1
|
Yang Y, Wu J, Zhou W, Ji G, Dang Y. Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies. MedComm (Beijing) 2024; 5:e752. [PMID: 39355507 PMCID: PMC11442990 DOI: 10.1002/mco2.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolism-related diseases, including diabetes mellitus, obesity, hyperlipidemia, and nonalcoholic fatty liver disease, are becoming increasingly prevalent, thereby posing significant threats to human health and longevity. Proteins, as the primary mediators of biological activities, undergo various posttranslational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, methylation, and SUMOylation, among others, which substantially diversify their functions. These modifications are crucial in the physiological and pathological processes associated with metabolic disorders. Despite advancements in the field, there remains a deficiency in contemporary summaries addressing how these modifications influence processes of metabolic disease. This review aims to systematically elucidate the mechanisms through which PTM of proteins impact the progression of metabolic diseases, including diabetes, obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Additionally, the limitations of the current body of research are critically assessed. Leveraging PTMs of proteins provides novel insights and therapeutic targets for the prevention and treatment of metabolic disorders. Numerous drugs designed to target these modifications are currently in preclinical or clinical trials. This review also provides a comprehensive summary. By elucidating the intricate interplay between PTMs and metabolic pathways, this study advances understanding of the molecular mechanisms underlying metabolic dysfunction, thereby facilitating the development of more precise and effective disease management strategies.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
2
|
Liu S, Zhang Q, Zhang X, Du C, Chen J, Si S. Real-time monitoring of dephosphorylation process of phosphopeptide and rapid assay of PTP1B activity based on a 100 MHz QCM biosensing platform. Talanta 2024; 277:126399. [PMID: 38876030 DOI: 10.1016/j.talanta.2024.126399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
The misregulation of protein phosphatases is a key factor in the development of many human diseases, notably cancers. Here, based on a 100 MHz quartz crystal microbalance (QCM) biosensing platform, the dephosphorylation process of phosphopeptide (P-peptide) caused by protein tyrosine phosphatase 1B (PTP1B) was monitored in real time for the first time and PTP1B activity was assayed rapidly and sensitively. The QCM chip, coated with a gold (Au) film, was used to immobilized thiol-labeled single-stranded 5'-phosphate-DNAs (P-DNA) through Au-S bond. The P-peptide, specific to PTP1B, was then connected to the P-DNA via chelation between Zr4+ and phosphate groups. When PTP1B was injected into the QCM flow cell where the P-peptide/Zr4+/MCH/P-DNA/Au chip was placed, the P-peptide was dephosphorylated and released from the Au chip surface, resulting in an increase in the frequency of the QCM Au chip. This allowed the real-time monitoring of the P-peptide dephosphorylation process and sensitive detection of PTP1B activity within 6 min with a linear detection range of 0.01-100 pM and a detection limit of 0.008 pM. In addition, the maximum inhibitory ratios of inhibitors were evaluated using this proposed 100 MHz QCM biosensor. The developed 100 MHz QCM biosensing platform shows immense potential for early diagnosis of diseases related to protein phosphatases and the development of drugs targeting protein phosphatases.
Collapse
Affiliation(s)
- Shuping Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Qingqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Shihui Si
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
3
|
Sun Y, Dinenno FA, Tang P, Kontaridis MI. Protein tyrosine phosphatase 1B in metabolic and cardiovascular diseases: from mechanisms to therapeutics. Front Cardiovasc Med 2024; 11:1445739. [PMID: 39238503 PMCID: PMC11374623 DOI: 10.3389/fcvm.2024.1445739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Protein Tyrosine Phosphatase 1B (PTP1B) has emerged as a significant regulator of metabolic and cardiovascular disease. It is a non-transmembrane protein tyrosine phosphatase that negatively regulates multiple signaling pathways integral to the regulation of growth, survival, and differentiation of cells, including leptin and insulin signaling, which are critical for development of obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. Given PTP1B's central role in glucose homeostasis, energy balance, and vascular function, targeted inhibition of PTP1B represents a promising strategy for treating these diseases. However, challenges, such as off-target effects, necessitate a focus on tissue-specific approaches, to maximize therapeutic benefits while minimizing adverse outcomes. In this review, we discuss molecular mechanisms by which PTP1B influences metabolic and cardiovascular functions, summarize the latest research on tissue-specific roles of PTP1B, and discuss the potential for PTP1B inhibitors as future therapeutic agents.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Frank A Dinenno
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Peiyang Tang
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Maria I Kontaridis
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Gonzalez K, Merlin AC, Roye E, Ju B, Lee Y, Chicco AJ, Chung E. Voluntary Wheel Running Reduces Cardiometabolic Risks in Female Offspring Exposed to Lifelong High-Fat, High-Sucrose Diet. Med Sci Sports Exerc 2024; 56:1378-1389. [PMID: 38595204 PMCID: PMC11250925 DOI: 10.1249/mss.0000000000003443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
PURPOSE Maternal and postnatal overnutrition has been linked to an increased risk of cardiometabolic diseases in offspring. This study investigated the impact of adult-onset voluntary wheel running to counteract cardiometabolic risks in female offspring exposed to a life-long high-fat, high-sucrose (HFHS) diet. METHODS Dams were fed either an HFHS or a low-fat, low-sucrose (LFLS) diet starting from 8 wk before pregnancy and continuing throughout gestation and lactation. Offspring followed their mothers' diets. At 15 wk of age, they were divided into sedentary (Sed) or voluntary wheel running (Ex) groups, resulting in four groups: LFLS/Sed ( n = 10), LFLS/Ex ( n = 5), HFHS/Sed ( n = 6), HFHS/Ex ( n = 5). Cardiac function was assessed at 25 wk, with tissue collection at 26 wk for mitochondrial respiratory function and protein analysis. Data were analyzed using two-way ANOVA. RESULTS Although maternal HFHS diet did not affect the offspring's body weight at weaning, continuous HFHS feeding postweaning resulted in increased body weight and adiposity, irrespective of the exercise regimen. HFHS/Sed offspring showed increased left ventricular wall thickness and elevated expression of enzymes involved in fatty acid transport (CD36, FABP3), lipogenesis (DGAT), glucose transport (GLUT4), oxidative stress (protein carbonyls, nitrotyrosine), and early senescence markers (p16, p21). Their cardiac mitochondria displayed lower oxidative phosphorylation (OXPHOS) efficiency and reduced expression of OXPHOS complexes and fatty acid metabolism enzymes (ACSL5, CPT1B). However, HFHS/Ex offspring mitigated these effects, aligning more with LFLS/Sed offspring. CONCLUSIONS Adult-onset voluntary wheel running effectively counteracts the detrimental cardiac effects of a lifelong HFHS diet, improving mitochondrial efficiency, reducing oxidative stress, and preventing early senescence. This underscores the significant role of physical activity in mitigating diet-induced cardiometabolic risks.
Collapse
Affiliation(s)
- Kassandra Gonzalez
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| | - Andrea Chiñas Merlin
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
- Biomedical Engineering, Tecnologico de Monterrey, Campus Monterrey, MEXICO
| | - Erin Roye
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| | - Beomsoo Ju
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, University of West Florida, Pensacola, FL
| | - Youngil Lee
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, University of West Florida, Pensacola, FL
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Eunhee Chung
- Department of Kinesiology, University of Texas at San Antonio, San Antonio, TX
| |
Collapse
|
5
|
Wang AH, Ma HY, Yi YL, Zhu SJ, Yu ZW, Zhu J, Mei S, Bahetibike S, Lu YQ, Huang LT, Yang RY, Rui-Wang, Xiao SL, Qi R. Oleanolic acid derivative alleviates cardiac fibrosis through inhibiting PTP1B activity and regulating AMPK/TGF-β/Smads pathway. Eur J Pharmacol 2023; 960:176116. [PMID: 38059443 DOI: 10.1016/j.ejphar.2023.176116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 12/08/2023]
Abstract
Cardiac fibrosis (CF) in response to persistent exogenous stimuli or myocardial injury results in cardiovascular diseases (CVDs). Protein tyrosine phosphatase 1B (PTP1B) can promote collagen deposition through regulating AMPK/TGF-β/Smads signaling pathway, and PTP1B knockout improves cardiac dysfunction against overload-induced heart failure. Oleanolic acid (OA) has been proven to be an inhibitor of PTP1B, and its anti-cardiac remodeling effects have been validated in different mouse models. To improve the bioactivity of OA and to clarify whether OA derivatives with stronger inhibition of PTP1B activity have greater prevention of cardiac remodeling than OA, four new OA derivatives were synthesized and among them, we found that compound B had better effects than OA in inhibiting cardiac fibrosis both in vivo in the isoproterenol (ISO)-induced mouse cardiac fibrosis and in vitro in the TGF-β/ISO-induced 3T3 cells. Combining with the results of molecular docking, surface plasmon resonance and PTP1B activity assay, we reported that OA and compound B directly bound to PTP1B and inhibited its activity, and that compound B showed comparable binding capability but stronger inhibitory effect on PTP1B activity than OA. Moreover, compound B presented much greater effects on AMPK activation and TGF-β/Smads inhibition than OA. Taken together, OA derivative compound B more significantly alleviated cardiac fibrosis than OA through much greater inhibition of PTP1B activity and thus much stronger regulation of AMPK/TGF-β/Smads signaling pathway.
