturated fatty acid, offers several beneficial effects. DHA helps in reducing depression, autoimmune diseases, rheumatoid arthritis, attention deficit hyperactivity syndrome, and cardiovascular diseases. It can stimulate the development of brain and nerve, alleviate lipids metabolism-related disorders, and enhance vision development. However, DHA susceptibility to chemical oxidation, poor water solubility, and unpleasant order could restrict its applications for nutritional and therapeutic purposes. To avoid these drawbacks and enhance its bioavailability, DHA can be encapsulated using an effective delivery system. Several encapsulation methods are recognized, and DHA-loaded nanoparticles have demonstrated numerous benefits. In clinical studies, positive influences on the development of several diseases have been reported, but some assumptions are conflicting and need more exploration, since DHA has a systemic and not a targeted release at the required level. This might cause the applications of nanoparticles that could allow DHA release at the required level and improve its efficiency, thus resulting in a better controlling of several diseases. In the current review, we focused on researches investigating the formulation and development of DHA-loaded nanoparticles using different delivery systems, including low-density lipoprotein, zinc oxide, silver, zein, and resveratrol-stearate. Silver-DHA nanoparticles presented a typical particle size of 24 nm with an incorporation level of 97.67 %, while the entrapment efficiency of zinc oxide-DHA nanoparticles represented 87.3 %. By using zein/Poly (lactic-co-glycolic acid) stabilized nanoparticles, DHA's encapsulation level reached 84.6 %. We have also highlighted the characteristics, functionality and medical implementation of these nanoparticles in the treatment of inflammations, brain disorders, diabetes as well as hepatocellular carcinoma.
Collapse
Affiliation(s)
- Abdelmoneim H. Ali
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Group, Khalifa University of Sciences and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
23
|
Cammayo-Fletcher PLT, Flores RA, Nguyen BT, Altanzul B, Fernandez-Colorado CP, Kim WH, Devi RM, Kim S, Min W. Identification of Critical Immune Regulators and Potential Interactions of IL-26 in Riemerella anatipestifer-Infected Ducks by Transcriptome Analysis and Profiling. Microorganisms 2024; 12:973. [PMID: 38792803 PMCID: PMC11123779 DOI: 10.3390/microorganisms12050973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Riemerella anatipestifer (RA) is an economically important pathogen in the duck industry worldwide that causes high mortality and morbidity in infected birds. We previously found that upregulated IL-17A expression in ducks infected with RA participates in the pathogenesis of the disease, but this mechanism is not linked to IL-23, which primarily promotes Th17 cell differentiation and proliferation. RNA sequencing analysis was used in this study to investigate other mechanisms of IL-17A upregulation in RA infection. A possible interaction of IL-26 and IL-17 was discovered, highlighting the potential of IL-26 as a novel upstream cytokine that can regulate IL-17A during RA infection. Additionally, this process identified several important pathways and genes related to the complex networks and potential regulation of the host immune response in RA-infected ducks. Collectively, these findings not only serve as a roadmap for our understanding of RA infection and the development of new immunotherapeutic approaches for this disease, but they also provide an opportunity to understand the immune system of ducks.
Collapse
Affiliation(s)
- Paula Leona T. Cammayo-Fletcher
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Rochelle A. Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Binh T. Nguyen
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Bujinlkham Altanzul
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Cherry P. Fernandez-Colorado
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines;
| | - Woo H. Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Rajkumari Mandakini Devi
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University (1), Jalukie 797110, India;
| | - Suk Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| |
Collapse
|
24
|
Castellano-Castillo D, Ramos-Molina B, Frutos MD, Arranz-Salas I, Reyes-Engel A, Queipo-Ortuño MI, Cardona F. RNA expression changes driven by altered epigenetics status related to NASH etiology. Biomed Pharmacother 2024; 174:116508. [PMID: 38579398 DOI: 10.1016/j.biopha.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing health problem due to the increased obesity rates, among other factors. In its more severe stage (NASH), inflammation, hepatocellular ballooning and fibrosis are present in the liver, which can further evolve to total liver dysfunction or even hepatocarcinoma. As a metabolic disease, is associated to environmental factors such as diet and lifestyle conditions, which in turn can influence the epigenetic landscape of the cells, affecting to the gene expression profile and chromatin organization. In this study we performed ATAC-sequencing and RNA-sequencing to interrogate the chromatin status of liver biopsies in subjects with and without NASH and its effects on RNA transcription and NASH etiology. NASH subjects showed transcriptional downregulation for lipid and glucose metabolic pathways (e.g., ABC transporters, AMPK, FoxO or insulin pathways). A total of 229 genes were differentially enriched (ATAC and mRNA) in NASH, which were mainly related to lipid transport activity, nuclear receptor-binding, dicarboxylic acid transporter, and PPARA lipid regulation. Interpolation of ATAC data with known liver enhancer regions showed differential openness at 8 enhancers, some linked to genes involved in lipid metabolism, (i.e., FASN) and glucose homeostasis (i.e., GCGR). In conclusion, the chromatin landscape is altered in NASH patients compared to patients without this liver condition. This alteration might cause mRNA changes explaining, at least partially, the etiology and pathophysiology of the disease.
Collapse
Affiliation(s)
- Daniel Castellano-Castillo
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, Málaga 29010, Spain
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia 30120, Spain.
| | - María Dolores Frutos
- General and Digestive System Surgery Department, Virgen de la Arrixaca University Hospital, Murcia 31020, Spain
| | - Isabel Arranz-Salas
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA), Virgen de la Victoria University Hospital, Malaga University, 2ª Planta, Campus Teatinos S/N, Málaga 29010, Spain; Department of Human Physiology, Human Histology, Anatomical Pathology and Physical Education, Malaga University, Málaga 29010, Spain; 11 Department of Anatomical Pathology, Virgen de la Victoria Hospital, Málaga, Spain
| | - Armando Reyes-Engel
- Departamento de especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, 29010, Spain
| | - María Isabel Queipo-Ortuño
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, Málaga 29010, Spain; Departamento de especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, 29010, Spain.
| | - Fernando Cardona
- Departamento de especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, 29010, Spain
| |
Collapse
|
25
|
Das S, Subramaniyam N, Alén R, Komakula SSB, Song Z, Ge X, Han H, Desert R, Athavale D, Magdaleno F, Chen W, Barahona I, Lantvit D, Guzman G, Nieto N. Ablation of secreted phosphoprotein-1 in hepatocytes increases fatty acid oxidation and ameliorates alcohol-associated liver disease. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:781-794. [PMID: 38503560 DOI: 10.1111/acer.15304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Previously, we demonstrated that Spp1-/- mice exhibit a greater susceptibility to alcohol-induced liver injury than wild-type (WT) mice. Notably, alcohol triggers the expression of osteopontin (encoded by SPP1) in hepatocytes. However, the specific role of hepatocyte-derived SPP1 in either mitigating or exacerbating alcohol-associated liver disease (AALD) has yet to be elucidated. We hypothesized that hepatocyte-derived SPP1 plays a role in AALD by modulating the regulation of steatosis. METHODS We analyzed hepatic SPP1 expression using four publicly available datasets from patients with alcoholic hepatitis (AH). Additionally, we examined SPP1 expression in the livers of WT mice subjected to either a control or ethanol Lieber-DeCarli (LDC) diet for 6 weeks. We compared the relationship between SPP1 expression and significantly dysregulated genes in AH with controls using correlation and enrichment analyses. To investigate the specific impact of hepatocyte-derived SPP1, we generated hepatocyte-specific Spp1 knock-out (Spp1ΔHep) mice and subjected them to either a control or ethanol Lieber-DeCarli diet for 6 weeks. RESULTS Alcohol induced hepatic SPP1 expression in both humans and mice. Our analysis, focusing on genes correlated with SPP1, revealed an enrichment of fatty acid oxidation (FAO) in three datasets, and peroxisome proliferator-activated receptor signaling in one dataset. Notably, FAO genes correlating with SPP1 were downregulated in patients with AH. Ethanol-fed WT mice exhibited higher serum-free fatty acids (FFAs), adipose tissue lipolysis, and hepatic fatty acid (FA) transporters. In contrast, ethanol-fed Spp1ΔHep mice displayed lower liver triglycerides, FFAs, and serum alanine transaminase and greater FAO gene expression than WT mice, indicating a protective effect against AALD. Primary hepatocytes from Spp1∆Hep mice exhibited heightened expression of genes encoding proteins involved in FAO. CONCLUSIONS Alcohol induces the expression of SPP1 in hepatocytes, leading to impaired FAO and contributing to the development of AALD.
