1
|
Wrublewsky S, Schultz J, Ammo T, Bickelmann C, Metzger W, Später T, Pohlemann T, Menger MD, Laschke MW. Biofabrication of prevascularized spheroids for bone tissue engineering by fusion of microvascular fragments with osteoblasts. Front Bioeng Biotechnol 2024; 12:1436519. [PMID: 39318668 PMCID: PMC11419975 DOI: 10.3389/fbioe.2024.1436519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Spheroids are promising building blocks for scaffold-free bone tissue engineering. Their rapid vascularization is of major importance to guarantee their survival after transplantation. To achieve this, we herein introduce the biofabrication of prevascularized spheroids by fusion of adipose tissue-derived microvascular fragments (MVF) with osteoblasts (OB). Methods For this purpose, 200 MVF from donor mice and 5,000, 10,000 or 20,000 murine OB (MC3T3-E1) were co-cultured in a liquid overlay system for 3 days to generate OB + MVF spheroids. OB mono-culture spheroids served as controls. Results and discussion During the generation process, the diameters of all spheroids progressively decreased, resulting in compact, viable spheroids of homogeneous sizes. MVF promoted the maturation of spheroids containing 5,000 OB, as shown by an accelerated decline of cell proliferation due to contact inhibition. Moreover, MVF most effectively reassembled into new microvascular networks within these small spheroids when compared to the other spheroid types, indicating the most beneficial MVF to OB ratio. Accordingly, these spheroids also showed a high angiogenic sprouting activity in vitro. In contrast to OB spheroids, they further rapidly vascularized in vivo after transplantation into dorsal skinfold chambers. This was caused by the interconnection of incorporated MVF with surrounding blood vessels. These findings indicate that OB + MVF spheroids may be suitable for bone tissue engineering, which should be next tested in appropriate in vivo bone defect models.
Collapse
Affiliation(s)
- Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Jessica Schultz
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
- Department of Trauma, Hand, and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Tekoshin Ammo
- Department of Trauma, Hand, and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Caroline Bickelmann
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Wolfgang Metzger
- Department of Trauma, Hand, and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Thomas Später
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Tim Pohlemann
- Department of Trauma, Hand, and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
2
|
Jiang C, Zhang C, Dai M, Wang F, Xu S, Han D, Wang Y, Cao Y, Liang Y, Zhang Z, Yan L, Shen Y, He K, Shen Y, Liu J. Interplay between SUMO1-related SUMOylation and phosphorylation of p65 promotes hepatocellular carcinoma progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119595. [PMID: 37730133 DOI: 10.1016/j.bbamcr.2023.119595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
The nuclear factor kappaB (NF-κB) subunit p65, plays an important role in the progression of hepatocellular carcinoma (HCC). Phosphorylation of p65 is considered as an important mechanism for the positive regulation of NF-κB activity. According to our previous data, p65 can be SUMOylated by small ubiquitin-related modifier 1 (SUMO1) protein, and SUMO1 promotes p65 nuclear import and HCC progression. However, the effect of SUMO1-related p65 SUMOylation on NF-κB transcriptional activity and the relationship between phosphorylation and SUMOylation of p65 remain obscure. Here, we found that phosphorylated p65 level was increased in cancer tissues of HCC patients, and similar phenomenon was found for SUMO1 expression but not for SUMO2/3. Further clinical data showed a positive correlation between SUMO1 and phosphorylated p65. We also verified that overexpression of SUMO1 upregulated phosphorylated p65 levels. Next, we verified SUMO1-related p65 SUMOylation with in vitro SUMOylation assay, constructed mutants of p65 SUMOylation and phosphorylation, and found that SUMO1-related p65 SUMOylation promoted p65 nuclear import and increased NF-κB activity. Both SUMO1-related p65 SUMOylation and p65 phosphorylation (especially at S276 site) increased the viability and invasion of hepatoma cells, and decreased the apoptosis of hepatoma cells. At last, we found that the phosphorylation of p65 promoted the level of SUMO1-related p65 SUMOylation, and SUMO1-related p65 SUMOylation upregulated phosphorylated p65 (at S276 site). Our study contributes to the exploration of the oncogenic mechanism of p65, which is the important protein in HCC.
Collapse
Affiliation(s)
- Can Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Chunyang Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Min Dai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Fuyan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Sa Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Dan Han
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China; Clinical college, Anhui Medical University, Hefei, China
| | - Yanyan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Yajie Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Yanyan Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Ziyu Zhang
- The First Clinical College, Anhui Medical University, Hefei, China
| | - Lina Yan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Kewu He
- The Third Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China.