Collapse
Affiliation(s)
- An-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Hao-Yue Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Yan-Liang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Su-Jie Zhu
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Zhe-Wei Yu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jie Zhu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Si Mei
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Shamuha Bahetibike
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - You-Qun Lu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Li-Ting Huang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Ruo-Yao Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Rui-Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Su-Long Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China.
| |
Collapse
|
6
|
Song Y, Xu Z, Zhong Q, Zhang R, Sun X, Chen G. Sulfur signaling pathway in cardiovascular disease. Front Pharmacol 2023; 14:1303465. [PMID: 38074127 PMCID: PMC10704606 DOI: 10.3389/fphar.2023.1303465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 04/14/2024] Open
Abstract
Hydrogen sulfide (H2S) and sulfur dioxide (SO2), recognized as endogenous sulfur-containing gas signaling molecules, were the third and fourth molecules to be identified subsequent to nitric oxide and carbon monoxide (CO), and exerted diverse biological effects on the cardiovascular system. However, the exact mechanisms underlying the actions of H2S and SO2 have remained elusive until now. Recently, novel post-translational modifications known as S-sulfhydration and S-sulfenylation, induced by H2S and SO2 respectively, have been proposed. These modifications involve the chemical alteration of specific cysteine residues in target proteins through S-sulfhydration and S-sulfenylation, respectively. H2S induced S-sulfhydrylation can have a significant impact on various cellular processes such as cell survival, apoptosis, cell proliferation, metabolism, mitochondrial function, endoplasmic reticulum stress, vasodilation, anti-inflammatory response and oxidative stress in the cardiovascular system. Alternatively, S-sulfenylation caused by SO2 serves primarily to maintain vascular homeostasis. Additional research is warranted to explore the physiological function of proteins with specific cysteine sites, despite the considerable advancements in comprehending the role of H2S-induced S-sulfhydration and SO2-induced S-sulfenylation in the cardiovascular system. The primary objective of this review is to present a comprehensive examination of the function and potential mechanism of S-sulfhydration and S-sulfenylation in the cardiovascular system. Proteins that undergo S-sulfhydration and S-sulfenylation may serve as promising targets for therapeutic intervention and drug development in the cardiovascular system. This could potentially expedite the future development and utilization of drugs related to H2S and SO2.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zihang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guozhen Chen
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
7
|
Khater SI, Almanaa TN, Fattah DMA, Khamis T, Seif MM, Dahran N, Alqahtani LS, Metwally MMM, Mostafa M, Albedair RA, Helal AI, Alosaimi M, Mohamed AAR. Liposome-Encapsulated Berberine Alleviates Liver Injury in Type 2 Diabetes via Promoting AMPK/mTOR-Mediated Autophagy and Reducing ER Stress: Morphometric and Immunohistochemical Scoring. Antioxidants (Basel) 2023; 12:1220. [PMID: 37371950 DOI: 10.3390/antiox12061220] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
In the advanced stages of type 2 diabetes mellitus (T2DM), diabetic liver damage is a common complication that can devastate a patient's quality of life. The present study investigated the ability of liposomal berberine (Lip-BBR) to aid in ameliorating hepatic damage and steatosis, insulin homeostasis, and regulating lipid metabolism in type 2 diabetes (T2DM) and the possible pathways by which it does so. Liver tissue microarchitectures and immunohistochemical staining were applied during the study. The rats were divided into a control non-diabetic group and four diabetic groups, which are the T2DM, T2DM-Lip-BBR (10 mg/kg b.wt), T2DM-Vildagliptin (Vild) (10 mg/kg b.wt), and T2DM-BBR-Vild (10 mg/kg b.wt + Vild (5 mg/kg b.wt) groups. The findings demonstrated that Lip-BBR treatment could restore liver tissue microarchitectures, reduce steatosis and liver function, and regulate lipid metabolism. Moreover, Lip-BBR treatment promoted autophagy via the activation of LC3-II and Bclin-1 proteins and activated the AMPK/mTOR pathway in the liver tissue of T2DM rats. Lip-BBR also activated the GLP-1 expression, which stimulated insulin biosynthesis. It decreased the endoplasmic reticulum stress by limiting the CHOP, JNK expression, oxidative stress, and inflammation. Collectively, Lip-BBR ameliorated diabetic liver injury in a T2DM rat model with its promotion activity of AMPK/mTOR-mediated autophagy and limiting ER stress.
Collapse
Affiliation(s)
- Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Doaa M Abdel Fattah
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mona M Seif
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Raghad A Albedair
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Azza I Helal
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Manal Alosaimi
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
8
|
Chen HJ, Qian L, Li K, Qin YZ, Zhou JJ, Ji XY, Wu DD. Hydrogen sulfide-induced post-translational modification as a potential drug target. Genes Dis 2022. [PMID: 37492730 PMCID: PMC10363594 DOI: 10.1016/j.gendis.2022.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hydrogen sulfide (H2S) is one of the three known gas signal transducers, and since its potential physiological role was reported, the literature on H2S has been increasing. H2S is involved in processes such as vasodilation, neurotransmission, angiogenesis, inflammation, and the prevention of ischemia-reperfusion injury, and its mechanism remains to be further studied. At present, the role of post-translational processing of proteins has been considered as a possible mechanism for the involvement of H2S in a variety of physiological processes. Current studies have shown that H2S is involved in S-sulfhydration, phosphorylation, and S-nitrosylation of proteins, etc. This paper focuses on the effects of protein modification involving H2S on physiological and pathological processes, looking forward to providing guidance for subsequent research.
Collapse
|
9
|
Wu J, Xue X, Fan G, Gu Y, Zhou F, Zheng Q, Liu R, Li Y, Ma B, Li S, Huang G, Ma L, Li X. Ferulic Acid Ameliorates Hepatic Inflammation and Fibrotic Liver Injury by Inhibiting PTP1B Activity and Subsequent Promoting AMPK Phosphorylation. Front Pharmacol 2021; 12:754976. [PMID: 34566665 PMCID: PMC8455917 DOI: 10.3389/fphar.2021.754976] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation in response to persistent exogenous stimuli or damage results in liver fibrosis, which subsequently progresses into malignant liver diseases with high morbidity and mortality. Ferulic acid (FA) is a phenolic acid widely isolated from abundant plants and exhibits multiple biological activities including anti-oxidant, anti-inflammation and enhancement of immune responses. Adenosine monophosphate-activated protein kinase (AMPK) functions as a critical energy sensor and is regulated through the phosphorylation of liver kinases like LKB1 or dephosphorylation by protein tyrosine phosphatases (PTPs). However, the role of FA in carbon tetrachloride (CCl4)-induced chronic inflammation and liver fibrosis and AMPK activation has not been elucidated. Here we reported that FA ameliorated CCl4-induced inflammation and fibrotic liver damage in mice as indicated by reduced levels of serum liver function enzyme activities and decreased expression of genes and proteins associated with fibrogenesis. Additionally, FA inhibited hepatic oxidative stress, macrophage activation and HSC activation via AMPK phosphorylation in different liver cells. Mechanically, without the participation of LKB1, FA-induced anti-inflammatory and anti-fibrotic effects were abrogated by a specific AMPK inhibitor, compound C. Combining with the results of molecular docking, surface plasmon resonance and co-immunoprecipitation assays, we further demonstrated that FA directly bound to and inhibited PTP1B, an enzyme responsible for dephosphorylating key protein kinases, and eventually leading to the phosphorylation of AMPK. In summary, our results indicated that FA alleviated oxidative stress, hepatic inflammation and fibrotic response in livers through PTP1B-AMPK signaling pathways. Taken together, we provide novel insights into the potential of FA as a natural product-derived therapeutic agent for the treatment of fibrotic liver injury.
