1
|
Gao J, Guo H, Li J, Zhan M, You Y, Xin G, Liu Z, Fan X, Gao Q, Liu J, Zhang Y, Fu J. Buyang Huanwu decoction ameliorates myocardial injury and attenuates platelet activation by regulating the PI3 kinase/Rap1/integrin α(IIb)β(3) pathway. Chin Med 2024; 19:109. [PMID: 39160598 PMCID: PMC11331649 DOI: 10.1186/s13020-024-00976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Buyang Huanwu Decoction (BYHWD) is a traditional Chinese medicine to treat the syndrome of qi deficiency and blood stasis. Platelets play an important role in regulating thrombus and inflammation after ischemic injury, studies have shown that BYHWD regulate myocardial fibrosis and exert anti-inflammatory effects through IL-17 and TLR4 pathways, but the mechanism of platelet activation by BYHWD in stable coronary heart disease is still unknown. In the present study, model of left anterior descending coronary artery ligation was applied to investigate the mechanisms of BYHWD on modulating platelets hyperreactivity and heart function after fibrosis of ischemic myocardial infarction (MI). METHODS Myocardial infarction model was constructed by ligation of the left anterior descending coronary artery. The rats were randomly divided into five groups: sham, model, MI with aspirin (positive), MI with a low dosage of BYHWD (BYHWD-ld) and MI with a high dosage of BYHWD (BYHWD-hd) for 28 days. RESULTS Coronary artery ligation prominently induced left ventricle dysfunction, increased cardiomyocyte fibrosis, which was accompanied by platelets with hyperreactivity, and high levels of inflammatory factors. BYHWD obviously reversed cardiac dysfunction and fibrosis, increased the thickness of the left ventricular wall, and inhibited aggregation ratio and CD62p expression. BYHWD restored the mitochondrial respiration of platelets after MI, concomitant with an increased telomere expression and decreased inflammation. According to the result of transcriptome sequencing, we found that 106 differentially expressed genes compared model with BYHWD treatment. Enrichment analysis screened out the Ras-related protein Rap-1 (Rap1) signaling pathway and platelet activation biological function. Quantitative real-time PCR and Western blotting were applied to found that BYHWD reduced the expression of Rap1/PI3K-Akt/Src-CDC42 genes and attenuated the overactivity of PI3 kinase/Rap1/integrin α(IIb)β(3) pathway. CONCLUSION BYHWD reduced inflammation and platelet activation via the PI3 kinase/Rap1/integrin α(IIb)β(3) pathway and improved heart function after MI.
Collapse
Affiliation(s)
- Jiaming Gao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Hao Guo
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Junmei Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Min Zhan
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Yue You
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Gaojie Xin
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Zixin Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Qinghe Gao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Jianxun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China.
| | - Yehao Zhang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China.
| | - Jianhua Fu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China.
| |
Collapse
|
2
|
Miguel V, Rey-Serra C, Tituaña J, Sirera B, Alcalde-Estévez E, Herrero JI, Ranz I, Fernández L, Castillo C, Sevilla L, Nagai J, Reimer KC, Jansen J, Kramann R, Costa IG, Castro A, Sancho D, Rodríguez González-Moro JM, Lamas S. Enhanced fatty acid oxidation through metformin and baicalin as therapy for COVID-19 and associated inflammatory states in lung and kidney. Redox Biol 2023; 68:102957. [PMID: 37977043 PMCID: PMC10682832 DOI: 10.1016/j.redox.2023.102957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Progressive respiratory failure is the primary cause of death in the coronavirus disease 2019 (COVID-19) pandemic. It is the final outcome of the acute respiratory distress syndrome (ARDS), characterized by an initial exacerbated inflammatory response, metabolic derangement and ultimate tissue scarring. A positive balance of cellular energy may result crucial for the recovery of clinical COVID-19. Hence, we asked if two key pathways involved in cellular energy generation, AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) signaling and fatty acid oxidation (FAO) could be beneficial. We tested the drugs metformin (AMPK activator) and baicalin (CPT1A activator) in different experimental models mimicking COVID-19 associated inflammation in lung and kidney. We also studied two different cohorts of COVID-19 patients that had been previously treated with metformin. These drugs ameliorated lung damage in an ARDS animal model, while activation of AMPK/ACC signaling increased mitochondrial function and decreased TGF-β-induced fibrosis, apoptosis and inflammation markers in lung epithelial cells. Similar results were observed with two indole derivatives, IND6 and IND8 with AMPK activating capacity. Consistently, a reduced time of hospitalization and need of intensive care was observed in COVID-19 patients previously exposed to metformin. Baicalin also mitigated the activation of pro-inflammatory bone marrow-derived macrophages (BMDMs) and reduced kidney fibrosis in two animal models of kidney injury, another key target of COVID-19. In human epithelial lung and kidney cells, both drugs improved mitochondrial function and prevented TGF-β-induced renal epithelial cell dedifferentiation. Our results support that favoring cellular energy production through enhanced FAO may prove useful in the prevention of COVID-19-induced lung and renal damage.
Collapse
Affiliation(s)
- Verónica Miguel
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain.
