1
|
Qiao L, Lin X, Liu H, Xiang R, Zhan J, Deng F, Bao M, He H, Wen X, Deng H, Wang X, He Y, Yang Z, Han J. T-2 toxin induces cardiac fibrosis by causing metabolic disorders and up-regulating Sirt3/FoxO3α/MnSOD signaling pathway-mediated oxidative stress. J Environ Sci (China) 2025; 150:532-544. [PMID: 39306426 DOI: 10.1016/j.jes.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 09/25/2024]
Abstract
T-2 toxin, an omnipresent environmental contaminant, poses a serious risk to the health of humans and animals due to its pronounced cardiotoxicity. This study aimed to elucidate the molecular mechanism of cardiac tissue damage by T-2 toxin. Twenty-four male Sprague-Dawley rats were orally administered T-2 toxin through gavage for 12 weeks at the dose of 0, 10, and 100 nanograms per gram body weight per day (ng/(g·day)), respectively. Morphological, pathological, and ultrastructural alterations in cardiac tissue were meticulously examined. Non-targeted metabolomics analysis was employed to analyze alterations in cardiac metabolites. The expression of the Sirt3/FoxO3α/MnSOD signaling pathway and the level of oxidative stress markers were detected. The results showed that exposure to T-2 toxin elicited myocardial tissue disorders, interstitial hemorrhage, capillary dilation, and fibrotic damage. Mitochondria were markedly impaired, including swelling, fusion, matrix degradation, and membrane damage. Metabonomics analysis unveiled that T-2 toxin could cause alterations in cardiac metabolic profiles as well as in the Sirt3/FoxO3α/MnSOD signaling pathway. T-2 toxin could inhibit the expressions of the signaling pathway and elevate the level of oxidative stress. In conclusion, the T-2 toxin probably induces cardiac fibrotic impairment by affecting amino acid and choline metabolism as well as up-regulating oxidative stress mediated by the Sirt3/FoxO3α/MnSOD signaling pathway. This study is expected to provide targets for preventing and treating T-2 toxin-induced cardiac fibrotic injury.
Collapse
Affiliation(s)
- Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Rongqi Xiang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Jingming Zhan
- Department of Radiological Medicine and Environmental Medicine, China Institute of Radiation Protection, Taiyuan 030006, China
| | - Feidan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Miaoye Bao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Huifang He
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Xinyue Wen
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Huan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Xining Wang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Yujie He
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Zhihao Yang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
2
|
Sivri D, Akdevelioğlu Y. Effect of Fatty Acids on Glucose Metabolism and Type 2 Diabetes. Nutr Rev 2024:nuae165. [PMID: 39530757 DOI: 10.1093/nutrit/nuae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Type 2 diabetes is an inflammatory, non-infectious disease characterized by dysfunctional pancreatic β-cells and insulin resistance. Although lifestyle, genetic, and environmental factors are associated with a high risk of type 2 diabetes, nutrition remains one of the most significant factors. Specific types and increased amounts of dietary fatty acids are associated with type 2 diabetes and its complications. Dietary recommendations for the prevention of type 2 diabetes advocate for a diet that is characterized by reduced saturated fatty acids and trans fatty acids alongside an increased consumption of monounsaturated fatty acids, polyunsaturated fatty acids, and omega-3 fatty acids. Although following the recommendations for dietary fatty acid intake is important for reducing type 2 diabetes and its related complications, the underlying mechanisms remain unclear. This review will provide an update on the mechanisms of action of fatty acids on glucose metabolism and type 2 diabetes, as well as dietary recommendations for the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Dilek Sivri
- Department of Nutrition and Dietetics, Faculty of Health Science, Anadolu University, Eskişehir, Türkiye
| | - Yasemin Akdevelioğlu
- Department of Nutrition and Dietetics, Faculty of Health Science, Gazi University, Ankara, Türkiye
| |
Collapse
|
3
|
Gao Y, Chen Q, Yang S, Cao J, Li F, Li R, Wu Z, Wang Y, Yuan L. Indole alleviates nonalcoholic fatty liver disease in an ACE2-dependent manner. FASEB J 2024; 38:e70061. [PMID: 39305120 DOI: 10.1096/fj.202401172rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Indole is a microbial metabolite produced by the gut microbiota through the degradation of dietary tryptophan, known for its well-established anti-inflammatory and antioxidant properties. In this study, we collected fecal samples from mice fed a high-fat diet (HFD) and those on a standard diet (SD), then conducted 16S rRNA sequencing to analyze their gut microbiota. The analysis revealed distinct differences in the dominant bacterial species between the two groups, with a significant decrease in indole-producing probiotics in the HFD mice compared to the SD group. Then we administered oral indole treatment to male C57BL/6J mice with HFD-induced NAFLD and observed a significant improvement in hepatic steatosis and inflammation. Notably, indole alleviated the HFD-induced decline in serum Angiotensin-(1-7) [Ang-(1-7)] levels and Angiotensin-Converting Enzyme 2 (ACE2) expression. To further investigate the role of indole and ACE2 in NAFLD, we conducted experiments using ACE2 knockout (ACE2KO) mice that were also induced with HFD-induced NAFLD and treated with indole. Interestingly, the protective effects of indole were compromised in the absence of ACE2. In HepG2 cells, indole similarly stimulated ACE2 expression and, in an ACE2-dependent manner, reduced ROS generation, maintained mitochondrial membrane potential stability, and increased SIRT3 expression. In summary, our results highlight the formation of a biologically active gut-liver axis between the gut microbiota and the liver through the tryptophan metabolite indole, which mitigates NAFLD in an ACE2-dependent manner. Elevating dietary tryptophan and increasing indole levels may represent an effective approach for preventing and treating NAFLD.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songtao Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Cao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangyu Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoying Wu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Guo B, Zhang F, Yin Y, Ning X, Zhang Z, Meng Q, Yang Z, Jiang W, Liu M, Wang Y, Sun L, Yu L, Mu N. Post-translational modifications of pyruvate dehydrogenase complex in cardiovascular disease. iScience 2024; 27:110633. [PMID: 39224515 PMCID: PMC11367490 DOI: 10.1016/j.isci.2024.110633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Pyruvate dehydrogenase complex (PDC) is a crucial enzyme that connects glycolysis and the tricarboxylic acid (TCA) cycle pathway. It plays an essential role in regulating glucose metabolism for energy production by catalyzing the oxidative decarboxylation of pyruvate to acetyl coenzyme A. Importantly, the activity of PDC is regulated through post-translational modifications (PTMs), phosphorylation, acetylation, and O-GlcNAcylation. These PTMs have significant effects on PDC activity under both physiological and pathophysiological conditions, making them potential targets for metabolism-related diseases. This review specifically focuses on the PTMs of PDC in cardiovascular diseases (CVDs) such as myocardial ischemia/reperfusion injury, diabetic cardiomyopathy, obesity-related cardiomyopathy, heart failure (HF), and vascular diseases. The findings from this review offer theoretical references for the diagnosis, treatment, and prognosis of CVD.
Collapse
Affiliation(s)
- Bo Guo
- Department of Pharmacy, Northwest Woman’s and Children’s Hospital, Xi’an, China
| | - Fujiao Zhang
- College of Life Sciences, Northwest University, Xi’an, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xingmin Ning
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zihui Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Qinglei Meng
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Ziqi Yang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Wenhua Jiang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Manling Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Lijuan Sun
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
5
|
Zhang J, Li X, Cui W, Lu D, Zhang Y, Liao J, Guo L, Jiao C, Tao L, Xu Y, Shen X. 1,8-cineole ameliorates experimental diabetic angiopathy by inhibiting NLRP3 inflammasome-mediated pyroptosis in HUVECs via SIRT2. Biomed Pharmacother 2024; 177:117085. [PMID: 38972150 DOI: 10.1016/j.biopha.2024.117085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Accumulating evidence strongly support the key role of NLRP3-mediated pyroptosis in the pathogenesis and progression of vascular endothelial dysfunction associated with diabetes mellitus. Various studies have demonstrated that the activation or upregulation of Silent Information Regulation 2 homolog 2 (SIRT2) exerts inhibitory effect on the expression of NLRP3. Although 1,8-cineole has been found to protect against endothelial dysfunction and cardiovascular diseases, its role and mechanism in diabetic angiopathy remain unknown. Therefore, the aim of this study was to investigate the ameliorative effect of 1,8-cineole through SIRT2 on pyroptosis associated with diabetic angiopathy in human umbilical vein endothelial cells (HUVECs) and to elucidate the underlying mechanism. The findings revealed that 1,8-cineole exhibited a protective effect against vascular injury and ameliorated pathological alterations in the thoracic aorta of diabetic mice. Moreover, it effectively mitigated pyroptosis induced by palmitic acid-high glucose (PA-HG) in HUVECs. Treatment with 1,8-cineole effectively restored the reduced levels of SIRT2 and suppressed the elevated expression of pyroptosis-associated proteins. Additionally, our findings demonstrated the occurrence of NLRP3 deacetylation and the physical interaction between NLRP3 and SIRT2. The SIRT2 inhibitor AGK2 and siRNA-SIRT2 effectively attenuated the effect of 1,8-cineole on NLRP3 deacetylation in HUVECs and compromised its inhibitory effect against pyroptosis in HUVECs. However, overexpression of SIRT2 inhibited PA-HG-induced pyroptosis in HUVECs. 1,8-Cineole inhibited the deacetylation of NLRP3 by regulating SIRT2, thereby reducing pyroptosis in HUVECs. In conclusion, our findings suggest that PA-HG-induced pyroptosis in HUVECs plays a crucial role in the development of diabetic angiopathy, which can be mitigated by 1,8-cineole.
Collapse
Affiliation(s)
- Jian Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Xinlin Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Wenqing Cui
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Dingchun Lu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Yanyan Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Jiajia Liao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Linlin Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Chunen Jiao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China.
| |
Collapse
|
6
|
Zhang T, Xu L, Guo X, Tao H, Liu Y, Liu X, Zhang Y, Meng X. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK. J Pharm Anal 2024; 14:157-176. [PMID: 38464786 PMCID: PMC10921247 DOI: 10.1016/j.jpha.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 03/12/2024] Open
Abstract
Heart failure (HF) is a highly morbid syndrome that seriously affects the physical and mental health of patients and generates an enormous socio-economic burden. In addition to cardiac myocyte oxidative stress and apoptosis, which are considered mechanisms for the development of HF, alterations in cardiac energy metabolism and pathological autophagy also contribute to cardiac abnormalities and ultimately HF. Silent information regulator 1 (Sirt1) and adenosine monophosphate-activated protein kinase (AMPK) are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases and phosphorylated kinases, respectively. They play similar roles in regulating some pathological processes of the heart through regulating targets such as peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), protein 38 mitogen-activated protein kinase (p38 MAPK), peroxisome proliferator-activated receptors (PPARs), and mammalian target of rapamycin (mTOR). We summarized the synergistic effects of Sirt1 and AMPK in the heart, and listed the traditional Chinese medicine (TCM) that exhibit cardioprotective properties by modulating the Sirt1/AMPK pathway, to provide a basis for the development of Sirt1/AMPK activators or inhibitors for the treatment of HF and other cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaowei Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, 620032, China
| |
Collapse
|
7
|
Ketema EB, Ahsan M, Zhang L, Karwi QG, Lopaschuk GD. Protein lysine acetylation does not contribute to the high rates of fatty acid oxidation seen in the post-ischemic heart. Sci Rep 2024; 14:1193. [PMID: 38216627 PMCID: PMC10786925 DOI: 10.1038/s41598-024-51571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024] Open
Abstract
High rates of cardiac fatty acid oxidation during reperfusion of ischemic hearts contribute to contractile dysfunction. This study aimed to investigate whether lysine acetylation affects fatty acid oxidation rates and recovery in post-ischemic hearts. Isolated working hearts from Sprague Dawley rats were perfused with 1.2 mM palmitate and 5 mM glucose and subjected to 30 min of ischemia and 40 min of reperfusion. Cardiac function, fatty acid oxidation, glucose oxidation, and glycolysis rates were compared between pre- and post-ischemic hearts. The acetylation status of enzymes involved in cardiac energy metabolism was assessed in both groups. Reperfusion after ischemia resulted in only a 41% recovery of cardiac work. Fatty acid oxidation and glycolysis rates increased while glucose oxidation rates decreased. The contribution of fatty acid oxidation to ATP production and TCA cycle activity increased from 90 to 93% and from 94.9 to 98.3%, respectively, in post-ischemic hearts. However, the overall acetylation status and acetylation levels of metabolic enzymes did not change in response to ischemia and reperfusion. These findings suggest that acetylation may not contribute to the high rates of fatty acid oxidation and reduced glucose oxidation observed in post-ischemic hearts perfused with high levels of palmitate substrate.