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Wrublewsky S, Glas J, Carlein C, Nalbach L, Hoffmann MDA, Pack M, Vilas-Boas EA, Ribot N, Kappl R, Menger MD, Laschke MW, Ampofo E, Roma LP. The loss of pancreatic islet NADPH oxidase (NOX)2 improves islet transplantation. Redox Biol 2022; 55:102419. [PMID: 35933903 PMCID: PMC9357848 DOI: 10.1016/j.redox.2022.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 10/31/2022] Open
Abstract
Islet transplantation is a promising treatment strategy for type 1 diabetes mellitus (T1DM) patients. However, oxidative stress-induced graft failure due to an insufficient revascularization is a major problem of this therapeutic approach. NADPH oxidase (NOX)2 is an important producer of reactive oxygen species (ROS) and several studies have already reported that this enzyme plays a crucial role in the endocrine function and viability of β-cells. Therefore, we hypothesized that targeting islet NOX2 improves the outcome of islet transplantation. To test this, we analyzed the cellular composition and viability of isolated wild-type (WT) and Nox2-/- islets by immunohistochemistry as well as different viability assays. Ex vivo, the effect of Nox2 deficiency on superoxide production, endocrine function and anti-oxidant protein expression was studied under hypoxic conditions. In vivo, we transplanted WT and Nox2-/- islets into mouse dorsal skinfold chambers and under the kidney capsule of diabetic mice to assess their revascularization and endocrine function, respectively. We found that the loss of NOX2 does not affect the cellular composition and viability of isolated islets. However, decreased superoxide production, higher glucose-stimulated insulin secretion as well as expression of nuclear factor erythroid 2-related factor (Nrf)2, heme oxygenase (HO)-1 and superoxide dismutase 1 (SOD1) was detected in hypoxic Nox2-/- islets when compared to WT islets. Moreover, we detected an early revascularization, a higher take rate and restoration of normoglycemia in diabetic mice transplanted with Nox2-/- islets. These findings indicate that the suppression of NOX2 activity represents a promising therapeutic strategy to improve engraftment and function of isolated islets.
Collapse
Affiliation(s)
- Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Julia Glas
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Christopher Carlein
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | | | - Mandy Pack
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Eloisa Aparecida Vilas-Boas
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany; Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, 05508-900, Brazil
| | - Nathan Ribot
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Reinhard Kappl
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
4
|
Boewe AS, Wemmert S, Kulas P, Schick B, Götz C, Wrublewsky S, Montenarh M, Menger MD, Laschke MW, Ampofo E. Inhibition of CK2 Reduces NG2 Expression in Juvenile Angiofibroma. Biomedicines 2022; 10:biomedicines10050966. [PMID: 35625703 PMCID: PMC9138789 DOI: 10.3390/biomedicines10050966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Juvenile angiofibroma (JA) is a rare fibrovascular neoplasm predominately found within the posterior nasal cavity of adolescent males. JA expresses the proteoglycan nerve–glial antigen (NG)2, which crucially determines the migratory capacity of distinct cancer cells. Moreover, it is known that the protein kinase CK2 regulates NG2 gene expression. Therefore, in the present study, we analyzed whether the inhibition of CK2 suppresses NG2-dependent JA cell proliferation and migration. For this purpose, we assessed the expression of NG2 and CK2 in patient-derived JA tissue samples, as well as in patient-derived JA cell cultures by Western blot, immunohistochemistry, flow cytometry and quantitative real-time PCR. The mitochondrial activity, proliferation and migratory capacity of the JA cells were determined by water-soluble tetrazolium (WST)-1, 5-bromo-2′-deoxyuridine (BrdU) and collagen sprouting assays. We found that NG2 and CK2 were expressed in both the JA tissue samples and cell cultures. The treatment of the JA cells with the two CK2 inhibitors, CX-4945 and SGC-CK2-1, significantly reduced NG2 gene and protein expression when compared to the vehicle-treated cells. In addition, the loss of CK2 activity suppressed the JA cell proliferation and migration. These findings indicate that the inhibition of CK2 may represent a promising therapeutic approach for the treatment of NG2-expressing JA.
Collapse
Affiliation(s)
- Anne S. Boewe
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (A.S.B.); (S.W.); (M.D.M.); (M.W.L.)
| | - Silke Wemmert
- Department of Otolaryngology, Saarland University Medical Center, 66421 Homburg, Germany; (S.W.); (P.K.); (B.S.)
| | - Philipp Kulas
- Department of Otolaryngology, Saarland University Medical Center, 66421 Homburg, Germany; (S.W.); (P.K.); (B.S.)
| | - Bernhard Schick
- Department of Otolaryngology, Saarland University Medical Center, 66421 Homburg, Germany; (S.W.); (P.K.); (B.S.)
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (C.G.); (M.M.)
| | - Selina Wrublewsky
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (A.S.B.); (S.W.); (M.D.M.); (M.W.L.)
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (C.G.); (M.M.)
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (A.S.B.); (S.W.); (M.D.M.); (M.W.L.)
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (A.S.B.); (S.W.); (M.D.M.); (M.W.L.)
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (A.S.B.); (S.W.); (M.D.M.); (M.W.L.)
- Correspondence: ; Tel.: +49-6841-16-26561; Fax: +49-6841-16-26553
| |
Collapse
|
5
|
SGC-CK2-1 Is an Efficient Inducer of Insulin Production and Secretion in Pancreatic β-Cells. Pharmaceutics 2021; 14:pharmaceutics14010019. [PMID: 35056914 PMCID: PMC8778508 DOI: 10.3390/pharmaceutics14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
The pyrazolopyrimidine based compound SGC-CK2-1 is a potent and highly specific CK2 inhibitor and a new tool to study the biological functions of protein kinase CK2 irrespective from off-target effects. We used this compound in comparison with the well-established CK2 inhibitor CX-4945 to analyze the importance of CK2 for insulin production and secretion from pancreatic β-cells. Both inhibitors affected the proliferation and viability of MIN6 cells only marginally and downregulated the endogenous CK2 activity to a similar level. Furthermore, both inhibitors increased the message for insulin and boosted the secretion of insulin from storage vesicles. Thus, regarding the high specificity of SGC-CK2-1, we can clearly attribute the observed effects to biological functions of protein kinase CK2.
