1
|
Zhou W, Li H, Song J, Suo F, Gu M, Qi S. Healthy Plasma Exosomes Exert Potential Neuroprotective Effects against Methylmalonic Acid-Induced Hippocampal Neuron Injury. ACS Chem Neurosci 2024; 15:3022-3033. [PMID: 39026168 DOI: 10.1021/acschemneuro.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Exosomes have shown good potential for alleviating neurological deficits and delaying memory deterioration, but the neuroprotective effects of exosomes remain unknown. Methylmalonic acidemia is a metabolic disorder characterized by the accumulation of methylmalonic acid (MMA) in various tissues that inhibits neuronal survival and function, leading to accelerated neurological deterioration. Effective therapies to mitigate these symptoms are lacking. The purpose of this study was to explore the neuroprotective effects of plasma exosomes on cells and a mouse model of MMA-induced injury. We evaluated the ability of plasma exosomes to reduce the neuronal apoptosis, cross the blood-brain barrier, and affect various parameters related to neuronal function. MMA promoted cell apoptosis, disrupted the metabolic balance, and altered the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), and synaptophysin-1 (Syp-1), and these changes may be involved in MMA-induced neuronal apoptosis. Additionally, plasma exosomes normalized learning and memory and protected against MMA-induced neuronal apoptosis. Our findings indicate that neurological deficits are linked to the pathogenesis of methylmalonic acidemia, and healthy plasma exosomes may exert neuroprotective and therapeutic effects by altering the expression of exosomal microRNAs, facilitating neuronal functional recovery in the context of this inherited metabolic disease. Intravenous plasma-derived exosome treatment may be a novel clinical therapeutic strategy for methylmalonic acidemia.
Collapse
Affiliation(s)
- Wei Zhou
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221004, P.R China
- Newborn Screening Center, The Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou 221009, P.R China
| | - Huizhong Li
- Newborn Screening Center, The Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou 221009, P.R China
| | - Jinxiu Song
- Pharmacology College, Xuzhou Medical University, Xuzhou 221004, P.R China
| | - Feng Suo
- Newborn Screening Center, The Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou 221009, P.R China
| | - Maosheng Gu
- Newborn Screening Center, The Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou 221009, P.R China
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221004, P.R China
- Pharmacology College, Xuzhou Medical University, Xuzhou 221004, P.R China
- Medical and Technology School, Xuzhou Medical University, Xuzhou 221004, P.R China
| |
Collapse
|
2
|
Mucha P, Kus F, Cysewski D, Smolenski RT, Tomczyk M. Vitamin B 12 Metabolism: A Network of Multi-Protein Mediated Processes. Int J Mol Sci 2024; 25:8021. [PMID: 39125597 PMCID: PMC11311337 DOI: 10.3390/ijms25158021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The water-soluble vitamin, vitamin B12, also known as cobalamin, plays a crucial role in cellular metabolism, particularly in DNA synthesis, methylation, and mitochondrial functionality. Its deficiency can lead to hematological and neurological disorders; however, the manifestation of these clinical outcomes is relatively late. It leads to difficulties in the early diagnosis of vitamin B12 deficiency. A prolonged lack of vitamin B12 may have severe consequences including increased morbidity to neurological and cardiovascular diseases. Beyond inadequate dietary intake, vitamin B12 deficiency might be caused by insufficient bioavailability, blood transport disruptions, or impaired cellular uptake and metabolism. Despite nearly 70 years of knowledge since the isolation and characterization of this vitamin, there are still gaps in understanding its metabolic pathways. Thus, this review aims to compile current knowledge about the crucial proteins necessary to efficiently accumulate and process vitamin B12 in humans, presenting these systems as a multi-protein network. The epidemiological consequences, diagnosis, and treatment of vitamin B12 deficiency are also highlighted. We also discuss clinical warnings of vitamin B12 deficiency based on the ongoing test of specific moonlighting proteins engaged in vitamin B12 metabolic pathways.
Collapse
Affiliation(s)
- Patryk Mucha
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| | - Filip Kus
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
- Laboratory of Protein Biochemistry, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| |
Collapse
|
3
|
Simonenko SY, Bogdanova DA, Kuldyushev NA. Emerging Roles of Vitamin B 12 in Aging and Inflammation. Int J Mol Sci 2024; 25:5044. [PMID: 38732262 PMCID: PMC11084641 DOI: 10.3390/ijms25095044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Vitamin B12 (cobalamin) is an essential nutrient for humans and animals. Metabolically active forms of B12-methylcobalamin and 5-deoxyadenosylcobalamin are cofactors for the enzymes methionine synthase and mitochondrial methylmalonyl-CoA mutase. Malfunction of these enzymes due to a scarcity of vitamin B12 leads to disturbance of one-carbon metabolism and impaired mitochondrial function. A significant fraction of the population (up to 20%) is deficient in vitamin B12, with a higher rate of deficiency among elderly people. B12 deficiency is associated with numerous hallmarks of aging at the cellular and organismal levels. Cellular senescence is characterized by high levels of DNA damage by metabolic abnormalities, increased mitochondrial dysfunction, and disturbance of epigenetic regulation. B12 deficiency could be responsible for or play a crucial part in these disorders. In this review, we focus on a comprehensive analysis of molecular mechanisms through which vitamin B12 influences aging. We review new data about how deficiency in vitamin B12 may accelerate cellular aging. Despite indications that vitamin B12 has an important role in health and healthy aging, knowledge of the influence of vitamin B12 on aging is still limited and requires further research.
Collapse
Affiliation(s)
- Sergey Yu. Simonenko
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Daria A. Bogdanova
- Division of Immunobiology and Biomedicine, Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Nikita A. Kuldyushev
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia;
| |
Collapse
|
4
|
Bauer WG, Watkins D, Zacharias C, Gilfix BM, Rosenblatt DS. Growth requirement for methionine in human melanoma-derived cell lines with different levels of MMACHC expression and methylation. Mol Genet Metab 2024; 141:108111. [PMID: 38103461 DOI: 10.1016/j.ymgme.2023.108111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Methionine dependence, the inability to grow in culture when methionine in the medium is replaced by its metabolic precursor homocysteine, occurs in many tumor cell lines. In most affected lines, the cause of methionine dependence is not known. An exception is the melanoma-derived cell line MeWo-LC1, in which hypermethylation of the MMACHC gene is associated with decreased MMACHC expression. Decreased expression results in decreased provision of the methylcobalamin cofactor required for activity of methionine synthase and thus decreased conversion of homocysteine to methionine. Analysis of data in the Cancer Cell Line Encyclopedia Archive demonstrated that MMACHC hypermethylation and decreased MMACHC expression occurred more frequently in melanoma cell lines when compared to other tumor cell lines. We further investigated methionine dependence and aspects of MMACHC function in a panel of six melanoma lines, including both melanoma lines with known methionine dependence status (MeWo, which is methionine independent, and A375, which is methionine dependent). We found that the previously unclassified melanoma lines HMCB, Colo829 and SH-4 were methionine dependent, while SK-Mel-28 was methionine independent. However, despite varying levels of MMACHC methylation and expression, none of the tested lines had decreased methylcobalamin and adenosylcobalamin synthesis as seen in MeWo-LC1, and the functions of both cobalamin-dependent enzymes methionine synthase and methylmalonyl-CoA mutase were intact. Thus, while melanoma lines were characterized by relatively high levels of MMACHC methylation and low expression, the defect in metabolism observed in MeWo-LC1 was unique, and decreased MMACHC expression was not a cause of methionine dependence in the other melanoma lines.