Collapse
Affiliation(s)
- Ezra B Ketema
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - Muhammad Ahsan
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - Liyan Zhang
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - Qutuba G Karwi
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
8
|
Chen G, Bao B, Cheng Y, Tian M, Song J, Zheng L, Tong Q. Acetyl-CoA metabolism as a therapeutic target for cancer. Biomed Pharmacother 2023; 168:115741. [PMID: 37864899 DOI: 10.1016/j.biopha.2023.115741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023] Open
Abstract
Acetyl-coenzyme A (acetyl-CoA), an essential metabolite, not only takes part in numerous intracellular metabolic processes, powers the tricarboxylic acid cycle, serves as a key hub for the biosynthesis of fatty acids and isoprenoids, but also serves as a signaling substrate for acetylation reactions in post-translational modification of proteins, which is crucial for the epigenetic inheritance of cells. Acetyl-CoA links lipid metabolism with histone acetylation to create a more intricate regulatory system that affects the growth, aggressiveness, and drug resistance of malignancies such as glioblastoma, breast cancer, and hepatocellular carcinoma. These fascinating advances in the knowledge of acetyl-CoA metabolism during carcinogenesis and normal physiology have raised interest regarding its modulation in malignancies. In this review, we provide an overview of the regulation and cancer relevance of main metabolic pathways in which acetyl-CoA participates. We also summarize the role of acetyl-CoA in the metabolic reprogramming and stress regulation of cancer cells, as well as medical application of inhibitors targeting its dysregulation in therapeutic intervention of cancers.
Collapse
Affiliation(s)
- Guo Chen
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Minxiu Tian
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Jiyu Song
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China.
| |
Collapse
|
9
|
Taghizadeh N, Mohammadi S, yousefi Z, Golpour P, Taheri A, Maleki MH, Nourbakhsh M, Nourbakhsh M, Azar MR. Assessment of global histone acetylation in pediatric and adolescent obesity: Correlations with SIRT1 expression and metabolic-inflammatory profiles. PLoS One 2023; 18:e0293217. [PMID: 37862340 PMCID: PMC10588878 DOI: 10.1371/journal.pone.0293217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/07/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Epigenetic modifications, particularly histone acetylation-deacetylation and its related enzymes, such as sirtuin 1 (SIRT1) deacetylase, may have substantial roles in the pathogenesis of obesity and its associated health issues. This study aimed to evaluate global histone acetylation status and SIRT1 gene expression in children and adolescents with obesity and their association with metabolic and anthropometric parameters. METHODS This study included 60 children and adolescents, 30 with obesity and 30 normal-weight. The evaluation consisted of the analysis of global histone acetylation levels and the expression of the SIRT1 gene in peripheral blood mononuclear cells, by specific antibody and real-time PCR, respectively. Additionally, insulin, fasting plasma glucose, lipid profile and tumor necrosis factor α (TNF-α) levels were measured. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR). Metabolic syndrome was determined based on the diagnostic criteria established by IDF. RESULTS Individuals with obesity, particularly those with insulin resistance, had significantly higher histone acetylation levels compared to control group. Histone acetylation was positively correlated with obesity indices, TNF-α, insulin, and HOMA-IR. Additionally, a significant decrease in SIRT1 gene expression was found among obese individuals, which was negatively correlated with the histone acetylation level. Furthermore, SIRT1 expression levels showed a negative correlation with various anthropometric and metabolic parameters. CONCLUSION Histone acetylation was enhanced in children and adolescents with obesity, potentially resulting from down-regulation of SIRT1, and could play a role in the obesity-associated metabolic abnormalities and insulin resistance. Targeting global histone acetylation modulation might be considered as an epigenetic approach for early obesity management.
Collapse
Affiliation(s)
- Nima Taghizadeh
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soha Mohammadi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeynab yousefi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pegah Golpour
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alemeh Taheri
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Maleki
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Nourbakhsh
- Hazrat Aliasghar Children Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Razzaghy Azar
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Hazrat Aliasghar Children Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Dridi H, Santulli G, Bahlouli L, Miotto MC, Weninger G, Marks AR. Mitochondrial Calcium Overload Plays a Causal Role in Oxidative Stress in the Failing Heart. Biomolecules 2023; 13:1409. [PMID: 37759809 PMCID: PMC10527470 DOI: 10.3390/biom13091409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Heart failure is a serious global health challenge, affecting more than 6.2 million people in the United States and is projected to reach over 8 million by 2030. Independent of etiology, failing hearts share common features, including defective calcium (Ca2+) handling, mitochondrial Ca2+ overload, and oxidative stress. In cardiomyocytes, Ca2+ not only regulates excitation-contraction coupling, but also mitochondrial metabolism and oxidative stress signaling, thereby controlling the function and actual destiny of the cell. Understanding the mechanisms of mitochondrial Ca2+ uptake and the molecular pathways involved in the regulation of increased mitochondrial Ca2+ influx is an ongoing challenge in order to identify novel therapeutic targets to alleviate the burden of heart failure. In this review, we discuss the mechanisms underlying altered mitochondrial Ca2+ handling in heart failure and the potential therapeutic strategies.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Laith Bahlouli
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Marco C. Miotto
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| |
Collapse
|
11
|
Jian L, Gao X, Wang C, Sun X, Xu Y, Han R, Wang Y, Xu S, Ding L, Zhou J, Gu Y, Zhao Y, Yang Y, Yuan Y, Ye J, Zhang L. Perilipin 5 deficiency aggravates cardiac hypertrophy by stimulating lactate production in leptin-deficient mice. Biol Direct 2023; 18:54. [PMID: 37667357 PMCID: PMC10478499 DOI: 10.1186/s13062-023-00411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Perilipin 5 (Plin5) is well known to maintain the stability of intracellular lipid droplets (LDs) and regulate fatty acid metabolism in oxidative tissues. It is highly expressed in the heart, but its roles have yet to be fully elucidated. METHODS Plin5-deficient mice and Plin5/leptin-double-knockout mice were produced, and their histological structures and myocardial functions were observed. Critical proteins related to fatty acid and glucose metabolism were measured in heart tissues, neonatal mouse cardiomyocytes and Plin5-overexpressing H9C2 cells. 2-NBDG was employed to detect glucose uptake. The mitochondria and lipid contents were observed by MitoTracker and BODIPY 493/503 staining in neonatal mouse cardiomyocytes. RESULTS Plin5 deficiency impaired glucose utilization and caused insulin resistance in mouse cardiomyocytes, particularly in the presence of fatty acids (FAs). Additionally, Plin5 deficiency increased the NADH content and elevated the expression of lactate dehydrogenase (LDHA) in cardiomyocytes, which resulted in increased lactate production. Moreover, when fatty acid oxidation was blocked by etomoxir or LDHA was inhibited by GSK2837808A in Plin5-deficient cardiomyocytes, glucose utilization was improved. Leptin-deficient mice exhibited myocardial hypertrophy, insulin resistance and altered substrate utilization, and Plin5 deficiency exacerbated myocardial hypertrophy in leptin-deficient mice. CONCLUSION Our results demonstrated that Plin5 plays a critical role in coordinating fatty acid and glucose oxidation in cardiomyocytes, providing a potential target for the treatment of metabolic disorders in the heart.
Collapse
Affiliation(s)
- Lele Jian
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Shaanxi Provincial Corps, Chinese People's Armed Police Force, Xi'an, 710054, China
| | - Xing Gao
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Wang
- Department of Pathology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Xiao Sun
- Department of CardiologyXijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuqiao Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ruili Han
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuying Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Shenhui Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Lan Ding
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jingjun Zhou
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Gu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuanlin Zhao
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Yang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Yuan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Ye
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Lijun Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
12
|
Zhang J, Wang H, Slotabec L, Cheng F, Tan Y, Li J. Alterations of SIRT1/SIRT3 subcellular distribution in aging undermine cardiometabolic homeostasis during ischemia and reperfusion. Aging Cell 2023; 22:e13930. [PMID: 37537789 PMCID: PMC10497814 DOI: 10.1111/acel.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
Age-related sensors Sirtuin1 (SIRT1) and Sirtuin3 (SIRT3) play an essential role in the protective response upon myocardial ischemia and/or reperfusion (I/R). However, the subcellular localization and co-regulatory network between cardiac SIRT1 and SIRT3 remain unknown, especially their effects on age-related metabolic regulation during acute ischemia and I/R. Here, we found that defects of cardiac SIRT1 or SIRT3 with aging result in an exacerbated cardiac physiological structural and functional deterioration after acute ischemic stress and failed recovery through reperfusion operation. In aged hearts, SIRT1 translocated into mitochondria and recruited more mitochondria SIRT3 to enhance their interaction during acute ischemia, acting as adaptive protection for the aging hearts from further mitochondria dysfunction. Subsequently, SIRT3-targeted proteomics revealed that SIRT1 plays a crucial role in maintaining mitochondrial integrity through SIRT3-mediated substrate metabolism during acute ischemic and I/R stress. Although the loss of SIRT1/SIRT3 led to a compromised PGC-1α/PPARα-mediated transcriptional control of fatty acid oxidation in response to acute ischemia and I/R, their crosstalk in mitochondria plays a more important role in the aging heart during acute ischemia. However, the increased mitochondria SIRT1-SIRT3 interaction promoted adaptive protection to aging-related fatty acid metabolic disorder via deacetylation of long-chain acyl CoA dehydrogenase (LCAD) during ischemic insults. Therefore, the dynamic network of SIRT1/SIRT3 acts as a mediator that regulates adaptive metabolic response to improve the tolerance of aged hearts to ischemic insults, which will facilitate investigation into the role of SIRT1/SIRT3 in age-related ischemic heart disease.