Collapse
Affiliation(s)
- Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yiqing Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Boning Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Fernández C, Torrealba N, Altamirano F, Garrido-Moreno V, Vásquez-Trincado C, Flores-Vergara R, López-Crisosto C, Ocaranza MP, Chiong M, Pedrozo Z, Lavandero S. Polycystin-1 is required for insulin-like growth factor 1-induced cardiomyocyte hypertrophy. PLoS One 2021; 16:e0255452. [PMID: 34407099 PMCID: PMC8372926 DOI: 10.1371/journal.pone.0255452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/18/2021] [Indexed: 11/19/2022] Open
Abstract
Cardiac hypertrophy is the result of responses to various physiological or pathological stimuli. Recently, we showed that polycystin-1 participates in cardiomyocyte hypertrophy elicited by pressure overload and mechanical stress. Interestingly, polycystin-1 knockdown does not affect phenylephrine-induced cardiomyocyte hypertrophy, suggesting that the effects of polycystin-1 are stimulus-dependent. In this study, we aimed to identify the role of polycystin-1 in insulin-like growth factor-1 (IGF-1) signaling in cardiomyocytes. Polycystin-1 knockdown completely blunted IGF-1-induced cardiomyocyte hypertrophy. We then investigated the molecular mechanism underlying this result. We found that polycystin-1 silencing impaired the activation of the IGF-1 receptor, Akt, and ERK1/2 elicited by IGF-1. Remarkably, IGF-1-induced IGF-1 receptor, Akt, and ERK1/2 phosphorylations were restored when protein tyrosine phosphatase 1B was inhibited, suggesting that polycystin-1 knockdown deregulates this phosphatase in cardiomyocytes. Moreover, protein tyrosine phosphatase 1B inhibition also restored IGF-1-dependent cardiomyocyte hypertrophy in polycystin-1-deficient cells. Our findings provide the first evidence that polycystin-1 regulates IGF-1-induced cardiomyocyte hypertrophy through a mechanism involving protein tyrosine phosphatase 1B.
Collapse
Affiliation(s)
- Carolina Fernández
- Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Natalia Torrealba
- Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
- Laboratory of Tumour Resistance, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Francisco Altamirano
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Cardiovascular Sciences, DeBakey Heart & Vascular Center Houston Methodist Research Institute, Houston, Texas, United States of America
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, Cornell University, Ithaca, New York, United States of America
| | - Valeria Garrido-Moreno
- Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - César Vásquez-Trincado
- Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Raúl Flores-Vergara
- Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
- Facultad de Medicina, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago de Chile, Chile
| | - Camila López-Crisosto
- Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
- Faculty of Medicine, Division of Cardiovascular Diseases, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - María Paz Ocaranza
- Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
- Faculty of Medicine, Division of Cardiovascular Diseases, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
- Center for New Drugs for Hypertension (CENDHY), Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Mario Chiong
- Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Zully Pedrozo
- Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
- Facultad de Medicina, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago de Chile, Chile
| | - Sergio Lavandero
- Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago de Chile, Chile
| |
Collapse
|
11
|
Abstract
Insulin receptors are highly expressed in the heart and vasculature. Insulin signaling regulates cardiac growth, survival, substrate uptake, utilization, and mitochondrial metabolism. Insulin signaling modulates the cardiac responses to physiological and pathological stressors. Altered insulin signaling in the heart may contribute to the pathophysiology of ventricular remodeling and heart failure progression. Myocardial insulin signaling adapts rapidly to changes in the systemic metabolic milieu. What may initially represent an adaptation to protect the heart from carbotoxicity may contribute to amplifying the risk of heart failure in obesity and diabetes. This review article presents the multiple roles of insulin signaling in cardiac physiology and pathology and discusses the potential therapeutic consequences of modulating myocardial insulin signaling.
Collapse
Affiliation(s)
- E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes and Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
12
|
Gorji A, Toh PJY, Ong HT, Toh YC, Toyama Y, Kanchanawong P. Enhancement of Endothelialization by Topographical Features Is Mediated by PTP1B-Dependent Endothelial Adherens Junctions Remodeling. ACS Biomater Sci Eng 2021; 7:2661-2675. [PMID: 33942605 DOI: 10.1021/acsbiomaterials.1c00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endothelial Cells (ECs) form cohesive cellular lining of the vasculature and play essential roles in both developmental processes and pathological conditions. Collective migration and proliferation of endothelial cells (ECs) are key processes underlying endothelialization of vessels as well as vascular graft, but the complex interplay of mechanical and biochemical signals regulating these processes are still not fully elucidated. While surface topography and biochemical modifications have been used to enhance endothelialization in vitro, thus far such single-modality modifications have met with limited success. As combination therapy that utilizes multiple modalities has shown improvement in addressing various intractable and complex biomedical conditions, here, we explore a combined strategy that utilizes topographical features in conjunction with pharmacological perturbations. We characterized EC behaviors in response to micrometer-scale grating topography in concert with pharmacological perturbations of endothelial adherens junctions (EAJ) regulators. We found that the protein tyrosine phosphatase, PTP1B, serves as a potent regulator of EAJ stability, with PTP1B inhibition synergizing with grating topographies to modulate EAJ rearrangement, thereby augmenting global EC monolayer sheet orientation, proliferation, connectivity, and collective cell migration. Our data delineates the crosstalk between cell-ECM topography sensing and cell-cell junction integrity maintenance and suggests that the combined use of grating topography and PTP1B inhibitor could be a promising strategy for promoting collective EC migration and proliferation.
Collapse
Affiliation(s)
- Azita Gorji
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore.,Institut Curie, Laboratoire Physico Chimie Curie, Institut Pierre-Gilles de Gennes, CNRS UMR168, Paris 75005, France
| | - Pearlyn Jia Ying Toh
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 117583 Republic of Singapore.,Institute for Health Innovation and Technology, National University of Singapore, 117599 Republic of Singapore.,The N.1 Institute for Health, National University of Singapore, 117456, Republic of Singapore.,NUS Tissue Engineering Programme, National University of Singapore, 117456, Republic of Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore.,Department of Biological Sciences, National University of Singapore, 117558, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore.,Department of Biomedical Engineering, National University of Singapore, 117583 Republic of Singapore
| |
Collapse
|
13
|
Wang L, Zhao D, Tang L, Li H, Liu Z, Gao J, Edin ML, Zhang H, Zhang K, Chen J, Zhu X, Wang D, Zeldin DC, Hammock BD, Wang J, Huang H. Soluble epoxide hydrolase deficiency attenuates lipotoxic cardiomyopathy via upregulation of AMPK-mTORC mediated autophagy. J Mol Cell Cardiol 2020; 154:80-91. [PMID: 33378686 DOI: 10.1016/j.yjmcc.2020.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
Obesity-driven cardiac lipid accumulation can progress to lipotoxic cardiomyopathy. Soluble epoxide hydrolase (sEH) is the major enzyme that metabolizes epoxyeicosatrienoic acids (EETs), which have biological activity of regulating lipid metabolism. The current study explores the unknown role of sEH deficiency in lipotoxic cardiomyopathy and its underlying mechanism. Wild-type and Ephx2 knock out (sEH KO) C57BL/6 J mice were fed with high-fat diet (HFD) for 24 weeks to induce lipotoxic cardiomyopathy animal models. Palmitic acid (PA) was utilized to induce lipotoxicity to cardiomyocytes for in vitro study. We found sEH KO, independent of plasma lipid and blood pressures, significantly attenuated HFD-induced myocardial lipid accumulation and cardiac dysfunction in vivo. HFD-induced lipotoxic cardiomyopathy and dysfunction of adenosine 5'-monophosphate-activated protein kinase-mammalian target of rapamycin complex (AMPK-mTORC) signaling mediated lipid autophagy in heart were restored by sEH KO. In primary neonatal mouse cardiomyocytes, both sEH KO and sEH substrate EETs plus sEH inhibitor AUDA treatments attenuated PA-induced lipid accumulation. These effects were blocked by inhibition of AMPK or autophagy. The outcomes were supported by the results that sEH KO and EETs plus AUDA rescued HFD- and PA-induced impairment of autophagy upstream signaling of AMPK-mTORC, respectively. These findings revealed that sEH deficiency played an important role in attenuating myocardial lipid accumulation and provided new insights into treating lipotoxic cardiomyopathy. Regulation of autophagy via AMPK-mTORC signaling pathway is one of the underlying mechanisms.