Collapse
Affiliation(s)
- William G Bauer
- Department of Human Genetics, McGill University, Montreal, Canada; Child Health and Human Development, Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - David Watkins
- Department of Human Genetics, McGill University, Montreal, Canada; Child Health and Human Development, Research Institute, McGill University Health Centre, Montreal, Quebec, Canada.
| | - Caitlin Zacharias
- Child Health and Human Development, Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Brian M Gilfix
- Child Health and Human Development, Research Institute, McGill University Health Centre, Montreal, Quebec, Canada; Division of Medical Biochemistry, Department of Specialized Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - David S Rosenblatt
- Department of Human Genetics, McGill University, Montreal, Canada; Child Health and Human Development, Research Institute, McGill University Health Centre, Montreal, Quebec, Canada; Division of Medical Biochemistry, Department of Specialized Medicine, McGill University Health Centre, Montreal, Quebec, Canada; Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
5
|
McCorvie TJ, Ferreira D, Yue WW, Froese DS. The complex machinery of human cobalamin metabolism. J Inherit Metab Dis 2023; 46:406-420. [PMID: 36680553 DOI: 10.1002/jimd.12593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Vitamin B12 (cobalamin, Cbl) is required as a cofactor by two human enzymes, 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) and methylmalonyl-CoA mutase (MMUT). Within the body, a vast array of transporters, enzymes and chaperones are required for the generation and delivery of these cofactor forms. How they perform these functions is dictated by the structure and interactions of the proteins involved, the molecular bases of which are only now being elucidated. In this review, we highlight recent insights into human Cbl metabolism and address open questions in the field by employing a protein structure and interactome based perspective. We discuss how three very similar proteins-haptocorrin, intrinsic factor and transcobalamin-exploit slight structural differences and unique ligand receptor interactions to effect selective Cbl absorption and internalisation. We describe recent advances in the understanding of how endocytosed Cbl is transported across the lysosomal membrane and the implications of the recently solved ABCD4 structure. We detail how MMACHC and MMADHC cooperate to modify and target cytosolic Cbl to the client enzymes MTR and MMUT using ingenious modifications to an ancient nitroreductase fold, and how MTR and MMUT link with their accessory enzymes to sustainably harness the supernucleophilic potential of Cbl. Finally, we provide an outlook on how future studies may combine structural and interactome based approaches and incorporate knowledge of post-translational modifications to bring further insights.
Collapse
Affiliation(s)
- Thomas J McCorvie
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Douglas Ferreira
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wyatt W Yue
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Esser AJ, Mukherjee S, Dereven‘kov IA, Makarov SV, Jacobsen DW, Spiekerkoetter U, Hannibal L. Versatile Enzymology and Heterogeneous Phenotypes in Cobalamin Complementation Type C Disease. iScience 2022; 25:104981. [PMID: 36105582 PMCID: PMC9464900 DOI: 10.1016/j.isci.2022.104981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nutritional deficiency and genetic errors that impair the transport, absorption, and utilization of vitamin B12 (B12) lead to hematological and neurological manifestations. The cblC disease (cobalamin complementation type C) is an autosomal recessive disorder caused by mutations and epi-mutations in the MMACHC gene and the most common inborn error of B12 metabolism. Pathogenic mutations in MMACHC disrupt enzymatic processing of B12, an indispensable step before micronutrient utilization by the two B12-dependent enzymes methionine synthase (MS) and methylmalonyl-CoA mutase (MUT). As a result, patients with cblC disease exhibit plasma elevation of homocysteine (Hcy, substrate of MS) and methylmalonic acid (MMA, degradation product of methylmalonyl-CoA, substrate of MUT). The cblC disorder manifests early in childhood or in late adulthood with heterogeneous multi-organ involvement. This review covers current knowledge on the cblC disease, structure–function relationships of the MMACHC protein, the genotypic and phenotypic spectra in humans, experimental disease models, and promising therapies.
Collapse
|
7
|
Monné M, Marobbio CMT, Agrimi G, Palmieri L, Palmieri F. Mitochondrial transport and metabolism of the major methyl donor and versatile cofactor S-adenosylmethionine, and related diseases: A review †. IUBMB Life 2022; 74:573-591. [PMID: 35730628 DOI: 10.1002/iub.2658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022]
Abstract
S-adenosyl-L-methionine (SAM) is a coenzyme and the most commonly used methyl-group donor for the modification of metabolites, DNA, RNA and proteins. SAM biosynthesis and SAM regeneration from the methylation reaction product S-adenosyl-L-homocysteine (SAH) take place in the cytoplasm. Therefore, the intramitochondrial SAM-dependent methyltransferases require the import of SAM and export of SAH for recycling. Orthologous mitochondrial transporters belonging to the mitochondrial carrier family have been identified to catalyze this antiport transport step: Sam5p in yeast, SLC25A26 (SAMC) in humans, and SAMC1-2 in plants. In mitochondria SAM is used by a vast number of enzymes implicated in the following processes: the regulation of replication, transcription, translation, and enzymatic activities; the maturation and assembly of mitochondrial tRNAs, ribosomes and protein complexes; and the biosynthesis of cofactors, such as ubiquinone, lipoate, and molybdopterin. Mutations in SLC25A26 and mitochondrial SAM-dependent enzymes have been found to cause human diseases, which emphasizes the physiological importance of these proteins.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carlo M T Marobbio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| |
Collapse
|
8
|
Wiedemann A, Oussalah A, Lamireau N, Théron M, Julien M, Mergnac JP, Augay B, Deniaud P, Alix T, Frayssinoux M, Feillet F, Guéant JL. Clinical, phenotypic and genetic landscape of case reports with genetically proven inherited disorders of vitamin B 12 metabolism: A meta-analysis. Cell Rep Med 2022; 3:100670. [PMID: 35764087 PMCID: PMC9381384 DOI: 10.1016/j.xcrm.2022.100670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/22/2021] [Accepted: 06/02/2022] [Indexed: 10/31/2022]
Abstract
Inherited disorders of B12 metabolism produce a broad spectrum of manifestations, with limited knowledge of the influence of age and the function of related genes. We report a meta-analysis on 824 patients with a genetically proven diagnosis of an inherited disorder of vitamin B12 metabolism. Gene clusters and age categories are associated with patients' manifestations. The "cytoplasmic transport" cluster is associated with neurological and ophthalmological manifestations, the "mitochondrion" cluster with hypotonia, acute metabolic decompensation, and death, and the "B12 availability" and "remethylation" clusters with anemia and cytopenia. Hypotonia, EEG abnormalities, nystagmus, and strabismus are predominant in the younger patients, while neurological manifestations, such as walking difficulties, peripheral neuropathy, pyramidal syndrome, cerebral atrophy, psychiatric disorders, and thromboembolic manifestations, are predominant in the older patients. These results should prompt systematic checking of markers of vitamin B12 status, including homocysteine and methylmalonic acid, when usual causes of these manifestations are discarded in adult patients.