Collapse
Affiliation(s)
- Jingwen Zhang
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
- Department of SurgeryUniversity of South FloridaTampaFloridaUSA
| | - Hao Wang
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
- Department of SurgeryUniversity of South FloridaTampaFloridaUSA
| | - Lily Slotabec
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
- Department of SurgeryUniversity of South FloridaTampaFloridaUSA
| | - Feng Cheng
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of South FloridaTampaFloridaUSA
| | - Yi Tan
- Pediatric Research Institute, Department of PediatricsUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Ji Li
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
- Department of SurgeryUniversity of South FloridaTampaFloridaUSA
- G.V. (Sonny) Montgomery VA Medical CenterJacksonMississippiUSA
| |
Collapse
|
13
|
Li X, Bi X. Integrated Control of Fatty Acid Metabolism in Heart Failure. Metabolites 2023; 13:615. [PMID: 37233656 PMCID: PMC10220550 DOI: 10.3390/metabo13050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Disrupted fatty acid metabolism is one of the most important metabolic features in heart failure. The heart obtains energy from fatty acids via oxidation. However, heart failure results in markedly decreased fatty acid oxidation and is accompanied by the accumulation of excess lipid moieties that lead to cardiac lipotoxicity. Herein, we summarized and discussed the current understanding of the integrated regulation of fatty acid metabolism (including fatty acid uptake, lipogenesis, lipolysis, and fatty acid oxidation) in the pathogenesis of heart failure. The functions of many enzymes and regulatory factors in fatty acid homeostasis were characterized. We reviewed their contributions to the development of heart failure and highlighted potential targets that may serve as promising new therapeutic strategies.
Collapse
Affiliation(s)
| | - Xukun Bi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
14
|
De Loof M, Renguet E, Ginion A, Bouzin C, Horman S, Beauloye C, Bertrand L, Bultot L. Enhanced protein acetylation initiates fatty acid-mediated inhibition of cardiac glucose transport. Am J Physiol Heart Circ Physiol 2023; 324:H305-H317. [PMID: 36607800 DOI: 10.1152/ajpheart.00449.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fatty acids (FAs) rapidly and efficiently reduce cardiac glucose uptake in the Randle cycle or glucose-FA cycle. This fine-tuned physiological regulation is critical to allow optimal substrate allocation during fasted and fed states. However, the mechanisms involved in the direct FA-mediated control of glucose transport have not been totally elucidated yet. We previously reported that leucine and ketone bodies, other cardiac substrates, impair glucose uptake by increasing global protein acetylation from acetyl-CoA. As FAs generate acetyl-CoA as well, we postulated that protein acetylation is enhanced by FAs and participates in their inhibitory action on cardiac glucose uptake. Here, we demonstrated that both palmitate and oleate promoted a rapid increase in protein acetylation in primary cultured adult rat cardiomyocytes, which correlated with an inhibition of insulin-stimulated glucose uptake. This glucose absorption deficit was caused by an impairment in the translocation of vesicles containing the glucose transporter GLUT4 to the plasma membrane, although insulin signaling remained unaffected. Interestingly, pharmacological inhibition of lysine acetyltransferases (KATs) prevented this increase in protein acetylation and glucose uptake inhibition induced by FAs. Similarly, FA-mediated inhibition of insulin-stimulated glucose uptake could be prevented by KAT inhibitors in perfused hearts. To summarize, enhanced protein acetylation can be considered as an early event in the FA-induced inhibition of glucose transport in the heart, explaining part of the Randle cycle.NEW & NOTEWORTHY Our results show that cardiac metabolic overload by oleate or palmitate leads to increased protein acetylation inhibiting GLUT4 translocation to the plasma membrane and glucose uptake. This observation suggests an additional regulation mechanism in the physiological glucose-FA cycle originally discovered by Randle.
Collapse
Affiliation(s)
- Marine De Loof
- Pole of Cardiovascular Research, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Edith Renguet
- Pole of Cardiovascular Research, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Audrey Ginion
- Pole of Cardiovascular Research, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Caroline Bouzin
- Institute for Experimental and Clinical Research, Imaging platform (2IP), UCLouvain, Brussels, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Laurent Bultot
- Pole of Cardiovascular Research, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| |
Collapse
|
15
|
Capone F, Sotomayor-Flores C, Bode D, Wang R, Rodolico D, Strocchi S, Schiattarella GG. Cardiac metabolism in HFpEF: from fuel to signalling. Cardiovasc Res 2023; 118:3556-3575. [PMID: 36504368 DOI: 10.1093/cvr/cvac166] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) is marked by distinctive changes in myocardial uptake and utilization of energy substrates. Among the different types of HF, HF with preserved ejection fraction (HFpEF) is a highly prevalent, complex, and heterogeneous condition for which metabolic derangements seem to dictate disease progression. Changes in intermediate metabolism in cardiometabolic HFpEF-among the most prevalent forms of HFpEF-have a large impact both on energy provision and on a number of signalling pathways in the heart. This dual, metabolic vs. signalling, role is played in particular by long-chain fatty acids (LCFAs) and short-chain carbon sources [namely, short-chain fatty acids (SCFAs) and ketone bodies (KBs)]. LCFAs are key fuels for the heart, but their excess can be harmful, as in the case of toxic accumulation of lipid by-products (i.e. lipotoxicity). SCFAs and KBs have been proposed as a potential major, alternative source of energy in HFpEF. At the same time, both LCFAs and short-chain carbon sources are substrate for protein post-translational modifications and other forms of direct and indirect signalling of pivotal importance in HFpEF pathogenesis. An in-depth molecular understanding of the biological functions of energy substrates and their signalling role will be instrumental in the development of novel therapeutic approaches to HFpEF. Here, we summarize the current evidence on changes in energy metabolism in HFpEF, discuss the signalling role of intermediate metabolites through, at least in part, their fate as substrates for post-translational modifications, and highlight clinical and translational challenges around metabolic therapy in HFpEF.
Collapse
Affiliation(s)
- Federico Capone
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Division of Internal Medicine, Department of Medicine, University of Padua, Padua, Italy
| | - Cristian Sotomayor-Flores
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Rongling Wang
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefano Strocchi
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
16
|
Di Pietrantonio N, Di Tomo P, Mandatori D, Formoso G, Pandolfi A. Diabetes and Its Cardiovascular Complications: Potential Role of the Acetyltransferase p300. Cells 2023; 12:431. [PMID: 36766773 PMCID: PMC9914144 DOI: 10.3390/cells12030431] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes has been shown to accelerate vascular senescence, which is associated with chronic inflammation and oxidative stress, both implicated in the development of endothelial dysfunction. This condition represents the initial alteration linking diabetes to related cardiovascular (CV) complications. Recently, it has been hypothesised that the acetyltransferase, p300, may contribute to establishing an early vascular senescent phenotype, playing a relevant role in diabetes-associated inflammation and oxidative stress, which drive endothelial dysfunction. Specifically, p300 can modulate vascular inflammation through epigenetic mechanisms and transcription factors acetylation. Indeed, it regulates the inflammatory pathway by interacting with nuclear factor kappa-light-chain-enhancer of activated B cells p65 subunit (NF-κB p65) or by inducing its acetylation, suggesting a crucial role of p300 as a bridge between NF-κB p65 and the transcriptional machinery. Additionally, p300-mediated epigenetic modifications could be upstream of the activation of inflammatory cytokines, and they may induce oxidative stress by affecting the production of reactive oxygen species (ROS). Because several in vitro and in vivo studies shed light on the potential use of acetyltransferase inhibitors, a better understanding of the mechanisms underlying the role of p300 in diabetic vascular dysfunction could help in finding new strategies for the clinical management of CV diseases related to diabetes.
Collapse
Affiliation(s)
- Nadia Di Pietrantonio
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Pamela Di Tomo
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Gloria Formoso
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
17
|
Young ME, Latimer MN. Circadian rhythms in cardiac metabolic flexibility. Chronobiol Int 2023; 40:13-26. [PMID: 34162286 PMCID: PMC8695643 DOI: 10.1080/07420528.2021.1939366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022]
Abstract
Numerous aspects of cardiovascular physiology (e.g., heart rate, blood pressure) and pathology (e.g., myocardial infarction and sudden cardiac death) exhibit time-of-day-dependency. In association with day-night differences in energetic demand and substrate availability, the healthy heart displays remarkable metabolic flexibility through temporal partitioning of the metabolic fate of common substrates (glucose, lipid, amino acids). The purpose of this review is to highlight the contribution that circadian clocks provide toward 24-hr fluctuations in cardiac metabolism and to discuss whether attenuation and/or augmentation of these metabolic rhythms through adjustment of nutrient intake timing impacts cardiovascular disease development.
Collapse
Affiliation(s)
- Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
18
|
Dhillon RS, Qin Y(A, van Ginkel PR, Fu VX, Vann JM, Lawton AJ, Green CL, Manchado‐Gobatto FB, Gobatto CA, Lamming DW, Prolla TA, Denu JM. SIRT3 deficiency decreases oxidative metabolism capacity but increases lifespan in male mice under caloric restriction. Aging Cell 2022; 21:e13721. [PMID: 36199173 PMCID: PMC9741511 DOI: 10.1111/acel.13721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial NAD+ -dependent protein deacetylase Sirtuin3 (SIRT3) has been proposed to mediate calorie restriction (CR)-dependent metabolic regulation and lifespan extension. Here, we investigated the role of SIRT3 in CR-mediated longevity, mitochondrial function, and aerobic fitness. We report that SIRT3 is required for whole-body aerobic capacity but is dispensable for CR-dependent lifespan extension. Under CR, loss of SIRT3 (Sirt3-/- ) yielded a longer overall and maximum lifespan as compared to Sirt3+/+ mice. This unexpected lifespan extension was associated with altered mitochondrial protein acetylation in oxidative metabolic pathways, reduced mitochondrial respiration, and reduced aerobic exercise capacity. Also, Sirt3-/- CR mice exhibit lower spontaneous activity and a trend favoring fatty acid oxidation during the postprandial period. This study shows the uncoupling of lifespan and healthspan parameters (aerobic fitness and spontaneous activity) and provides new insights into SIRT3 function in CR adaptation, fuel utilization, and aging.