| | - Carlos Rey-Serra
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Jessica Tituaña
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - J Ignacio Herrero
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Irene Ranz
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Laura Fernández
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Carolina Castillo
- Department of Pathology. University Hospital "Príncipe de Asturias", Alcalá de Henares, Madrid, Spain
| | - Lucía Sevilla
- Department of Pneumology, University Hospital "Principe de Asturias", Alcala de Henares, Madrid, Spain
| | - James Nagai
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany; Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Katharina C Reimer
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany; Institute for Biomedical Technologies, Department of Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Jitske Jansen
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany; Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rafael Kramann
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany; Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Ana Castro
- Instituto de Química Medica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | | | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
3
|
George CE, Saunders CV, Morrison A, Scorer T, Jones S, Dempsey NC. Cold stored platelets in the management of bleeding: is it about bioenergetics? Platelets 2023; 34:2188969. [PMID: 36922733 DOI: 10.1080/09537104.2023.2188969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
When platelet concentrates (PCs) were first introduced in the 1960s as a blood component therapy, they were stored in the cold. As platelet transfusion became more important for the treatment of chemotherapy-induced thrombocytopenia, research into ways to increase supply intensified. During the late 1960s/early 1970s, it was demonstrated through radioactive labeling of platelets that room temperature platelets (RTP) had superior post-transfusion recovery and survival compared with cold-stored platelets (CSP). This led to a universal switch to room temperature storage, despite CSP demonstrating superior hemostatic effectiveness upon being transfused. There has been a global resurgence in studies into CSP over the last two decades, with an increase in the use of PC to treat acute bleeding within hospital and pre-hospital care. CSP demonstrate many benefits over RTP, including longer shelf life, decreased bacterial risk and easier logistics for transport, making PC accessible in areas where they have not previously been, such as the battlefield. In addition, CSP are reported to have greater hemostatic function than RTP and are thus potentially better for the treatment of bleeding. This review describes the history of CSP, the functional and metabolic assays used to assess the platelet storage lesion in PC and the current research, benefits and limitations of CSP. We also discuss whether the application of new technology for studying mitochondrial and glycolytic function in PC could provide enhanced understanding of platelet metabolism during storage and thus contribute to the continued improvements in the manufacturing and storage of PC.
Collapse
Affiliation(s)
- Chloe E George
- Component Development & Research, Welsh Blood Service, Talbot Green, Llantrisant, UK
| | - Christine V Saunders
- Component Development & Research, Welsh Blood Service, Talbot Green, Llantrisant, UK
| | - Alex Morrison
- Scottish National Blood Transfusion Service, Jack Copland Centre, Research Avenue North, Heriot-Watt University, Edinburgh, UK
| | - Tom Scorer
- Centre of Defence Pathology, Royal Centre of Defence Medicine, Birmingham, UK and
| | - Sarah Jones
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Nina C Dempsey
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
4
|
Sekhar KR, Codreanu SG, Williams OC, Rathmell JC, Rathmell WK, McLean JA, Sherrod SD, Baregamian N. Metabolism of parathyroid organoids. Front Endocrinol (Lausanne) 2023; 14:1223312. [PMID: 37492197 PMCID: PMC10364603 DOI: 10.3389/fendo.2023.1223312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction We successfully developed a broad spectrum of patient-derived endocrine organoids (PDO) from benign and malignant neoplasms of thyroid, parathyroid, and adrenal glands. In this study, we employed functionally intact parathyroid PDOs from benign parathyroid tissues to study primary hyperparathyroidism (PHPT), a common endocrine metabolic disease. As proof of concept, we examined the utility of parathyroid PDOs for bioenergetic and metabolic screening and assessed whether parathyroid PDO metabolism recapitulated matched PHPT tissues. Methods Our study methods included a fine-needle aspiration (FNA)-based technique to establish parathyroid PDOs from human PHPT tissues (n=6) in semi-solid culture conditions for organoid formation, growth, and proliferation. Mass spectrometry metabolomic analysis of PHPT tissues and patient-matched PDOs, and live cell bioenergetic profiling of parathyroid PDOs with extracellular flux analyses, were performed. Functional analysis cryopreserved and re-cultured parathyroid PDOs for parathyroid hormone (PTH) secretion was performed using ELISA hormone assays. Results and discussion Our findings support both the feasibility of parathyroid PDOs for metabolic and bioenergetic profiling and reinforce metabolic recapitulation of PHPT tissues by patient-matched parathyroid PDOs. Cryopreserved parathyroid PDOs exhibited preserved, rapid, and sustained secretory function after thawing. In conclusion, successful utilization of parathyroid PDOs for metabolic profiling further affirms the feasibility of promising endocrine organoid platforms for future metabolic studies and broader multiplatform and translational applications for therapeutic advancements of parathyroid and other endocrine applications.
Collapse
Affiliation(s)
- Konjeti R. Sekhar
- Division of Surgical Oncology & Endocrine Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Simona G. Codreanu
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States
| | - Olivia C. Williams
- Division of Surgical Oncology & Endocrine Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - W. Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John A. McLean
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States
| | - Stacy D. Sherrod
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States
| | - Naira Baregamian
- Division of Surgical Oncology & Endocrine Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
5
|
Jana S, Heaven MR, Dahiya N, Stewart C, Anderson J, MacGregor S, Maclean M, Alayash AI, Atreya C. Antimicrobial 405 nm violet-blue light treatment of ex vivo human platelets leads to mitochondrial metabolic reprogramming and potential alteration of Phospho-proteome. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112672. [PMID: 36871490 DOI: 10.1016/j.jphotobiol.2023.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Continued efforts to reduce the risk of transfusion-transmitted infections (TTIs) through blood and blood components led to the development of ultraviolet (UV) light irradiation technologies known as pathogen reduction technologies (PRT) to enhance blood safety. While these PRTs demonstrate germicidal efficiency, it is generally accepted that these photoinactivation techniques have limitations as they employ treatment conditions shown to compromise the quality of the blood components. During ex vivo storage, platelets having mitochondria for energy production suffer most from the consequences of UV irradiation. Recently, application of visible violet-blue light in the 400-470 nm wavelength range has been identified as a relatively more compatible alternative to UV light. Hence, in this report, we evaluated 405 nm light-treated platelets to assess alterations in energy utilization by measuring different mitochondrial bioenergetic parameters, glycolytic flux, and reactive oxygen species (ROS). Furthermore, we employed untargeted data-independent acquisition mass spectrometry to characterize platelet proteomic differences in protein regulation after the light treatment. Overall, our analyses demonstrate that ex vivo treatment of human platelets with antimicrobial 405 nm violet-blue light leads to mitochondrial metabolic reprogramming to survive the treatment, and alters a fraction of platelet proteome.