Collapse
Affiliation(s)
- Arnaud Wiedemann
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France
| | - Abderrahim Oussalah
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | - Nathalie Lamireau
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Maurane Théron
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Melissa Julien
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | | | - Baptiste Augay
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Pauline Deniaud
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Tom Alix
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | - Marine Frayssinoux
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | - François Feillet
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France
| | - Jean-Louis Guéant
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France.
| |
Collapse
|
9
|
Kiessling E, Peters F, Ebner LJ, Merolla L, Samardzija M, Baumgartner MR, Grimm C, Froese DS. HIF1 and DROSHA are involved in MMACHC repression in hypoxia. Biochim Biophys Acta Gen Subj 2022; 1866:130175. [DOI: 10.1016/j.bbagen.2022.130175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
|
10
|
Zhu J, Wan S, Zhao X, Zhu B, Lv Y, Jiang H. Acute Lymphoblastic Leukemia in Combined Methylmalonic Acidemia and Homocysteinemia (cblC Type): A Case Report and Literature Review. Front Genet 2022; 13:856552. [PMID: 35495149 PMCID: PMC9048794 DOI: 10.3389/fgene.2022.856552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Methylmalonic acidemia (MMA) can display many clinical manifestations, among which acute lymphoblastic leukemia (ALL) has not been reported, and congenital heart disease (CHD) is also rare. Case presentation: We report an MMA case with ALL and CHD in a 5.5-year-old girl. With developmental delay and local brain atrophy in MRI, she was diagnosed with cerebral palsy at 9 months old. Rehabilitation was performed since then. This time she was admitted to hospital because of weakness and widespread bleeding spots. ALL-L2 (pre-B-cell) was confirmed by bone marrow morphology and immunophenotyping. Echocardiography showed patent foramen ovale. The girl was treated with VDLD and CAML chemotherapy, during which she developed seizures, edema and renal insufficiency. Decrease of muscle strength was also found in physical examination. Screening for inherited metabolic disorders showed significantly elevated levels of methylmalonate-2, acetylcarnitine (C2), propionylcarnitine (C3), C3/C2 and homocysteine. Gene analysis revealed a compound heterozygous mutaion in MMACHC (NM_015,560): c.80A > G (p.Gln27Arg) and c.609G > A (p.Trp203*). CblC type MMA was diagnosed. Intramuscular injection of cyanocobalamin and intravenous L-carnitine treatment were applied. The edema vanished gradually, and chemotherapy of small dosage of vindesine was given intermittently when condition permitted. 2 months later, muscle strength of both lower limbs were significantly improved to nearly grade 5. The levels of methylmalonic acid and homocysteine were improved. Conclusion: Metabolic disease screening and gene analysis are very necessary for diseases with complex clinical symptoms. ALL can be a rare manifestation for MMA. Synopsis: We report a case of methylmalonic acidemia with acute lymphoblastic leukemia and congenital heart disease, which uncovered the importance of genetic testing and metabolic diseases screening in patients with multiple systemic organ involvement.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Shuisen Wan
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Xueqi Zhao
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Binlu Zhu
- Department of Pediatrics, West China Second University Hospital, Chengdu, China
| | - Yuan Lv
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongkun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Hongkun Jiang,
| |
Collapse
|
11
|
Hannibal L, Jacobsen DW. Intracellular processing of vitamin B 12 by MMACHC (CblC). VITAMINS AND HORMONES 2022; 119:275-298. [PMID: 35337623 DOI: 10.1016/bs.vh.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vitamin B12 (cobalamin, Cbl, B12) is a water-soluble micronutrient synthesized exclusively by a group of microorganisms. Human beings are unable to make B12 and thus obtain the vitamin via intake of animal products, fermented plant-based foods or supplements. Vitamin B12 obtained from the diet comprises three major chemical forms, namely hydroxocobalamin (HOCbl), methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl). The most common form of B12 present in supplements is cyanocobalamin (CNCbl). Yet, these chemical forms cannot be utilized directly as they come, but instead, they undergo chemical processing by the MMACHC protein, also known as CblC. Processing of dietary B12 by CblC involves removal of the upper-axial ligand (beta-ligand) yielding the one-electron reduced intermediate cob(II)alamin. Newly formed cob(II)alamin undergoes trafficking and delivery to the two B12-dependent enzymes, cytosolic methionine synthase (MS) and mitochondrial methylmalonyl-CoA mutase (MUT). The catalytic cycles of MS and MUT incorporate cob(II)alamin as a precursor to regenerate the coenzyme forms MeCbl and AdoCbl, respectively. Mutations and epimutations in the MMACHC gene result in cblC disease, the most common inborn error of B12 metabolism, which manifests with combined homocystinuria and methylmalonic aciduria. Elevation of metabolites homocysteine and methylmalonic acid occurs because the lack of an active CblC blocks formation of the indispensable precursor cob(II)alamin that is necessary to activate MS and MUT. Thus, in patients with cblC disease, vitamin B12 is absorbed and present in circulation in normal to high concentrations, yet, cells are unable to make use of it. Mutations in seemingly unrelated genes that modify MMACHC gene expression also result in clinical phenotypes that resemble cblC disease. We review current knowledge on structural and functional aspects of intracellular processing of vitamin B12 by the versatile protein CblC, its partners and possible regulators.