Collapse
Affiliation(s)
- Rashpal S. Dhillon
- Department of Biomolecular ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Yiming (Amy) Qin
- Department of Biomolecular ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Interdepartmental Graduate Program in Nutritional SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Paul R. van Ginkel
- Department of Genetics and Medical GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Vivian X. Fu
- Department of Genetics and Medical GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - James M. Vann
- Department of Genetics and Medical GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Alexis J. Lawton
- Department of Biomolecular ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Cara L. Green
- Department of Medicine, SMPHUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | | | - Claudio A. Gobatto
- Laboratory of Applied Sport Physiology, School of Applied SciencesUniversity of CampinasLimeiraBrazil
| | - Dudley W. Lamming
- Interdepartmental Graduate Program in Nutritional SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Department of Medicine, SMPHUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Tomas A. Prolla
- Department of Genetics and Medical GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - John M. Denu
- Department of Biomolecular ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Interdepartmental Graduate Program in Nutritional SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
19
|
Jin L, Geng L, Ying L, Shu L, Ye K, Yang R, Liu Y, Wang Y, Cai Y, Jiang X, Wang Q, Yan X, Liao B, Liu J, Duan F, Sweeney G, Woo CWH, Wang Y, Xia Z, Lian Q, Xu A. FGF21-Sirtuin 3 Axis Confers the Protective Effects of Exercise Against Diabetic Cardiomyopathy by Governing Mitochondrial Integrity. Circulation 2022; 146:1537-1557. [PMID: 36134579 DOI: 10.1161/circulationaha.122.059631] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Exercise is an effective nonpharmacological strategy to alleviate diabetic cardiomyopathy (DCM) through poorly defined mechanisms. FGF21 (fibroblast growth factor 21), a peptide hormone with pleiotropic benefits on cardiometabolic homeostasis, has been identified as an exercise responsive factor. This study aims to investigate whether FGF21 signaling mediates the benefits of exercise on DCM, and if so, to elucidate the underlying mechanisms. METHODS The global or hepatocyte-specific FGF21 knockout mice, cardiomyocyte-selective β-klotho (the obligatory co-receptor for FGF21) knockout mice, and their wild-type littermates were subjected to high-fat diet feeding and injection of streptozotocin to induce DCM, followed by a 6-week exercise intervention and assessment of cardiac functions. Cardiac mitochondrial structure and function were assessed by electron microscopy, enzymatic assays, and measurements of fatty acid oxidation and ATP production. Human induced pluripotent stem cell-derived cardiomyocytes were used to investigate the receptor and postreceptor signaling pathways conferring the protective effects of FGF21 against toxic lipids-induced mitochondrial dysfunction. RESULTS Treadmill exercise markedly induced cardiac expression of β-klotho and significantly attenuated diabetes-induced cardiac dysfunction in wild-type mice, accompanied by reduced mitochondrial damage and increased activities of mitochondrial enzymes in hearts. However, such cardioprotective benefits of exercise were largely abrogated in mice with global or hepatocyte-selective ablation of FGF21, or cardiomyocyte-specific deletion of β-klotho. Mechanistically, exercise enhanced the cardiac actions of FGF21 to induce the expression of the mitochondrial deacetylase SIRT3 by AMPK-evoked phosphorylation of FOXO3, thereby reversing diabetes-induced hyperacetylation and functional impairments of a cluster of mitochondrial enzymes. FGF21 prevented toxic lipids-induced mitochondrial dysfunction and oxidative stress by induction of the AMPK/FOXO3/SIRT3 signaling axis in human induced pluripotent stem cell-derived cardiomyocytes. Adeno-associated virus-mediated restoration of cardiac SIRT3 expression was sufficient to restore the responsiveness of diabetic FGF21 knockout mice to exercise in amelioration of mitochondrial dysfunction and DCM. CONCLUSIONS The FGF21-SIRT3 axis mediates the protective effects of exercise against DCM by preserving mitochondrial integrity and represents a potential therapeutic target for DCM. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03240978.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Lei Ying
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Lingling Shu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Kevin Ye
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada (K.Y.)
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yao Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yin Cai
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Health Technology and Informatics, Hong Kong Polytechnic University, China (Y.C.)
| | - Xue Jiang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Qin Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Xingqun Yan
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Boya Liao
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Jie Liu
- Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Fuyu Duan
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Canada (G.S.)
| | - Connie Wai Hong Woo
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China (Z.X.)
| | - Qizhou Lian
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| |
Collapse
|
20
|
Liu HX, Zhao H, Xi C, Li S, Ma LP, Lu X, Yan J, Tian XL, Gao L, Tian M, Liu QJ. CPT1 Mediated Ionizing Radiation-Induced Intestinal Injury Proliferation via Shifting FAO Metabolism Pathway and Activating the ERK1/2 and JNK Pathway. Radiat Res 2022; 198:488-507. [PMID: 36351324 DOI: 10.1667/rade-21-00174.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 07/07/2022] [Indexed: 06/16/2023]
Abstract
The intestinal compensatory proliferative potential is a key influencing factor for susceptibility to radiation-induced intestinal injury. Studies indicated that the carnitine palmitoyltransferase 1 (CPT1) mediated fatty acid β-oxidation (FAO) plays a crucial role in promoting the survival and proliferation of tumor cells. Here, we aimed to explore the effect of 60Co gamma rays on CPT1 mediated FAO in the radiation-induced intestinal injury models, and investigate the role of CPT1 mediated FAO in the survival and proliferation of intestinal cells after irradiation. We detected the changed of FAO in the plasma and small intestine of Sprague Dawley (SD) rats at 24 h after 60Co gamma irradiation (0, 5 and 10 Gy), using target metabolomics, qRT-PCR, immunohistochemistry (IHC), western blot (WB) and related enzymatic activity kits. We then analyzed the FAO changes in radiation-induced intestinal injury models regardless of ex vivo (mice enteroids), or in vitro (normal human intestinal epithelial cell lines, HIEC-6). HIEC-6 cells were transduced with lentivirus vector GV392 and treated with puromycin for obtaining CPT1 stable knockout cell lines, named CPT1 KO. CPT1 enzymatic activities of HIEC-6 cells and mice enteroids were also inhibited by pharmaceutical inhibitor ST1326 and Etomoxir (ETO), to study the function of CPT1 in the survival and proliferation of HIEC-6 cells after 60Co gamma irradiation. We found that CPT1 mediated FAO was altered in the small intestine of the SD rats after irradiation, especially, the expression level and enzymatic activity of CPT1 were significantly increased. Similarly, the expression levels of CPT1 were also remarkably enhanced in mice enteroids and HIEC-6 cells after irradiation. CPT1 inhibition decreased the proliferation of the HIEC-6 cells and mice enteroids after irradiation partially by reducing the extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways activation, CPT1 inhibition also reduced the proliferation of mice enteroids after irradiation partially by down-regulating the Wnt/β-catenin signaling activity. In conclusion, our study indicated that CPT1 plays a crucial role in promoting intestinal epithelial cell proliferation after irradiation.
Collapse
Affiliation(s)
- Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Cong Xi
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Li-Ping Ma
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Juan Yan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xue-Lei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
21
|
Murakami Y, Fujita Y, Fushiki H. Synthesis and Preliminary Evaluation of an 18F-labeled Oleate Analog to Image Fatty Acid Beta-Oxidation in the Absence of Metabolic Defluorination. Mol Imaging Biol 2022; 25:495-502. [PMID: 36220956 DOI: 10.1007/s11307-022-01777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Fatty acid oxidation (FAO) is a key parameter for evaluating cardiovascular, oncologic, neurologic, and other metabolic diseases. Several single-photon emission computed tomography and positron emission tomography (PET) tracers have been developed to measure FAO. Among these, 18-[18F]fluoro-4-thia-oleate ([18F]FTO), first developed by DeGrado et al., is well characterized. Here, we synthesized several analogs of [18F]FTO to improve the metabolic stability of the C-18F bond, and preliminarily evaluated their performance in monkey PET studies. PROCEDURES Several secondary 18F-fluorinated analogs, 17-[18F]fluoro-4-thia-oleate (17-[18F]FTO), 15-[18F]fluoro-4-thia-oleate (15-[18F]FTO), 12-[18F]fluoro-4-thia-oleate (12-[18F]FTO), 7-[18F]fluoro-4-thia-oleate, (7-[18F]FTO, [18F]AS3504073-00), and 6-[18F]fluoro-4-thia-oleate (6-[18F]FTO), were synthesized from tosylate or bromide precursors using similar procedures. Nucleophilic 18F fluorination on each precursor was performed using [18F]tetrabutylammonium fluoride/tetrabutylammonium hydrocarbonate, followed by hydrolysis of methylester. All synthesized 18F-labeled compounds were administered to cynomolgus monkeys, and PET measurements were performed. From the monkey PET studies, 7-[18F]FTO was selected as the best tracer and used to perform preliminary evaluations in mice. RESULTS All five compounds had sufficient quality and stability for animal experiments. In monkey PET studies, 12-, 7-, and 6-[18F]FTO showed greater accumulation in the heart than [18F]FTO, but not 17- and 15-[18F]FTO. Only 7-[18F]FTO did not show significant accumulation in the bone. The standardized uptake values (SUVs) for 12-[18F]FTO, 7-[18F]FTO, and 6-[18F]FTO were 9.77, 9.26, and 7.25 in the heart, and 3.17, n.d., and 1.96 in the bone 1 h after administration, respectively. In mouse distribution studies, SUVs 1 h after administration of 7-[18F]FTO and [18F]FTO were 10.4 and 10.0 in the heart, and 0.37 and 3.48 in the femur, respectively. Administration of etomoxir, a carnitine palmitoyltransferase inhibitor, reduced SUVs of 7-[18F]FTO and [18F]FTO in the heart by 91% and 87%, respectively. CONCLUSIONS We developed a novel PET tracer 7-[18F]FTO/[18F]AS3504073-00 for FAO imaging. 7-[18F]FTO had an excellent PET tracer profile, suggesting it may be a useful tracer for FAO imaging. Further evaluations of the tracer are ongoing.
Collapse
Affiliation(s)
| | - Yuji Fujita
- Astellas Pharma, Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Hiroshi Fushiki
- Astellas Pharma, Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan.
| |
Collapse
|
22
|
Navarro-Ruiz MDC, López-Alcalá J, Díaz-Ruiz A, Moral SDD, Tercero-Alcázar C, Nieto-Calonge A, López-Miranda J, Tinahones FJ, Malagón MM, Guzmán-Ruiz R. Understanding the adipose tissue acetylome in obesity and insulin resistance. Transl Res 2022; 246:15-32. [PMID: 35259527 DOI: 10.1016/j.trsl.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 12/29/2022]
Abstract
Obesity is a widely prevalent pathology with a high exponential growth worldwide. Altered lipid accumulation by adipose tissue is one of the main causes of obesity and exploring lipid homeostasis in this tissue may represent a source for the identification of possible therapeutic targets. The study of the proteome and the post-translational modifications of proteins, specifically acetylation due to its involvement in energy metabolism, may be of great interest to understand the molecular mechanisms involved in adipose tissue dysfunction in obesity. The objective of this study was to characterize the subcutaneous and omental adipose tissue acetylome in conditions of obesity and insulin resistance and to describe the importance of acetylation of key molecules in adipose tissue to use them as therapeutic targets. The results describe for the first time the acetylome of subcutaneous and omental adipose tissue under physiological and physiopathological conditions such as obesity and insulin resistance. New evidence showed different acetylation patterns between two main depots and highlight the molecular complexity of adipose tissue. Results showed changes in FABP4 acetylation in subcutaneous fat in relation to insulin resistance, thus unveiling a potential marker of depot-specific dysfunctional expansion in obesity-associated metabolic disease. Furthermore, it is shown that the acetylation of FABP4 affects its function, modulating the capacity of differentiation in adipocytes. In conclusion, this study demonstrates a profound, depot-specific alteration of adipose tissue acetylome, wherein the acetylation of FABP4 may play a key role in adipocyte differentiation and lipid accumulation.