Collapse
Affiliation(s)
- Luyun Wang
- Guangdong Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Road, Guangzhou 510120, China; Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Daqiang Zhao
- Department of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Liangqiu Tang
- Department of Cardiology, Yuebei People's Hospital, Medical college of Shantou University, 133 Huimin South Road, Shaoguan 512025, China
| | - Huihui Li
- Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Zhaoyu Liu
- Guangdong Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Road, Guangzhou 510120, China
| | - Jingwei Gao
- Guangdong Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Road, Guangzhou 510120, China
| | - Matthew L Edin
- Division of Intramural Research, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA
| | - Huanji Zhang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, 3025 Shennan Middle Road, Shen Zhen 518033, China
| | - Kun Zhang
- Guangdong Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Road, Guangzhou 510120, China
| | - Jie Chen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Road, Guangzhou 510120, China
| | - Xinhong Zhu
- Department of Neurobiology, School of Basic Medical Science, Southern Medical 26 University, 1023-1063 Shatai South Road, Guangzhou 510515, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Darryl C Zeldin
- Division of Intramural Research, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC 27709, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California Davis, One Shields Ave., Davis 95616, USA
| | - Jingfeng Wang
- Guangdong Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Road, Guangzhou 510120, China.
| | - Hui Huang
- Guangdong Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Road, Guangzhou 510120, China; Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, 3025 Shennan Middle Road, Shen Zhen 518033, China.
| |
Collapse
|
14
|
Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Front Cardiovasc Med 2020; 7:585309. [PMID: 33195472 PMCID: PMC7593653 DOI: 10.3389/fcvm.2020.585309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a serious comorbidity and the most common cause of mortality in diabetes patients. Diabetic cardiomyopathy (DCM) features impaired cellular structure and function, culminating in heart failure; however, there is a dearth of specific clinical therapy for treating DCM. Protein homeostasis is pivotal for the maintenance of cellular viability under physiological and pathological conditions, particularly in the irreplaceable cardiomyocytes; therefore, it is tightly regulated by a protein quality control (PQC) system. Three evolutionarily conserved molecular processes, the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy, enhance protein turnover and preserve protein homeostasis by suppressing protein translation, degrading misfolded or unfolded proteins in cytosol or organelles, disposing of damaged and toxic proteins, recycling essential amino acids, and eliminating insoluble protein aggregates. In response to increased cellular protein demand under pathological insults, including the diabetic condition, a coordinated PQC system retains cardiac protein homeostasis and heart performance, on the contrary, inappropriate PQC function exaggerates cardiac proteotoxicity with subsequent heart dysfunction. Further investigation of the PQC mechanisms in diabetes propels a more comprehensive understanding of the molecular pathogenesis of DCM and opens new prospective treatment strategies for heart disease and heart failure in diabetes patients. In this review, the function and regulation of cardiac PQC machinery in diabetes mellitus, and the therapeutic potential for the diabetic heart are discussed.
Collapse
Affiliation(s)
- Namrita Kaur
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrea Ruiz-Velasco
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 2020; 17:585-607. [PMID: 32080423 PMCID: PMC7849055 DOI: 10.1038/s41569-020-0339-2] [Citation(s) in RCA: 411] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The pathogenesis and clinical features of diabetic cardiomyopathy have been well-studied in the past decade, but effective approaches to prevent and treat this disease are limited. Diabetic cardiomyopathy occurs as a result of the dysregulated glucose and lipid metabolism associated with diabetes mellitus, which leads to increased oxidative stress and the activation of multiple inflammatory pathways that mediate cellular and extracellular injury, pathological cardiac remodelling, and diastolic and systolic dysfunction. Preclinical studies in animal models of diabetes have identified multiple intracellular pathways involved in the pathogenesis of diabetic cardiomyopathy and potential cardioprotective strategies to prevent and treat the disease, including antifibrotic agents, anti-inflammatory agents and antioxidants. Some of these interventions have been tested in clinical trials and have shown favourable initial results. In this Review, we discuss the mechanisms underlying the development of diabetic cardiomyopathy and heart failure in type 1 and type 2 diabetes mellitus, and we summarize the evidence from preclinical and clinical studies that might provide guidance for the development of targeted strategies. We also highlight some of the novel pharmacological therapeutic strategies for the treatment and prevention of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Zhiguo Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chao Zheng
- The Second Affiliated Hospital Center of Chinese-American Research Institute for Diabetic Complications, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kupper A Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
16
|
Xu Q, Wu N, Li X, Guo C, Li C, Jiang B, Wang H, Shi D. Inhibition of PTP1B blocks pancreatic cancer progression by targeting the PKM2/AMPK/mTOC1 pathway. Cell Death Dis 2019; 10:874. [PMID: 31745071 PMCID: PMC6864061 DOI: 10.1038/s41419-019-2073-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a highly malignant cancer and lacks effective therapeutic targets. Protein-tyrosine phosphatase 1B (PTP1B), a validated therapeutic target for diabetes and obesity, also plays a critical positive or negative role in tumorigenesis. However, the role of PTP1B in pancreatic cancer remains elusive. Here, we initially demonstrated that PTP1B was highly expressed in pancreatic tumors, and was positively correlated with distant metastasis and tumor staging, and indicated poor survival. Then, inhibition of PTP1B either by shRNA or by a specific small-molecule inhibitor significantly suppressed pancreatic cancer cell growth, migration and colony formation with cell cycle arrest in vitro and inhibited pancreatic cancer progression in vivo. Mechanism studies revealed that PTP1B targeted the PKM2/AMPK/mTOC1 signaling pathway to regulate cell growth. PTP1B inhibition directly increased PKM2 Tyr-105 phosphorylation to further result in significant activation of AMPK, which decreased mTOC1 activity and led to inhibition of p70S6K. Meanwhile, the decreased phosphorylation of PRAS40 caused by decreased PKM2 activity also helped to inhibit mTOC1. Collectively, these findings support the notion of PTP1B as an oncogene and a promising therapeutic target for PDAC.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/antagonists & inhibitors
- AMP-Activated Protein Kinases/metabolism
- Animals
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Disease Progression
- Female
- Humans
- Male
- Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/biosynthesis
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Random Allocation
- Signal Transduction/drug effects
- Small Molecule Libraries/pharmacology
- Thyroid Hormones/metabolism
- Xenograft Model Antitumor Assays
- Thyroid Hormone-Binding Proteins
Collapse
Affiliation(s)
- Qi Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- The University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China
- The University of Chinese Academy of Sciences, Beijing, China
| | - Chuanlong Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- The University of Chinese Academy of Sciences, Beijing, China
| | - Chao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- The University of Chinese Academy of Sciences, Beijing, China
| | - Bo Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- The University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
The Role of Protein Tyrosine Phosphatase (PTP)-1B in Cardiovascular Disease and Its Interplay with Insulin Resistance. Biomolecules 2019; 9:biom9070286. [PMID: 31319588 PMCID: PMC6680919 DOI: 10.3390/biom9070286] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/06/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
Endothelial dysfunction is a key feature of cardiovascular disorders associated with obesity and diabetes. Several studies identified protein tyrosine phosphatase (PTP)-1B, a member of the PTP superfamily, as a major negative regulator for insulin receptor signaling and a novel molecular player in endothelial dysfunction and cardiovascular disease. Unlike other anti-diabetic approaches, genetic deletion or pharmacological inhibition of PTP1B was found to improve glucose homeostasis and insulin signaling without causing lipid buildup in the liver, which represents an advantage over existing therapies. Furthermore, PTP1B was reported to contribute to cardiovascular disturbances, at various molecular levels, which places this enzyme as a unique single therapeutic target for both diabetes and cardiovascular disorders. Synthesizing selective small molecule inhibitors for PTP1B is faced with multiple challenges linked to its similarity of sequence with other PTPs; however, overcoming these challenges would pave the way for novel approaches to treat diabetes and its concurrent cardiovascular complications. In this review article, we summarized the major roles of PTP1B in cardiovascular disease with special emphasis on endothelial dysfunction and its interplay with insulin resistance. Furthermore, we discussed some of the major challenges hindering the synthesis of selective inhibitors for PTP1B.