Collapse
Affiliation(s)
- Sukanta Das
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Rosa Alén
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Hui Han
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Fernando Magdaleno
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Wei Chen
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ines Barahona
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniel Lantvit
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Research and Development Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
26
|
Pham HN, Pham L, Sato K. Navigating the liver landscape: upcoming pharmacotherapies for primary sclerosing cholangitis. Expert Opin Pharmacother 2024; 25:895-906. [PMID: 38813599 DOI: 10.1080/14656566.2024.2362263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Primary sclerosing cholangitis (PSC) is a bile duct disorder characterized by ductular reaction, hepatic inflammation, and liver fibrosis. The pathogenesis of PSC is still undefined, and treatment options for patients are limited. Previous clinical trials evaluated drug candidates targeting various cellular functions and pathways, such as bile acid signaling and absorption, gut bacteria and permeability, and lipid metabolisms. However, most of phase III clinical trials for PSC were disappointing, except vancomycin therapy, and there are still no established medications for PSC with efficacy and safety confirmed by phase IV clinical trials. AREAS COVERED This review summarizes the currently ongoing or completed clinical studies for PSC, which are phase II or further, and discusses therapeutic targets and strategies, limitations, and future directions and possibilities of PSC treatments. A literature search was conducted in PubMed and ClinicalTrials.gov utilizing the combination of the searched term 'primary sclerosing cholangitis' with other keywords, such as 'clinical trials,' 'antibiotics,' or drug names. Clinical trials at phase II or further were included for consideration. EXPERT OPINION Only vancomycin demonstrated promising therapeutic effects in the phase III clinical trial. Other drug candidates showed futility or inconsistent results, and the search for novel PSC treatments is still ongoing.
Collapse
Affiliation(s)
- Hoang Nam Pham
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Linh Pham
- Department of Science and Mathematics, Texas A&M University - Central Texas, Killeen, TX, USA
| | - Keisaku Sato
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
27
|
Sharma AK, Khandelwal R, Wolfrum C. Futile lipid cycling: from biochemistry to physiology. Nat Metab 2024; 6:808-824. [PMID: 38459186 DOI: 10.1038/s42255-024-01003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
In the healthy state, the fat stored in our body isn't just inert. Rather, it is dynamically mobilized to maintain an adequate concentration of fatty acids (FAs) in our bloodstream. Our body tends to produce excess FAs to ensure that the FA availability is not limiting. The surplus FAs are actively re-esterified into glycerides, initiating a cycle of breakdown and resynthesis of glycerides. This cycle consumes energy without generating a new product and is commonly referred to as the 'futile lipid cycle' or the glyceride/FA cycle. Contrary to the notion that it's a wasteful process, it turns out this cycle is crucial for systemic metabolic homeostasis. It acts as a control point in intra-adipocyte and inter-organ cross-talk, a metabolic rheostat, an energy sensor and a lipid diversifying mechanism. In this Review, we discuss the metabolic regulation and physiological implications of the glyceride/FA cycle and its mechanistic underpinnings.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
28
|
Tompach MC, Gridley CK, Li S, Clark JM, Park Y, Timme-Laragy AR. Comparing the effects of developmental exposure to alpha lipoic acid (ALA) and perfluorooctanesulfonic acid (PFOS) in zebrafish (Danio rerio). Food Chem Toxicol 2024; 186:114560. [PMID: 38432440 PMCID: PMC11034762 DOI: 10.1016/j.fct.2024.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Alpha lipoic acid (ALA) is a dietary supplement that has been used to treat a wide range of diseases, including obesity and diabetes, and have lipid-lowering effects, making it a potential candidate for mitigating dyslipidemia resulting from exposures to the per- and polyfluoroalkyl substance (PFAS) family member perfluorooctanesulfonic acid (PFOS). ALA can be considered a non-fluorinated structural analog to PFOS due to their similar 8-carbon chain and amphipathic structure, but, unlike PFOS, is rapidly metabolized. PFOS has been shown to reduce pancreatic islet area and induce β-cell lipotoxicity, indicating that changes in β-cell lipid microenvironment is a mechanism contributing to hypomorphic islets. Due to structural similarities, we hypothesized that ALA may compete with PFOS for binding to proteins and distribution throughout the body to mitigate the effects of PFOS exposure. However, ALA alone reduced islet area and fish length, with several morphological endpoints indicating additive toxicity in the co-exposures. Individually, ALA and PFOS increased fatty acid uptake from the yolk. ALA alone increased liver lipid accumulation, altered fatty acid profiling and modulated PPARɣ pathway signaling. Together, this work demonstrates that ALA and PFOS have similar effects on lipid uptake and metabolism during embryonic development in zebrafish.
Collapse
Affiliation(s)
- Madeline C Tompach
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Charlotte K Gridley
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
29
|
Barcarolo D, Angeli E, Etchevers L, Ribas LE, Matiller V, Rey F, Ortega HH, Hein GJ. Effect of Parenteral Supplementation of Minerals and Vitamins on Oxidative Stress Biomarkers and Hepatic Fatty Acid Metabolism in Dairy Cows During the Transition Period. Biol Trace Elem Res 2024; 202:1582-1593. [PMID: 37466757 DOI: 10.1007/s12011-023-03776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
In the present work we aimed to study the effects of parenteral vitamin and mineral supplementation on hepatic fatty acid metabolism as well as on the oxidative stress biomarkers in biological samples of transition cows. The supplemented group (SG, n = 11) received a subcutaneous injection of 5 mL of vitamin A palmitate 35 mg/mL, vitamin E acetate 50 mg/mL plus other injection of 5 mL of copper edetate 10 mg/mL, zinc edetate 40 mg/mL, manganese edetate 10 mg/mL, and sodium selenite 5 mg/mL on days - 60, - 30, and 7 (± 3) relative to calving. The control group (CG, n = 11) received two subcutaneous injections of 5 mL of 9 mg/mL sodium chloride at the same times of the SG. Blood, urine, and liver biopsies were sampled 21 (± 3) days before the expected calving date and 7 and 21 (± 3) days after calving. Results revealed that supplemented animals had higher glutation peroxidase (GSH-Px) activity, lower and higher concentration of 3-nitrotyrosine (3-NT) in the liver and plasma, respectively, higher expression of the mitochondrial beta-oxidation enzyme carnitine palmitoyltransferase 1 in the liver, and lower content of hepatic triacylglycerol, mirroring plasma liver function parameters. No differences between groups were found in the superoxide dismutase activity, MDA concentrations, the protein abundance of peroxisomal acyl-CoA oxidase 1, diacylglycerol O-acyltransferase 1, and peroxisome proliferator-activated receptor alpha. These results suggest that the vitamin and mineral supplementation provided to dairy cows had a beneficial effect on GSH-Px activity, hepatic 3-NT concentration, and on the metabolic adaptation during the peripartum period.