Collapse
Affiliation(s)
- Maria Del Carmen Navarro-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain
| | - Jaime López-Alcalá
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain
| | - Alberto Díaz-Ruiz
- Nutritional Interventions Group, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Sandra Díaz Del Moral
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain
| | - Carmen Tercero-Alcázar
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain
| | - Andrea Nieto-Calonge
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain
| | - José López-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain; Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Córdoba, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain; Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), University of Málaga, Málaga, Spain
| | - María M Malagón
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain.
| | - Rocío Guzmán-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
23
|
Dubois-Deruy E, El Masri Y, Turkieh A, Amouyel P, Pinet F, Annicotte JS. Cardiac Acetylation in Metabolic Diseases. Biomedicines 2022; 10:biomedicines10081834. [PMID: 36009379 PMCID: PMC9405459 DOI: 10.3390/biomedicines10081834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Lysine acetylation is a highly conserved mechanism that affects several biological processes such as cell growth, metabolism, enzymatic activity, subcellular localization of proteins, gene transcription or chromatin structure. This post-translational modification, mainly regulated by lysine acetyltransferase (KAT) and lysine deacetylase (KDAC) enzymes, can occur on histone or non-histone proteins. Several studies have demonstrated that dysregulated acetylation is involved in cardiac dysfunction, associated with metabolic disorder or heart failure. Since the prevalence of obesity, type 2 diabetes or heart failure rises and represents a major cause of cardiovascular morbidity and mortality worldwide, cardiac acetylation may constitute a crucial pathway that could contribute to disease development. In this review, we summarize the mechanisms involved in the regulation of cardiac acetylation and its roles in physiological conditions. In addition, we highlight the effects of cardiac acetylation in physiopathology, with a focus on obesity, type 2 diabetes and heart failure. This review sheds light on the major role of acetylation in cardiovascular diseases and emphasizes KATs and KDACs as potential therapeutic targets for heart failure.
Collapse
|
24
|
The Role of Mitochondria in Metabolic Syndrome–Associated Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9196232. [PMID: 35783195 PMCID: PMC9246605 DOI: 10.1155/2022/9196232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022]
Abstract
With the rapid development of society, the incidence of metabolic syndrome (MS) is increasing rapidly. Evidence indicated that patients diagnosed with MS usually suffered from cardiomyopathy, called metabolic syndrome–associated cardiomyopathy (MSC). The clinical characteristics of MSC included cardiac hypertrophy and diastolic dysfunction, followed by heart failure. Despite many studies on this topic, the detailed mechanisms are not clear yet. As the center of cellular metabolism, mitochondria are crucial for maintaining heart function, while mitochondria dysfunction plays a vital role through mechanisms such as mitochondrial energy deprivation, calcium disorder, and ROS (reactive oxygen species) imbalance during the development of MSC. Accordingly, in this review, we will summarize the characteristics of MSC and especially focus on the mechanisms related to mitochondria. In addition, we will update new therapeutic strategies in this field.
Collapse
|
25
|
Huang Q, Wang X, Liu J, Wang H, Miao Y, Zhang C, Zhang M, Qin C, Qin J, Chen L. Effect of Vitamin A Supplementation on Growth Performance, Lipid Deposition, Antioxidant Ability, and Immunity in Juvenile Chinese Mitten Crab Eriocheir sinensis Fed Diet with Fish Oil Totally Replaced by Palm Oil. AQUACULTURE NUTRITION 2022; 2022:1-19. [DOI: 10.1155/2022/3746245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This research evaluated the protective effect of vitamin A (VA) on the adverse effect of fish oil (FO) substitution with palm oil (PO) in an economical crab Eriocheir sinensis. Three diets of FO, PO, and
VA as the main lipid sources were fed to crabs, respectively, for 8 weeks. Compared to crabs fed FO diet, crabs fed PO diet showed reduced hemolymph VA concentration, feed utilization efficiency, and growth performance. Besides, crabs fed PO diet showed elevated lipid content in hepatopancreas and body and triglyceride content in hepatopancreas, leading to decreased antioxidant enzyme and immune parameters activities from biochemical analysis, enzymatic determination, and quantitative polymerase chain reaction. In contrast, compared to crabs fed PO only, VA supplementation in PO improved the growth performance and utilization of fatty acids and reduced lipid deposition in the hepatopancreas. In addition, VA supplementation suppressed gene expression related to triglyceride synthesis (dgat1) and positively affected gene expression related to lipid catabolism (cpt1a, cpt1b, cpt2, and caat). Furthermore, VA supplementation upregulated antioxidant genes (CuZnSOD and CAT) through downregulating gene expression of upstream regulator Keap1. Furthermore, VA supplementation upregulated immune genes (Lzm and proPO) expression and reduced proinflammatory genes (LITAF, ADAM17, and IL-16) expression related to Toll2/MyD88/Relish signaling pathway. This study shows the necessity of VA addition in the feed with FO totally replaced by PO because it can relieve PO’s adverse effects and improve the growth of crabs.
Collapse
Affiliation(s)
- Qincheng Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiadai Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Han Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yixin Miao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meiling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan 641100, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
26
|
Liang D, Chen C, Huang S, Liu S, Fu L, Niu Y. Alterations of Lysine Acetylation Profile in Murine Skeletal Muscles Upon Exercise. Front Aging Neurosci 2022; 14:859313. [PMID: 35592697 PMCID: PMC9110802 DOI: 10.3389/fnagi.2022.859313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Regular exercise is a powerful tool that enhances skeletal muscle mass and strength. Lysine acetylation is an important post-translational modification (PTM) involved in a broad array of cellular functions. Skeletal muscle protein contains a considerable number of lysine-acetylated (Kac) sites, so we aimed to investigate the effects of exercise-induced lysine acetylation on skeletal muscle proteins. Methods We randomly divided 20 male C57BL/6 mice into exercise and control groups. After 6 weeks of treadmill exercise, a lysine acetylation proteomics analysis of the gastrocnemius muscles of mice was performed. Results A total of 2,254 lysine acetylation sites in 693 protein groups were identified, among which 1,916 sites in 528 proteins were quantified. The enrichment analysis suggested that protein acetylation could influence both structural and functional muscle protein properties. Moreover, molecular docking revealed that mimicking protein deacetylation primarily influenced the interaction between substrates and enzymes. Conclusion Exercise-induced lysine acetylation appears to be a crucial contributor to the alteration of skeletal muscle protein binding free energy, suggesting that its modulation is a potential approach for improving exercise performance.
Collapse
Affiliation(s)
- Dehuan Liang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Cheng Chen
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Song Huang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Li Fu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
27
|
Xin Y, Zhang X, Li J, Gao H, Li J, Li J, Hu W, Li H. New Insights Into the Role of Mitochondria Quality Control in Ischemic Heart Disease. Front Cardiovasc Med 2021; 8:774619. [PMID: 34901234 PMCID: PMC8661033 DOI: 10.3389/fcvm.2021.774619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
IHD is a significant cause of mortality and morbidity worldwide. In the acute phase, it's demonstrated as myocardial infarction and ischemia-reperfusion injury, while in the chronic stage, the ischemic heart is mainly characterised by adverse myocardial remodelling. Although interventions such as thrombolysis and percutaneous coronary intervention could reduce the death risk of these patients, the underlying cellular and molecular mechanisms need more exploration. Mitochondria are crucial to maintain the physiological function of the heart. During IHD, mitochondrial dysfunction results in the pathogenesis of ischemic heart disease. Ischemia drives mitochondrial damage not only due to energy deprivation, but also to other aspects such as mitochondrial dynamics, mitochondria-related inflammation, etc. Given the critical roles of mitochondrial quality control in the pathological process of ischemic heart disease, in this review, we will summarise the efforts in targeting mitochondria (such as mitophagy, mtROS, and mitochondria-related inflammation) on IHD. In addition, we will briefly revisit the emerging therapeutic targets in this field.
Collapse
Affiliation(s)
- Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Gao
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyu Hu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, China.,Department of Geriatrics, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G. Heart failure in diabetes. Metabolism 2021; 125:154910. [PMID: 34627874 PMCID: PMC8941799 DOI: 10.1016/j.metabol.2021.154910] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Heart failure and cardiovascular disorders represent the leading cause of death in diabetic patients. Here we present a systematic review of the main mechanisms underlying the development of diabetic cardiomyopathy. We also provide an excursus on the relative contribution of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells to the pathophysiology of heart failure in diabetes. After having described the preclinical tools currently available to dissect the mechanisms of this complex disease, we conclude with a section on the most recent updates of the literature on clinical management.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy.
| |
Collapse
|
29
|
Zaiou M, Amrani R, Rihn B, Hajri T. Dietary Patterns Influence Target Gene Expression through Emerging Epigenetic Mechanisms in Nonalcoholic Fatty Liver Disease. Biomedicines 2021; 9:1256. [PMID: 34572442 PMCID: PMC8468830 DOI: 10.3390/biomedicines9091256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to the pathologic buildup of extra fat in the form of triglycerides in liver cells without excessive alcohol intake. NAFLD became the most common cause of chronic liver disease that is tightly associated with key aspects of metabolic disorders, including insulin resistance, obesity, diabetes, and metabolic syndrome. It is generally accepted that multiple mechanisms and pathways are involved in the pathogenesis of NAFLD. Heredity, sedentary lifestyle, westernized high sugar saturated fat diet, metabolic derangements, and gut microbiota, all may interact on a on genetically susceptible individual to cause the disease initiation and progression. While there is an unquestionable role for gene-diet interaction in the etiopathogenesis of NAFLD, it is increasingly apparent that epigenetic processes can orchestrate many aspects of this interaction and provide additional mechanistic insight. Exciting research demonstrated that epigenetic alterations in chromatin can influence gene expression chiefly at the transcriptional level in response to unbalanced diet, and therefore predispose an individual to NAFLD. Thus, further discoveries into molecular epigenetic mechanisms underlying the link between nutrition and aberrant hepatic gene expression can yield new insights into the pathogenesis of NAFLD, and allow innovative epigenetic-based strategies for its early prevention and targeted therapies. Herein, we outline the current knowledge of the interactive role of a high-fat high-calories diet and gene expression through DNA methylation and histone modifications on the pathogenesis of NAFLD. We also provide perspectives on the advancement of the epigenomics in the field and possible shortcomings and limitations ahead.
Collapse
Affiliation(s)
- Mohamed Zaiou
- The Jean-Lamour Institute, UMR 7198 CNRS, University of Lorraine, F-54000 Nancy, France;
| | - Rim Amrani
- Department of Neonatology, University Mohammed First, Oujda 60000, Morocco;
| | - Bertrand Rihn
- The Jean-Lamour Institute, UMR 7198 CNRS, University of Lorraine, F-54000 Nancy, France;
| | - Tahar Hajri
- Department of Human Ecology, Delaware State University, Dover, DE 1191, USA;
| |
Collapse
|
30
|
Ketema EB, Lopaschuk GD. Post-translational Acetylation Control of Cardiac Energy Metabolism. Front Cardiovasc Med 2021; 8:723996. [PMID: 34409084 PMCID: PMC8365027 DOI: 10.3389/fcvm.2021.723996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Perturbations in myocardial energy substrate metabolism are key contributors to the pathogenesis of heart diseases. However, the underlying causes of these metabolic alterations remain poorly understood. Recently, post-translational acetylation-mediated modification of metabolic enzymes has emerged as one of the important regulatory mechanisms for these metabolic changes. Nevertheless, despite the growing reports of a large number of acetylated cardiac mitochondrial proteins involved in energy metabolism, the functional consequences of these acetylation changes and how they correlate to metabolic alterations and myocardial dysfunction are not clearly defined. This review summarizes the evidence for a role of cardiac mitochondrial protein acetylation in altering the function of major metabolic enzymes and myocardial energy metabolism in various cardiovascular disease conditions.