Collapse
Affiliation(s)
- Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.
| | - Donald W Jacobsen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
12
|
Vaccaro JA, Naser SA. The Role of Methyl Donors of the Methionine Cycle in Gastrointestinal Infection and Inflammation. Healthcare (Basel) 2021; 10:healthcare10010061. [PMID: 35052225 PMCID: PMC8775811 DOI: 10.3390/healthcare10010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/01/2022] Open
Abstract
Vitamin deficiency is well known to contribute to disease development in both humans and other animals. Nonetheless, truly understanding the role of vitamins in human biology requires more than identifying their deficiencies. Discerning the mechanisms by which vitamins participate in health is necessary to assess risk factors, diagnostics, and treatment options for deficiency in a clinical setting. For researchers, the absence of a vitamin may be used as a tool to understand the importance of the metabolic pathways in which it participates. This review aims to explore the current understanding of the complex relationship between the methyl donating vitamins folate and cobalamin (B12), the universal methyl donor S-adenosyl-L-methionine (SAM), and inflammatory processes in human disease. First, it outlines the process of single-carbon metabolism in the generation of first methionine and subsequently SAM. Following this, established relationships between folate, B12, and SAM in varying bodily tissues are discussed, with special attention given to their effects on gut inflammation.
Collapse
|
13
|
Guéant JL, Guéant-Rodriguez RM, Kosgei VJ, Coelho D. Causes and consequences of impaired methionine synthase activity in acquired and inherited disorders of vitamin B 12 metabolism. Crit Rev Biochem Mol Biol 2021; 57:133-155. [PMID: 34608838 DOI: 10.1080/10409238.2021.1979459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Methyl-Cobalamin (Cbl) derives from dietary vitamin B12 and acts as a cofactor of methionine synthase (MS) in mammals. MS encoded by MTR catalyzes the remethylation of homocysteine to generate methionine and tetrahydrofolate, which fuel methionine and cytoplasmic folate cycles, respectively. Methionine is the precursor of S-adenosyl methionine (SAM), the universal methyl donor of transmethylation reactions. Impaired MS activity results from inadequate dietary intake or malabsorption of B12 and inborn errors of Cbl metabolism (IECM). The mechanisms at the origin of the high variability of clinical presentation of impaired MS activity are classically considered as the consequence of the disruption of the folate cycle and related synthesis of purines and pyrimidines and the decreased synthesis of endogenous methionine and SAM. For one decade, data on cellular and animal models of B12 deficiency and IECM have highlighted other key pathomechanisms, including altered interactome of MS with methionine synthase reductase, MMACHC, and MMADHC, endoplasmic reticulum stress, altered cell signaling, and genomic/epigenomic dysregulations. Decreased MS activity increases catalytic protein phosphatase 2A (PP2A) and produces imbalanced phosphorylation/methylation of nucleocytoplasmic RNA binding proteins, including ELAVL1/HuR protein, with subsequent nuclear sequestration of mRNAs and dramatic alteration of gene expression, including SIRT1. Decreased SAM and SIRT1 activity induce ER stress through impaired SIRT1-deacetylation of HSF1 and hypomethylation/hyperacetylation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), which deactivate nuclear receptors and lead to impaired energy metabolism and neuroplasticity. The reversibility of these pathomechanisms by SIRT1 agonists opens promising perspectives in the treatment of IECM outcomes resistant to conventional supplementation therapies.
Collapse
Affiliation(s)
- Jean-Louis Guéant
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Departments of Digestive Diseases and Molecular Medicine and National Center of Inborn Errors of Metabolism, University Hospital Center, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Rosa-Maria Guéant-Rodriguez
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Departments of Digestive Diseases and Molecular Medicine and National Center of Inborn Errors of Metabolism, University Hospital Center, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Viola J Kosgei
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - David Coelho
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
14
|
Sobczyńska-Malefora A, Delvin E, McCaddon A, Ahmadi KR, Harrington DJ. Vitamin B 12 status in health and disease: a critical review. Diagnosis of deficiency and insufficiency - clinical and laboratory pitfalls. Crit Rev Clin Lab Sci 2021; 58:399-429. [PMID: 33881359 DOI: 10.1080/10408363.2021.1885339] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Vitamin B12 (cobalamin) is an essential cofactor for two metabolic pathways. It is obtained principally from food of animal origin. Cobalamin becomes bioavailable through a series of steps pertaining to its release from dietary protein, intrinsic factor-mediated absorption, haptocorrin or transcobalamin-mediated transport, cellular uptake, and two enzymatic conversions (via methionine synthase and methylmalonyl-CoA-mutase) into cofactor forms: methylcobalamin and adenosylcobalamin. Vitamin B12 deficiency can masquerade as a multitude of illnesses, presenting different perspectives from the point of view of the hematologist, neurologist, gastroenterologist, general physician, or dietician. Increased physician vigilance and heightened patient awareness often account for its early presentation, and testing sometimes occurs during a phase of vitamin B12 insufficiency before the main onset of the disease. The chosen test often depends on its availability rather than on the diagnostic performance and sensitivity to irrelevant factors interfering with vitamin B12 markers. Although serum B12 is still the most commonly used and widely available test, diagnostics by holotranscobalamin, serum methylmalonic acid, and plasma homocysteine measurements have grown in the last several years in routine practice. The lack of a robust absorption test, coupled with compromised sensitivity and specificity of other tests (intrinsic factor and gastric parietal cell antibodies), hinders determination of the cause for depleted B12 status. This can lead to incorrect supplementation regimes and uncertainty regarding later treatment. This review discusses currently available knowledge on vitamin B12, informs the reader about the pitfalls of tests for assessing its deficiency, reviews B12 status in various populations at different disease stages, and provides recommendations for interpretation, treatment, and associated risks. Future directions for diagnostics of B12 status and health interventions are also discussed.
Collapse
Affiliation(s)
- Agata Sobczyńska-Malefora
- The Nutristasis Unit, Viapath, St. Thomas' Hospital, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Edgard Delvin
- Sainte-Justine UHC Research Centre, Montreal, Canada.,Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Canada
| | | | - Kourosh R Ahmadi
- Department of Nutrition & Metabolism, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Dominic J Harrington
- The Nutristasis Unit, Viapath, St. Thomas' Hospital, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
15
|
Diniz WJS, Reynolds LP, Borowicz PP, Ward AK, Sedivec KK, McCarthy KL, Kassetas CJ, Baumgaertner F, Kirsch JD, Dorsam ST, Neville TL, Forcherio JC, Scott RR, Caton JS, Dahlen CR. Maternal Vitamin and Mineral Supplementation and Rate of Maternal Weight Gain Affects Placental Expression of Energy Metabolism and Transport-Related Genes. Genes (Basel) 2021; 12:genes12030385. [PMID: 33803164 PMCID: PMC8001966 DOI: 10.3390/genes12030385] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal nutrients are essential for proper fetal and placental development and function. However, the effects of vitamin and mineral supplementation under two rates of maternal weight gain on placental genome-wide gene expression have not been investigated so far. Furthermore, biological processes and pathways in the placenta that act in response to early maternal nutrition are yet to be elucidated. Herein, we examined the impact of maternal vitamin and mineral supplementation (from pre-breeding to day 83 post-breeding) and two rates of gain during the first 83 days of pregnancy on the gene expression of placental caruncles (CAR; maternal placenta) and cotyledons (COT; fetal placenta) of crossbred Angus beef heifers. We identified 267 unique differentially expressed genes (DEG). Among the DEGs from CAR, we identified ACAT2, SREBF2, and HMGCCS1 that underlie the cholesterol biosynthesis pathway. Furthermore, the transcription factors PAX2 and PAX8 were over-represented in biological processes related to kidney organogenesis. The DEGs from COT included SLC2A1, SLC2A3, SLC27A4, and INSIG1. Our over-representation analysis retrieved biological processes related to nutrient transport and ion homeostasis, whereas the pathways included insulin secretion, PPAR signaling, and biosynthesis of amino acids. Vitamin and mineral supplementation and rate of gain were associated with changes in gene expression, biological processes, and KEGG pathways in beef cattle placental tissues.