Collapse
Affiliation(s)
- Daiana Barcarolo
- Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), R. P. Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
| | - Emmanuel Angeli
- Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), R. P. Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Lucas Etchevers
- Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), R. P. Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Lucas E Ribas
- Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), R. P. Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
- Centro Universitario Gálvez, Universidad Nacional del Litoral, Gálvez, Santa Fe, Argentina
| | - Valentina Matiller
- Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), R. P. Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Florencia Rey
- Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), R. P. Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Hugo H Ortega
- Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), R. P. Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Gustavo J Hein
- Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), R. P. Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
- Centro Universitario Gálvez, Universidad Nacional del Litoral, Gálvez, Santa Fe, Argentina
| |
Collapse
|
30
|
Akinsipe T, Mohamedelhassan R, Akinpelu A, Pondugula SR, Mistriotis P, Avila LA, Suryawanshi A. Cellular interactions in tumor microenvironment during breast cancer progression: new frontiers and implications for novel therapeutics. Front Immunol 2024; 15:1302587. [PMID: 38533507 PMCID: PMC10963559 DOI: 10.3389/fimmu.2024.1302587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
The breast cancer tumor microenvironment (TME) is dynamic, with various immune and non-immune cells interacting to regulate tumor progression and anti-tumor immunity. It is now evident that the cells within the TME significantly contribute to breast cancer progression and resistance to various conventional and newly developed anti-tumor therapies. Both immune and non-immune cells in the TME play critical roles in tumor onset, uncontrolled proliferation, metastasis, immune evasion, and resistance to anti-tumor therapies. Consequently, molecular and cellular components of breast TME have emerged as promising therapeutic targets for developing novel treatments. The breast TME primarily comprises cancer cells, stromal cells, vasculature, and infiltrating immune cells. Currently, numerous clinical trials targeting specific TME components of breast cancer are underway. However, the complexity of the TME and its impact on the evasion of anti-tumor immunity necessitate further research to develop novel and improved breast cancer therapies. The multifaceted nature of breast TME cells arises from their phenotypic and functional plasticity, which endows them with both pro and anti-tumor roles during tumor progression. In this review, we discuss current understanding and recent advances in the pro and anti-tumoral functions of TME cells and their implications for developing safe and effective therapies to control breast cancer progress.
Collapse
Affiliation(s)
- Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Rania Mohamedelhassan
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Ayuba Akinpelu
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Satyanarayana R. Pondugula
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Panagiotis Mistriotis
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - L. Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
31
|
Guo J, Li R, Ouyang Z, Tang J, Zhang W, Chen H, Zhu Q, Zhang J, Zhu G. Insights into the mechanism of transcription factors in Pb 2+-induced apoptosis. Toxicology 2024; 503:153760. [PMID: 38387706 DOI: 10.1016/j.tox.2024.153760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The health risks associated with exposure to heavy metals, such as Pb2+, are increasingly concerning the public. Pb2+ can cause significant harm to the human body through oxidative stress, autophagy, inflammation, and DNA damage, disrupting cellular homeostasis and ultimately leading to cell death. Among these mechanisms, apoptosis is considered crucial. It has been confirmed that transcription factors play a central role as mediators during the apoptosis process. Interestingly, these transcription factors have different effects on apoptosis depending on the concentration and duration of Pb2+ exposure. In this article, we systematically summarize the significant roles of several transcription factors in Pb2+-induced apoptosis. This information provides insights into therapeutic strategies and prognostic biomarkers for diseases related to Pb2+ exposure.
Collapse
Affiliation(s)
- Jingchong Guo
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Ruikang Li
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Zhuqing Ouyang
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Jiawen Tang
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Wei Zhang
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Hui Chen
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Qian Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Jing Zhang
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China.
| | - Gaochun Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
32
|
Bereketoglu C, Häggblom I, Turanlı B, Pradhan A. Comparative analysis of diisononyl phthalate and di(isononyl)cyclohexane-1,2 dicarboxylate plasticizers in regulation of lipid metabolism in 3T3-L1 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:1245-1257. [PMID: 37927243 DOI: 10.1002/tox.24010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Diisononyl phthalate (DINP) and di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) are plasticizers introduced to replace previously used phthalate plasticizers in polymeric products. Exposure to DINP and DINCH has been shown to impact lipid metabolism. However, there are limited studies that address the mechanisms of toxicity of these two plasticizers. Here, a comparative toxicity analysis has been performed to evaluate the impacts of DINP and DINCH on 3T3-L1 cells. The preadipocyte 3T3-L1 cells were exposed to 1, 10, and 100 μM of DINP or DINCH for 10 days and assessed for lipid accumulation, gene expression, and protein analysis. Lipid staining showed that higher concentrations of DINP and DINCH can induce adipogenesis. The gene expression analysis demonstrated that both DINP and DINCH could alter the expression of lipid-related genes involved in adipogenesis. DINP and DINCH upregulated Pparγ, Pparα, C/EBPα Fabp4, and Fabp5, while both compounds significantly downregulated Fasn and Gata2. Protein analysis showed that both DINP and DINCH repressed the expression of FASN. Additionally, we analyzed an independent transcriptome dataset encompassing temporal data on lipid differentiation within 3T3-L1 cells. Subsequently, we derived a gene set that accurately portrays significant pathways involved in lipid differentiation, which we subsequently subjected to experimental validation through quantitative polymerase chain reaction. In addition, we extended our analysis to encompass a thorough assessment of the expression profiles of this identical gene set across 40 discrete transcriptome datasets that have linked to diverse pathological conditions to foreseen any potential association with DINP and DINCH exposure. Comparative analysis indicated that DINP could be more effective in regulating lipid metabolism.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Isabel Häggblom
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Beste Turanlı
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
33
|
Kwok LS, Yian SS, Ismael LQ, Bee YTG, Harn GL, Yin KB. Vimentin protein is a factor for decreasing breast cancer cell proliferation co-culture with human bone marrow-derived mesenchymal stem cells pre-treated with thiazolidinedione solutions. Mol Biol Rep 2024; 51:317. [PMID: 38381204 DOI: 10.1007/s11033-024-09269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Our previous study investigated the levels of soluble growth factors in the conditioned media of bone marrow-derived mesenchymal stem cells (BMSCs) pre-treated with thiazolidinedione solutions. The present study aimed to investigate the complex intracellular proteins extracted from BMSCs pre-treated with pioglitazone and/or rosiglitazone using proteomics. METHODS The proliferative effect of the identified protein on MCF-7 cells that interacted non-adhesively with BMSCs pre-treated with pioglitazone and/or rosiglitazone was evaluated using cell culture inserts and conditioned media. The mRNA expression of proliferation and lipid accumulation markers was also evaluated in the interacted MCF-7 cells by reverse transcription-quantitative PCR. Finally, the correlation between the identified protein and fibroblast growth factor 4 (FGF-4) protein in the conditioned media of the pre-treated BMSCs was evaluated by ELISA. RESULTS The present study identified vimentin as the specific protein among the complex intracellular proteins that likely plays a role in MCF-7 cell proliferation when the breast cancer cells interacted non-adhesively with BMSCs pre-treated with a combination of pioglitazone and rosiglitazone. The inhibition of this protein promoted the proliferation of MCF-7 cells when the breast cancer cells interacted with pre-treated BMSCs. Gene expression analysis indicated that pre-treatment of BMSCs with a combination of pioglitazone and rosiglitazone decreased the mRNA expression of Ki67 and proliferating cell nuclear antigen in MCF-7 cells. The pre-treatment did not induce mRNA expression of PPARγ, which is a sign of lipid accumulation. The level of vimentin protein was also associated with the FGF-4 protein expression level in the conditioned media of the pre-treated BMSCs. Bioinformatics analysis revealed that vimentin regulated the expression of FGF-4 through its interaction with SRY-box 2 and POU class 5 homeobox 1. CONCLUSIONS The present study identified a novel intracellular protein that may represent the promising target in pre-treated BMSCs to decrease the proliferation of breast cancer MCF-7 cells for human health and wellness.