Collapse
|
6
|
Menger MM, Nalbach L, Roma LP, Laschke MW, Menger MD, Ampofo E. Erythropoietin exposure of isolated pancreatic islets accelerates their revascularization after transplantation. Acta Diabetol 2021; 58:1637-1647. [PMID: 34254190 PMCID: PMC8542558 DOI: 10.1007/s00592-021-01760-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/06/2021] [Indexed: 12/15/2022]
Abstract
AIMS The exposure of isolated pancreatic islets to pro-angiogenic factors prior to their transplantation represents a promising strategy to accelerate the revascularization of the grafts. It has been shown that erythropoietin (EPO), a glycoprotein regulating erythropoiesis, also induces angiogenesis. Therefore, we hypothesized that EPO exposure of isolated islets improves their posttransplant revascularization. METHODS Flow cytometric, immunohistochemical and quantitative real-time (qRT)-PCR analyses were performed to study the effect of EPO on the viability, cellular composition and gene expression of isolated islets. Moreover, islets expressing a mitochondrial or cytosolic H2O2 sensor were used to determine reactive oxygen species (ROS) levels. The dorsal skinfold chamber model in combination with intravital fluorescence microscopy was used to analyze the revascularization of transplanted islets. RESULTS We found that the exposure of isolated islets to EPO (3 units/mL) for 24 h does not affect the viability and the production of ROS when compared to vehicle-treated and freshly isolated islets. However, the exposure of islets to EPO increased the number of CD31-positive cells and enhanced the gene expression of insulin and vascular endothelial growth factor (VEGF)-A. The revascularization of the EPO-cultivated islets was accelerated within the initial phase after transplantation when compared to both controls. CONCLUSION These findings indicate that the exposure of isolated islets to EPO may be a promising approach to improve clinical islet transplantation.
Collapse
Affiliation(s)
- Maximilian M Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
- Department of Trauma and Reconstructive Surgery, Faculty of Medicine, BG Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Leticia P Roma
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, 66421, Homburg, Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany.
| |
Collapse
|
7
|
Nalbach L, Müller D, Wrublewsky S, Metzger W, Menger MD, Laschke MW, Ampofo E. Microvascular fragment spheroids: Three-dimensional vascularization units for tissue engineering and regeneration. J Tissue Eng 2021; 12:20417314211035593. [PMID: 34471514 PMCID: PMC8404660 DOI: 10.1177/20417314211035593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022] Open
Abstract
Adipose tissue-derived microvascular fragments (MVF) serve as vascularization units in tissue engineering and regenerative medicine. Because a three-dimensional cellular arrangement has been shown to improve cell function, we herein generated for the first time MVF spheroids to investigate whether this further increases their vascularization potential. These spheroids exhibited a morphology, size, and viability comparable to that of previously introduced stromal vascular fraction (SVF) spheroids. However, MVF spheroids contained a significantly higher number of CD31-positive endothelial cells and α-smooth muscle actin (SMA)-positive perivascular cells, resulting in an enhanced angiogenic sprouting activity. Accordingly, they also exhibited an improved in vivo vascularization and engraftment after transplantation into mouse dorsal skinfold chambers. These findings indicate that MVF spheroids are superior to SVF spheroids and, thus, may be highly suitable to improve the vascularization of tissue defects and implanted tissue constructs.
Collapse
Affiliation(s)
- Lisa Nalbach
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Danièle Müller
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Selina Wrublewsky
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
8
|
Schmitt BM, Boewe AS, Götz C, Philipp SE, Urbschat S, Oertel J, Menger MD, Laschke MW, Ampofo E. CK2 Activity Mediates the Aggressive Molecular Signature of Glioblastoma Multiforme by Inducing Nerve/Glial Antigen (NG)2 Expression. Cancers (Basel) 2021; 13:cancers13071678. [PMID: 33918235 PMCID: PMC8037969 DOI: 10.3390/cancers13071678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve/glial antigen (NG)2 expression crucially determines the aggressiveness of glioblastoma multiforme (GBM). Recent evidence suggests that protein kinase CK2 regulates NG2 expression. Therefore, we investigated in the present study whether CK2 inhibition suppresses proliferation and migration of NG2-positive GBM cells. For this purpose, CK2 activity was suppressed in the NG2-positive cell lines A1207 and U87 by the pharmacological inhibitor CX-4945 and CRISPR/Cas9-mediated knockout of CK2α. As shown by quantitative real-time PCR, luciferase-reporter assays, flow cytometry and western blot, this significantly reduced NG2 gene and protein expression when compared to vehicle-treated and wild type controls. In addition, CK2 inhibition markedly reduced NG2-dependent A1207 and U87 cell proliferation and migration. The Cancer Genome Atlas (TCGA)-based data further revealed not only a high expression of both NG2 and CK2 in GBM but also a positive correlation between the mRNA expression of the two proteins. Finally, we verified a decreased NG2 expression after CX-4945 treatment in patient-derived GBM cells. These findings indicate that the inhibition of CK2 represents a promising approach to suppress the aggressive molecular signature of NG2-positive GBM cells. Therefore, CX-4945 may be a suitable drug for the future treatment of NG2-positive GBM.
Collapse
Affiliation(s)
- Beate M. Schmitt
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (M.D.M.); (M.W.L.)
| | - Anne S. Boewe
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (M.D.M.); (M.W.L.)
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| | - Stephan E. Philipp
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany;
| | - Steffi Urbschat
- Department of Neurosurgery, Faculty of Medicine, Saarland University, 66421 Homburg, Germany; (S.U.); (J.O.)
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine, Saarland University, 66421 Homburg, Germany; (S.U.); (J.O.)
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (M.D.M.); (M.W.L.)
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (M.D.M.); (M.W.L.)
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (M.D.M.); (M.W.L.)