Collapse
Affiliation(s)
- Sirsendu Jana
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Michael R Heaven
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Neetu Dahiya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Caitlin Stewart
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - John Anderson
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Scott MacGregor
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom; Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Abdu I Alayash
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Chintamani Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
6
|
Miguel V, Reimer KC, Galyga AK, Jansen J, Möllmann J, Meyer L, Schneider RK, Kramann R. Protocol to analyze bioenergetics in single human induced-pluripotent-stem-cell-derived kidney organoids using Seahorse XF96. STAR Protoc 2023; 4:101999. [PMID: 36607813 PMCID: PMC9850189 DOI: 10.1016/j.xpro.2022.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Metabolic derangement is a key culprit in kidney pathophysiology. Organoids have emerged as a promising in vitro tool for kidney research. Here, we present a fine-tuned protocol to analyze bioenergetics in single human induced-pluripotent-stem-cell (iPSC)-derived kidney organoids using Seahorse XF96. We describe the generation of self-organized three-dimensional kidney organoids, followed by preparation of organoids for Seahorse XF96 analysis. We then detail how to carry out stress tests to determine mitochondrial and glycolytic rates in single kidney organoids.
Collapse
Affiliation(s)
- Verónica Miguel
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany.
| | - Katharina Charlotte Reimer
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany; Institute for Biomedical Technologies, Department of Cell Biology, RWTH Aachen University, Aachen, Germany; Department of Nephrology and Hypertensive Disorders, Rheumatology, and Clinical Immunology (Medical Clinic II), University Hospital RWTH Aachen, Aachen, Germany
| | - Anna Katharina Galyga
- Institute for Biomedical Technologies, Department of Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Jitske Jansen
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany; Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Julia Möllmann
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Luisa Meyer
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Rebekka K Schneider
- Institute for Biomedical Technologies, Department of Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany; Department of Nephrology and Hypertensive Disorders, Rheumatology, and Clinical Immunology (Medical Clinic II), University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
7
|
Yasseen BA, Elkhodiry AA, El-Messiery RM, El-sayed H, Elbenhawi MW, Kamel AG, Gad SA, Zidan M, Hamza MS, Al-ansary M, Abdel-Rahman EA, Ali SS. Platelets' morphology, metabolic profile, exocytosis, and heterotypic aggregation with leukocytes in relation to severity and mortality of COVID-19-patients. Front Immunol 2022; 13:1022401. [PMID: 36479107 PMCID: PMC9720295 DOI: 10.3389/fimmu.2022.1022401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Roles of platelets during infections surpass the classical thrombus function and are now known to modulate innate immune cells. Leukocyte-platelet aggregations and activation-induced secretome are among factors recently gaining interest but little is known about their interplay with severity and mortality during the course of SARS-Cov-2 infection. The aim of the present work is to follow platelets' bioenergetics, redox balance, and calcium homeostasis as regulators of leukocyte-platelet interactions in a cohort of COVID-19 patients with variable clinical severity and mortality outcomes. We investigated COVID-19 infection-related changes in platelet counts, activation, morphology (by flow cytometry and electron microscopy), bioenergetics (by Seahorse analyzer), mitochondria function (by high resolution respirometry), intracellular calcium (by flow cytometry), reactive oxygen species (ROS, by flow cytometry), and leukocyte-platelet aggregates (by flow cytometry) in non-intensive care unit (ICU) hospitalized COVID-19 patients (Non-ICU, n=15), ICU-survivors of severe COVID-19 (ICU-S, n=35), non-survivors of severe COVID-19 (ICU-NS, n=60) relative to control subjects (n=31). Additionally, molecular studies were carried out to follow gene and protein expressions of mitochondrial electron transport chain complexes (ETC) in representative samples of isolated platelets from the studied groups. Our results revealed that COVID-19 infection leads to global metabolic depression especially in severe patients despite the lack of significant impacts on levels of mitochondrial ETC genes and proteins. We also report that severe patients' platelets exhibit hyperpolarized mitochondria and significantly lowered intracellular calcium, concomitantly with increased aggregations with neutrophil. These changes were associated with increased populations of giant platelets and morphological transformations usually correlated with platelets activation and inflammatory signatures, but with impaired exocytosis. Our data suggest that hyperactive platelets with impaired exocytosis may be integral parts in the pathophysiology dictating severity and mortality in COVID-19 patients.
Collapse
Affiliation(s)
- Basma A. Yasseen
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Aya A. Elkhodiry
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Riem M. El-Messiery
- Infectious Disease Unit, Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hajar El-sayed
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | | | - Azza G. Kamel
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Shaimaa A. Gad
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Center, Cairo, Egypt
| | - Mona Zidan
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Marwa S. Hamza
- Department of Clinical Pharmacy Practice, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Al-ansary
- Department of Intensive Care, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Engy A. Abdel-Rahman
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt,Pharmacology Department, Faculty of Medicine, Assuit University, Assuit, Egypt,*Correspondence: Sameh S. Ali, ; Engy A. Abdel-Rahman,
| | - Sameh S. Ali
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt,*Correspondence: Sameh S. Ali, ; Engy A. Abdel-Rahman,
| |
Collapse
|
8
|
Skripchenko A, Gelderman MP, Vostal JG. P38 mitogen activated protein kinase inhibitor improves platelet in vitro parameters and in vivo survival in a SCID mouse model of transfusion for platelets stored at cold or temperature cycled conditions for 14 days. PLoS One 2021; 16:e0250120. [PMID: 33974660 PMCID: PMC8112650 DOI: 10.1371/journal.pone.0250120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/30/2021] [Indexed: 11/26/2022] Open
Abstract
Platelets for transfusion are stored at room temperature (20-24°C) up to 7 days but decline in biochemical and morphological parameters during storage and can support bacterial proliferation. This decline is reduced with p38MAPK inhibitor, VX-702. Storage of platelets in the cold (4-6°C) can reduce bacterial proliferation but platelets get activated and have reduced circulation when transfused. Thermocycling (cold storage with brief periodic warm ups) reduces some of the effects of cold storage. We evaluated in vitro properties and in vivo circulation in SCID mouse model of human platelet transfusion of platelets stored in cold or thermocycled for 14 days with and without VX-702. Apheresis platelet units (N = 15) were each aliquoted into five storage bags and stored under different conditions: room temperature; cold temperature; thermocycled temperature; cold temperature with VX-702; thermocycled temperature with VX-702. Platelet in vitro parameters were evaluated at 1, 7 and 14 days. On day 14, platelets were infused into SCID mice to assess their retention in circulation by flow cytometry. VX-702 reduced negative platelet parameters associated with cold and thermocycled storage such as an increase in expression of activation markers CD62, CD63 and of phosphatidylserine (marker of apoptosis measured by Annexin binding) and lowered the rise in lactate (marker of increase in anaerobic metabolism). However, VX-702 did not inhibit agonist-induced platelet aggregation indicating that it does not interfere with platelet hemostatic function. In vivo, VX-702 improved initial recovery and area under the curve in circulation of human platelets infused into a mouse model that has been previously validated against a human platelet infusion clinical trial. In conclusion, inhibition of p38MAPK during 14-days platelet storage in cold or thermocycling conditions improved in vitro platelet parameters and platelet circulation in the mouse model indicating that VX-702 may improve cell physiology and clinical performance of human platelets stored in cold conditions.