Collapse
Affiliation(s)
- Ezra B Ketema
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
Liu Y, Yang H, Liu X, Gu H, Li Y, Sun C. Protein acetylation: a novel modus of obesity regulation. J Mol Med (Berl) 2021; 99:1221-1235. [PMID: 34061242 DOI: 10.1007/s00109-021-02082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/09/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
Obesity is a chronic epidemic disease worldwide which has become one of the important public health issues. It is a process that excessive accumulation of adipose tissue caused by long-term energy intake exceeding energy expenditure. So far, the prevention and treatment strategies of obesity on individuals and population have not been successful in the long term. Acetylation is one of the most common ways of protein post-translational modification (PTM). It exists on thousands of non-histone proteins in almost every cell chamber. It has many influences on protein levels and metabolome levels, which is involved in a variety of metabolic reactions, including sugar metabolism, tricarboxylic acid cycle, and fatty acid metabolism, which are closely related to biological activities. Studies have shown that protein acetylation levels are dynamically regulated by lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Protein acetylation modifies protein-protein and protein-DNA interactions and regulates the activity of enzymes or cytokines which is related to obesity in order to participate in the occurrence and treatment of obesity-related metabolic diseases. Therefore, we speculated that acetylation was likely to become effective means of controlling obesity in the future. In consequence, this review focuses on the mechanisms of protein acetylation controlled obesity, to provide theoretical basis for controlling obesity and curing obesity-related diseases, which is a significance for regulating obesity in the future. This review will focus on the role of protein acetylation in controlling obesity.
Collapse
Affiliation(s)
- Yuexia Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuanchen Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huihui Gu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yizhou Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
32
|
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes. The failing heart faces an energy deficit, primarily because of a decrease in mitochondrial oxidative capacity. This is partly compensated for by an increase in ATP production from glycolysis. The relative contribution of the different fuels for mitochondrial ATP production also changes, including a decrease in glucose and amino acid oxidation, and an increase in ketone oxidation. The oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in heart failure associated with diabetes and obesity, myocardial fatty acid oxidation increases, while in heart failure associated with hypertension or ischemia, myocardial fatty acid oxidation decreases. Combined, these energy metabolic changes result in the failing heart becoming less efficient (ie, a decrease in cardiac work/O2 consumed). The alterations in both glycolysis and mitochondrial oxidative metabolism in the failing heart are due to both transcriptional changes in key enzymes involved in these metabolic pathways, as well as alterations in NAD redox state (NAD+ and nicotinamide adenine dinucleotide levels) and metabolite signaling that contribute to posttranslational epigenetic changes in the control of expression of genes encoding energy metabolic enzymes. Alterations in the fate of glucose, beyond flux through glycolysis or glucose oxidation, also contribute to the pathology of heart failure. Of importance, pharmacological targeting of the energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac efficiency, decreasing the energy deficit and improving cardiac function in the failing heart.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle (R.T.)
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.)
| | - E Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City (E.D.A.).,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City (E.D.A.)
| |
Collapse
|
33
|
Prashanth G, Vastrad B, Tengli A, Vastrad C, Kotturshetti I. Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules. BMC Endocr Disord 2021; 21:80. [PMID: 33902539 PMCID: PMC8074411 DOI: 10.1186/s12902-021-00718-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. METHODS To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. RESULTS A total of 820 DEGs were identified between healthy obese and metabolically unhealthy obese, among 409 up regulated and 411 down regulated genes. The GO enrichment analysis results showed that these DEGs were significantly enriched in ion transmembrane transport, intrinsic component of plasma membrane, transferase activity, transferring phosphorus-containing groups, cell adhesion, integral component of plasma membrane and signaling receptor binding, whereas, the REACTOME pathway enrichment analysis results showed that these DEGs were significantly enriched in integration of energy metabolism and extracellular matrix organization. The hub genes CEBPD, TP73, ESR2, TAB1, MAP 3K5, FN1, UBD, RUNX1, PIK3R2 and TNF, which might play an essential role in obesity associated type 2 diabetes mellitus was further screened. CONCLUSIONS The present study could deepen the understanding of the molecular mechanism of obesity associated type 2 diabetes mellitus, which could be useful in developing therapeutic targets for obesity associated type 2 diabetes mellitus.
Collapse
Affiliation(s)
- G Prashanth
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, Karnataka, 577501, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka, 582103, India
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka, 582209, India
| |
Collapse
|
34
|
Yang J, Zhang Y, Pan Y, Sun C, Liu Z, Liu N, Fu Y, Li X, Li Y, Kong J. The Protective Effect of 1,25(OH) 2D 3 on Myocardial Function is Mediated via Sirtuin 3-Regulated Fatty Acid Metabolism. Front Cell Dev Biol 2021; 9:627135. [PMID: 33981701 PMCID: PMC8107292 DOI: 10.3389/fcell.2021.627135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Energy substrate imbalance is a major cause of cardiac dysfunction. Vitamin D/vitamin D receptor (VD/VDR) deficiency is involved in the pathogenesis of various cardiac diseases; however, the exact underlying mechanism remains unclear. The aim of this study was to investigate whether vitamin D modulates mitochondrial fatty acid oxidase via sirtuin 3 signaling to protect the myocardium. 1-Alpha-hydroxylase-defficient mice exhibited a high metabolic rate and lower myocardial contractility than wild-type mice. Sirtuin 3 upregulation was detected in high-fat diet-fed mice receiving vitamin D3 compared with that in high-fat diet-fed mice. Both sirtuin 3 blockade and knockout inhibited the VD/VDR-induced downregulation of fatty acid oxidase in myocardial mitochondria. VD/VDR suppressed fatty acid metabolism by upregulating sirtuin 3 and lowering mitochondrial fat uptake, thereby improving myocardial function and balancing energy substrates, rather than by altering fat endocytosis and exocytosis.
Collapse
Affiliation(s)
- Jingxin Yang
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yalin Zhang
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yiming Pan
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Can Sun
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zuwang Liu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ning Liu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Fu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaofeng Li
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Li
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Kong
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Karwi QG, Ho KL, Pherwani S, Ketema EB, Sun QY, Lopaschuk GD. Concurrent diabetes and heart failure: interplay and novel therapeutic approaches. Cardiovasc Res 2021; 118:686-715. [PMID: 33783483 DOI: 10.1093/cvr/cvab120] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus increases the risk of developing heart failure, and the co-existence of both diseases worsens cardiovascular outcomes, hospitalization and the progression of heart failure. Despite current advancements on therapeutic strategies to manage hyperglycemia, the likelihood of developing diabetes-induced heart failure is still significant, especially with the accelerating global prevalence of diabetes and an ageing population. This raises the likelihood of other contributing mechanisms beyond hyperglycemia in predisposing diabetic patients to cardiovascular disease risk. There has been considerable interest in understanding the alterations in cardiac structure and function in the diabetic patients, collectively termed as "diabetic cardiomyopathy". However, the factors that contribute to the development of diabetic cardiomyopathies is not fully understood. This review summarizes the main characteristics of diabetic cardiomyopathies, and the basic mechanisms that contribute to its occurrence. This includes perturbations in insulin resistance, fuel preference, reactive oxygen species generation, inflammation, cell death pathways, neurohormonal mechanisms, advanced glycated end-products accumulation, lipotoxicity, glucotoxicity, and posttranslational modifications in the heart of the diabetic. This review also discusses the impact of antihyperglycemic therapies on the development of heart failure, as well as how current heart failure therapies influence glycemic control in diabetic patients. We also highlight the current knowledge gaps in understanding how diabetes induces heart failure.
Collapse
Affiliation(s)
- Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Kim L Ho
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Pherwani
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ezra B Ketema
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiu Yu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
36
|
Liu J, Zhong L, Guo R. The Role of Posttranslational Modification and Mitochondrial Quality Control in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6635836. [PMID: 33680284 PMCID: PMC7910068 DOI: 10.1155/2021/6635836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world. The mechanism behind CVDs has been studied for decades; however, the pathogenesis is still controversial. Mitochondrial homeostasis plays an essential role in maintaining the normal function of the cardiovascular system. The alterations of any protein function in mitochondria may induce abnormal mitochondrial quality control and unexpected mitochondrial dysfunction, leading to CVDs. Posttranslational modifications (PTMs) affect protein function by reversibly changing their conformation. This review summarizes how common and novel PTMs influence the development of CVDs by regulating mitochondrial quality control. It provides not only ideas for future research on the mechanism of some types of CVDs but also ideas for CVD treatments with therapeutic potential.
Collapse
Affiliation(s)
- Jinlin Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
37
|
Lise CC, Marques C, Bonadimann FS, Pereira EA, Mitterer-Daltoé ML. Amino acid profile of food fishes with potential to diversify fish farming activity. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:383-388. [PMID: 33505083 PMCID: PMC7813907 DOI: 10.1007/s13197-020-04747-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 11/24/2022]
Abstract
In Brazil, 47% of the fish farming correspond to the tilapia species, and the main producers are the south and northeast regions. This work aimed at characterizing the amino acid profile of three fishes with the potential for rearing and diversification in Brazil and worldwide. The fishes grass carp (Ctenopharyngodon idella), pacu (Piaractus mesopotamicus), and catfish (Ictalurus punctatus) were obtained from a rural property located in the city of Pato Branco, PR, Brazil, and analyzed regarding the amino acid composition through High-Performance Liquid Chromatography. The amino acid profile showed the presence of glutamic acid, followed by lysine, aspartic acid, and leucine as the most prominent amino acids for the three fishes. Among the studied species, the grass carp presented the highest content of essential amino acids, registering all values superior to the minimum recommendation standards determined by the Food and Agriculture Organization of the United Nations (FAO). The disclosure of the significant nutritional value presented by these species consolidate their protein quality and expand possibilities to improve the fish farming and development of derivative products.