- Correspondence:
| |
Collapse
|
9
|
Nalbach L, Roma LP, Schmitt BM, Becker V, Körbel C, Wrublewsky S, Pack M, Später T, Metzger W, Menger MM, Frueh FS, Götz C, Lin H, EM Fox J, MacDonald PE, Menger MD, Laschke MW, Ampofo E. Improvement of islet transplantation by the fusion of islet cells with functional blood vessels. EMBO Mol Med 2021; 13:e12616. [PMID: 33135383 PMCID: PMC7799357 DOI: 10.15252/emmm.202012616] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic islet transplantation still represents a promising therapeutic strategy for curative treatment of type 1 diabetes mellitus. However, a limited number of organ donors and insufficient vascularization with islet engraftment failure restrict the successful transfer of this approach into clinical practice. To overcome these problems, we herein introduce a novel strategy for the generation of prevascularized islet organoids by the fusion of pancreatic islet cells with functional native microvessels. These insulin-secreting organoids exhibit a significantly higher angiogenic activity compared to freshly isolated islets, cultured islets, and non-prevascularized islet organoids. This is caused by paracrine signaling between the β-cells and the microvessels, mediated by insulin binding to its corresponding receptor on endothelial cells. In vivo, the prevascularized islet organoids are rapidly blood-perfused after transplantation by the interconnection of their autochthonous microvasculature with surrounding blood vessels. As a consequence, a lower number of islet grafts are required to restore normoglycemia in diabetic mice. Thus, prevascularized islet organoids may be used to improve the success rates of clinical islet transplantation.
Collapse
Affiliation(s)
- Lisa Nalbach
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Leticia P Roma
- Biophysics DepartmentCenter for Human and Molecular BiologySaarland UniversityHomburg/SaarGermany
| | - Beate M Schmitt
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Vivien Becker
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Christina Körbel
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Selina Wrublewsky
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Mandy Pack
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Thomas Später
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive SurgerySaarland UniversityHomburgGermany
| | - Maximilian M Menger
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
- Departement of Trauma and Reconstructive SurgeryEberhar Karls University TuebingenTuebingenGermany
| | - Florian S Frueh
- Division of Plastic Surgery and Hand SurgeryUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Claudia Götz
- Medical Biochemistry and Molecular BiologySaarland UniversityHomburgGermany
| | - Haopeng Lin
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Joseline EM Fox
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Patrick E MacDonald
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Michael D Menger
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Matthias W Laschke
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| |
Collapse
|
10
|
Bedenbender K, Beinborn I, Vollmeister E, Schmeck B. p38 and Casein Kinase 2 Mediate Ribonuclease 1 Repression in Inflamed Human Endothelial Cells via Promoter Remodeling Through Nucleosome Remodeling and Deacetylase Complex. Front Cell Dev Biol 2020; 8:563604. [PMID: 33178683 PMCID: PMC7593526 DOI: 10.3389/fcell.2020.563604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Vascular pathologies, such as thrombosis or atherosclerosis, are leading causes of death worldwide and are strongly associated with the dysfunction of vascular endothelial cells. In this context, the extracellular endonuclease Ribonuclease 1 (RNase1) acts as an essential protective factor in regulation and maintenance of vascular homeostasis. However, long-term inflammation causes strong repression of RNase1 expression, thereby promoting endothelial cell dysfunction. This inflammation-mediated downregulation of RNase1 in human endothelial cells is facilitated via histone deacetylase (HDAC) 2, although the underlying molecular mechanisms are still unknown. Here, we report that inhibition of c-Jun N-terminal kinase by small chemical compounds in primary human endothelial cells decreased physiological RNase1 mRNA abundance, while p38 kinase inhibition restored repressed RNase1 expression upon proinflammatory stimulation with tumor necrosis factor alpha (TNF-α) and poly I:C. Moreover, blocking of the p38 kinase- and HDAC2-associated kinase casein kinase 2 (CK2) by inhibitor as well as small interfering RNA (siRNA)-knockdown restored RNase1 expression upon inflammation of human endothelial cells. Further downstream, siRNA-knockdown of chromodomain helicase DNA binding protein (CHD) 3 and 4 of the nucleosome remodeling and deacetylase (NuRD) complex restored RNase1 repression in TNF-α treated endothelial cells implicating its role in the HDAC2-containing repressor complex involved in RNase1 repression. Finally, chromatin immunoprecipitation in primary human endothelial cells confirmed recruitment of the CHD4-containing NuRD complex and subsequent promoter remodeling via histone deacetylation at the RNASE1 promoter in a p38-dependent manner upon human endothelial cell inflammation. Altogether, our results suggest that endothelial RNase1 repression in chronic vascular inflammation is regulated by a p38 kinase-, CK2-, and NuRD complex-dependent pathway resulting in complex recruitment to the RNASE1 promoter and subsequent promoter remodeling.