Collapse
Affiliation(s)
- Andrey Skripchenko
- Division of Blood Components and Devices, Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Monique P. Gelderman
- Division of Blood Components and Devices, Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jaroslav G. Vostal
- Division of Blood Components and Devices, Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
9
|
Miguel V, Ramos R, García-Bermejo L, Rodríguez-Puyol D, Lamas S. The program of renal fibrogenesis is controlled by microRNAs regulating oxidative metabolism. Redox Biol 2021; 40:101851. [PMID: 33465566 PMCID: PMC7815809 DOI: 10.1016/j.redox.2020.101851] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Excessive accumulation of extracellular matrix (ECM) is the hallmark of fibrotic diseases. In the kidney, it is the final common pathway of prevalent diseases, leading to chronic renal failure. While cytokines such as TGF-β play a fundamental role in myofibroblast transformation, recent work has shown that mitochondrial dysfunction and defective fatty acid oxidation (FAO), which compromise the main source of energy for renal tubular epithelial cells, have been proposed to be fundamental contributors to the development and progression of kidney fibrosis. MicroRNAs (miRNAs), which regulate gene expression post-transcriptionally, have been reported to control renal fibrogenesis. To identify miRNAs involved in the metabolic derangement of renal fibrosis, we performed a miRNA array screen in the mouse model of unilateral ureteral obstruction (UUO). MiR-150-5p and miR-495-3p were selected for their link to human pathology, their role in mitochondrial metabolism and their targeting of the fatty acid shuttling enzyme CPT1A. We found a 2- and 4-fold upregulation of miR-150-5p and miR-495-5p, respectively, in both the UUO and the folic acid induced nephropathy (FAN) models, while TGF-β1 upregulated their expressions in the human renal tubular epithelial cell line HKC-8. These miRNAs synergized with TGF-β regarding its pro-fibrotic effect by enhancing the fibrosis-associated markers Acta2, Col1α1 and Fn1. Bioenergetics studies showed a reduction of FAO-associated oxygen consumption rate (OCR) in HKC-8 cells in the presence of both miRNAs. Consistently, expression levels of their mitochondrial-related target genes CPT1A, PGC1α and the mitochondrial transcription factor A (TFAM), were reduced by half in renal epithelial cells exposed to these miRNAs. By contrast, we did not detect changes in mitochondrial mass and transmembrane potential (ΔѰm) or mitochondrial superoxide radical anion production. Our data support that miR-150 and miR-495 may contribute to renal fibrogenesis by aggravating the metabolic failure critically involved in tubular epithelial cells, ultimately leading to fibrosis.
Collapse
Affiliation(s)
- Verónica Miguel
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain.
| | - Ricardo Ramos
- Genomic Facility, Parque Científico de Madrid, Madrid, Spain
| | - Laura García-Bermejo
- Department of Pathology, Hospital Universitario "Ramón y Cajal", IRYCIS, Madrid, Spain
| | - Diego Rodríguez-Puyol
- Department of Medicine and Medical Specialties, Research Foundation of the University Hospital "Príncipe de Asturias," IRYCIS, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain.
| |
Collapse
|
10
|
Long-term treated HIV infection is associated with platelet mitochondrial dysfunction. Sci Rep 2021; 11:6246. [PMID: 33739024 PMCID: PMC7973809 DOI: 10.1038/s41598-021-85775-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
HIV infection and antiretroviral therapy have been linked to mitochondrial dysfunction. The role of platelet mitochondrial dysfunction in thrombosis, immunoregulation and age-related diseases is increasingly appreciated. Here, we studied platelet mitochondrial DNA content (mtDNApl) and mitochondrial function in people living with HIV (PLHIV) and related this to platelet function. In a cohort of 208 treated PLHIV and 56 uninfected controls, mtDNApl was quantified, as well as platelet activation, platelet agonist-induced reactivity and inflammation by circulating factors and flow cytometry. In a subgroup of participants, the metabolic activity of platelets was further studied by mitochondrial function tests and the Seahorse Flux Analyzer. PLHIV had significantly lower mtDNApl compared to controls (8.5 copies/platelet (IQR: 7.0–10.7) vs. 12.2 copies/platelet (IQR: 9.5–16.6); p < 0.001), also after correction for age, sex and BMI. Prior zidovudine-use (n = 46) was associated with a trend for lower mtDNApl. PLHIV also had reduced ex vivo platelet reactivity and mean platelet volume compared to controls. MtDNApl correlated positively with both platelet parameters and correlated negatively with inflammatory marker sCD163. Mitochondrial function tests in a subgroup of participants confirmed the presence of platelet mitochondrial respiration defects. Platelet mitochondrial function is disturbed in PLHIV, which may contribute to platelet dysfunction and subsequent complications. Interventions targeting the preservation of normal platelet mitochondrial function may ultimately prove beneficial for PLHIV.