Collapse
Affiliation(s)
- Carla Cristina Lise
- Master’s Program in Chemical and Biochemical Processes Technology, Department of Chemistry, Federal University of Technology of Parana, Km 01, Pato Branco, Paraná 85503-390 Brazil
| | - Caroline Marques
- Master’s Program in Chemical and Biochemical Processes Technology, Department of Chemistry, Federal University of Technology of Parana, Km 01, Pato Branco, Paraná 85503-390 Brazil
| | - Fátima Soares Bonadimann
- Master’s Program in Chemical and Biochemical Processes Technology, Department of Chemistry, Federal University of Technology of Parana, Km 01, Pato Branco, Paraná 85503-390 Brazil
| | - Edimir Andrade Pereira
- Master’s Program in Chemical and Biochemical Processes Technology, Department of Chemistry, Federal University of Technology of Parana, Km 01, Pato Branco, Paraná 85503-390 Brazil
| | - Marina Leite Mitterer-Daltoé
- Master’s Program in Chemical and Biochemical Processes Technology, Department of Chemistry, Federal University of Technology of Parana, Km 01, Pato Branco, Paraná 85503-390 Brazil
| |
Collapse
|
38
|
Arkadievich OD. Metabolic markers of myocardium insulin resistance in dogs with heart failure. Open Vet J 2021; 10:363-370. [PMID: 33614430 PMCID: PMC7830177 DOI: 10.4314/ovj.v10i4.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Heart failure syndrome is an aspect of primary or secondary heart disease and is associated with decompensation, formation, and activation of pathological interactions between regulation systems. This results in myocardial energy metabolism alteration. This study was carried out to defy some metabolic aspects of myocardial tissue insulin resistance (IRM) development in canine heart failure. Aim To investigate the myocardial tissue concentration of adenosine triphosphate (ATP), glucose transporters 1 and 4, pyruvate dehydrogenase (PDH), hexokinase 2, insulin receptor (InsR), and adropin (ADR) protein and to screen metabolic changes and IRM in canine myocardium with heart failure. Methods We studied 28 dogs of different sexes, ages, and breeds. Groups were formed according to primary pathology: apparently healthy dogs (HD, n = 6); dogs with CDVD (CDVDD, n = 8); dogs with DCM (DCMD, n = 6); and dogs with doxorubicin chemotherapy and doxorubicin-induced cardiomyopathy (DoxCMD, n = 8). Animals in the study were diagnosed for primary disease by standard methods and algorithms. Animals were euthanized due to incurable neurological disease, refractory heart failure, or by owners will. The material was obtained immediately after death, fixed in liquid nitrogen, and stored in -80°C refrigerator. Studied proteins concentrations were analyzed in a specialized research laboratory, using ELISA kits, provided by Cloud-Clone Corp. Results ATP, GLUT1, and GLUT4 concentrations in myocardial tissue from the valvular disease group did not differ from the HD group. In CDVD, we found depression of PDH, hexokinase II (HX2), and ADR concentrations in comparison to HD. InsR was significantly lower in the CDVD and DoxCMD groups in comparison to the HD group, but in the DCM group, it was twofold higher than in the HD group. In the DCMD and DoxCMD groups, all parameters were lower than in the HD group. ATP, HX2, ADR, GLUT1, and GLUT4 were higher in the CDVD group, than in the DCM and DoxCM groups. PDH in the CDVD and DoxCM groups did not differ. PDH was depleted in the DCM to CDVD and DoxCM groups. InsR did not differ between the CDVD and DoxCM groups, but was upregulated in the DCM to CDVD and DoxCM groups. Conclusion Development of myocardial tissue IRM is a part of the structural, functional and metabolic remodeling in dogs with heart failure of different etiology. At the late stages, we found significant changes in energy supply availability and production in the myocardium.
Collapse
|
39
|
Nollet EE, Westenbrink BD, de Boer RA, Kuster DWD, van der Velden J. Unraveling the Genotype-Phenotype Relationship in Hypertrophic Cardiomyopathy: Obesity-Related Cardiac Defects as a Major Disease Modifier. J Am Heart Assoc 2020; 9:e018641. [PMID: 33174505 PMCID: PMC7763714 DOI: 10.1161/jaha.120.018641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy and is characterized by asymmetric septal thickening and diastolic dysfunction. More than 1500 mutations in genes encoding sarcomere proteins are associated with HCM. However, the genotype‐phenotype relationship in HCM is incompletely understood and involves modification by additional disease hits. Recent cohort studies identify obesity as a major adverse modifier of disease penetrance, severity, and clinical course. In this review, we provide an overview of these clinical findings. Moreover, we explore putative mechanisms underlying obesity‐induced sensitization and aggravation of the HCM phenotype. We hypothesize obesity‐related stressors to impact on cardiomyocyte structure, metabolism, and homeostasis. These may impair cardiac function by directly acting on the primary mutation‐induced myofilament defects and by independently adding to the total cardiac disease burden. Last, we address important clinical and pharmacological implications of the involvement of obesity in HCM disease modification.
Collapse
Affiliation(s)
- Edgar E Nollet
- Department of Physiology Amsterdam UMC Vrije Universiteit Amsterdam Amsterdam Cardiovascular Sciences Amsterdam The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Diederik W D Kuster
- Department of Physiology Amsterdam UMC Vrije Universiteit Amsterdam Amsterdam Cardiovascular Sciences Amsterdam The Netherlands
| | - Jolanda van der Velden
- Department of Physiology Amsterdam UMC Vrije Universiteit Amsterdam Amsterdam Cardiovascular Sciences Amsterdam The Netherlands.,Netherlands Heart Institute Utrecht The Netherlands
| |
Collapse
|
40
|
Boardman NT, Migally B, Pileggi C, Parmar GS, Xuan JY, Menzies K, Harper ME. Glutaredoxin-2 and Sirtuin-3 deficiencies impair cardiac mitochondrial energetics but their effects are not additive. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165982. [PMID: 33002579 DOI: 10.1016/j.bbadis.2020.165982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/06/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Altered redox biology and oxidative stress have been implicated in the progression of heart failure. Glutaredoxin-2 (GRX2) is a glutathione-dependent oxidoreductase and catalyzes the reversible deglutathionylation of mitochondrial proteins. Sirtuin-3 (SIRT3) is a class III histone deacetylase and regulates lysine acetylation in mitochondria. Both GRX2 and SIRT3 are considered as key in the protection against oxidative damage in the myocardium. Knockout of either contributes to adverse heart pathologies including hypertrophy, hypertension, and cardiac dysfunction. Here, we created and characterized a GRX2 and SIRT3 double-knockout mouse model, hypothesizing that their deletions would have an additive effect on oxidative stress, and exacerbate mitochondrial function and myocardial structural remodeling. Wildtype, single-gene knockout (Sirt3-/-, Grx2-/-), and double-knockout mice (Grx2-/-/Sirt3-/-) were compared in heart weight, histology, mitochondrial respiration and H2O2 production. Overall, the hearts from Grx2-/-/Sirt3-/- mice displayed increased fibrosis and hypertrophy versus wildtype. In the Grx2-/- and the Sirt3-/- we observed changes in mitochondrial oxidative capacity, however this was associated with elevated H2O2 emission only in the Sirt3-/-. Similar changes were observed but not worsened in hearts from Grx2-/-/Sirt3-/- mice, suggesting that these changes were not additive. In human myocardium, using genetic and histopathological data from the human Genotype-Tissue Expression consortium, we confirmed that SIRT3 expression correlates inversely with heart pathology. Altogether, GRX2 and SIRT3 are important in the control of cardiac mitochondrial redox and oxidative processes, but their combined absence does not exacerbate effects, consistent with the overall conclusion that they function together in the complex redox and antioxidant systems in the heart.
Collapse
Affiliation(s)
- Neoma T Boardman
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Medical Biology, Faculty of Health Sciences, UiT-Arctic University of Norway, Tromsø, Norway
| | - Baher Migally
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Chantal Pileggi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Gaganvir S Parmar
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jian Ying Xuan
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Keir Menzies
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
41
|
LCZ696 Ameliorates Oxidative Stress and Pressure Overload-Induced Pathological Cardiac Remodeling by Regulating the Sirt3/MnSOD Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9815039. [PMID: 33014281 PMCID: PMC7519988 DOI: 10.1155/2020/9815039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/10/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
Aims We aimed to investigate whether LCZ696 protects against pathological cardiac hypertrophy by regulating the Sirt3/MnSOD pathway. Methods In vivo, we established a transverse aortic constriction animal model to establish pressure overload-induced heart failure. Subsequently, the mice were given LCZ696 by oral gavage for 4 weeks. After that, the mice underwent transthoracic echocardiography before they were sacrificed. In vitro, we introduced phenylephrine to prime neonatal rat cardiomyocytes and small-interfering RNA to knock down Sirt3 expression. Results Pathological hypertrophic stimuli caused cardiac hypertrophy and fibrosis and reduced the expression levels of Sirt3 and MnSOD. LCZ696 alleviated the accumulation of oxidative reactive oxygen species (ROS) and cardiomyocyte apoptosis. Furthermore, Sirt3 deficiency abolished the protective effect of LCZ696 on cardiomyocyte hypertrophy, indicating that LCZ696 induced the upregulation of MnSOD and phosphorylation of AMPK through a Sirt3-dependent pathway. Conclusions LCZ696 may mitigate myocardium oxidative stress and apoptosis in pressure overload-induced heart failure by regulating the Sirt3/MnSOD pathway.
Collapse
|
42
|
Zhang J, Ren D, Fedorova J, He Z, Li J. SIRT1/SIRT3 Modulates Redox Homeostasis during Ischemia/Reperfusion in the Aging Heart. Antioxidants (Basel) 2020; 9:antiox9090858. [PMID: 32933202 PMCID: PMC7556005 DOI: 10.3390/antiox9090858] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is the central cause of global death in cardiovascular diseases, which is characterized by disorders such as angina, stroke, and peripheral vascular disease, finally causing severe debilitating diseases and death. The increased rates of morbidity and mortality caused by I/R are parallel with aging. Aging-associated cardiac physiological structural and functional deterioration were found to contribute to abnormal reactive oxygen species (ROS) production during I/R stress. Disturbed redox homeostasis could further trigger the related signaling pathways that lead to cardiac irreversible damages with mitochondria dysfunction and cell death. It is notable that sirtuin proteins are impaired in aged hearts and are critical to maintaining redox homeostasis via regulating substrate metabolism and inflammation and thus preserving cardiac function under stress. This review discussed the cellular and functional alterations upon I/R especially in aging hearts. We propose that mitochondria are the primary source of reactive oxygen species (ROS) that contribute to I/R injury in aged hearts. Then, we highlight the cardiomyocyte protection of the age-related proteins Sirtuin1 (SIRT1) and Sirtuin1 (SIRT3) in response to I/R injury, and we discuss their modulation of cardiac metabolism and the inflammatory reaction that is involved in ROS formation.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China;
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (D.R.); (J.F.); (Z.H.)
| | - Di Ren
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (D.R.); (J.F.); (Z.H.)
| | - Julia Fedorova
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (D.R.); (J.F.); (Z.H.)
| | - Zhibin He
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (D.R.); (J.F.); (Z.H.)
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (D.R.); (J.F.); (Z.H.)
- Correspondence: ; Tel.: +1-813-974-4917
| |
Collapse
|
43
|
Bertrand L, Auquier J, Renguet E, Angé M, Cumps J, Horman S, Beauloye C. Glucose transporters in cardiovascular system in health and disease. Pflugers Arch 2020; 472:1385-1399. [PMID: 32809061 DOI: 10.1007/s00424-020-02444-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
Glucose transporters are essential for the heart to sustain its function. Due to its nature as a high energy-consuming organ, the heart needs to catabolize a huge quantity of metabolic substrates. For optimized energy production, the healthy heart constantly switches between various metabolites in accordance with substrate availability and hormonal status. This metabolic flexibility is essential for the maintenance of cardiac function. Glucose is part of the main substrates catabolized by the heart and its use is fine-tuned via complex molecular mechanisms that include the regulation of the glucose transporters GLUTs, mainly GLUT4 and GLUT1. Besides GLUTs, glucose can also be transported by cotransporters of the sodium-glucose cotransporter (SGLT) (SLC5 gene) family, in which SGLT1 and SMIT1 were shown to be expressed in the heart. This SGLT-mediated uptake does not seem to be directly linked to energy production but is rather associated with intracellular signalling triggering important processes such as the production of reactive oxygen species. Glucose transport is markedly affected in cardiac diseases such as cardiac hypertrophy, diabetic cardiomyopathy and heart failure. These alterations are not only fingerprints of these diseases but are involved in their onset and progression. The present review will depict the importance of glucose transport in healthy and diseased heart, as well as proposed therapies targeting glucose transporters.