Collapse
Affiliation(s)
- Katrin Bedenbender
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany.,Department of Pulmonary and Critical Care Medicine, Department of Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Marburg, Germany.,Member of the German Center for Lung Research, Member of the German Center for Infectious Disease Research, Marburg, Germany.,Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
11
|
Menger MM, Nalbach L, Wrublewsky S, Glanemann M, Gu Y, Laschke MW, Menger MD, Ampofo E. Darbepoetin-α increases the blood volume flow in transplanted pancreatic islets in mice. Acta Diabetol 2020; 57:1009-1018. [PMID: 32221724 PMCID: PMC8318962 DOI: 10.1007/s00592-020-01512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/04/2020] [Indexed: 11/30/2022]
Abstract
AIMS The minimal-invasive transplantation of pancreatic islets is a promising approach to treat diabetes mellitus type 1. However, islet transplantation is still hampered by the insufficient process of graft revascularization, leading to a poor clinical outcome. Accordingly, the identification of novel compounds, which accelerate and improve the revascularization of transplanted islets, is of great clinical interest. Previous studies have shown that darbepoetin (DPO)-α, a long lasting analogue of erythropoietin, is capable of promoting angiogenesis. Hence, we investigated in this study whether DPO improves the revascularization of transplanted islets. METHODS Islets were isolated from green fluorescent protein-positive FVB/N donor mice and transplanted into dorsal skinfold chambers of FVB/N wild-type animals, which were treated with DPO low dose (2.5 µg/kg), DPO high dose (10 µg/kg) or vehicle (control). The revascularization was assessed by repetitive intravital fluorescence microscopy over an observation period of 14 days. Subsequently, the cellular composition of the grafts was analyzed by immunohistochemistry. RESULTS The present study shows that neither low- nor high-dose DPO treatment accelerates the revascularization of free pancreatic islet grafts. However, high-dose DPO treatment increased the blood volume flow of the transplanted islet. CONCLUSIONS These findings demonstrated that DPO treatment does not affect the revascularization of transplanted islets. However, the glycoprotein increases the blood volume flow of the grafts, which results in an improved microvascular function and may facilitate successful transplantation.
Collapse
Affiliation(s)
- Maximilian M Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Matthias Glanemann
- Department for General, Visceral, Vascular and Pediatric Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Yuan Gu
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany.
| |
Collapse
|
12
|
Schmitt BM, Boewe AS, Becker V, Nalbach L, Gu Y, Götz C, Menger MD, Laschke MW, Ampofo E. Protein Kinase CK2 Regulates Nerve/Glial Antigen (NG)2-Mediated Angiogenic Activity of Human Pericytes. Cells 2020; 9:cells9061546. [PMID: 32630438 PMCID: PMC7348826 DOI: 10.3390/cells9061546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Protein kinase CK2 is a crucial regulator of endothelial cell proliferation, migration and sprouting during angiogenesis. However, it is still unknown whether this kinase additionally affects the angiogenic activity of other vessel-associated cells. In this study, we investigated the effect of CK2 inhibition on primary human pericytes. We found that CK2 inhibition reduces the expression of nerve/glial antigen (NG)2, a crucial factor which is involved in angiogenic processes. Reporter gene assays revealed a 114 bp transcriptional active region of the human NG2 promoter, whose activity was decreased after CK2 inhibition. Functional analyses demonstrated that the pharmacological inhibition of CK2 by CX-4945 suppresses pericyte proliferation, migration, spheroid sprouting and the stabilization of endothelial tubes. Moreover, aortic rings of NG2−/− mice showed a significantly reduced vascular sprouting when compared to rings of NG2+/+ mice, indicating that NG2 is an important regulator of the angiogenic activity of pericytes. In vivo, implanted Matrigel plugs containing CX-4945-treated pericytes exhibited a lower microvessel density when compared to controls. These findings demonstrate that CK2 regulates the angiogenic activity of pericytes through NG2 gene expression. Hence, the inhibition of CK2 represents a promising anti-angiogenic strategy, because it does not only target endothelial cells, but also vessel-associated pericytes.
Collapse
Affiliation(s)
- Beate M. Schmitt
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Anne S. Boewe
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Vivien Becker
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Lisa Nalbach
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Yuan Gu
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (V.B.); (L.N.); (Y.G.); (M.D.M.); (M.W.L.)
- Correspondence: ; Tel.: +49-6841-16-26561; Fax: +49-6841-16-26553
| |
Collapse
|
13
|
Menger MM, Nalbach L, Roma LP, Körbel C, Wrublewsky S, Glanemann M, Laschke MW, Menger MD, Ampofo E. Erythropoietin accelerates the revascularization of transplanted pancreatic islets. Br J Pharmacol 2020; 177:1651-1665. [PMID: 31721150 DOI: 10.1111/bph.14925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Pancreatic islet transplantation is a promising therapeutic approach for Type 1 diabetes. A major prerequisite for the survival of grafted islets is a rapid revascularization after transplantation. Erythropoietin (EPO), the primary regulator of erythropoiesis, has been shown to promote angiogenesis. Therefore, we investigated in this study whether EPO improves the revascularization of transplanted islets. EXPERIMENTAL APPROACH Islets from FVB/N mice were transplanted into dorsal skinfold chambers of recipient animals, which were daily treated with an intraperitoneal injection of EPO (500 IU·kg-1 ) or vehicle (control) throughout an observation period of 14 days. In a second set of experiments, animals were only pretreated with EPO over a 6-day period prior to islet transplantation. The revascularization of the grafts was assessed by repetitive intravital fluorescence microscopy and immunohistochemistry. In addition, a streptozotocin-induced diabetic mouse model was used to study the effect of EPO-pretreatment on the endocrine function of the grafts. KEY RESULTS EPO treatment slightly accelerated the revascularization of the islet grafts. This effect was markedly more pronounced in EPO-pretreated animals, resulting in significantly higher numbers of engrafted islets and an improved perfusion of endocrine tissue without affecting systemic haematocrit levels when compared with controls. Moreover, EPO-pretreatment significantly accelerated the recovery of normoglycaemia in diabetic mice after islet transplantation. CONCLUSION AND IMPLICATIONS These findings demonstrate that, particularly, short-term EPO-pretreatment represents a promising therapeutic approach to improve the outcome of islet transplantation, without an increased risk of thromboembolic events.
