1
|
Wang C, Zhang H, Wang X, Ma X, Zhang J, Zhang Y. Targeting BRD4 to attenuate RANKL-induced osteoclast activation and bone erosion in rheumatoid arthritis. Mol Cell Biochem 2025; 480:1669-1684. [PMID: 39110281 DOI: 10.1007/s11010-024-05073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/12/2024] [Indexed: 02/21/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that can cause destruction of cartilage and bone's extracellular matrix. Bromodomain 4 (BRD4), as a transcriptional and epigenetic regulator, plays a key role in cancer and inflammatory diseases. While, the role of BRD4 in bone destruction in RA has not been extensively reported. Our study aimed to investigate the effect of BRD4 on the bone destruction in RA and, further, its mechanism in the pathogenesis of the disease. In this study, receiving approval from the Ethical Committee of the Affiliated Hospital of Qingdao University, we evaluated synovial tissues from patients with RA and OA for BRD4 expression through advanced techniques such as immunohistochemistry, quantitative real-time PCR (qRT-PCR), and Western blotting. We employed a collagen-induced arthritis (CIA) mouse model to assess the therapeutic efficacy of the BRD4 inhibitor JQ1 on disease progression and bone destruction, supported by detailed clinical scoring and histological examinations. Further, in vitro osteoclastogenesis assays using RAW264.7 macrophages, facilitated by TRAP staining and resorption pit assays, provided insights into the mechanistic effects of JQ1 on osteoclast function. Statistical analysis was rigorously conducted using SPSS, applying Kruskal-Wallis, one-way ANOVA, and Student's t-tests to validate the data. In our study, we found that BRD4 expression significantly increased in the synovial tissues of RA patients and the ankle joints of CIA mice, with JQ1, a BRD4 inhibitor, effectively reducing inflammation, arthritis severity (p < 0.05), and bone erosion. Treatment with JQ1 not only improved bone mass and structural integrity in CIA mice but also downregulated osteoclast-related gene expression and the RANKL/RANK signaling pathway, indicating a suppression of osteolysis. Furthermore, in vitro assays demonstrated that JQ1 markedly inhibited osteoclast differentiation and function, underscoring the pivotal role of BRD4 in osteoclastogenesis and its potential as a target for therapeutic intervention in RA-induced bone destruction. Our study concludes that targeting BRD4 with the inhibitor JQ1 significantly mitigates inflammation and bone destruction in rheumatoid arthritis, suggesting that inhibition of BRD4 may be a potential therapeutic strategy for the treatment of bone destruction in RA.
Collapse
Affiliation(s)
- Changyao Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Han Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiangyu Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiao Ma
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Jian Zhang
- Department of Traumatology, Fushan People's Hospital, Yantai, 265500, China.
| | - Yongtao Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
2
|
Wang QY, Yu XF, Ji WL. Repression of BRD4 mitigates NLRP3 inflammasome-mediated pyroptosis in Mycobacterium-infected macrophages by repressing endoplasmic reticulum stress. Tuberculosis (Edinb) 2024; 148:102542. [PMID: 39024987 DOI: 10.1016/j.tube.2024.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Tuberculosis (TB) is the leading cause of human death worldwide due to Mycobacterium tuberculosis (Mtb) infection. Multiple lines of evidences have illuminated the emerging role of NLRP3 inflammasome-mediated pyroptosis in the clearance of pathogenic infection. In the current study, we sought to investigate the functional role and feasible potential mechanism of BRD4 in Mtb-infected macrophages. We observed that BRD4 was distinctly ascended in THP-1 macrophages upon Mtb infection. Functionally, intervention of BRD4 or pretreated with JQ1 obviously restricted Mtb-triggered cell pyroptosis, as evidenced by declination of protein level of the specific pyroptosis markers including Cleaved Caspase 1, gasdermin D (GSDMD-N) and Cleaved-IL-1β. In the meanwhile, disruption of BRD4 or JQ1 application remarkably prohibited excessive inflammatory responses as characterized by reduce the production of the inflammatory factors such as IL-1β and IL-18. Concomitantly, disruption of BRD4 or administrated with JQ1 manifestly repressed Mtb-aroused Nod-like receptor family pyrindomain-containing 3 (NLRP3) inflammasome activation, as witnessed by attenuation of protein levels of NLRP3, Pro-Caspase1 and apoptosis-associated speck-like protein (ASC). The above findings clearly demonstrated that suppression of BRD4 exerted great influence on regulating Mtb-elicited inflammatory response by coordinating NLRP3 inflammasome-mediated pyroptosis. More importantly, perturbation of BRD4 or JQ1 employment notably restrained endoplasmic reticulum (ER) stress triggered by Mtb-infection, as reflected by noticeably lessened the levels of GRP78, CHOP and ATF6. In terms of mechanism, ER stress agonist tunicamycin profoundly abrogated the favorable effects of BRD4 inhibition on Mtb-triggered pyroptosis, inflammation reaction and inflammasome activation. Collectively, these preceding outcomes strongly illuminated that inhibition of BRD4 targeted ER stress to retard NLRP3 inflammasome activation and subsequent cell pyroptosis and prevention of inflammatory response in Mtb-infected macrophages, highlighting that blocking BRD4 might serve as a promising candidate for protection against Mtb-triggered inflammatory injury.