Collapse
Affiliation(s)
- Luc Bertrand
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium.
| | - Julien Auquier
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Edith Renguet
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Marine Angé
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Julien Cumps
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Sandrine Horman
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Christophe Beauloye
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
44
|
Yang M, Zhang Y, Ren J. Acetylation in cardiovascular diseases: Molecular mechanisms and clinical implications. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165836. [PMID: 32413386 DOI: 10.1016/j.bbadis.2020.165836] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Acetylation belongs to a class of post-translational modification (PTM) processes that epigenetically regulate gene expression and gene transcriptional activity. Reversible histone acetylation on lysine residues governs the interactions between DNA and histones to mediate chromatin remodeling and gene transcription. Non-histone protein acetylation complicates cellular function whereas acetylation of key mitochondrial enzymes regulates bioenergetic metabolism. Acetylation and deacetylation of functional proteins are essential to the delicated homeostatic regulation of embryonic development, postnatal maturation, cardiomyocyte differentiation, cardiac remodeling and onset of various cardiovascular diseases including obesity, diabetes mellitus, cardiometabolic diseases, ischemia-reperfusion injury, cardiac remodeling, hypertension, and arrhythmias. Histone acetyltransferase (HATs) and histone deacetylases (HDACs) are essential enzymes mainly responsible for the regulation of lysine acetylation levels, thus providing possible drugable targets for therapeutic interventions in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Mingjie Yang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China.
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China.
| |
Collapse
|
45
|
Makrecka‐Kuka M, Liepinsh E, Murray AJ, Lemieux H, Dambrova M, Tepp K, Puurand M, Käämbre T, Han WH, Goede P, O'Brien KA, Turan B, Tuncay E, Olgar Y, Rolo AP, Palmeira CM, Boardman NT, Wüst RCI, Larsen TS. Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiol (Oxf) 2020; 228:e13430. [PMID: 31840389 DOI: 10.1111/apha.13430] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.
Collapse
Affiliation(s)
| | | | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Hélène Lemieux
- Department of Medicine Faculty Saint‐Jean, Women and Children's Health Research Institute University of Alberta Edmonton AB Canada
| | | | - Kersti Tepp
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Marju Puurand
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Tuuli Käämbre
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Woo H. Han
- Faculty Saint‐Jean University of Alberta Edmonton AB Canada
| | - Paul Goede
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Katie A. O'Brien
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Belma Turan
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Erkan Tuncay
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Yusuf Olgar
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Anabela P. Rolo
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Carlos M. Palmeira
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Neoma T. Boardman
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| | - Rob C. I. Wüst
- Laboratory for Myology Department of Human Movement Sciences Faculty of Behavioural and Movement Sciences Amsterdam Movement Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Terje S. Larsen
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| |
Collapse
|
46
|
Agrimi J, Baroni C, Anakor E, Lionetti V. Perioperative Heart-Brain Axis Protection in Obese Surgical Patients: The Nutrigenomic Approach. Curr Med Chem 2020; 27:258-281. [PMID: 30324875 DOI: 10.2174/0929867325666181015145225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The number of obese patients undergoing cardiac and noncardiac surgery is rapidly increasing because they are more prone to concomitant diseases, such as diabetes, thrombosis, sleep-disordered breathing, cardiovascular and cerebrovascular disorders. Even if guidelines are already available to manage anesthesia and surgery of obese patients, the assessment of the perioperative morbidity and mortality from heart and brain disorders in morbidly obese surgical patients will be challenging in the next years. The present review will recapitulate the new mechanisms underlying the Heart-brain Axis (HBA) vulnerability during the perioperative period in healthy and morbidly obese patients. Finally, we will describe the nutrigenomics approach, an emerging noninvasive dietary tool, to maintain a healthy body weight and to minimize the HBA propensity to injury in obese individuals undergoing all types of surgery by personalized intake of plant compounds that may regulate the switch from health to disease in an epigenetic manner. Our review provides current insights into the mechanisms underlying HBA response in obese surgical patients and how they are modulated by epigenetically active food constituents.
Collapse
Affiliation(s)
- Jacopo Agrimi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Carlotta Baroni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ekene Anakor
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,UOS Anesthesiology, Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
47
|
Herr DJ, Singh T, Dhammu T, Menick DR. Regulation of metabolism by mitochondrial enzyme acetylation in cardiac ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165728. [PMID: 32068115 DOI: 10.1016/j.bbadis.2020.165728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Ischemia reperfusion injury (I/R injury) contributes significantly to morbidity and mortality following myocardial infarction (MI). Although rapid reperfusion of the ischemic myocardium was established decades ago as a highly beneficial therapy for MI, significant cell death still occurs after the onset of reperfusion. Mitochondrial dysfunction is closely associated with I/R injury, resulting in the uncontrolled production of reactive oxygen species (ROS). Considerable efforts have gone into understanding the metabolic perturbations elicited by I/R injury. Recent work has identified the critical role of reversible protein acetylation in maintaining normal mitochondrial biologic function and energy metabolism both in the normal heart and during I/R injury. Several studies have shown that modification of class I HDAC and/or Sirtuin (Sirt) activity is cardioprotective in the setting of I/R injury. A better understanding of the role of these metabolic pathways in reperfusion injury and their regulation by reversible protein acetylation presents a promising way forward in improving the treatment of cardiac reperfusion injury. Here we briefly review some of what is known about how acetylation regulates mitochondrial metabolism and how it relates to I/R injury.
Collapse
Affiliation(s)
- Daniel J Herr
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Toolika Singh
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Tajinder Dhammu
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Donald R Menick
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States of America.
| |
Collapse
|
48
|
Gao J, Shao K, Chen X, Li Z, Liu Z, Yu Z, Aung LHH, Wang Y, Li P. The involvement of post-translational modifications in cardiovascular pathologies: Focus on SUMOylation, neddylation, succinylation, and prenylation. J Mol Cell Cardiol 2020; 138:49-58. [DOI: 10.1016/j.yjmcc.2019.11.146] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
|
49
|
Leger T, He B, Azarnoush K, Jouve C, Rigaudiere JP, Joffre F, Bouvier D, Sapin V, Pereira B, Demaison L. Dietary EPA Increases Rat Mortality in Diabetes Mellitus, A Phenomenon Which Is Compensated by Green Tea Extract. Antioxidants (Basel) 2019; 8:antiox8110526. [PMID: 31690052 PMCID: PMC6912216 DOI: 10.3390/antiox8110526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 01/11/2023] Open
Abstract
Diabetes is characterized by a high mortality rate which is often associated with heart failure. Green tea and eicosapentaenoic acid (EPA) are known to lessen some of the harmful impacts of diabetes and to exert cardio-protection. The aim of the study was to determine the effects of EPA, green tea extract (GTE), and a combination of both on the cardiac consequences of diabetes mellitus, induced in Wistar rats by injection of a low dose of streptozotocin (33 mg/kg) combined with a high fat diet. Cardiac mechanical function, coronary reactivity, and parameters of oxidative stress, inflammation, and energy metabolism were evaluated. In the context of diabetes, GTE alone limited several diabetes-related symptoms such as inflammation. It also slightly improved coronary reactivity and considerably enhanced lipid metabolism. EPA alone caused the rapid death of the animals, but this effect was negated by the addition of GTE in the diet. EPA and GTE combined enhanced coronary reactivity considerably more than GTE alone. In a context of significant oxidative stress such as during diabetes mellitus, EPA enrichment constitutes a risk factor for animal survival. It is essential to associate it with the antioxidants contained in GTE in order to decrease mortality rate and preserve cardiac function.
Collapse
Affiliation(s)
- Thibault Leger
- Unité de Nutrition Humaine (UNH), INRA/Université Clermont Auvergne, 63000 Clermont-Ferrand, France.
| | - Beibei He
- Unité de Nutrition Humaine (UNH), INRA/Université Clermont Auvergne, 63000 Clermont-Ferrand, France.
| | - Kasra Azarnoush
- Unité de Nutrition Humaine (UNH), INRA/Université Clermont Auvergne, 63000 Clermont-Ferrand, France.
- Heart Surgery Department, Gabriel Montpied Hospital, Clermont-Ferrand University Hospital, 63000 Clermont-Ferrand, France.
- Hôpital Nord, Saint-Etienne University Hospital, Saint-Priest-en-Jarez, France.
| | - Chrystèle Jouve
- Unité de Nutrition Humaine (UNH), INRA/Université Clermont Auvergne, 63000 Clermont-Ferrand, France.
| | - Jean-Paul Rigaudiere
- Unité de Nutrition Humaine (UNH), INRA/Université Clermont Auvergne, 63000 Clermont-Ferrand, France.
| | - Florent Joffre
- ITERG, 11 rue Gaspard Monge, - ZA Pessac Canéjan, F-33610 Canéjan, France.
| | - Damien Bouvier
- Department of Medical Biochemistry and Molecular Biology, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France.
| | - Vincent Sapin
- Department of Medical Biochemistry and Molecular Biology, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France.
| | - Bruno Pereira
- Department of Clinical Research and Innovation, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France.
| | - Luc Demaison
- Unité de Nutrition Humaine (UNH), INRA/Université Clermont Auvergne, 63000 Clermont-Ferrand, France.
| |
Collapse
|
50
|
Barjaktarovic Z, Merl-Pham J, Braga-Tanaka I, Tanaka S, Hauck SM, Saran A, Mancuso M, Atkinson MJ, Tapio S, Azimzadeh O. Hyperacetylation of Cardiac Mitochondrial Proteins Is Associated with Metabolic Impairment and Sirtuin Downregulation after Chronic Total Body Irradiation of ApoE -/- Mice. Int J Mol Sci 2019; 20:ijms20205239. [PMID: 31652604 PMCID: PMC6829468 DOI: 10.3390/ijms20205239] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic exposure to low-dose ionizing radiation is associated with an increased risk of cardiovascular disease. Alteration in energy metabolism has been suggested to contribute to radiation-induced heart pathology, mitochondrial dysfunction being a hallmark of this disease. The goal of this study was to investigate the regulatory role of acetylation in heart mitochondria in the long-term response to chronic radiation. ApoE-deficient C57Bl/6J mice were exposed to low-dose-rate (20 mGy/day) gamma radiation for 300 days, resulting in a cumulative total body dose of 6.0 Gy. Heart mitochondria were isolated and analyzed using quantitative proteomics. Radiation-induced proteome and acetylome alterations were further validated using immunoblotting, enzyme activity assays, and ELISA. In total, 71 proteins showed peptides with a changed acetylation status following irradiation. The great majority (94%) of the hyperacetylated proteins were involved in the TCA cycle, fatty acid oxidation, oxidative stress response and sirtuin pathway. The elevated acetylation patterns coincided with reduced activity of mitochondrial sirtuins, increased the level of Acetyl-CoA, and were accompanied by inactivation of major cardiac metabolic regulators PGC-1 alpha and PPAR alpha. These observations suggest that the changes in mitochondrial acetylation after irradiation is associated with impairment of heart metabolism. We propose a novel mechanism involved in the development of late cardiac damage following chronic irradiation.
Collapse
Affiliation(s)
- Zarko Barjaktarovic
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
- Agency for Medicines and Medical Devices of Montenegro, 81000 Podgorica, Montenegro.
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 80939 München, Germany.
| | | | - Satoshi Tanaka
- Institute for Environmental Sciences (IES), Rokkasho, Aomori 039-3213, Japan.
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 80939 München, Germany.
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 76 00196 Rome, Italy.
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 76 00196 Rome, Italy.
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
- Chair of Radiation Biology, Technical University Munich, 80333 Munich, Germany.
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | - Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|