Collapse
Affiliation(s)
- Wellison J. S. Diniz
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
- Correspondence: ; Tel.: +1-701-5411997
| | - Lawrence P. Reynolds
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Pawel P. Borowicz
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Alison K. Ward
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Kevin K. Sedivec
- Central Grasslands Research and Extension Center, North Dakota State University, Streeter, ND 58483, USA;
| | - Kacie L. McCarthy
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Cierrah J. Kassetas
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Friederike Baumgaertner
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - James D. Kirsch
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Sheri T. Dorsam
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Tammi L. Neville
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - J. Chris Forcherio
- Purina Animal Nutrition LLC, Gray Summit, MO 63039, USA; (J.C.F.); (R.R.S.)
| | - Ronald R. Scott
- Purina Animal Nutrition LLC, Gray Summit, MO 63039, USA; (J.C.F.); (R.R.S.)
| | - Joel S. Caton
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| | - Carl R. Dahlen
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (L.P.R.); (P.P.B.); (A.K.W.); (C.J.K.); (F.B.); (J.D.K.); (S.T.D.); (T.L.N.); (J.S.C.); (C.R.D.)
| |
Collapse
|
16
|
Orłowska M, Steczkiewicz K, Muszewska A. Utilization of cobalamin is ubiquitous in early-branching fungal phyla. Genome Biol Evol 2021; 13:6157828. [PMID: 33682003 PMCID: PMC8085122 DOI: 10.1093/gbe/evab043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Cobalamin is a cofactor present in essential metabolic pathways in animals and one of the water-soluble vitamins. It is a complex compound synthesized solely by prokaryotes. Cobalamin dependence is scattered across the tree of life. In particular, fungi and plants were deemed devoid of cobalamin. We demonstrate that cobalamin is utilized by all non-Dikarya fungi lineages. This observation is supported by the genomic presence of both B12-dependent enzymes and cobalamin modifying enzymes. Fungal cobalamin-dependent enzymes are highly similar to their animal homologs. Phylogenetic analyses support a scenario of vertical inheritance of the cobalamin usage with several losses. Cobalamin usage was probably lost in Mucorinae and at the base of Dikarya which groups most of the model organisms and which hindered B12-dependent metabolism discovery in fungi. Our results indicate that cobalamin dependence was a widely distributed trait at least in Opisthokonta, across diverse microbial eukaryotes and was likely present in the LECA.
Collapse
Affiliation(s)
- Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
17
|
Torices L, de las Heras J, Arango-Lasprilla JC, Cortés JM, Nunes-Xavier CE, Pulido R. MMADHC premature termination codons in the pathogenesis of cobalamin D disorder: Potential of translational readthrough reconstitution. Mol Genet Metab Rep 2021; 26:100710. [PMID: 33552904 PMCID: PMC7847965 DOI: 10.1016/j.ymgmr.2021.100710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/21/2022] Open
Abstract
Mutations in the MMADHC gene cause cobalamin D disorder (cblD), an autosomal recessive inborn disease with defects in intracellular cobalamin (cbl, vitamin B12) metabolism. CblD patients present methylmalonic aciduria (MMA), homocystinuria (HC), or combined MMA/HC, and usually suffer developmental delay and cognitive deficits. The most frequent MMADHC genetic alterations associated with disease generate MMADHC truncated proteins, in many cases due to mutations that create premature termination codons (PTC). In this study, we have performed a comprehensive and global characterization of MMADHC protein variants generated by all annotated MMADHC PTC mutations in cblD patients, and analyzed the potential of inducible translational PTC readthrough to reconstitute MMADHC biosynthesis. MMADHC protein truncation caused by disease-associated PTC differentially affected the alternative usage of translation initiation sites, protein abundance, and subcellular localization of MMADHC. Aminoglycoside compounds induced translational PTC readthrough of MMADHC truncated variants, allowing the biosynthesis of full-length MMADHC in a PTC-specific manner. Our results suggest that translational PTC readthrough-based interventions could complement current therapies for cblD patients carrying specific MMADHC PTC mutations.
Collapse
Affiliation(s)
- Leire Torices
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Javier de las Heras
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Division of Pediatric Metabolism (CIBER-ER), Cruces University Hospital, Barakaldo, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Juan Carlos Arango-Lasprilla
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Cell Biology and Histology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Ikerbasque, The Basque Foundation for Science, 48013 Bilbao, Spain
| | - Jesús M. Cortés
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Cell Biology and Histology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Ikerbasque, The Basque Foundation for Science, 48013 Bilbao, Spain
| | - Caroline E. Nunes-Xavier
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Institute of Cancer Research, Oslo University Hospital Radiumhospitalet, N-0424 Oslo, Norway
| | - Rafael Pulido
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, The Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
18
|
Wingert V, Mukherjee S, Esser AJ, Behringer S, Tanimowo S, Klenzendorf M, Derevenkov IA, Makarov SV, Jacobsen DW, Spiekerkoetter U, Hannibal L. Thiolatocobalamins repair the activity of pathogenic variants of the human cobalamin processing enzyme CblC. Biochimie 2020; 183:108-125. [PMID: 33190793 DOI: 10.1016/j.biochi.2020.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023]
Abstract
Thiolatocobalamins are a class of cobalamins comprised of naturally occurring and synthetic ligands. Glutathionylcobalamin (GSCbl) occurs naturally in mammalian cells, and also as an intermediate in the glutathione-dependent dealkylation of methylcobalamin (MeCbl) to form cob(I)alamin by pure recombinant CblC from C. elegans. Glutathione-driven deglutathionylation of GSCbl was demonstrated both in mammalian as well as in C. elegans CblC. Dethiolation is orders of magnitude faster than dealkylation of Co-C bonded cobalamins, which motivated us to investigate two synthetic thiolatocobalamins as substrates to repair the enzymatic activity of pathogenic CblC variants in humans. We report the synthesis and kinetic characterization of cysteaminylcobalamin (CyaCbl) and 2-mercaptopropionylglycinocobalamin (MpgCbl). Both CyaCbl and MpgCbl were obtained in high purity (90-95%) and yield (78-85%). UV-visible spectral properties agreed with those reported for other thiolatocobalamins with absorbance maxima observed at 372 nm and 532 nm. Both CyaCbl and MpgCbl bound to wild type human recombinant CblC inducing spectral blue-shifts characteristic of the respective base-on to base-off transitions. Addition of excess glutathione (GSH) resulted in rapid elimination of the β-ligand to give aquacobalamin (H2OCbl) as the reaction product under aerobic conditions. Further, CyaCbl and MpgCbl underwent spontaneous dethiolation thereby repairing the loss of activity of pathogenic variants of human CblC, namely R161G and R161Q. We posit that thiolatocobalamins could be exploited therapeutically for the treatment of inborn errors of metabolism that impair processing of dietary and supplemental cobalamin forms. While these disorders are targets for newborn screening in some countries, there is currently no effective treatment available to patients.