Collapse
|
18
|
Sun M, Tan Y, Rexiati M, Dong M, Guo W. Obesity is a common soil for premature cardiac aging and heart diseases - Role of autophagy. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1898-1904. [DOI: 10.1016/j.bbadis.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/22/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
|
19
|
Shi Y, Jia M, Xu L, Fang Z, Wu W, Zhang Q, Chung P, Lin Y, Wang S, Zhang Y. miR-96 and autophagy are involved in the beneficial effect of grape seed proanthocyanidins against high-fat-diet-induced dyslipidemia in mice. Phytother Res 2019; 33:1222-1232. [PMID: 30848548 DOI: 10.1002/ptr.6318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/10/2019] [Accepted: 01/24/2019] [Indexed: 12/15/2022]
Abstract
We aimed to investigate the possible signaling pathways underlying the regulation of grape seed proanthocyanidins extracts (GSPE) on lipid metabolism. One hundred male C57BL/6 mice were divided into four groups: control group (normal diet), GSPE group (normal diet + GSPE), high-fat diet group (HFD), and high-fat diet plus GSPE (200 mg/kg/day) group (HFD + GSPE). Mice received the diets for 180 days. Body weight and serum lipid levels were measured. Autophagic flux characteristics, such as accumulation of lipids, mitochondria, and autophagosomes in the liver, were detected using transmission electron microscopy. Expression profile of microRNAs (miRNAs) in the liver was determined using RNA microarray and quantitative real time polymerase chain reaction (qRt-PCR). GSPE significantly decreased the weight gain, serum levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol but increased high-density lipoprotein cholesterol in the HFD mice. Autophagic flux was significantly increased by HFD but decreased by GSPE treatment. GSPE significantly attenuated HFD-induced miR-96 upregulation, which in turn reduced the expressions of miR-96 downstream molecules, FOXO1, mTOR, p-mTOR, and LC3A/B. These results suggested that the miR-96 is involved in the protective effect of GSPE against HFD-induced dyslipidemia. Possible mechanisms might be through mTOR and FOXO1, which facilitate autophagic flux for clearance of lipid accumulation.
Collapse
Affiliation(s)
- Yawei Shi
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minghan Jia
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangzhou, China
| | - Lixia Xu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zeng Fang
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weibin Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peter Chung
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Ying Lin
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shenming Wang
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunjian Zhang
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Jia G, Aroor AR, Sowers JR. The role of mineralocorticoid receptor signaling in the cross-talk between adipose tissue and the vascular wall. Cardiovasc Res 2018; 113:1055-1063. [PMID: 28838041 DOI: 10.1093/cvr/cvx097] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/08/2017] [Indexed: 12/23/2022] Open
Abstract
Vascular dysfunction and impaired endothelial mediated relaxation are powerful underlying abnormalities in the pathogenesis of hypertension, coronary heart disease, and stroke. Obesity, type 2 diabetes mellitus, and other metabolic abnormalities are associated with activation of mineralocorticoid receptor (MRs) in the vasculature and adipose tissue. While MR signaling is involved in the normal physiological differentiation and maturation of adipocyte, enhanced activation of MRs also contributes to increase oxidative stress, release of pro-inflammatory adipokines, and dysregulation of adipocyte autophagy. This, in turn, increases the maladaptive expansion of subcutaneous, visceral and perivascular adipose tissue, resulting in systemic and cardiovascular (CV) insulin resistance and increased CV stiffness and impaired vascular and cardiac relaxation. This review summarizes the normal role of MR activation in adipose tissues and explores the mechanisms by which excessive MR activation mediates adipose tissue inflammation and vascular dysfunction. Potential preventative and therapeutic strategies directed in the prevention of MR activation and CV disease are also discussed.
Collapse
Affiliation(s)
- Guanghong Jia
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65212, USA
| | - Annayya R Aroor
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65212, USA
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65212, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
21
|
Abstract
Obesity poses a severe threat to human health, including the increased prevalence of hypertension, insulin resistance, diabetes mellitus, cancer, inflammation, sleep apnoea and other chronic diseases. Current therapies focus mainly on suppressing caloric intake, but the efficacy of this approach remains poor. A better understanding of the pathophysiology of obesity will be essential for the management of obesity and its complications. Knowledge gained over the past three decades regarding the aetiological mechanisms underpinning obesity has provided a framework that emphasizes energy imbalance and neurohormonal dysregulation, which are tightly regulated by autophagy. Accordingly, there is an emerging interest in the role of autophagy, a conserved homeostatic process for cellular quality control through the disposal and recycling of cellular components, in the maintenance of cellular homeostasis and organ function by selectively ridding cells of potentially toxic proteins, lipids and organelles. Indeed, defects in autophagy homeostasis are implicated in metabolic disorders, including obesity, insulin resistance, diabetes mellitus and atherosclerosis. In this Review, the alterations in autophagy that occur in response to nutrient stress, and how these changes alter the course of obesogenesis and obesity-related complications, are discussed. The potential of pharmacological modulation of autophagy for the management of obesity is also addressed.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Fudan University Zhongshan Hospital, Shanghai, China.
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA.
| | - James R Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| | - Jun Ren
- Department of Cardiology, Fudan University Zhongshan Hospital, Shanghai, China.
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA.
| |
Collapse
|
22
|
Reduced Insulin Resistance Contributes to the Beneficial Effect of Protein Tyrosine Phosphatase-1B Deletion in a Mouse Model of Sepsis. Shock 2018; 48:355-363. [PMID: 28272165 DOI: 10.1097/shk.0000000000000853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hyperglycemia is a common feature of septic patients and has been associated with poor outcome and high mortality. In contrast, insulin has been shown to decrease mortality and to prevent the incidence of multiorgan failure but is often associated with deleterious hypoglycemia. Protein Tyrosine Phosphatase 1B (PTP1B) is a negative regulator of both insulin signaling and NO production, and has been shown to be an aggravating factor in septic shock. To evaluate the potential therapeutic effect of PTP1B blockade on glucose metabolism and insulin resistance in an experimental model of sepsis, we assessed the effect of PTP1B gene deletion in a cecal ligation and puncture (CLP) model of sepsis. PTP1B gene deletion significantly limited CLP-induced insulin resistance, improved AMP-activated protein kinase signaling pathway and Glucose Transporter 4 translocation, and decreased inflammation. These effects were associated with a reduction of sepsis-induced endothelial dysfunction/impaired NO production and especially of insulin-mediated dilatation. This modulation of insulin resistance may contribute to the beneficial effect of PTP1B blockade in septic shock, especially in terms of inflammation and cardiac metabolism.