Collapse
Affiliation(s)
- Maximilian M Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Leticia P Roma
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Christina Körbel
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias Glanemann
- Department for General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
14
|
Protein Kinase CK2-A Putative Target for the Therapy of Diabetes Mellitus? Int J Mol Sci 2019; 20:ijms20184398. [PMID: 31500224 PMCID: PMC6770776 DOI: 10.3390/ijms20184398] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Since diabetes is a global epidemic, the development of novel therapeutic strategies for the treatment of this disease is of major clinical interest. Diabetes is differentiated in two types: type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). T1DM arises from an autoimmune destruction of insulin-producing β-cells whereas T2DM is characterized by an insulin resistance, an impaired insulin reaction of the target cells, and/or dysregulated insulin secretion. In the past, a growing number of studies have reported on the important role of the protein kinase CK2 in the regulation of the survival and endocrine function of pancreatic β-cells. In fact, inhibition of CK2 is capable of reducing cytokine-induced loss of β-cells and increases insulin expression as well as secretion by various pathways that are regulated by reversible phosphorylation of proteins. Moreover, CK2 inhibition modulates pathways that are involved in the development of diabetes and prevents signal transduction, leading to late complications such as diabetic retinopathy. Hence, targeting CK2 may represent a novel therapeutic strategy for the treatment of diabetes.
Collapse
|
15
|
Nalbach L, Schmitt BM, Becker V, Scheller A, Laschke MW, Menger MD, Ampofo E. Nerve/glial antigen 2 is crucially involved in the revascularization of freely transplanted pancreatic islets. Cell Tissue Res 2019; 378:195-205. [DOI: 10.1007/s00441-019-03048-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/10/2019] [Indexed: 01/09/2023]
|
16
|
Li Q, Zong Y, Li K, Jie X, Hong J, Zhou X, Wu B, Li Z, Zhang S, Wu G, Meng R. Involvement of endothelial CK2 in the radiation induced perivascular resistant niche (PVRN) and the induction of radioresistance for non-small cell lung cancer (NSCLC) cells. Biol Res 2019; 52:22. [PMID: 30992075 PMCID: PMC6466699 DOI: 10.1186/s40659-019-0231-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/06/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Tumor microenvironment (TME) plays a vital role in determining the outcomes of radiotherapy. As an important component of TME, vascular endothelial cells are involved in the perivascular resistance niche (PVRN), which is formed by inflammation or cytokine production induced by ionizing radiation (IR). Protein kinase CK2 is a constitutively active serine/threonine kinase which plays a vital role in cell proliferation and inflammation. In this study, we investigated the potential role of CK2 in PVRN after IR exposure. RESULT Specific CK2 inhibitors, Quinalizarin and CX-4945, were employed to effectively suppressed the kinase activity of CK2 in human umbilical vein endothelial cells (HUVECs) without affecting their viability. Results showing that conditioned medium from IR-exposed HUVECs increased cell viability of A549 and H460 cells, and the pretreatment of CK2 inhibitors slowed down such increment. The secretion of IL-8 and IL-6 in HUVECs was induced after exposure with IR, but significantly inhibited by the addition of CK2 inhibitors. Furthermore, IR exposure elevated the nuclear phosphorylated factor-κB (NF-κB) p65 expression in HUVECs, which was a master factor regulating cytokine production. But when pretreated with CK2 inhibitors, such elevation was significantly suppressed. CONCLUSION This study indicated that protein kinase CK2 is involved in the key process of the IR induced perivascular resistant niche, namely cytokine production, by endothelial cells, which finally led to radioresistance of non-small cell lung cancer cells. Thus, the inhibition of CK2 may be a promising way to improve the outcomes of radiation in non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Li
- Pharmacy Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohua Jie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaxin Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoshu Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
17
|
Ampofo E, Berg JJ, Menger MD, Laschke MW. Maslinic acid alleviates ischemia/reperfusion-induced inflammation by downregulation of NFκB-mediated adhesion molecule expression. Sci Rep 2019; 9:6119. [PMID: 30992483 PMCID: PMC6467883 DOI: 10.1038/s41598-019-42465-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 02/05/2019] [Indexed: 12/24/2022] Open
Abstract
Ischemia/reperfusion (I/R)-induced inflammation is associated with enhanced leukocyte rolling, adhesion and transmigration within the microcirculation. These steps are mediated by hypoxia-triggered signaling pathways, which upregulate adhesion molecule expression on endothelial cells and pericytes. We analyzed whether these cellular events are affected by maslinic acid (MA). Mitochondrial activity and viability of MA-exposed endothelial cells and pericytes were assessed by water-soluble tetrazolium (WST)-1 and lactate dehydrogenase (LDH) assays as well as Annexin V/propidium iodide (PI) stainings. Effects of MA on hypoxia and reoxygenation-induced expression of E-selectin, intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 were determined by flow cytometry. The subcellular localization of the NFκB subunit p65 was analyzed by immunofluorescence and Western blot. I/R-induced leukocytic inflammation was studied in MA- and vehicle-treated mouse dorsal skinfold chambers by intravital fluorescence microscopy and immunohistochemistry. MA did not affect viability, but suppressed the mitochondrial activity of endothelial cells. Furthermore, MA reduced adhesion molecule expression on endothelial cells and pericytes due to an inhibitory action on NFκB signaling. Numbers of adherent and transmigrated leukocytes were lower in post-ischemic tissue of MA-treated mice when compared to vehicle-treated controls. In addition, MA affected reactive oxygen species (ROS) formation, resulting in a diminished oxidative DNA damage. Hence, MA represents an attractive compound for the establishment of novel therapeutic approaches against I/R-induced inflammation.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany.