Collapse
Affiliation(s)
- Lim Shern Kwok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Shim Siang Yian
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Layla Qasim Ismael
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, 44001, Iraq
| | - Yvonne Tee Get Bee
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Gam Lay Harn
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Khoo Boon Yin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
34
|
Tobin D, Svensen H, Shanmugasundaram D, Ruyter B, Stoknes I, Dornish M. Toxicological evaluation of a fish oil concentrate containing Very Long Chain Fatty Acids. Food Chem Toxicol 2024; 186:114518. [PMID: 38387522 DOI: 10.1016/j.fct.2024.114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Very long chain fatty acids (VLCFA) have a chain length ≥24 carbons. Fish contain low levels of these fatty acids. A commercial oil called EPAX® Evolve 05 with an up-concentration of VLCFAs of approximately 10 times, has been developed as a dietary supplement by Epax Norway AS. A series of toxicological studies were performed using mice and rats to determine the safety and toxicity of repeat dosing with a gavage administered VLCFA formulation. The results suggest transient lipid accumulation in kidneys and liver. Lipid accumulation was seen with the test item and with the soya control but was not dose related. Liver and kidney lipid accumulation, whilst present in 14- day repeat dose study, was absent in a 90-day rat study. No treatment-effect was seen in urine analysis in any of the studies. No treatment-related effects were seen with a functional observation battery, ophthalmological examination, haematology, urine analysis, oestrus cycle, thyroid hormones, organ weight, or histopathology. In the 90-day study the liver enzymes ALP, AST and ALT were statistically significantly increased with test item but within control values. There were no associated histological findings in the liver suggesting there was no toxic effect and the normalisation of values for all liver enzymes in the recovery groups suggests an adaptive response rather than a prevailing toxic response. The no-observed-adverse-effect level (NOAEL) was determined as 1200 mg VLCFA/kg b.w./day.
Collapse
|
35
|
Bradley D, Deng T, Shantaram D, Hsueh WA. Orchestration of the Adipose Tissue Immune Landscape by Adipocytes. Annu Rev Physiol 2024; 86:199-223. [PMID: 38345903 DOI: 10.1146/annurev-physiol-042222-024353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Obesity is epidemic and of great concern because of its comorbid and costly inflammatory-driven complications. Extensive investigations in mice have elucidated highly coordinated, well-balanced interactions between adipocytes and immune cells in adipose tissue that maintain normal systemic metabolism in the lean state, while in obesity, proinflammatory changes occur in nearly all adipose tissue immune cells. Many of these changes are instigated by adipocytes. However, less is known about obesity-induced adipose-tissue immune cell alterations in humans. Upon high-fat diet feeding, the adipocyte changes its well-known function as a metabolic cell to assume the role of an immune cell, orchestrating proinflammatory changes that escalate inflammation and progress during obesity. This transformation is particularly prominent in humans. In this review, we (a) highlight a leading and early role for adipocytes in promulgating inflammation, (b) discuss immune cell changes and the time course of these changes (comparing humans and mice when possible), and (c) note how reversing proinflammatory changes in most types of immune cells, including adipocytes, rescues adipose tissue from inflammation and obese mice from insulin resistance.
Collapse
Affiliation(s)
- David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Pennsylvania State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA;
| | - Tuo Deng
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Dharti Shantaram
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
36
|
Wang R, Zhang J, Ren H, Qi S, Xie L, Xie H, Shang Z, Liu C. Dysregulated palmitic acid metabolism promotes the formation of renal calcium-oxalate stones through ferroptosis induced by polyunsaturated fatty acids/phosphatidic acid. Cell Mol Life Sci 2024; 81:85. [PMID: 38345762 PMCID: PMC10861707 DOI: 10.1007/s00018-024-05145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
The pathogenesis of renal calcium-oxalate (CaOx) stones is complex and influenced by various metabolic factors. In parallel, palmitic acid (PA) has been identified as an upregulated lipid metabolite in the urine and serum of patients with renal CaOx stones via untargeted metabolomics. Thus, this study aimed to mechanistically assess whether PA is involved in stone formation. Lipidomics analysis of PA-treated renal tubular epithelial cells compared with the control samples revealed that α-linoleic acid and α-linolenic acid were desaturated and elongated, resulting in the formation of downstream polyunsaturated fatty acids (PUFAs). In correlation, the levels of fatty acid desaturase 1 and 2 (FADS1 and FADS2) and peroxisome proliferator-activated receptor α (PPARα) in these cells treated with PA were increased relative to the control levels, suggesting that PA-induced upregulation of PPARα, which in turn upregulated these two enzymes, forming the observed PUFAs. Lipid peroxidation occurred in these downstream PUFAs under oxidative stress and Fenton Reaction. Furthermore, transcriptomics analysis revealed significant changes in the expression levels of ferroptosis-related genes in PA-treated renal tubular epithelial cells, induced by PUFA peroxides. In addition, phosphatidyl ethanolamine binding protein 1 (PEBP1) formed a complex with 15-lipoxygenase (15-LO) to exacerbate PUFA peroxidation under protein kinase C ζ (PKC ζ) phosphorylation, and PKC ζ was activated by phosphatidic acid derived from PA. In conclusion, this study found that the formation of renal CaOx stones is promoted by ferroptosis of renal tubular epithelial cells resulting from PA-induced dysregulation of PUFA and phosphatidic acid metabolism, and PA can promote the renal adhesion and deposition of CaOx crystals by injuring renal tubular epithelial cells, consequently upregulating adhesion molecules. Accordingly, this study provides a new theoretical basis for understanding the correlation between fatty acid metabolism and the formation of renal CaOx stones, offering potential targets for clinical applications.