Collapse
|
23
|
Meng G, Zhao S, Xie L, Han Y, Ji Y. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br J Pharmacol 2018; 175:1146-1156. [PMID: 28432761 PMCID: PMC5866969 DOI: 10.1111/bph.13825] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/13/2017] [Accepted: 04/12/2017] [Indexed: 12/23/2022] Open
Abstract
Hydrogen sulfide (H2 S), independently of any specific transporters, has a number of biological effects on the cardiovascular system. However, until now, the detailed mechanism of H2 S was not clear. Recently, a novel post-translational modification induced by H2 S, named S-sulfhydration, has been proposed. S-sulfhydration is the chemical modification of specific cysteine residues of target proteins by H2 S. There are several methods for detecting S-sulfhydration, such as the modified biotin switch assay, maleimide assay with fluorescent thiol modifying regents, tag-switch method and mass spectrometry. H2 S induces S-sulfhydration on enzymes or receptors (such as p66Shc, phospholamban, protein tyrosine phosphatase 1B, mitogen-activated extracellular signal-regulated kinase 1 and ATP synthase subunit α), transcription factors (such as specific protein-1, kelch-like ECH-associating protein 1, NF-κB and interferon regulatory factor-1), and ion channels (such as voltage-activated Ca2+ channels, transient receptor potential channels and ATP-sensitive K+ channels) in the cardiovascular system. Although significant progress has been achieved in delineating the role of protein S-sulfhydration by H2 S in the cardiovascular system, more proteins with detailed cysteine sites of S-sulfhydration as well as physiological function need to be investigated in further studies. This review mainly summarizes the role and possible mechanism of S-sulfhydration in the cardiovascular system. The S-sulfhydrated proteins may be potential novel targets for therapeutic intervention and drug design in the cardiovascular system, which may accelerate the development and application of H2 S-related drugs in the future. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Guoliang Meng
- Department of Pharmacology, School of PharmacyNantong UniversityNantongChina
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Shuang Zhao
- Key Laboratory of Cardiovascular Disease and Molecular InterventionNanjing Medical UniversityNanjingChina
| | - Liping Xie
- Key Laboratory of Cardiovascular Disease and Molecular InterventionNanjing Medical UniversityNanjingChina
| | - Yi Han
- Department of GeriatricsFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of PharmacyNanjing Medical UniversityNanjingChina
- Key Laboratory of Cardiovascular Disease and Molecular InterventionNanjing Medical UniversityNanjingChina
| |
Collapse
|
24
|
Kim DH, Paudel P, Yu T, Ngo TM, Kim JA, Jung HA, Yokozawa T, Choi JS. Characterization of the inhibitory activity of natural tanshinones from Salvia miltiorrhiza roots on protein tyrosine phosphatase 1B. Chem Biol Interact 2017; 278:65-73. [DOI: 10.1016/j.cbi.2017.10.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 11/27/2022]
|
25
|
Ito Y, Hsu MF, Bettaieb A, Koike S, Mello A, Calvo-Rubio M, Villalba JM, Haj FG. Protein tyrosine phosphatase 1B deficiency in podocytes mitigates hyperglycemia-induced renal injury. Metabolism 2017; 76:56-69. [PMID: 28987240 PMCID: PMC5690491 DOI: 10.1016/j.metabol.2017.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/13/2017] [Accepted: 07/31/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Diabetic nephropathy is one of the most devastating complications of diabetes, and growing evidence implicates podocyte dysfunction in disease pathogenesis. The objective of this study was to investigate the contribution of protein tyrosine phosphatase 1B (PTP1B) in podocytes to hyperglycemia-induced renal injury. METHODS To determine the in vivo function of PTP1B in podocytes we generated mice with podocyte-specific PTP1B disruption (hereafter termed pod-PTP1B KO). Kidney functions were determined in control and pod-PTP1B KO mice under normoglycemia and high-fat diet (HFD)- and streptozotocin (STZ)-induced hyperglycemia. RESULTS PTP1B expression increased in murine kidneys following HFD and STZ challenges. Under normoglycemia control and pod-PTP1B KO mice exhibited comparable renal functions. However, podocyte PTP1B disruption attenuated hyperglycemia-induced albuminuria and renal injury and preserved glucose control. Also, podocyte PTP1B disruption was accompanied with improved renal insulin signaling and enhanced autophagy with decreased inflammation and fibrosis. Moreover, the beneficial effects of podocyte PTP1B disruption in vivo were recapitulated in E11 murine podocytes with lentiviral-mediated PTP1B knockdown. Reconstitution of PTP1B in knockdown podocytes reversed the enhanced insulin signaling and autophagy suggesting that they were likely a consequence of PTP1B deficiency. Further, pharmacological attenuation of autophagy in PTP1B knockdown podocytes mitigated the protective effects of PTP1B deficiency. CONCLUSIONS These findings demonstrate that podocyte PTP1B deficiency attenuates hyperglycemia-induced renal damage and suggest that PTP1B may present a therapeutic target in renal injury.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States
| | - Ming-Fo Hsu
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States
| | - Ahmed Bettaieb
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States
| | - Shinichiro Koike
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States
| | - Aline Mello
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States
| | - Miguel Calvo-Rubio
- Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain
| | - Jose M Villalba
- Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States; Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, United States; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, United States.
| |
Collapse
|
26
|
Pharmacological inhibition of protein tyrosine phosphatase 1B protects against atherosclerotic plaque formation in the LDLR -/- mouse model of atherosclerosis. Clin Sci (Lond) 2017; 131:2489-2501. [PMID: 28899902 PMCID: PMC6365594 DOI: 10.1042/cs20171066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 02/03/2023]
Abstract
Cardiovascular disease (CVD) is the most prevalent cause of mortality among patients with type 1 or type 2 diabetes, due to accelerated atherosclerosis. Recent evidence suggests a strong link between atherosclerosis and insulin resistance, due to impaired insulin receptor (IR) signalling. Here, we demonstrate that inhibiting the activity of protein tyrosine phosphatase 1B (PTP1B), the major negative regulator of the IR prevents and reverses atherosclerotic plaque formation in an LDLR−/− mouse model of atherosclerosis. Acute (single dose) or chronic PTP1B inhibitor (trodusquemine) treatment of LDLR−/− mice decreased weight gain and adiposity, improved glucose homeostasis and attenuated atherosclerotic plaque formation. This was accompanied by a reduction in both, circulating total cholesterol and triglycerides, a decrease in aortic monocyte chemoattractant protein-1 (MCP-1) expression levels and hyperphosphorylation of aortic Akt/PKB and AMPKα. Our findings are the first to demonstrate that PTP1B inhibitors could be used in prevention and reversal of atherosclerosis development and reduction in CVD risk.
Collapse
|
27
|
Deletion of protein tyrosine phosphatase 1B obliterates endoplasmic reticulum stress-induced myocardial dysfunction through regulation of autophagy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3060-3074. [PMID: 28941626 DOI: 10.1016/j.bbadis.2017.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/01/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022]
Abstract
Endoplasmic reticulum (ER) stress has been demonstrated to prompt various cardiovascular risks although the underlying mechanism remains elusive. Protein tyrosine phosphatase-1B (PTP1B) serves as an essential negative regulator for insulin signaling. This study examined the role of PTP1B in ER stress-induced myocardial anomalies and underlying mechanism involved with a focus on autophagy. WT and PTP1B knockout mice were subjected to the ER stress inducer tunicamycin (1mg/kg). Cardiac function was evaluated with echocardiography and an Ion-Optix MyoCam system. Western blot analysis was used to monitor the levels of ER stress, autophagy and insulin signaling including insulin receptor substrate (IRS), tribbles homolog 3 (TRIB3), Atg5/7, p62 and LC3-II. Our results showed that ER stress resulted in compromised echocardiographic and cardiomyocyte contractile function, intracellular Ca2+ mishandling, ER stress, O2- production, apoptosis, the effects of which (with the exception of ER stress) were significantly attenuated or negated by PTP1B ablation. Levels of serine phosphorylation of IRS-1, TRIB3, Atg5/7, LC3B and the autophagy adaptor p62 were significantly upregulated while IRS-1 tyrosine phosphorylation was reduced by tunicamycin, the effect of which were obliterated by PTP1B ablation. In vitro study revealed that the autophagy inducer rapamycin and TRIB3 overexpression cancelled PTP1B ablation-offered beneficial effects on cardiomyocyte function or O2- production in murine cardiomyocytes or H9C2 myoblasts. Antioxidant or gene silencing of TRIB3 mimicked PTP1B ablation-induced protective effects. These findings collectively suggested that PTP1B ablation protects against ER stress-induced cardiac anomalies through regulation of autophagy.
Collapse
|
28
|
Thompson D, Morrice N, Grant L, Le Sommer S, Ziegler K, Whitfield P, Mody N, Wilson HM, Delibegović M. Myeloid protein tyrosine phosphatase 1B (PTP1B) deficiency protects against atherosclerotic plaque formation in the ApoE -/- mouse model of atherosclerosis with alterations in IL10/AMPKα pathway. Mol Metab 2017; 6:845-853. [PMID: 28752048 PMCID: PMC5518727 DOI: 10.1016/j.molmet.2017.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022] Open
Abstract
Objective Cardiovascular disease (CVD) is the most prevalent cause of mortality among patients with Type 1 or Type 2 diabetes, due to accelerated atherosclerosis. Recent evidence suggests a strong link between atherosclerosis and insulin resistance due to impaired insulin receptor (IR) signaling. Moreover, inflammatory cells, in particular macrophages, play a key role in pathogenesis of atherosclerosis and insulin resistance in humans. We hypothesized that inhibiting the activity of protein tyrosine phosphatase 1B (PTP1B), the major negative regulator of the IR, specifically in macrophages, would have beneficial anti-inflammatory effects and lead to protection against atherosclerosis and CVD. Methods We generated novel macrophage-specific PTP1B knockout mice on atherogenic background (ApoE−/−/LysM-PTP1B). Mice were fed standard or pro-atherogenic diet, and body weight, adiposity (echoMRI), glucose homeostasis, atherosclerotic plaque development, and molecular, biochemical and targeted lipidomic eicosanoid analyses were performed. Results Myeloid-PTP1B knockout mice on atherogenic background (ApoE−/−/LysM-PTP1B) exhibited a striking improvement in glucose homeostasis, decreased circulating lipids and decreased atherosclerotic plaque lesions, in the absence of body weight/adiposity differences. This was associated with enhanced phosphorylation of aortic Akt, AMPKα and increased secretion of circulating anti-inflammatory cytokine interleukin-10 (IL-10) and prostaglandin E2 (PGE2), without measurable alterations in IR phosphorylation, suggesting a direct beneficial effect of myeloid-PTP1B targeting. Conclusions Here we demonstrate that inhibiting the activity of PTP1B specifically in myeloid lineage cells protects against atherosclerotic plaque formation, under atherogenic conditions, in an ApoE−/− mouse model of atherosclerosis. Our findings suggest for the first time that macrophage PTP1B targeting could be a therapeutic target for atherosclerosis treatment and reduction of CVD risk. PTP1B inhibition as therapy for atherosclerosis/cardiovascular disease is proposed. Myeloid-PTP1B mice on ApoE−/− background (ApoE−/−/LysM-PTP1B) were generated. ApoE−/−/LysM-PTP1B had improved glucose homeostasis with no body weight differences. ApoE−/−/LysM-PTP1B had lower lipids and protection against atherosclerotic plaques. Protection was via a PGE2/IL-10/AMPKα mechanism.