Collapse
|
11
|
Hubbard WB, Banerjee M, Vekaria H, Prakhya KS, Joshi S, Wang QJ, Saatman KE, Whiteheart SW, Sullivan PG. Differential Leukocyte and Platelet Profiles in Distinct Models of Traumatic Brain Injury. Cells 2021; 10:cells10030500. [PMID: 33652745 PMCID: PMC7996744 DOI: 10.3390/cells10030500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) affects over 3 million individuals every year in the U.S. There is growing appreciation that TBI can produce systemic modifications, which are in part propagated through blood–brain barrier (BBB) dysfunction and blood–brain cell interactions. As such, platelets and leukocytes contribute to mechanisms of thromboinflammation after TBI. While these mechanisms have been investigated in experimental models of contusion brain injury, less is known regarding acute alterations following mild closed head injury. To investigate the role of platelet dynamics and bioenergetics after TBI, we employed two distinct, well-established models of TBI in mice: the controlled cortical impact (CCI) model of contusion brain injury and the closed head injury (CHI) model of mild diffuse brain injury. Hematology parameters, platelet-neutrophil aggregation, and platelet respirometry were assessed acutely after injury. CCI resulted in an early drop in blood leukocyte counts, while CHI increased blood leukocyte counts early after injury. Platelet-neutrophil aggregation was altered acutely after CCI compared to sham. Furthermore, platelet bioenergetic coupling efficiency was transiently reduced at 6 h and increased at 24 h post-CCI. After CHI, oxidative phosphorylation in intact platelets was reduced at 6 h and increased at 24 h compared to sham. Taken together, these data demonstrate that brain trauma initiates alterations in platelet-leukocyte dynamics and platelet metabolism, which may be time- and injury-dependent, providing evidence that platelets carry a peripheral signature of brain injury. The unique trend of platelet bioenergetics after two distinct types of TBI suggests the potential for utilization in prognosis.
Collapse
Affiliation(s)
- William Brad Hubbard
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (W.B.H.); (H.V.); (K.E.S.)
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA;
| | - Meenakshi Banerjee
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA; (M.B.); (K.S.P.); (S.J.)
| | - Hemendra Vekaria
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (W.B.H.); (H.V.); (K.E.S.)
| | | | - Smita Joshi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA; (M.B.); (K.S.P.); (S.J.)
| | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA;
| | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (W.B.H.); (H.V.); (K.E.S.)
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
| | - Sidney W. Whiteheart
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA;
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA; (M.B.); (K.S.P.); (S.J.)
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (W.B.H.); (H.V.); (K.E.S.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA;
- Correspondence: ; Tel.: +1-859-323-4684
| |
Collapse
|
12
|
Maués JHDS, Moreira-Nunes CDFA, Burbano RMR. Computational Identification and Characterization of New microRNAs in Human Platelets Stored in a Blood Bank. Biomolecules 2020; 10:biom10081173. [PMID: 32806499 PMCID: PMC7464399 DOI: 10.3390/biom10081173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Platelet concentrate (PC) transfusions are widely used to save the lives of patients who experience acute blood loss. MicroRNAs (miRNAs) comprise a class of molecules with a biological role which is relevant to the understanding of storage lesions in blood banks. We used a new approach to identify miRNAs in normal human platelet sRNA-Seq data from the GSE61856 repository. We identified a comprehensive miRNA expression profile, where we detected 20 of these transcripts potentially expressed in PCs stored for seven days, which had their expression levels analyzed with simulations of computational biology. Our results identified a new collection of miRNAs (miR-486-5p, miR-92a-3p, miR-103a-3p, miR-151a-3p, miR-181a-5p, and miR-221-3p) that showed a sensitivity expression pattern due to biological platelet changes during storage, confirmed by additional quantitative real-time polymerase chain reaction (qPCR) validation on 100 PC units from 500 healthy donors. We also identified that these miRNAs could transfer regulatory information on platelets, such as members of the let-7 family, by regulating the YOD1 gene, which is a deubiquitinating enzyme highly expressed in platelet hyperactivity. Our results also showed that the target genes of these miRNAs play important roles in signaling pathways, cell cycle, stress response, platelet activation and cancer. In summary, the miRNAs described in this study, have a promising application in transfusion medicine as potential biomarkers to also measure the quality and viability of the PC during storage in blood banks.
Collapse
Affiliation(s)
- Jersey Heitor da Silva Maués
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil;
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, PA 66063-240, Brazil
- Correspondence: (J.H.d.S.M.); (C.d.F.A.M.-N.)
| | - Caroline de Fátima Aquino Moreira-Nunes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
- Correspondence: (J.H.d.S.M.); (C.d.F.A.M.-N.)
| | - Rommel Mário Rodriguez Burbano
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil;
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, PA 66063-240, Brazil
| |
Collapse
|
13
|
Fil D, Chacko BK, Conley R, Ouyang X, Zhang J, Darley-Usmar VM, Zuberi AR, Lutz CM, Napierala M, Napierala JS. Mitochondrial damage and senescence phenotype of cells derived from a novel frataxin G127V point mutation mouse model of Friedreich's ataxia. Dis Model Mech 2020; 13:dmm045229. [PMID: 32586831 PMCID: PMC7406325 DOI: 10.1242/dmm.045229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin (FXN). Most FRDA patients are homozygous for large expansions of GAA repeat sequences in intron 1 of FXN, whereas a fraction of patients are compound heterozygotes, with a missense or nonsense mutation in one FXN allele and expanded GAAs in the other. A prevalent missense mutation among FRDA patients changes a glycine at position 130 to valine (G130V). Herein, we report generation of the first mouse model harboring an Fxn point mutation. Changing the evolutionarily conserved glycine 127 in mouse Fxn to valine results in a failure-to-thrive phenotype in homozygous animals and a substantially reduced number of offspring. Like G130V in FRDA, the G127V mutation results in a dramatic decrease of Fxn protein without affecting transcript synthesis or splicing. FxnG127V mouse embryonic fibroblasts exhibit significantly reduced proliferation and increased cell senescence. These defects are evident in early passage cells and are exacerbated at later passages. Furthermore, increased frequency of mitochondrial DNA lesions and fragmentation are accompanied by marked amplification of mitochondrial DNA in FxnG127V cells. Bioenergetics analyses demonstrate higher sensitivity and reduced cellular respiration of FxnG127V cells upon alteration of fatty acid availability. Importantly, substitution of FxnWT with FxnG127V is compatible with life, and cellular proliferation defects can be rescued by mitigation of oxidative stress via hypoxia or induction of the NRF2 pathway. We propose FxnG127V cells as a simple and robust model for testing therapeutic approaches for FRDA.