Collapse
Affiliation(s)
- Rui Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jingdong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haotian Ren
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shiyong Qi
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Linguo Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haijie Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Chunyu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
37
|
Robinson JW, Martin R, Ozawa M, Elwenspoek MMC, Redaniel MT, Kurian K, Ben-Shlomo Y. Use of drugs for hyperlipidaemia and diabetes and risk of primary and secondary brain tumours: nested case-control studies using the UK Clinical Practice Research Datalink (CPRD). BMJ Open 2024; 14:e072026. [PMID: 38336454 PMCID: PMC10860117 DOI: 10.1136/bmjopen-2023-072026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 12/05/2023] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVES Previous studies have suggested that fibrates and glitazones may have a role in brain tumour prevention. We examined if there is support for these observations using primary care records from the UK Clinical Practice Research Datalink (CPRD). DESIGN We conducted two nested case-control studies using primary and secondary brain tumours identified within CPRD between 2000 and 2016. We selected cases and controls among the population of individuals who had been treated with any anti-diabetic or anti-hyperlipidaemic medication to reduce confounding by indication. SETTING Adults older than 18 years registered with a general practitioner in the UK contributing data to CPRD. RESULTS We identified 7496 individuals with any brain tumour (4471 primary; 3025 secondary) in total. After restricting cases and controls to those prescribed any anti-diabetic or anti-hyperlipidaemic medication, there were 1950 cases and 7791 controls in the fibrate and 480 cases with 1920 controls in the glitazone analyses. Longer use of glitazones compared with all other anti-diabetic medications was associated with a reduced risk of primary (adjusted OR (aOR) 0.89 per year, 95% CI 0.80 to 0.98), secondary (aOR 0.87 per year, 95% CI 0.77 to 0.99) or combined brain tumours (aOR 0.88 per year, 95% CI 0.81 to 0.95). There was little evidence that fibrate exposure was associated with risk of either primary or secondary brain tumours. CONCLUSIONS Longer exposure to glitazones was associated with reduced primary and secondary brain tumour risk. Further basic science and population-based research should explore this finding in greater detail, in terms of replication and mechanistic studies.
Collapse
Affiliation(s)
- Jamie W Robinson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Richard Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Mio Ozawa
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Martha Maria Christine Elwenspoek
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West, Univeristy of Bristol, Bristol, UK
| | - Maria Theresa Redaniel
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West, Univeristy of Bristol, Bristol, UK
| | - Kathreena Kurian
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Brain Tumour Research Centre, University of Bristol, Bristol, UK
| | - Yoav Ben-Shlomo
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West, Univeristy of Bristol, Bristol, UK
| |
Collapse
|
38
|
Koc K, Ozek NS, Aysin F, Demir O, Yilmaz A, Yilmaz M, Geyikoglu F, Erol HS. Hispidulin exerts a protective effect against oleic acid induced-ARDS in the rat via inhibition of ACE activity and MAPK pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:755-766. [PMID: 36624973 DOI: 10.1080/09603123.2023.2166023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study investigates the protective role of Hispidulin on acute respiratory distress syndrome (ARDS) in rats. Rats were divided into three groups: control, ARDS, ARDS+ Hispidulin. The ARDS models were established by injecting rats with oleic acid. Hispidulin (100 mg/kg) was injected i.p. an hour before ARDS. Myeloperoxidase (MPO), Interleukin-8 (IL-8), Mitogen-activated protein kinases (MAPK), Lipid Peroxidation (LPO), Superoxide Dismutase (SOD), Glutathione (GSH), and Angiotensin-converting enzyme (ACE) were determined by ELISA. Tumor necrosis factor-alpha (TNF-α) expression was described by RT-qPCR. Caspase-3 immunostaining was performed to evaluate apoptosis. Compared with the model group, a significant decrease was observed in the MPO, IL-8, MAPK, ACE, LPO levels, and TNF-α expression in the ARDS+ Hispidulin group. Moreover, reduced caspase-3 immunoreactivity and activity of ACE were detected in the Hispidulin+ARDS group. The protective effect of Hispidulin treatment may act through inhibition of the ACE activity and then regulation of inflammatory cytokine level and alteration of apoptosis.
Collapse
Affiliation(s)
- Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Ferhunde Aysin
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Ozlem Demir
- Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Asli Yilmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Mehmet Yilmaz
- Department of Nanoscience and Nanoengineering, Atatürk University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Huseyin Serkan Erol
- Department of Biochemistry, Kastamonu University, Faculty of Veterinary Medicine, Kastamonu, TURKEY
| |
Collapse
|
39
|
Ezzati‐Mobaser S, Yarahmadi S, Dadkhah Nikroo N, Maleki MH, Yousefi Z, Golpour P, Nourbakhsh M, Nourbakhsh M. Adipose triglyceride lipase gene expression in peripheral blood mononuclear cells of subjects with obesity and its association with insulin resistance, inflammation and lipid accumulation in liver. Obes Sci Pract 2024; 10:e716. [PMID: 38263987 PMCID: PMC10804332 DOI: 10.1002/osp4.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Adipose triglyceride lipase (ATGL) is a crucial enzyme responsible for the release of fatty acids from various tissues. The expression of ATGL is regulated by insulin and this enzyme is linked to Insulin resistance (IR). On the other hand, ATGL-mediated lipolysis is connected to macrophage function and thus, ATGL is involved in inflammation and the pathogenesis of lipid-related disorders. This study aimed to investigate the correlation between ATGL, obesity, Metabolic Syndrome (MetS), and inflammation. Methods A total of 100 participants, including 50 individuals with obesity and 50 healthy participants, were recruited for this study and underwent comprehensive clinical evaluations. Blood samples were collected to measure plasma lipid profiles, glycemic indices, and liver function tests. Additionally, peripheral blood mononuclear cells (PBMCs) were isolated and used for the assessment of the gene expression of ATGL, using real-time PCR. Furthermore, PBMCs were cultured and exposed to lipopolysaccharides (LPS) with simultaneous ATGL inhibition, and the gene expression of inflammatory cytokines, along with the secretion of prostaglandin E2 (PGE2), were measured. Results The gene expression of ATGL was significantly elevated in PBMCs obtained from participants with obesity and was particularly higher in those diagnosed with MetS. It exhibited a correlation with insulin levels and Homeostatic Model Assessment for IR (HOMA-IR), and it was associated with lipid accumulation in the liver. Stimulation with LPS increased ATGL expression in PBMCs, while inhibition of ATGL attenuated the inflammatory responses induced by LPS. Conclusions Obesity and MetS were associated with dysregulation of ATGL. ATGL might play a role in the upregulation of inflammatory cytokines and act as a significant contributor to the development of metabolic abnormalities related to obesity.