| | - Julian J Berg
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| |
Collapse
|
18
|
Schmitt BM, Laschke MW, Rössler OG, Huang W, Scheller A, Menger MD, Ampofo E. Nerve/glial antigen (NG) 2 is a crucial regulator of intercellular adhesion molecule (ICAM)-1 expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:57-66. [PMID: 28964848 DOI: 10.1016/j.bbamcr.2017.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/01/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
The proteoglycan nerve/glial antigen (NG) 2 is expressed on multiple cell types and mediates cell proliferation and migration. However, little is known about its function in gene regulation. In this study, we demonstrate that in pericytes and glioblastoma cells intercellular adhesion molecule (ICAM)-1, an essential protein for leukocyte adhesion and transmigration, underlies a NG2-dependent expression. As shown by flow cytometry, Western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR), silencing of NG2 in human placenta-derived pericytes increased the expression of ICAM-1. Pathway analyses revealed that this is mediated by extracellular-regulated-kinases (ERK) 1/2 signaling. Moreover, leukocyte adhesion to NG2 siRNA-treated pericytes was significantly enhanced when compared to scrambled (scr) siRNA-treated control cells. In vivo, we detected increased ICAM-1 protein levels in the retina of mice lacking NG2 expression. To exclude that this novel mechanism is pericyte-specific, we additionally analyzed the expression of ICAM-1 in dependency of NG2 in two glioblastoma cell lines. We found that A1207 and M059K cells exhibit an inverse expression pattern of NG2 and ICAM-1. Finally, downregulation of NG2 in A1207 cells significantly increased ICAM-1 expression. Taken together, these findings indicate that NG2 may represent a promising target for the modulation of ICAM-1-mediated immune responses.
Collapse
Affiliation(s)
- Beate M Schmitt
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Oliver G Rössler
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg/Saar, Germany
| | - Wenhui Huang
- Department of Molecular Physiology, CIPMM (Center for Integrative Physiology and Molecular Medicine), Saarland University, 66421 Homburg/Saar, Germany
| | - Anja Scheller
- Department of Molecular Physiology, CIPMM (Center for Integrative Physiology and Molecular Medicine), Saarland University, 66421 Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| |
Collapse
|
19
|
Ampofo E, Lachnitt N, Rudzitis-Auth J, Schmitt BM, Menger MD, Laschke MW. Indole-3-carbinol is a potent inhibitor of ischemia-reperfusion-induced inflammation. J Surg Res 2017; 215:34-46. [PMID: 28688659 DOI: 10.1016/j.jss.2017.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/21/2017] [Accepted: 03/23/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) induces tissue inflammation, which is characterized by an increased leukocyte-endothelial cell interaction and leukocyte transmigration. These processes are mediated by the activation of the nuclear factor (NF)κB signaling pathway, resulting in an elevated expression of specific adhesion molecules. The phytochemical indole-3-carbinol (I3C) has been shown to exert anti-inflammatory effects by interfering with NFκB signal transduction. The aim of the present study was to investigate whether I3C is capable of counteracting the pathogenesis of I/R injury. MATERIALS AND METHODS We investigated the inhibitory effect of I3C on endothelial surface protein expression during hypoxia and reoxygenation by flow cytometry. Moreover, the subcellular localization of NFκB was analyzed by immunofluorescence and Western blot. Adhesion protein levels on leukocytes after tumor necrosis factor-α stimulation were determined using flow cytometry. Finally, leukocyte-endothelial cell interaction and leukocyte transmigration during I/R was investigated in dorsal skinfold chambers of BALB/c mice by means of repetitive intravital fluorescence microscopy and immunohistochemistry. RESULTS I3C suppressed the expression of E-selectin and intercellular adhesion molecule-1 on human dermal microvascular endothelial cells by reducing the transcriptional activity of NFκB. Furthermore, surface protein levels of macrophage-1 antigen as well as activated lymphocyte function-associated antigen-1 were markedly reduced on I3C-treated leukocytes. In vivo, I3C treatment decreased the numbers of adherent and transmigrated leukocytes. This was associated with a reduced macromolecular leakage when compared with vehicle-treated controls. CONCLUSIONS These novel results indicate that I3C reduces the expression of endothelial and leukocytic adhesion proteins, resulting in attenuated leukocyte-endothelial cell interactions during I/R. Accordingly, dietary supplements containing I3C may be beneficial for the treatment of I/R-induced inflammation.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany.