Collapse
Affiliation(s)
- Daniel Fil
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Balu K Chacko
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robbie Conley
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Xiaosen Ouyang
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aamir R Zuberi
- The Rare and Orphan Disease Center, JAX Center for Precision Genetics, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Cathleen M Lutz
- The Rare and Orphan Disease Center, JAX Center for Precision Genetics, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Jill S Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
14
|
Smith MR, Chacko BK, Johnson MS, Benavides GA, Uppal K, Go YM, Jones DP, Darley-Usmar VM. A precision medicine approach to defining the impact of doxorubicin on the bioenergetic-metabolite interactome in human platelets. Redox Biol 2020; 28:101311. [PMID: 31546171 PMCID: PMC6812033 DOI: 10.1016/j.redox.2019.101311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
Non-invasive measures of the response of individual patients to cancer therapeutics is an emerging strategy in precision medicine. Platelets offer a potential dynamic marker for metabolism and bioenergetic responses in individual patients since they have active glycolysis and mitochondrial oxidative phosphorylation and can be easily isolated from a small blood sample. We have recently shown how the bioenergetic-metabolite interactome can be defined in platelets isolated from human subjects by measuring metabolites and bioenergetics in the same sample. In the present study, we used a model system to assess test the hypothesis that this interactome is modified by xenobiotics using exposure to the anti-cancer drug doxorubicin (Dox) in individual donors. We found that unsupervised analysis of the metabolome showed clear differentiation between the control and Dox treated group. Dox treatment resulted in a concentration-dependent decrease in bioenergetic parameters with maximal respiration being most sensitive and this was associated with significant changes in over 166 features. A metabolome-wide association study of Dox was also conducted, and Dox was found to have associations with metabolites in the glycolytic and TCA cycle pathways. Lastly, network analysis showed the impact of Dox on the bioenergetic-metabolite interactome and revealed profound changes in the regulation of reserve capacity. Taken together, these data support the conclusion that platelets are a suitable platform to predict and monitor therapeutic efficacy as well as anticipate susceptibility to toxicity in the context of precision medicine.
Collapse
Affiliation(s)
- Matthew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Balu K Chacko
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, USA
| | - Michelle S Johnson
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, USA
| | - Gloria A Benavides
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, USA
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Young-Mi Go
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Victor M Darley-Usmar
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, USA.
| |
Collapse
|
15
|
Maués JHDS, Aquino Moreira-Nunes CDF, Rodriguez Burbano RM. MicroRNAs as a Potential Quality Measurement Tool of Platelet Concentrate Stored in Blood Banks-A Review. Cells 2019; 8:E1256. [PMID: 31618890 PMCID: PMC6829606 DOI: 10.3390/cells8101256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Platelet concentrate (PC) is one of the main products used in a therapeutic transfusion. This blood component requires special storage at blood banks, however, even under good storage conditions, modifications or degradations may occur and are known as platelet storage lesions. METHODS This research was performed on scientific citation databases PubMed/Medline, ScienceDirect, and Web of Science, for publications containing platelet storage lesions. The results obtained mainly reveal the clinical applicability of miRNAs as biomarkers of storage injury and as useful tools for a problem affecting public and private health, the lack of PC bags in countries with few blood donors. The major studies listed in this review identified miRNAs associated with important platelet functions that are relevant in clinical practice as quality biomarkers of PC, such as miR-223, miR-126, miR-10a, miR-150, miR-16, miR-21, miR-326, miR-495, let-7b, let-7c, let-7e, miR-107, miR-10b, miR-145, miR-155, miR-17, miR-191, miR-197, miR-200b, miR-24, miR-331, miR-376. These miRNAs can be used in blood banks to identify platelet injury in PC bags. CONCLUSION The studies described in this review relate the functions of miRNAs with molecular mechanisms that result in functional platelet differences, such as apoptosis. Thus, miRNA profiles can be used to measure the quality of storage PC for more than 5 days, identify bags with platelet injury, and distinguish those with functional platelets.
Collapse
Affiliation(s)
- Jersey Heitor da Silva Maués
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil.
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, PA 66063-240, Brazil.
| | - Caroline de Fátima Aquino Moreira-Nunes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil.
- Christus University Center-Unichristus, Faculty of Biomedicine, Fortaleza, CE 60192-345, Brazil.
| | - Rommel Mário Rodriguez Burbano
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil.