Collapse
Affiliation(s)
- D Thompson
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| | - N Morrice
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - L Grant
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - S Le Sommer
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - K Ziegler
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Centre for Health Science, Inverness, UK
| | - P Whitfield
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Centre for Health Science, Inverness, UK
| | - N Mody
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - H M Wilson
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - M Delibegović
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
29
|
Wang F, Jia J, Rodrigues B. Autophagy, Metabolic Disease, and Pathogenesis of Heart Dysfunction. Can J Cardiol 2017; 33:850-859. [PMID: 28389131 DOI: 10.1016/j.cjca.2017.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
In normal physiology, autophagy is recognized as a protective housekeeping mechanism that enables elimination of unhealthy organelles, protein aggregates, and invading pathogens, as well as recycling cell components and producing new building blocks and energy for cellular renovation and homeostasis. However, overactive or depressed autophagy is often associated with the pathogenesis of multiple disorders, including cardiac disease. During metabolic disorders, such as diabetes and obesity, dysregulation of autophagy frequently leads to cell death, cardiomyopathy, and cardiac dysfunction. In this article, we summarize the current understanding of autophagy-its classification, progression, and regulation; its roles in both physiological and pathophysiological conditions; and the balance between autophagy and apoptosis. We also explore how dysregulation of autophagy leads to cell death in models of metabolic disease and its contributing factors-including nutrient state, hyperglycemia, dyslipidemia, insulin inefficiency, and oxidative stress-and outline some recent efforts to restore normal autophagy in pathophysiological states. This information could provide potential targets for the prevention of, or intervention in, cardiac failure in metabolic disorders such as diabetes and obesity.
Collapse
Affiliation(s)
- Fulong Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn Jia
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
30
|
Jia G, Jia Y, Sowers JR. Contribution of Maladaptive Adipose Tissue Expansion to Development of Cardiovascular Disease. Compr Physiol 2016; 7:253-262. [PMID: 28135006 DOI: 10.1002/cphy.c160014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The overweight and obesity epidemic has led to an increase in the metabolic syndrome and associated cardiovascular disease (CVD). These abnormalities include insulin resistance, type 2 diabetes mellitus, vascular stiffness, hypertension, stroke, and coronary heart disease. Visceral white adipocyte tissue (WAT) expansion and associated fibrosis/stiffness of WAT promote insulin resistance and CVD through increases in proinflammatory adipokines, oxidative stress, activation of renin-angiotensin-aldosterone system, dysregulation of adipocyte apoptosis and autophagy, dysfunctional immune modulation, and adverse changes in the gut microbiome. The expansion of WAT is partly determined by activation of peroxisome proliferator-activated receptor gamma and mammalian target of rapamycin/ribosomal S6 kinase signaling pathways. Further, the chronic activation of these signaling pathways may not only induce adipocyte hypertrophy and fibrosis, but also contribute to systemic inflammation, and impairment of insulin metabolic signaling in fat, liver, and skeletal muscle tissue. Therefore, the interplay of adipocyte dysfunction, maladaptive immune and inflammatory responses, and associated metabolic disorders often coexist leading to systemic low-grade inflammation and insulin resistance that are associated with increased CVD in obese individuals. © 2017 American Physiological Society. Compr Physiol 7:253-262, 2017.
Collapse
Affiliation(s)
- Guanghong Jia
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri, USA.,Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - Yan Jia
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - James R Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA.,Dalton Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri, USA.,Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| |
Collapse
|
31
|
Parry TL, Willis MS. Cardiac ubiquitin ligases: Their role in cardiac metabolism, autophagy, cardioprotection and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:2259-2269. [PMID: 27421947 PMCID: PMC5159290 DOI: 10.1016/j.bbadis.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
Both the ubiquitin-proteasome system (UPS) and the lysosomal autophagy system have emerged as complementary key players responsible for the turnover of cellular proteins. The regulation of protein turnover is critical to cardiomyocytes as post-mitotic cells with very limited regenerative capacity. In this focused review, we describe the emerging interface between the UPS and autophagy, with E3's regulating autophagy at two critical points through multiple mechanisms. Moreover, we discuss recent insights in how both the UPS and autophagy can alter metabolism at various levels, to present new ways to think about therapeutically regulating autophagy in a focused manner to optimize disease-specific cardioprotection, without harming the overall homeostasis of protein quality control. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Traci L Parry
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
32
|
Jin Y, Liu S, Ma Q, Xiao D, Chen L. Berberine enhances the AMPK activation and autophagy and mitigates high glucose-induced apoptosis of mouse podocytes. Eur J Pharmacol 2016; 794:106-114. [PMID: 27887947 DOI: 10.1016/j.ejphar.2016.11.037] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022]
Abstract
High glucose concentration can induce injury of podocytes and berberine has a potent activity against diabetic nephropathy. However, whether and how berberine can inhibit high glucose-mediated injury of podocytes have not been clarified. This study tested the effect of berberine on high glucose-mediated apoptosis and the AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) activation and autophagy in podocytes. The results indicated that berberine significantly mitigated high glucose-decreased cell viability, and nephrin and podocin expression as well as apoptosis in mouse podocytes. Berberine significantly increased the AMPK activation and mitigated high glucose and/or the AMPK inhibitor, compound C-mediated mTOR activation and apoptosis in podocytes. Berberine significantly enhanced the AMPK activation and protected from high glucose-induced apoptosis in the AMPK-silencing podocytes. Furthermore, berberine significantly increased the high glucose-elevated Unc-51-like autophagy-activating kinase 1 (ULK1) S317/S555 phosphorylation, Beclin-1 expression, the ratios of LC3II to LC3I expression and the numbers of autophagosomes, but reduced ULK1 S757 phosphorylation in podocytes. In addition, berberine significantly attenuated compound C-mediated inhibition of autophagy in podocytes. The protective effect of berberine on high glucose-induced podocyte apoptosis was significantly mitigated by pre-treatment with 3-methyladenine or bafilomycin A1. Collectively, berberine enhanced autophagy and protected from high glucose-induced injury in podocytes by promoting the AMPK activation. Our findings may provide new insights into the molecular mechanisms underlying the anti-diabetic nephropathy effect of berberine and may aid in design of new therapies for intervention of diabetic nephropathy.
Collapse
Affiliation(s)
- Yingli Jin
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Xinmin Street 126, Changchun 130021, China
| | - Shuping Liu
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Xinmin Street 126, Changchun 130021, China
| | - Qingshan Ma
- Department of Pediatrics, the First Bethune Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun 130021, China
| | - Dong Xiao
- Academy of Translational Medicine, the First Bethune Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun 130021, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Science, Jilin University, Xinmin Street 126, Changchun 130021, China.
| |
Collapse
|
33
|
Yang Y, Zhao C, Yang P, Wang X, Wang L, Chen A. Autophagy in cardiac metabolic control: Novel mechanisms for cardiovascular disorders. Cell Biol Int 2016; 40:944-54. [PMID: 27191043 DOI: 10.1002/cbin.10626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 01/01/2023]
Abstract
As an extensively studied quality control system, autophagy is responsible for clearance of dysfunctional organelles and damaged marcomolecules in cells. In addition to its biological recycling function, autophagy plays a significant role in the pathogenesis of metabolic syndromes such as obesity and diabetes. In particular, metabolic disorders contribute to cardiovascular disease development. As energy required to maintain cardiac cells functional is immense, disturbances in the balance between anabolic and catabolic metabolism possibly contribute to cardiovascular disorders. Therefore, an urgent need to expand our knowledge on the role of autophagy on the metabolic regulation of hearts emerges. In this review, the potential relationship between autophagic activity and cardiac metabolism is explored and we also discuss how dysregulated autophagy leads to severe cardiac disorders from the perspective of metabolic control.