Collapse
Affiliation(s)
- Victoria Wingert
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Srijan Mukherjee
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Anna J Esser
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Sidney Behringer
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Segun Tanimowo
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Melissa Klenzendorf
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center - University of Freiburg, 79106, Freiburg, Germany; Faculty of Biology, University of Freiburg Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ilia A Derevenkov
- Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, Ivanovo, Russian Federation
| | - Sergei V Makarov
- Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, Ivanovo, Russian Federation
| | - Donald W Jacobsen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center - University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
19
|
Portillo F, Vázquez J, Pajares MA. Protein-protein interactions involving enzymes of the mammalian methionine and homocysteine metabolism. Biochimie 2020; 173:33-47. [DOI: 10.1016/j.biochi.2020.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
|
20
|
Rashka C, Hergalant S, Dreumont N, Oussalah A, Camadro JM, Marchand V, Hassan Z, Baumgartner MR, Rosenblatt DS, Feillet F, Guéant JL, Flayac J, Coelho D. Analysis of fibroblasts from patients with cblC and cblG genetic defects of cobalamin metabolism reveals global dysregulation of alternative splicing. Hum Mol Genet 2020; 29:1969-1985. [DOI: 10.1093/hmg/ddaa027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Vitamin B12 or cobalamin (Cbl) metabolism can be affected by genetic defects leading to defective activity of either methylmalonyl-CoA mutase or methionine synthase or both enzymes. Patients usually present with a wide spectrum of pathologies suggesting that various cellular processes could be affected by modifications in gene expression. We have previously demonstrated that these genetic defects are associated with subcellular mislocalization of RNA-binding proteins (RBP) and subsequent altered nucleo-cytoplasmic shuttling of mRNAs. In order to characterize the possible changes of gene expression in these diseases, we have investigated global gene expression in fibroblasts from patients with cblC and cblG inherited disorders by RNA-seq. The most differentially expressed genes are strongly associated with developmental processes, neurological, ophthalmologic and cardiovascular diseases. These associations are consistent with the clinical presentation of cblC and cblG disorders. Multivariate analysis of transcript processing revaled splicing alterations that led to dramatic changes in cytoskeleton organization, response to stress, methylation of macromolecules and RNA binding. The RNA motifs associated with this differential splicing reflected a potential role of RBP such as HuR and HNRNPL. Proteomic analysis confirmed that mRNA processing was significantly disturbed. This study reports a dramatic alteration of gene expression in fibroblasts of patients with cblC and cblG disorders, which resulted partly from disturbed function of RBP. These data suggest to evaluate the rescue of the mislocalization of RBP as a potential strategy in the treatment of severe cases who are resistant to classical treatments with co-enzyme supplements.
Collapse
Affiliation(s)
- Charif Rashka
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - Sébastien Hergalant
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - Natacha Dreumont
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - Abderrahim Oussalah
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy F-54000, France
| | | | - Virginie Marchand
- University of Lorraine, CNRS, INSERM, UMS2008, IBSLor, Epitranscriptomics and RNA Sequencing Core Facility, Nancy F-54000, France
| | - Ziad Hassan
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - Matthias R Baumgartner
- Radiz – Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zürich, Zürich, Switzerland
| | | | - François Feillet
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy F-54000, France
| | - Jean-Louis Guéant
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy F-54000, France
| | - Justine Flayac
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - David Coelho
- Inserm UMRS 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy F-54000, France
| |
Collapse
|
21
|
Froese DS, Fowler B, Baumgartner MR. Vitamin B 12 , folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J Inherit Metab Dis 2019; 42:673-685. [PMID: 30693532 DOI: 10.1002/jimd.12009] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022]
Abstract
Vitamin B12 (cobalamin, Cbl) is a nutrient essential to human health. Due to its complex structure and dual cofactor forms, Cbl undergoes a complicated series of absorptive and processing steps before serving as cofactor for the enzymes methylmalonyl-CoA mutase and methionine synthase. Methylmalonyl-CoA mutase is required for the catabolism of certain (branched-chain) amino acids into an anaplerotic substrate in the mitochondrion, and dysfunction of the enzyme itself or in production of its cofactor adenosyl-Cbl result in an inability to successfully undergo protein catabolism with concomitant mitochondrial energy disruption. Methionine synthase catalyzes the methyl-Cbl dependent (re)methylation of homocysteine to methionine within the methionine cycle; a reaction required to produce this essential amino acid and generate S-adenosylmethionine, the most important cellular methyl-donor. Disruption of methionine synthase has wide-ranging implications for all methylation-dependent reactions, including epigenetic modification, but also for the intracellular folate pathway, since methionine synthase uses 5-methyltetrahydrofolate as a one-carbon donor. Folate-bound one-carbon units are also required for deoxythymidine monophosphate and de novo purine synthesis; therefore, the flow of single carbon units to each of these pathways must be regulated based on cellular needs. This review provides an overview on Cbl metabolism with a brief description of absorption and intracellular metabolic pathways. It also provides a description of folate-mediated one-carbon metabolism and its intersection with Cbl at the methionine cycle. Finally, a summary of recent advances in understanding of how both pathways are regulated is presented.