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, PA 66063-240, Brazil.
| |
Collapse
|
16
|
Fuentes E, Araya-Maturana R, Urra FA. Regulation of mitochondrial function as a promising target in platelet activation-related diseases. Free Radic Biol Med 2019; 136:172-182. [PMID: 30625393 DOI: 10.1016/j.freeradbiomed.2019.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/22/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
Platelets are anucleated cell elements produced by fragmentation of the cytoplasm of megakaryocytes and have a unique metabolic phenotype compared with circulating leukocytes, exhibiting a high coupling efficiency to mitochondrial adenosine triphosphate production with reduced respiratory reserve capacity. Platelet mitochondria are well suited for ex vivo analysis of different diseases. Even some diseases induce mitochondrial changes in platelets without reflecting them in other organs. During platelet activation, an integrated participation of glycolysis and oxidative phosphorylation is mediated by oxidative stress production-dependent signaling. The platelet activation-dependent procoagulant activity mediated by collagen, thrombin and hyperglycemia induce mitochondrial dysfunction to promote thrombosis in oxidative stress-associated pathological conditions. Interestingly, some compounds exhibit a protective action on platelet mitochondrial dysfunction through control of mitochondrial oxidative stress production or inhibition of respiratory complexes. They can be grouped in a) Natural source-derived compounds (e.g. Xanthohumol, Salvianoloc acid A and Sila-amide derivatives of NAC), b) TPP+-linked small molecules (e.g. mitoTEMPO and mitoQuinone) and c) FDA-approved drugs (e.g. metformin and statins), illustrating the wide range of molecular structures capable of effectively interacting with platelet mitochondria. The present review article aims to discuss the mechanisms of mitochondrial dysfunction and their association with platelet activation-related diseases.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca, Chile
| | - Félix A Urra
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
17
|
Chacko BK, Smith MR, Johnson MS, Benavides G, Culp ML, Pilli J, Shiva S, Uppal K, Go YM, Jones DP, Darley-Usmar VM. Mitochondria in precision medicine; linking bioenergetics and metabolomics in platelets. Redox Biol 2019; 22:101165. [PMID: 30877854 PMCID: PMC6436140 DOI: 10.1016/j.redox.2019.101165] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/27/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
Mitochondria possess reserve bioenergetic capacity, supporting protection and resilience in the face of disease. Approaches are limited to understand factors that impact mitochondrial functional reserve in humans. We applied the mitochondrial stress test (MST) to platelets from healthy subjects and found correlations between energetic parameters and mitochondrial function. These parameters were not correlated with mitochondrial complex I-IV activities, however, suggesting that other factors affect mitochondrial bioenergetics and metabolism. Platelets from African American patients with sickle cell disease also differed from controls, further showing that other factors impact mitochondrial bioenergetics and metabolism. To test for correlations of platelet metabolites with energetic parameters, we performed an integrated analysis of metabolomics and MST parameters. Subsets of metabolites, including fatty acids and xenobiotics correlated with mitochondrial parameters. The results establish platelets as a platform to integrate bioenergetics and metabolism for analysis of mitochondrial function in precision medicine.
Collapse
Affiliation(s)
- Balu K Chacko
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, UK
| | - Matthew R Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Michelle S Johnson
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, UK
| | - Gloria Benavides
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, UK
| | - Matilda L Culp
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, UK
| | - Jyotsna Pilli
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Young-Mi Go
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Victor M Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, UK.
| |
Collapse
|
18
|
Chacko B, Culp ML, Bloomer J, Phillips J, Kuo YF, Darley-Usmar V, Singal AK. Feasibility of cellular bioenergetics as a biomarker in porphyria patients. Mol Genet Metab Rep 2019; 19:100451. [PMID: 30740306 PMCID: PMC6355507 DOI: 10.1016/j.ymgmr.2019.100451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/14/2019] [Indexed: 11/29/2022] Open
Abstract
Porphyria is a group of metabolic disorders due to altered enzyme activities within the heme biosynthetic pathway. It is a systemic disease with multiple potential contributions to mitochondrial dysfunction and oxidative stress. Recently, it has become possible to measure mitochondrial function from cells isolated from peripheral blood (cellular bioenergetics) using the XF96 analyzer (Seahorse Bioscience). Mitochondrial respiration in these cells is measured with the addition of activators and inhibitors of respiration. The output is measured as the O2 consumption rate (OCR) at basal conditions, ATP linked, proton leak, maximal, reserve capacity, non-mitochondrial, and oxidative burst. We performed cellular bioenergetics on 22 porphyria (12 porphyria cutanea tarda (PCT), seven acute hepatic porphyria (AHP), and three erythropoietic protoporphyria (EPP)) patients and 18 age and gender matched healthy controls. Of porphyria cases, eight were active (2 PCT, 1 EPP, and 5 AHP) and 14 in biochemical remission. The OCR were decreased in patients compared to healthy controls. The bioenergetic profile was significantly lower when measuring proton leak and the non-mitochondrial associated OCR in the eight active porphyria patients when compared to 18 healthy controls. In conclusion, we demonstrate that the bioenergetic profile and mitochondrial activities assessed in porphyria patients and is different than in healthy control individuals. Further, our novel preliminary findings suggest the existence of a mitochondrial dysfunction in porphyria and this may be used as potential non-invasive biomarker for disease activity. This needs to be assessed with a systematic examination in a larger patient cohort. Studies are also suggested to examine mitochondrial metabolism as basis to understand mechanisms of these findings and deriving mitochondrial based therapies for porphyria.
Collapse
Affiliation(s)
- Balu Chacko
- Department of Pathology and Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matilda Lillian Culp
- Department of Pathology and Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joseph Bloomer
- Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John Phillips
- Division of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Yong-Fang Kuo
- Department of Preventive Medicine and Biostatistics, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Victor Darley-Usmar
- Department of Pathology and Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ashwani K Singal
- Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
19
|
Systems analysis of metabolism in platelet concentrates during storage in platelet additive solution. Biochem J 2018; 475:2225-2240. [DOI: 10.1042/bcj20170921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/25/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
Platelets (PLTs) deteriorate over time when stored within blood banks through a biological process known as PLT storage lesion (PSL). Here, we describe the refinement of the biochemical model of PLT metabolism, iAT-PLT-636, and its application to describe and investigate changes in metabolism during PLT storage. Changes in extracellular acetate and citrate were measured in buffy coat and apheresis PLT units over 10 days of storage in the PLT additive solution T-Sol. Metabolic network analysis of these data was performed alongside our prior metabolomics data to describe the metabolism of fresh (days 1–3), intermediate (days 4–6), and expired (days 7–10) PLTs. Changes in metabolism were studied by comparing metabolic model flux predictions of iAT-PLT-636 between stages and between collection methods. Extracellular acetate and glucose contribute most to central carbon metabolism in PLTs. The anticoagulant citrate is metabolized in apheresis-stored PLTs and is converted into aconitate and, to a lesser degree, malate. The consumption of nutrients changes during storage and reflects altered PLT activation profiles following their collection. Irrespective of the collection method, a slowdown in oxidative phosphorylation takes place, consistent with mitochondrial dysfunction during PSL. Finally, the main contributors to intracellular ammonium and NADPH are highlighted. Future optimization of flux through these pathways provides opportunities to address intracellular pH changes and reactive oxygen species, which are both of importance to PSL. The metabolic models provide descriptions of PLT metabolism at steady state and represent a platform for future PLT metabolic research.