Collapse
Affiliation(s)
| | - Sahar Yarahmadi
- Department of BiochemistryFaculty of MedicineIran University of Medical SciencesTehranIran
| | - Nikta Dadkhah Nikroo
- Metabolic Disorders Research CenterEndocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Mohammad Hasan Maleki
- Department of BiochemistrySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Zeynab Yousefi
- Department of Clinical BiochemistryFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Pegah Golpour
- Department of BiochemistryFaculty of MedicineShahid Sadoughi University of Medical SciencesTehranIran
| | - Mona Nourbakhsh
- Hazrat Aliasghar HospitalSchool of MedicineIran University of Medical SciencesTehranIran
| | - Mitra Nourbakhsh
- Finetech in Medicine Research CenterIran University of Medical SciencesTehranIran
- Department of BiochemistryFaculty of MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
40
|
Parra LG, Erjavec LC, Casali CI, Zerpa Velazquez A, Weber K, Setton-Avruj CP, Fernández Tome MDC. Cytosolic phospholipase A 2 regulates lipid homeostasis under osmotic stress through PPARγ. FEBS J 2024; 291:722-743. [PMID: 37947039 DOI: 10.1111/febs.16998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Physiologically, renal medullary cells are surrounded by a hyperosmolar interstitium. However, different pathological situations can induce abrupt changes in environmental osmolality, causing cell stress. Therefore, renal cells must adapt to survive in this new condition. We previously demonstrated that, among the mechanisms involved in osmoprotection, renal cells upregulate triglyceride biosynthesis (which helps preserve glycerophospholipid synthesis and membrane homeostasis) and cyclooxygenase-2 (which generates prostaglandins from arachidonic acid) to maintain lipid metabolism in renal tissue. Herein, we evaluated whether hyperosmolality modulates phospholipase A2 (PLA2 ) activity, leading to arachidonic acid release from membrane glycerophospholipid, and investigated its possible role in hyperosmolality-induced triglyceride synthesis and accumulation. We found that hyperosmolality induced PLA2 expression and activity in Madin-Darby canine kidney cells. Cytosolic PLA2 (cPLA2) inhibition, but not secreted or calcium-independent PLA2 (sPLA2 or iPLA2 , respectively), prevented triglyceride synthesis and reduced cell survival. Inhibition of prostaglandin synthesis with indomethacin not only failed to prevent hyperosmolality-induced triglyceride synthesis but also exacerbated it. Similar results were observed with the peroxisomal proliferator activated receptor gamma (PPARγ) agonist rosiglitazone. Furthermore, hyperosmolality increased free intracellular arachidonic acid levels, which were even higher when prostaglandin synthesis was inhibited by indomethacin. Blocking PPARγ with GW-9662 prevented the effects of both indomethacin and rosiglitazone on triglyceride synthesis and even reduced hyperosmolality-induced triglyceride synthesis, suggesting that arachidonic acid may stimulate triglyceride synthesis through PPARγ activation. These results highlight the role of cPLA2 in osmoprotection, since it is essential to provide arachidonic acid, which is involved in PPARγ-regulated triglyceride synthesis, thus guaranteeing cell survival.
Collapse
Affiliation(s)
- Leandro Gastón Parra
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Luciana Cecilia Erjavec
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cecilia Irene Casali
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Andrea Zerpa Velazquez
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Karen Weber
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Clara Patricia Setton-Avruj
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departaemento de Química Biológica, Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - María Del Carmen Fernández Tome
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
41
|
Jia Y, Chen K, Du M, Zhao W, Chen Y, Cheng J, Zhao L, Liu J, Long J. Auricularia auricula-judae Attenuates the Progression of Metabolic Syndrome in High-Fat Diet-Induced Obese Rats: Enzymatic Pre-Digestion Technology Is Superior to Superfine Grinding Method. Foods 2024; 13:406. [PMID: 38338541 PMCID: PMC10855940 DOI: 10.3390/foods13030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Auricularia auricula-judae (AAJ) has been cultivated for food in China for centuries, and is also used as a folk medicine for the regulation of glucose and lipid metabolism. However, there are few studies on the effects of different processing technologies on the therapeutic efficacy of AAJ to date. This study investigated the effectiveness of the AAJ made by using superfine grinding and enzymatic pre-digestion technologies, respectively, in a high-fat diet obese rat model. It was found that oral administrations of two AAJ products significantly alleviated dyslipidemia by decreasing serum lipid levels and restoring liver functions. AAJ products made by using pre-digestion technology have appreciable potential to ameliorate lipid metabolic disorders over other products, possibly due to the higher levels of dietary fiber, crude polysaccharides, and total flavonoids released from AAJ during processing. By analysis of transcriptome sequencing and protein expression, it was clear that starch and sucrose metabolism and glycerolipid metabolism-related factors involved in fatty acid synthesis and metabolism in the liver of obese rats were significantly improved. This study gives further evidence that AAJ significantly ameliorates the progression of glucose and lipid metabolism in obese rats. Moreover, this study demonstrated for the first time that the pre-digestion method may be a better and more efficient processing approach for the improvement of AAJ bioavailability.
Collapse
Affiliation(s)
- Ying Jia
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Shaanxi 38Fule Special Medical Food Co., Ltd., Shangluo 711400, China
| | - Kun Chen
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Shaanxi 38Fule Special Medical Food Co., Ltd., Shangluo 711400, China
| | - Menggang Du
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Shaanxi 38Fule Special Medical Food Co., Ltd., Shangluo 711400, China
| | - Wanzhou Zhao
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), OG Pharmaceuticals, 88 Jiangdong Road, Nanjing 210036, China
| | - Yong Chen
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), OG Pharmaceuticals, 88 Jiangdong Road, Nanjing 210036, China
| | - Junhong Cheng
- Shaanxi 38Fule Special Medical Food Co., Ltd., Shangluo 711400, China
| | - Lin Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
42
|
German IJS, Pomini KT, Andreo JC, Shindo JVTC, de Castro MVM, Detregiachi CRP, Araújo AC, Guiguer EL, Fornari Laurindo L, Bueno PCDS, de Souza MDSS, Gabaldi M, Barbalho SM, Shinohara AL. New Trends to Treat Muscular Atrophy: A Systematic Review of Epicatechin. Nutrients 2024; 16:326. [PMID: 38276564 PMCID: PMC10818576 DOI: 10.3390/nu16020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Epicatechin is a polyphenol compound that promotes skeletal muscle differentiation and counteracts the pathways that participate in the degradation of proteins. Several studies present contradictory results of treatment protocols and therapeutic effects. Therefore, the objective of this systematic review was to investigate the current literature showing the molecular mechanism and clinical protocol of epicatechin in muscle atrophy in humans, animals, and myoblast cell-line. The search was conducted in Embase, PubMed/MEDLINE, Cochrane Library, and Web of Science. The qualitative analysis demonstrated that there is a commonness of epicatechin inhibitory action in myostatin expression and atrogenes MAFbx, FOXO, and MuRF1. Epicatechin showed positive effects on follistatin and on the stimulation of factors related to the myogenic actions (MyoD, Myf5, and myogenin). Furthermore, the literature also showed that epicatechin can interfere with mitochondrias' biosynthesis in muscle fibers, stimulation of the signaling pathways of AKT/mTOR protein production, and amelioration of skeletal musculature performance, particularly when combined with physical exercise. Epicatechin can, for these reasons, exhibit clinical applicability due to the beneficial results under conditions that negatively affect the skeletal musculature. However, there is no protocol standardization or enough clinical evidence to draw more specific conclusions on its therapeutic implementation.
Collapse
Affiliation(s)
- Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| | - João Vitor Tadashi Cosin Shindo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Patrícia Cincotto dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Maricelma da Silva Soares de Souza
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Marcia Gabaldi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - André Luis Shinohara
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| |
Collapse
|
43
|
Ding H, Liu J, Chen Z, Huang S, Yan C, Kwek E, He Z, Zhu H, Chen ZY. Protocatechuic acid alleviates TMAO-aggravated atherosclerosis via mitigating inflammation, regulating lipid metabolism, and reshaping gut microbiota. Food Funct 2024; 15:881-893. [PMID: 38165856 DOI: 10.1039/d3fo04396g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Trimethylamine-N-oxide (TMAO) is a risk factor for atherosclerosis. As a natural phenolic acid, protocatechuic acid (PCA) is abundant in various plant foods. The present study investigated the effect of PCA on TMAO-aggravated atherosclerosis in ApoE-/- mice. The mice were randomly divided into five groups and fed one of the following five diets for 12 weeks: namely a low-fat diet (LFD), a western diet (WD), a WD + 0.2% TMAO diet (WDT), a WDT + 0.5% PCA diet (WDT + LPCA), and a WDT + 1.0% PCA diet (WDT + HPCA). Results demonstrated that dietary TMAO exacerbated the development of atherosclerosis by eliciting inflammation and disturbing lipid metabolism. The diet with PCA at 1% reduced TMAO-induced aortic plaque by 30% and decreased the levels of plasma pro-inflammatory cytokines. PCA also improved lipid metabolism by up-regulating the hepatic gene expression of peroxisome proliferator-activated receptor alpha (PPARα). In addition, PCA supplementation enhanced fecal excretion of fatty acids and decreased hepatic fat accumulation. PCA supplementation favorably modulated gut microbiota by increasing the α-diversity with an increase in the abundance of beneficial genera (Rikenella, Turicibacter, Clostridium_sensu_stricto and Bifidobacterium) and a decrease in the abundance of the harmful Helicobacter genus. In summary, PCA could alleviate the TMAO-exacerbated atherosclerosis and inflammation, improve the lipid metabolism, and modulate gut microbiota.