| | - Nico Lachnitt
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | | | - Beate M Schmitt
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
20
|
Santos LA, da Cunha EFF, Ramalho TC. Toward the Classical Description of Halogen Bonds: A Quantum Based Generalized Empirical Potential for Fluorine, Chlorine, and Bromine. J Phys Chem A 2017; 121:2442-2451. [DOI: 10.1021/acs.jpca.6b13112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lucas A. Santos
- Department of Chemistry, Federal University of Lavras, CEP 37200-000 Lavras, Minas Gerais, Brazil
| | - Elaine F. F. da Cunha
- Department of Chemistry, Federal University of Lavras, CEP 37200-000 Lavras, Minas Gerais, Brazil
| | - Teodorico C. Ramalho
- Department of Chemistry, Federal University of Lavras, CEP 37200-000 Lavras, Minas Gerais, Brazil
- Center for Basic
and Applied Research, University Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
21
|
Nuñez de Villavicencio-Diaz T, Rabalski AJ, Litchfield DW. Protein Kinase CK2: Intricate Relationships within Regulatory Cellular Networks. Pharmaceuticals (Basel) 2017; 10:ph10010027. [PMID: 28273877 PMCID: PMC5374431 DOI: 10.3390/ph10010027] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/25/2017] [Accepted: 03/02/2017] [Indexed: 01/20/2023] Open
Abstract
Protein kinase CK2 is a small family of protein kinases that has been implicated in an expanding array of biological processes. While it is widely accepted that CK2 is a regulatory participant in a multitude of fundamental cellular processes, CK2 is often considered to be a constitutively active enzyme which raises questions about how it can be a regulatory participant in intricately controlled cellular processes. To resolve this apparent paradox, we have performed a systematic analysis of the published literature using text mining as well as mining of proteomic databases together with computational assembly of networks that involve CK2. These analyses reinforce the notion that CK2 is involved in a broad variety of biological processes and also reveal an extensive interplay between CK2 phosphorylation and other post-translational modifications. The interplay between CK2 and other post-translational modifications suggests that CK2 does have intricate roles in orchestrating cellular events. In this respect, phosphorylation of specific substrates by CK2 could be regulated by other post-translational modifications and CK2 could also have roles in modulating other post-translational modifications. Collectively, these observations suggest that the actions of CK2 are precisely coordinated with other constituents of regulatory cellular networks.
Collapse
Affiliation(s)
| | - Adam J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
- Department of Oncology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
22
|
Franchin C, Borgo C, Zaramella S, Cesaro L, Arrigoni G, Salvi M, Pinna LA. Exploring the CK2 Paradox: Restless, Dangerous, Dispensable. Pharmaceuticals (Basel) 2017; 10:ph10010011. [PMID: 28117670 PMCID: PMC5374415 DOI: 10.3390/ph10010011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/28/2022] Open
Abstract
The history of protein kinase CK2 is crowded with paradoxes and unanticipated findings. Named after a protein (casein) that is not among its physiological substrates, CK2 remained in search of its targets for more than two decades after its discovery in 1954, but it later came to be one of the most pleiotropic protein kinases. Being active in the absence of phosphorylation and/or specific stimuli, it looks unsuitable to participate in signaling cascades, but its “lateral” implication in a variety of signaling pathways is now soundly documented. At variance with many “onco-kinases”, CK2 is constitutively active, and no oncogenic CK2 mutant is known; still high CK2 activity correlates to neoplasia. Its pleiotropy and essential role may cast doubts on the actual “druggability” of CK2; however, a CK2 inhibitor is now in Phase II clinical trials for the treatment of cancer, and cell clones viable in the absence of CK2 are providing information about the mechanism by which cancer becomes addicted to high CK2 levels. A phosphoproteomics analysis of these CK2 null cells suggests that CK2 pleiotropy may be less pronounced than expected and supports the idea that the phosphoproteome generated by this kinase is flexible and not rigidly pre-determined.
Collapse
Affiliation(s)
- Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, via U. Bassi, 58/B, 35131 Padova, Italy.
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus, 2/B, 35129 Padova, Italy.
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, via U. Bassi, 58/B, 35131 Padova, Italy.
| | - Silvia Zaramella
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus, 2/B, 35129 Padova, Italy.
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, via U. Bassi, 58/B, 35131 Padova, Italy.
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, via U. Bassi, 58/B, 35131 Padova, Italy.
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus, 2/B, 35129 Padova, Italy.
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, via U. Bassi, 58/B, 35131 Padova, Italy.
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, via U. Bassi, 58/B, 35131 Padova, Italy.
- CNR Neurosciences Institute, via U. Bassi, 58/B, 35131 Padova, Italy.
| |
Collapse
|
23
|
Ampofo E, Widmaier D, Montenarh M, Menger MD, Laschke MW. Protein Kinase CK2 Regulates Leukocyte-Endothelial Cell Interactions during Ischemia and Reperfusion in Striated Skin Muscle. Eur Surg Res 2016; 57:111-24. [PMID: 27287005 DOI: 10.1159/000446367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/21/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ischemia and reperfusion (I/R) causes tissue injury by inflammatory processes. This involves the upregulation of endothelial surface proteins by phospho-regulated signaling pathways, resulting in enhanced interactions of leukocytes with endothelial cells. Recently, we found that protein kinase CK2 is a crucial regulator of leukocyte-mediated inflammation. Therefore, in this study we investigated the involvement of CK2 in leukocyte-endothelial cell interactions during I/R injury. METHODS We first analyzed the inhibitory action of (E)-3-(2,3,4,5-tetrabromophenyl)acrylic acid (TBCA) and CX-4945 on CK2 kinase activity and the viability of human dermal microvascular endothelial cells (HDMEC). To mimic I/R conditions in vitro, HDMEC were exposed to hypoxia and reoxygenation and the expression of adhesion molecules was analyzed by flow cytometry. Moreover, we analyzed in vivo the effect of CK2 inhibition on leukocyte-endothelial cell interactions in the dorsal skinfold chamber model of I/R injury by means of repetitive intravital fluorescence microscopy and immunohistochemistry. RESULTS We found that TBCA and CX-4945 suppressed the activity of CK2 in HDMEC without affecting cell viability. This was associated with a significant downregulation of E-selectin and intercellular adhesion molecule (ICAM)-1 after in vitro hypoxia and reoxygenation. In vivo, CX-4945 treatment significantly decreased the numbers of adherent and transmigrated leukocytes in striated muscle tissue exposed to I/R. CONCLUSION Our findings indicate that CK2 is involved in the regulation of leukocyte-endothelial cell interactions during I/R by mediating the expression of E-selectin and ICAM-1.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|