Collapse
|
20
|
Gardinassi LG, Arévalo-Herrera M, Herrera S, Cordy RJ, Tran V, Smith MR, Johnson MS, Chacko B, Liu KH, Darley-Usmar VM, Go YM, Jones DP, Galinski MR, Li S. Integrative metabolomics and transcriptomics signatures of clinical tolerance to Plasmodium vivax reveal activation of innate cell immunity and T cell signaling. Redox Biol 2018; 17:158-170. [PMID: 29698924 PMCID: PMC6007173 DOI: 10.1016/j.redox.2018.04.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 02/08/2023] Open
Abstract
Almost invariably, humans become ill during primary infections with malaria parasites which is a pathology associated with oxidative stress and perturbations in metabolism. Importantly, repetitive exposure to Plasmodium results in asymptomatic infections, which is a condition defined as clinical tolerance. Integration of transcriptomics and metabolomics data provides a powerful way to investigate complex disease processes involving oxidative stress, energy metabolism and immune cell activation. We used metabolomics and transcriptomics to investigate the different clinical outcomes in a P. vivax controlled human malaria infection trial. At baseline, the naïve and semi-immune subjects differed in the expression of interferon related genes, neutrophil and B cell signatures that progressed with distinct kinetics after infection. Metabolomics data indicated differences in amino acid pathways and lipid metabolism between the two groups. Top pathways during the course of infection included methionine and cysteine metabolism, fatty acid metabolism and urea cycle. There is also evidence for the activation of lipoxygenase, cyclooxygenase and non-specific lipid peroxidation products in the semi-immune group. The integration of transcriptomics and metabolomics revealed concerted molecular events triggered by the infection, notably involving platelet activation, innate immunity and T cell signaling. Additional experiment confirmed that the metabolites associated with platelet activation genes were indeed enriched in the platelet metabolome. Plasmodium vivax infection induces significant change in blood metabolomics. Naïve and semi-immune subjects exhibit different molecular profiles. Network integration of metabolites/genes hinges on innate activation, chemokines and T cell signaling. Involvement of platelet activation is confirmed by platelet metabolomics.
Collapse
Affiliation(s)
- Luiz G Gardinassi
- Department of Medicine, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322-1047, USA
| | - Myriam Arévalo-Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia; Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Sócrates Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia; Caucaseco Scientific Research Center, Cali, Colombia
| | - Regina J Cordy
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - ViLinh Tran
- Department of Medicine, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322-1047, USA
| | - Matthew R Smith
- Department of Medicine, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322-1047, USA
| | - Michelle S Johnson
- Department of Pathology and Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Balu Chacko
- Department of Pathology and Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ken H Liu
- Department of Medicine, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322-1047, USA
| | - Victor M Darley-Usmar
- Department of Pathology and Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Young-Mi Go
- Department of Medicine, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322-1047, USA
| | | | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322-1047, USA
| | - Mary R Galinski
- Department of Medicine, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322-1047, USA; International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Shuzhao Li
- Department of Medicine, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322-1047, USA.
| |
Collapse
|
21
|
George MJ, Bynum J, Nair P, Cap AP, Wade CE, Cox CS, Gill BS. Platelet biomechanics, platelet bioenergetics, and applications to clinical practice and translational research. Platelets 2018; 29:431-439. [PMID: 29580113 DOI: 10.1080/09537104.2018.1453062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The purpose of this review is to explore the relationship between platelet bioenergetics and biomechanics and how this relationship affects the clinical interpretation of platelet function devices. Recent experimental and technological advances highlight platelet bioenergetics and biomechanics as alternative avenues for collecting clinically relevant data. Platelet bioenergetics drive energy production for key biomechanical processes like adhesion, spreading, aggregation, and contraction. Platelet function devices like thromboelastography, thromboelastometry, and aggregometry measure these biomechanical processes. Platelet storage, stroke, sepsis, trauma, or the activity of antiplatelet drugs alters measures of platelet function. However, the specific mechanisms governing these alterations in platelet function and how they relate to platelet bioenergetics are still under investigation.
Collapse
Affiliation(s)
- Mitchell J George
- a Department of Surgery, McGovern Medical School , The University of Texas Health Science Center , Houston , TX , USA
| | - James Bynum
- c Coagulation & Blood Research, US Army Institute of Surgical Research, JBSA Fort , Sam Houston , TX , USA
| | - Prajeeda Nair
- c Coagulation & Blood Research, US Army Institute of Surgical Research, JBSA Fort , Sam Houston , TX , USA
| | - Andrew P Cap
- a Department of Surgery, McGovern Medical School , The University of Texas Health Science Center , Houston , TX , USA.,c Coagulation & Blood Research, US Army Institute of Surgical Research, JBSA Fort , Sam Houston , TX , USA
| | - Charles E Wade
- a Department of Surgery, McGovern Medical School , The University of Texas Health Science Center , Houston , TX , USA
| | - Charles S Cox
- b Department of Pediatric Surgery, McGovern Medical School , The University of Texas Health Science Center , Houston , TX , USA
| | - Brijesh S Gill
- a Department of Surgery, McGovern Medical School , The University of Texas Health Science Center , Houston , TX , USA
| |
Collapse
|
22
|
|