Collapse
Affiliation(s)
- D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Brian Fowler
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
22
|
Huemer M, Baumgartner MR. The clinical presentation of cobalamin-related disorders: From acquired deficiencies to inborn errors of absorption and intracellular pathways. J Inherit Metab Dis 2019; 42:686-705. [PMID: 30761552 DOI: 10.1002/jimd.12012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
This review gives an overview of clinical characteristics, treatment and outcome of nutritional and acquired cobalamin (Cbl; synonym: vitamin B12) deficiencies, inborn errors of Cbl absorption and intracellular trafficking, as well as methylenetetrahydrofolate dehydrogenase (MTHFD1) and methylene tetrahydrofolate reductase (MTHFR) deficiencies, which impair Cbl-dependent remethylation. Acquired and inborn Cbl-related disorders and MTHFR deficiency cause multisystem, often severe disease. Failure to thrive, neurocognitive or psychiatric symptoms, eye disease, bone marrow alterations, microangiopathy and thromboembolic events are characteristic. The recently identified MTHFD1 defect additionally presents with severe immune deficiency. Deficient Cbl-dependent enzymes cause reduced methylation capacity and metabolite toxicity. Further net-effects of perturbed Cbl function or reduced Cbl supply causing oxidative stress, altered cytokine regulation or immune functions are discussed.
Collapse
Affiliation(s)
- Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
23
|
Oussalah A, Julien M, Levy J, Hajjar O, Franczak C, Stephan C, Laugel E, Wandzel M, Filhine-Tresarrieu P, Green R, Guéant JL. Global Burden Related to Nitrous Oxide Exposure in Medical and Recreational Settings: A Systematic Review and Individual Patient Data Meta-Analysis. J Clin Med 2019; 8:jcm8040551. [PMID: 31018613 PMCID: PMC6518054 DOI: 10.3390/jcm8040551] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 11/16/2022] Open
Abstract
The risk of adverse effects of nitrous oxide (N2O) exposure is insufficiently recognized despite its widespread use. These effects are mainly reported through case reports. We conducted an individual patient data meta-analysis to assess the prevalence of clinical, laboratory, and magnetic resonance findings in association with N2O exposure in medical and recreational settings. We calculated the pooled estimates for the studied outcomes and assessed the potential bias related to population stratification using principal component analysis. Eighty-five publications met the inclusion criteria and reported on 100 patients with a median age of 27 years and 57% of recreational users. The most frequent outcomes were subacute combined degeneration (28%), myelopathy (26%), and generalized demyelinating polyneuropathy (23%). A T2 signal hyperintensity in the spinal cord was reported in 68% (57.2–78.8%) of patients. The most frequent clinical manifestations included paresthesia (80%; 72.0–88.0%), unsteady gait (58%; 48.2–67.8%), and weakness (43%; 33.1–52.9%). At least one hematological abnormality was retrieved in 71.7% (59.9–83.4%) of patients. Most patients had vitamin B12 deficiency: vitamin B12 <150 pmol/L (70.7%; 60.7–80.8%), homocysteine >15 µmol/L (90.3%; 79.3–100%), and methylmalonic acid >0.4 µmol/L (93.8%; 80.4–100%). Consistently, 85% of patients exhibited a possibly or probably deficient vitamin B12 status according to the cB12 scoring system. N2O can produce severe outcomes, with neurological or hematological disorders in almost all published cases. More than half of them are reported in the setting of recreational use. The N2O-related burden is dominated by vitamin B12 deficiency. This highlights the need to evaluate whether correcting B12 deficiency would prevent N2O-related toxicity, particularly in countries with a high prevalence of B12 deficiency.
Collapse
Affiliation(s)
- Abderrahim Oussalah
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, F-54000 Nancy, France.
- Department of Molecular Medicine and Personalized Therapeutics, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, F-54000 Nancy, France.
- Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, F-54000 Nancy, France.
| | - Mélissa Julien
- Department of Molecular Medicine and Personalized Therapeutics, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, F-54000 Nancy, France.
| | - Julien Levy
- Department of Molecular Medicine and Personalized Therapeutics, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, F-54000 Nancy, France.
| | - Olivia Hajjar
- Department of Molecular Medicine and Personalized Therapeutics, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, F-54000 Nancy, France.
| | - Claire Franczak
- Department of Molecular Medicine and Personalized Therapeutics, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, F-54000 Nancy, France.
| | - Charlotte Stephan
- Department of Molecular Medicine and Personalized Therapeutics, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, F-54000 Nancy, France.
| | - Elodie Laugel
- Department of Molecular Medicine and Personalized Therapeutics, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, F-54000 Nancy, France.
| | - Marion Wandzel
- Department of Molecular Medicine and Personalized Therapeutics, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, F-54000 Nancy, France.
| | - Pierre Filhine-Tresarrieu
- Department of Molecular Medicine and Personalized Therapeutics, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, F-54000 Nancy, France.
| | - Ralph Green
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA.
| | - Jean-Louis Guéant
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, F-54000 Nancy, France.
- Department of Molecular Medicine and Personalized Therapeutics, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, F-54000 Nancy, France.
- Reference Centre for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, F-54000 Nancy, France.
| |
Collapse
|
24
|
Kiseleva YY, Ptitsyn KG, Tikhonova OV, Radko SP, Kurbatov LK, Vakhrushev IV, Zgoda VG, Ponomarenko EA, Lisitsa AV, Archakov AI. PCR Analysis of the Absolute Number of Copies of Human Chromosome 18 Transcripts in the Liver and HepG2 Cells. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2018. [DOI: 10.1134/s1990750818010067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
McDonald MK, Fritz JA, Jia D, Scheuchner D, Snyder FF, Stanislaus A, Curle J, Li L, Stabler SP, Allen RH, Mains PE, Gravel RA. Identification of ABC transporters acting in vitamin B 12 metabolism in Caenorhabditis elegans. Mol Genet Metab 2017; 122:160-171. [PMID: 29153845 DOI: 10.1016/j.ymgme.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 01/19/2023]
Abstract
Vitamin B12 (cobalamin, Cbl) is a micronutrient essential to human health. Cbl is not utilized as is but must go through complex subcellular and metabolic processing to generate two cofactor forms: methyl-Cbl for methionine synthase, a cytosolic enzyme; and adenosyl-Cbl for methylmalonyl-CoA mutase, a mitochondrial enzyme. Some 10-12 human genes have been identified responsible for the intracellular conversion of Cbl to cofactor forms, including genes that code for ATP-binding cassette (ABC) transporters acting at the lysosomal and plasma membranes. However, the gene for mitochondrial uptake is not known. We hypothesized that ABC transporters should be candidates for other uptake and efflux functions, including mitochondrial transport, and set out to screen ABC transporter mutants for blocks in Cbl utilization using the nematode roundworm Caenorhabditis elegans. Thirty-seven mutant ABC transporters were screened for the excretion of methylmalonic acid (MMA), which should result from loss of Cbl transport into the mitochondria. One mutant, wht-6, showed elevated MMA excretion and reduced [14C]-propionate incorporation, pointing to a functional block in methylmalonyl-CoA mutase. In contrast, the wht-6 mutant appeared to have a normal cytosolic pathway based on analysis of cystathionine excretion, suggesting that cytosolic methionine synthase was functioning properly. Further, the MMA excretion in wht-6 could be partially reversed by including vitamin B12 in the assay medium. The human ortholog of wht-6 is a member of the G family of ABC transporters. We propose wht-6 as a candidate for the transport of Cbl into mitochondria and suggest that a member of the corresponding ABCG family of ABC transporters has this role in humans. Our ABC transporter screen also revealed that mrp-1 and mrp-2 mutants excreted lower MMA than wild type, suggesting they were concentrating intracellular Cbl, consistent with the cellular efflux defect proposed for the mammalian MRP1 ABC transporter.