Collapse
Affiliation(s)
- Huafang Ding
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Jianhui Liu
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, Nanjing 210023, China
| | - Zixing Chen
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Shouhe Huang
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Chi Yan
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Erika Kwek
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Zouyan He
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Hanyue Zhu
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Zhen-Yu Chen
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
44
|
Allebrandt Neto EW, Rondon E Silva J, Santos SF, de França Lemes SA, Kawashita NH, Peron Pereira M. The futile creatine cycle and the synthesis of fatty acids in inguinal white adipose tissue from growing rats, submitted to a hypoprotein-hyperglycidic diet for 15 days. Lipids 2024; 59:3-12. [PMID: 38223990 DOI: 10.1002/lipd.12384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
The low-protein, high-carbohydrate (LPHC) diet administered to growing rats soon after weaning, for 15 days, promoted an increase in energy expenditure by uncoupling protein 1 (UCP1) in interscapular brown adipose tissue, and also due to the occurrence of the browning process in the perirenal white adipose tissue (periWAT). However, we believe that inguinal white adipose tissue (ingWAT) may also contribute to energy expenditure through other mechanisms. Therefore, the aim of this work is to investigate the presence of the futile creatine cycle, and the origin of lipids in ingWAT, since that tissue showed an increase in the lipids content in rats submitted to the LPHC diet for 15 days. We observed increases in creatine kinase and alkaline phosphatase activity in ingWAT, of the LPHC animals. The mitochondrial Nicotinamide adenine dinucleotide reduced/nicotinamide adenine dinucleotide oxidized ratio is lower in ingWAT of LPHC animals. In the LPHC animals treated with β-guanidinopropionic acid, the extracellular uptake of creatine in ingWAT was lower, as was the rectal temperature. Regarding lipid metabolism, we observed that in ingWAT, lipolysis in vitro when stimulated with noradrenaline is lower, and there were no changes in baseline levels. In addition, increases in the activity of enzymes were also observed: malic, glucose-6-phosphate dehydrogenase, and ATP-citrate lyase, in addition to an increase in the PPARγ content. The results show the occurrence of the futile creatine cycle in ingWAT, and that the increase in the relative mass may be due to an increase in de novo fatty acid synthesis.
Collapse
Affiliation(s)
| | | | | | | | - Nair Honda Kawashita
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Mayara Peron Pereira
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| |
Collapse
|
45
|
Pfefferlé M, Vallelian F. Transcription Factor NRF2 in Shaping Myeloid Cell Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:159-195. [PMID: 39017844 DOI: 10.1007/978-3-031-62731-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
NFE2-related factor 2 (NRF2) is a master transcription factor (TF) that coordinates key cellular homeostatic processes including antioxidative responses, autophagy, proteostasis, and metabolism. The emerging evidence underscores its significant role in modulating inflammatory and immune processes. This chapter delves into the role of NRF2 in myeloid cell differentiation and function and its implication in myeloid cell-driven diseases. In macrophages, NRF2 modulates cytokine production, phagocytosis, pathogen clearance, and metabolic adaptations. In dendritic cells (DCs), it affects maturation, cytokine production, and antigen presentation capabilities, while in neutrophils, NRF2 is involved in activation, migration, cytokine production, and NETosis. The discussion extends to how NRF2's regulatory actions pertain to a wide array of diseases, such as sepsis, various infectious diseases, cancer, wound healing, atherosclerosis, hemolytic conditions, pulmonary disorders, hemorrhagic events, and autoimmune diseases. The activation of NRF2 typically reduces inflammation, thereby modifying disease outcomes. This highlights the therapeutic potential of NRF2 modulation in treating myeloid cell-driven pathologies.
Collapse
Affiliation(s)
- Marc Pfefferlé
- Department of Internal Medicine, Spital Limmattal, Schlieren, Switzerland
| | - Florence Vallelian
- Department of Internal Medicine, University of Zurich and University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
46
|
Ibrahim KG, Hudu SA, Jega AY, Taha A, Yusuf AP, Usman D, Adeshina KA, Umar ZU, Nyakudya TT, Erlwanger KH. Thymoquinone: A comprehensive review of its potential role as a monotherapy for metabolic syndrome. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1214-1227. [PMID: 39229585 PMCID: PMC11366942 DOI: 10.22038/ijbms.2024.77203.16693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/06/2024] [Indexed: 09/05/2024]
Abstract
Metabolic syndrome (MetS) is a widespread global epidemic that affects individuals across all age groups and presents a significant public health challenge. Comprising various cardio-metabolic risk factors, MetS contributes to morbidity and, when inadequately addressed, can lead to mortality. Current therapeutic approaches involve lifestyle changes and the prolonged use of pharmacological agents targeting the individual components of MetS, posing challenges related to cost, compliance with medications, and cumulative side effects. To overcome the challenges associated with these conventional treatments, herbal medicines and phytochemicals have been explored and proven to be holistic complements/alternatives in the management of MetS. Thymoquinone (TQ), a prominent bicyclic aromatic compound derived from Nigella sativa emerges as a promising candidate that has demonstrated beneficial effects in the treatment of the different components of MetS, with a good safety profile. For methodology, literature searches were conducted using PubMed and Google Scholar for relevant studies until December 2023. Using Boolean Operators, TQ and the individual components of MetS were queried against the databases. The retrieved articles were screened for eligibility. As a result, we provide a comprehensive overview of the anti-obesity, anti-dyslipidaemic, anti-hypertensive, and anti-diabetic effects of TQ including some underlying mechanisms of action such as modulating the expression of several metabolic target genes to promote metabolic health. The review advocates for a paradigm shift in MetS management, it contributes valuable insights into the multifaceted aspects of the application of TQ, fostering an understanding of its role in mitigating the global burden of MetS.