Collapse
Affiliation(s)
- Yufei Yang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| | - Cong Zhao
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| | - Pingzhen Yang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| | - Xianbao Wang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| | - Lizi Wang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| | - Aihua Chen
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| |
Collapse
|
34
|
Abstract
Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death.
Collapse
Affiliation(s)
- Bharat Jaishy
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
35
|
Dong H, Jing W, Runpeng Z, Xuewei X, Min M, Ru C, Yingru X, Shengfa N, Rongbo Z. ESAT6 inhibits autophagy flux and promotes BCG proliferation through MTOR. Biochem Biophys Res Commun 2016; 477:195-201. [PMID: 27317487 DOI: 10.1016/j.bbrc.2016.06.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022]
Abstract
In recent years, increasing studies have found that pathogenic Mycobacterium tuberculosis (Mtb) inhibits autophagy, which mediates the anti-mycobacterial response, but the mechanism is not clear. We previously reported that secretory acid phosphatase (SapM) of Mtb can negatively regulate autophagy flux. Recently, another virulence factor of Mtb, early secretory antigenic target 6 (ESAT6), has been found to be involved in inhibiting autophagy, but the mechanism remains unclear. In this study, we show that ESAT6 hampers autophagy flux to boost bacillus Calmette-Guerin (BCG) proliferation and reveals a mechanism by which ESAT6 blocks autophagosome-lysosome fusion in a mammalian target of rapamycin (MTOR)-dependent manner. In both Raw264.7 cells and primary macrophages derived from the murine abdominal cavity (ACM), ESAT6 repressed autophagy flux by interfering with the autophagosome-lysosome fusion, which resulted in an increased load of BCG. Impaired degradation of LC3Ⅱ and SQSTM1 by ESAT6 was related to the upregulated activity of MTOR. Contrarily, inhibiting MTOR with Torin1 removed the ESAT6-induced autophagy block and lysosome dysfunction. Furthermore, in both Raw264.7 and ACM cells, MTOR inhibition significantly suppressed the survival of BCG. In conclusion, our study highlights how ESAT6 blocks autophagy and promotes BCG survival in a way that activates MTOR.
Collapse
Affiliation(s)
- Hu Dong
- Department of Medical Immunology, Medical School, Anhui University of Science and Technology, China; Medical Inspection Center, Anhui University of Science and Technology, Huainan, China.
| | - Wu Jing
- Department of Medical Immunology, Medical School, Anhui University of Science and Technology, China; Medical Inspection Center, Anhui University of Science and Technology, Huainan, China.
| | - Zhao Runpeng
- Department of Medical Immunology, Medical School, Anhui University of Science and Technology, China
| | - Xu Xuewei
- Department of Medical Immunology, Medical School, Anhui University of Science and Technology, China
| | - Mu Min
- Department of Medical Immunology, Medical School, Anhui University of Science and Technology, China
| | - Cai Ru
- Department of Medical Immunology, Medical School, Anhui University of Science and Technology, China
| | - Xing Yingru
- Affiliated Cancer Hospital, Anhui University of Science and Technology, China
| | - Ni Shengfa
- Affiliated Cancer Hospital, Anhui University of Science and Technology, China
| | - Zhang Rongbo
- Department of Medical Immunology, Medical School, Anhui University of Science and Technology, China; Medical Inspection Center, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
36
|
Antiobesity and Antidiabetes Effects of a Cudrania tricuspidata Hydrophilic Extract Presenting PTP1B Inhibitory Potential. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8432759. [PMID: 26989693 PMCID: PMC4775776 DOI: 10.1155/2016/8432759] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 02/06/2023]
Abstract
Diabetes and obesity represent the major health problems and the most age-related metabolic diseases. Protein-tyrosine phosphatase 1B (PTP1B) has emerged as an important regulator of insulin signal transduction and is regarded as a pharmaceutical target for metabolic disorders. To find novel natural materials presenting therapeutic activities against diabetes and obesity, we screened various herb extracts using a chip screening allowing the determination of PTP1B inhibitory effects of the tested compounds using insulin receptor (IR) as the substrate. Cudrania tricuspidata leaves (CTe) had a strong inhibitory effect on PTP1B activity and substantially inhibited fat accumulation in 3T3-L1 cells. CTe was orally administrated to diet-induced obesity (DIO) mice once daily for 3 weeks after which changes in glucose, insulin metabolism, and fat accumulation were examined. Hepatic enzyme markers (aspartate aminotransferase, AST, and alanine aminotransferase, ALT) and total fat mass and triglyceride levels decreased in CTe-treated mice, whereas body weight and total cholesterol concentration slightly decreased. CTe increased the phosphorylation of IRS-1 and Akt in liver tissue. Furthermore, CTe treatment significantly lowered blood glucose levels and improved insulin secretion in DIO mice. Our results strongly suggest that CTe may represent a promising therapeutic substance against diabetes and obesity.
Collapse
|
37
|
Ren J, Zhang Y. Emerging potential of therapeutic targeting of autophagy and protein quality control in the management of cardiometabolic diseases. Biochim Biophys Acta Mol Basis Dis 2015; 1852:185-7. [DOI: 10.1016/j.bbadis.2014.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Zhang J, Lv J, Wang X, Li D, Wang Z, Li G. A simple and visible colorimetric method through Zr4+–phosphate coordination for the assay of protein tyrosine phosphatase 1B and screening of its inhibitors. Analyst 2015; 140:5716-23. [DOI: 10.1039/c5an00970g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhibitors of protein tyrosine phosphatase 1B (PTP1B) are promising agents for the treatment of type 2 diabetes and obesity, so a colorimetric method has been developed in this work for PTP1B assay and screening of its inhibitors.
Collapse
Affiliation(s)
- Juan Zhang
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| | - Jun Lv
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| | - Xiaonan Wang
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| | - Defeng Li
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| | - Zhaoxia Wang
- Department of Oncology
- The Second Affiliated Hospital of Nanjing Medical University
- Nanjing 210011
- PR China
| | - Genxi Li
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| |
Collapse
|
39
|
Lucas E, Cruces-Sande M, Briones AM, Salaices M, Mayor F, Murga C, Vila-Bedmar R. Molecular physiopathology of obesity-related diseases: multi-organ integration by GRK2. Arch Physiol Biochem 2015; 121:163-77. [PMID: 26643283 DOI: 10.3109/13813455.2015.1107589] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is a worldwide problem that has reached epidemic proportions both in developed and developing countries. The excessive accumulation of fat poses a risk to health since it favours the development of metabolic alterations including insulin resistance and tissue inflammation, which further contribute to the progress of the complex pathological scenario observed in the obese. In this review we put together the different outcomes of fat accumulation and insulin resistance in the main insulin-responsive tissues, and discuss the role of some of the key molecular routes that control disease progression both in an organ-specific and also in a more systemic manner. In particular, we focus on the importance of studying the integrated regulation of different organs and pathways that contribute to the global pathophysiology of this condition with a specific emphasis on the role of emerging key molecular nodes such as the G protein-coupled receptor kinase 2 (GRK2) signalling hub.
Collapse
Affiliation(s)
- Elisa Lucas
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Marta Cruces-Sande
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Ana M Briones
- c Departamento de Farmacología , Universidad Autónoma de Madrid (UAM) Madrid , Spain , and
- d Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid , Spain
| | - Mercedes Salaices
- c Departamento de Farmacología , Universidad Autónoma de Madrid (UAM) Madrid , Spain , and
- d Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid , Spain
| | - Federico Mayor
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Cristina Murga
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| | - Rocio Vila-Bedmar
- a Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC) , Universidad Autónoma de Madrid , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
| |
Collapse
|