Collapse
Affiliation(s)
- Megan K McDonald
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | - Julie-Anne Fritz
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | - Dongxin Jia
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | - Deborah Scheuchner
- Department of Medical Genetics, University of Calgary, Calgary, T2N 4N1, Canada
| | - Floyd F Snyder
- Department of Medical Genetics, University of Calgary, Calgary, T2N 4N1, Canada
| | - Avalyn Stanislaus
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Jared Curle
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Sally P Stabler
- Division of Hematology, University of Colorado Denver, Aurora, CO, USA
| | - Robert H Allen
- Division of Hematology, University of Colorado Denver, Aurora, CO, USA
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | - Roy A Gravel
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4N1, Canada.
| |
Collapse
|
26
|
Fettelschoss V, Burda P, Sagné C, Coelho D, De Laet C, Lutz S, Suormala T, Fowler B, Pietrancosta N, Gasnier B, Bornhauser B, Froese DS, Baumgartner MR. Clinical or ATPase domain mutations in ABCD4 disrupt the interaction between the vitamin B 12-trafficking proteins ABCD4 and LMBD1. J Biol Chem 2017; 292:11980-11991. [PMID: 28572511 DOI: 10.1074/jbc.m117.784819] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/24/2017] [Indexed: 01/19/2023] Open
Abstract
Vitamin B12 (cobalamin (Cbl)), in the cofactor forms methyl-Cbl and adenosyl-Cbl, is required for the function of the essential enzymes methionine synthase and methylmalonyl-CoA mutase, respectively. Cbl enters mammalian cells by receptor-mediated endocytosis of protein-bound Cbl followed by lysosomal export of free Cbl to the cytosol and further processing to these cofactor forms. The integral membrane proteins LMBD1 and ABCD4 are required for lysosomal release of Cbl, and mutations in the genes LMBRD1 and ABCD4 result in the cobalamin metabolism disorders cblF and cblJ. We report a new (fifth) patient with the cblJ disorder who presented at 7 days of age with poor feeding, hypotonia, methylmalonic aciduria, and elevated plasma homocysteine and harbored the mutations c.1667_1668delAG [p.Glu556Glyfs*27] and c.1295G>A [p.Arg432Gln] in the ABCD4 gene. Cbl cofactor forms are decreased in fibroblasts from this patient but could be rescued by overexpression of either ABCD4 or, unexpectedly, LMBD1. Using a sensitive live-cell FRET assay, we demonstrated selective interaction between ABCD4 and LMBD1 and decreased interaction when ABCD4 harbored the patient mutations p.Arg432Gln or p.Asn141Lys or when artificial mutations disrupted the ATPase domain. Finally, we showed that ABCD4 lysosomal targeting depends on co-expression of, and interaction with, LMBD1. These data broaden the patient and mutation spectrum of cblJ deficiency, establish a sensitive live-cell assay to detect the LMBD1-ABCD4 interaction, and confirm the importance of this interaction for proper intracellular targeting of ABCD4 and cobalamin cofactor synthesis.
Collapse
Affiliation(s)
- Victoria Fettelschoss
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - Patricie Burda
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - Corinne Sagné
- Neurophotonics Laboratory UMR 8250, Paris Descartes University, CNRS, Sorbonne Paris Cité, F-75006 Paris, France
| | - David Coelho
- UMR-S UL-INSERM U954 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, Medical Faculty of Nancy University and University Hospital Centre, Nancy, France
| | - Corinne De Laet
- Nutrition and Metabolism Unit, Queen Fabiola Children's University Hospital, Free University of Brussels (ULB), 1020 Brussels, Belgium
| | - Seraina Lutz
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - Terttu Suormala
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - Brian Fowler
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - Nicolas Pietrancosta
- CBMIT team, UMR 8601, Paris Descartes University, CNRS, Sorbonne Paris Cité, F-75006 Paris, France
| | - Bruno Gasnier
- Neurophotonics Laboratory UMR 8250, Paris Descartes University, CNRS, Sorbonne Paris Cité, F-75006 Paris, France
| | - Beat Bornhauser
- Department of Oncology, Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland; Rare Disease Initiative Zurich (radiz), Clinical Research Priority Program for Rare Diseases, University of Zurich, CH-8006 Zurich, Switzerland.
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland; Rare Disease Initiative Zurich (radiz), Clinical Research Priority Program for Rare Diseases, University of Zurich, CH-8006 Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, CH-8006 Zurich, Switzerland.
| |
Collapse
|
27
|
Kiseleva YY, Ptitsyn KG, Tikhonova OV, Radko SP, Kurbatov LK, Vakhrushev IV, Zgoda VG, Ponomarenko EA, Lisitsa AV, Archakov AI. [PCR analysis of the absolute number of copies of human chromosome 18 transcripts in liver and HepG2 cells]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:147-153. [PMID: 28414286 DOI: 10.18097/pbmc20176302147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using reverse transcription in conjunction with the quantitative real-time PCR or digital droplet PCR, the transcriptome profiling of human chromosome 18 has been carried out in liver hepatocytes and hepatoblastoma cells (HepG2 cell line) in terms of the absolute number of each transcript per cell. The transcript abundance varies within the range of 0.006 to 9635 and 0.011 to 4819 copies per cell for HepG2 cell line and hepatocytes, respectively. The expression profiles for genes of chromosome 18 in hepatocytes and HepG2 cells were found to significantly correlate: the Spearman's correlation coefficient was equal to 0.81. The distribution of frequency of transcripts over their abundance was bimodal for HepG2 cells and unimodal for liver hepatocytes. Bioinformatic analysis of the differential gene expression has revealed that genes of chromosome 18, overexpressed in HepG2 cells compared to hepatocytes, are associated with cell division and cell adhesion processes. It is assumed that the enhanced expression of those genes in HepG2 cells is related to the proliferation activity of cultured cells. The differences in transcriptome profiles have to be taken into account when modelling liver hepatocytes with cultured HepG2 cells.
Collapse
Affiliation(s)
- Y Y Kiseleva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - K G Ptitsyn
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - S P Radko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - A V Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|