Collapse
Affiliation(s)
- Kasimu Ghandi Ibrahim
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P.O. Box 2000, Zarqa 13110, Jordan
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B 2346, Nigeria
| | - Shuaibu Abdullahi Hudu
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P.O. Box 2000, Zarqa 13110, Jordan
- Department of Medical Microbiology and Immunology, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo
| | | | - Ahmad Taha
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P.O. Box 2000, Zarqa 13110, Jordan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B. 2254
| | | | - Dawoud Usman
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B 2346, Nigeria
- Department of Physiology, Faculty of Medicine, Port-said University, Egypt
| | - Kehinde Ahmad Adeshina
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B 2346, Nigeria
- Department of Biochemistry, Federal University of Technology, P.M.B. 65, Minna, Niger State, Nigeria
| | - Zayyanu Usman Umar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B 2346, Nigeria
| | - Trevor Tapiwa Nyakudya
- Biomedical Science Research and Training Centre (BioRTC), Yobe State University, Damaturu, Nigeria
| | - Kennedy Honey Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| |
Collapse
|
47
|
Koc K. Hippophae rhamnoides Prevents Oleic Acid-Induced Acute Respiratory Distress Syndrome by Releasing Acetylcholinesterase Activity and Mitigation of Angiotensin-Converting Enzyme Level. J Med Food 2024; 27:72-78. [PMID: 37976106 DOI: 10.1089/jmf.2023.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Hippophae rhamnoides exhibit a wide variety of medicinal and pharmacological effects. The present study aims to determine the role of ethanol extract of H. rhamnoides on oleic acid (OA)-induced acute respiratory distress syndrome (ARDS) in rats. Male rats were randomly divided into the following groups: (I) Control, (II) OA, and (III) OA+H. rhamnoides. H. rhamnoides extract (500 mg/kg) was given orally for 2 weeks before OA in Group III. Levels of total antioxidant capacity, total oxidant status (TOS), myeloperoxidase (MPO), mitogen-activated protein kinase (MAPK), acetylcholinesterase (AChE), and angiotensin-converting enzyme (ACE) were quantified by enzyme-linked immunosorbent assay (ELISA). Real time quantitative polymerase chain reaction was utilized to evaluate the expression of nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and matrix metalloproteinase 2 (MMP2). Also, Caspase-3 immunostaining and expression were performed to evaluate apoptosis. Compared with the OA group, there was a significantly decrease in the levels of MPO, TOS, MAPK, and ACE and in the expression of NF-κB, TNF-α, IL-6, MMP2, and Caspase-3 in the H. rhamnoides administration group. Moreover, the activity of AChE and level of TAS were substantially higher in the H. rhamnoides administration compared with the OA group. The findings in the study suggest that the protective effect of H. rhamnoides pretreatment may act through inhibition of the ACE activity, releasing AChE, regulation of inflammatory cytokine levels, and suppression of apoptotic process in ARDS.
Collapse
Affiliation(s)
- Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
48
|
Zhao R, Ji Y, Chen X, Ma G, Yao H, Li J, Hu Q, Zhao L. Flammulina velutipes polysaccharides regulate lipid metabolism disorders in HFD-fed mice via bile acids metabolism. Int J Biol Macromol 2023; 253:127308. [PMID: 37832619 DOI: 10.1016/j.ijbiomac.2023.127308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Our recent study demonstrated that the dynamic changes of gut microbiota mediated by Flammulina velutipes polysaccharide (FVP) could effectively regulate the lipid metabolism in high fat diet-fed (HFD-fed) obese mice model. In this paper, further research was carried out by examining the bile acid (BAs) profiles, as well as the BAs metabolic pathways changes in obese mice. Furthermore, the regulatory effect of BAs on lipid metabolism was verified by 3 T3-L1 preadipocyte differentiation model. The FVP administration resulted in lower BAs content in plasma of obese mice. From the qRT-PCR analysis, FVP could relieve cholestasis in obese mice through altering the BAs metabolic pathways, changing the related genes expressions in mice liver and ileum. The cholic acid (CA), chenodeoxycholic acid (CDCA), hyodeoxycholic acid (HDCA) and ursodeoxycholic acid (UDCA) were selected in cell experiment which all reduced the intracellular triglyceride content and increased the expression of AMPKα1 in 3 T3-L1 adipocytes. Furthermore, CA and CDCA were found increased the expression of PPARα. In combination with our previous research, we further confirmed in this paper that the changes of BAs metabolism caused by FVP showed a positive effect on lipid metabolism, both in obese mice and 3 T3-L1 adipocytes.
Collapse
Affiliation(s)
- Ruiqiu Zhao
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210095, People's Republic of China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yang Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xin Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Hongliang Yao
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210095, People's Republic of China
| | - Jing Li
- College of Science, Jinling Institute of Technology, Nanjing 210095, People's Republic of China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
49
|
Fasipe B, Laher I. Nrf2 modulates the benefits of evening exercise in type 2 diabetes. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:251-258. [PMID: 38314046 PMCID: PMC10831386 DOI: 10.1016/j.smhs.2023.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 02/06/2024] Open
Abstract
Exercise has well-characterized therapeutic benefits in the management of type 2 diabetes mellitus (T2DM). Most of the beneficial effects of exercise arise from the impact of nuclear factor erythroid 2 related factor-2 (Nrf2) activation of glucose metabolism. Nrf2 is an essential controller of cellular anti-oxidative capacity and circadian rhythms. The circadian rhythm of Nrf2 is influenced by circadian genes on its expression, where the timing of exercise effects the activation of Nrf2 and the rhythmicity of Nrf2 and signaling, such that the timing of exercise has differential physiological effects. Exercise in the evening has beneficial effects on diabetes management, such as lowering of blood glucose and weight. The mechanisms responsible for these effects have not yet been associated with the influence of exercise on the circadian rhythm of Nrf2 activity. A better understanding of exercise-induced Nrf2 activation on Nrf2 rhythm and signaling can improve our appreciation of the distinct effects of morning and evening exercise. This review hypothesizes that activation of Nrf2 by exercise in the morning, when Nrf2 level is already at high levels, leads to hyperactivation and decrease in Nrf2 signaling, while activation of Nrf2 in the evening, when Nrf2 levels are at nadir levels, improves Nrf2 signaling and lowers blood glucose levels and increases fatty acid oxidation. Exploring the effects of Nrf2 activators on rhythmic signaling could also provide valuable insights into the optimal timing of their application, while also holding promise for timed treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Babatunde Fasipe
- Faculty of Basic Clinical Sciences, Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
50
|
Pu Y, Cheng CK, Zhang H, Luo JY, Wang L, Tomlinson B, Huang Y. Molecular mechanisms and therapeutic perspectives of peroxisome proliferator-activated receptor α agonists in cardiovascular health and disease. Med Res Rev 2023; 43:2086-2114. [PMID: 37119045 DOI: 10.1002/med.21970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
The prevalence of cardiovascular disease (CVD) has been rising due to sedentary lifestyles and unhealthy dietary patterns. Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor regulating multiple biological processes, such as lipid metabolism and inflammatory response critical to cardiovascular homeostasis. Healthy endothelial cells (ECs) lining the lumen of blood vessels maintains vascular homeostasis, where endothelial dysfunction associated with increased oxidative stress and inflammation triggers the pathogenesis of CVD. PPARα activation decreases endothelial inflammation and senescence, contributing to improved vascular function and reduced risk of atherosclerosis. Phenotypic switch and inflammation of vascular smooth muscle cells (VSMCs) exacerbate vascular dysfunction and atherogenesis, in which PPARα activation improves VSMC homeostasis. Different immune cells participate in the progression of vascular inflammation and atherosclerosis. PPARα in immune cells plays a critical role in immunological events, such as monocyte/macrophage adhesion and infiltration, macrophage polarization, dendritic cell (DC) embedment, T cell activation, and B cell differentiation. Cardiomyocyte dysfunction, a major risk factor for heart failure, can also be alleviated by PPARα activation through maintaining cardiac mitochondrial stability and inhibiting cardiac lipid accumulation, oxidative stress, inflammation, and fibrosis. This review discusses the current understanding and future perspectives on the role of PPARα in the regulation of the cardiovascular system as well as the clinical application of PPARα ligands.
Collapse
Affiliation(s)
- Yujie Pu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiang-Yun Luo
- Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|