Collapse
Affiliation(s)
- Qi-Yuan Wang
- Department of Fourth Medicine, Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi'an, 710100, Shaanxi, PR China
| | - Xiu-Feng Yu
- Department of Fourth Medicine, Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi'an, 710100, Shaanxi, PR China
| | - Wen-Lan Ji
- Department of Fourth Medicine, Shaanxi Provincial Institute for Tuberculosis Control and Prevention, Xi'an, 710100, Shaanxi, PR China.
| |
Collapse
|
3
|
Lee H, Nam J, Jang H, Park YS, Son MH, Lee IH, Eyun SI, Yang JH, Jeon J, Yang S. BRD2-specific inhibitor, BBC0403, inhibits the progression of osteoarthritis pathogenesis in osteoarthritis-induced C57BL/6 male mice. Br J Pharmacol 2024; 181:2528-2544. [PMID: 38600628 DOI: 10.1111/bph.16359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND AND PURPOSE The discovery of new bromo- and extra-terminal inhibitors presents new drugs to treat osteoarthritis (OA). EXPERIMENTAL APPROACH The new drug, BBC0403, was identified in the DNA-encoded library screening system by searching for compounds that target BRD (bromodomain-containing) proteins. The binding force with BRD proteins was evaluated using time-resolved fluorescence energy transfer (TR-FRET) and binding kinetics assays. Subsequently, in vitro and ex vivo analyses demonstrated the effects of the BRD2 inhibitor, BBC0403, on OA. For animal experiments, medial meniscus destabilization was performed to create a 12-week-old male C57BL/6 mouse model, and intra-articular (i.a.) injections were administered. Histological and immunohistochemical analyses were then performed. The underlying mechanism was confirmed by gene set enrichment analysis (GSEA) using RNA-seq. KEY RESULTS TR-FRET and binding kinetics assays revealed that BBC0403 exhibited higher binding specificity for BRD2 compared to BRD3 and BRD4. The anti-OA effects of BBC0403 were tested at concentrations of 5, 10 and 20 μM (no cell toxicity in the range tested). The expression of catabolic factors, prostaglandin E2 (PGE2) production and extracellular matrix (ECM) degradation was reduced. Additionally, the i.a. injection of BBC0403 prevented OA cartilage degradation in mice. Finally, BBC0403 was demonstrated to suppress NF-κB and MAPK signalling pathways. CONCLUSION AND IMPLICATIONS This study demonstrated that BBC0403 is a novel BRD2-specific inhibitor and a potential i.a.-injectable therapeutic agent to treat OA.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Jiho Nam
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Hahyeong Jang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | | | | | | | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Jae-Hyun Yang
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute Harvard Medical School (HMS), Boston, Massachusetts, USA
| | - Jimin Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
4
|
Takahata K, Lin YY, Osipov B, Arakawa K, Enomoto S, Christiansen BA, Kokubun T. Concurrent Joint Contact in Anterior Cruciate Ligament Injury induces cartilage micro-injury and subchondral bone sclerosis, resulting in knee osteoarthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593114. [PMID: 38766109 PMCID: PMC11100711 DOI: 10.1101/2024.05.08.593114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Objective Anterior Cruciate Ligament (ACL) injury initiates post-traumatic osteoarthritis (PTOA) via two distinct processes: initial direct contact injury of the cartilage surface during ACL injury, and secondary joint instability due to the ACL deficiency. Using the well-established Compression-induced ACL rupture method (ACL-R) and a novel Non-Compression ACL-R model, we aimed to reveal the individual effects of cartilage compression and joint instability on PTOA progression after ACL injury in mice. Design Twelve-week-old C57BL/6J male were randomly divided to three experimental groups: Compression ACL-R, Non-Compression ACL-R, and Intact. Following ACL injury, we performed joint laxity testing and microscopic analysis of the articular cartilage surface at 0 days, in vivo optical imaging of matrix-metalloproteinase (MMP) activity at 3 and 7 days, and histological and microCT analysis at 0, 7, 14, and 28 days. Results The Compression ACL-R group exhibited a significant increase of cartilage roughness immediately after injury compared with the Non-Compression group. At 7 days, the Compression group exhibited increased MMP-induced fluorescence intensity and MMP-13 positive cell ratio of chondrocytes. Moreover, histological cartilage degeneration was observable in the Compression group at the same time point. Sclerosis of tibial subchondral bone in the Compression group was more significantly developed than in the Non-Compression group at 28 days. Conclusions Both Compression and Non-Compression ACL injury initiated PTOA progression due to joint instability. However, joint contact during ACL rupture also caused initial micro-damage on the cartilage surface and initiated early MMP activity, which could accelerate PTOA progression compared to ACL injury without concurrent joint contact.
Collapse
|
5
|
Xu YD, Liang XC, Li ZP, Wu ZS, Yang J, Jia SZ, Peng R, Li ZY, Wang XH, Luo FJ, Chen JJ, Cheng WX, Zhang P, Zha ZG, Zeng R, Zhang HT. Apoptotic body-inspired nanotherapeutics efficiently attenuate osteoarthritis by targeting BRD4-regulated synovial macrophage polarization. Biomaterials 2024; 306:122483. [PMID: 38330742 DOI: 10.1016/j.biomaterials.2024.122483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/16/2023] [Accepted: 01/20/2024] [Indexed: 02/10/2024]
Abstract
Bromodomain-containing protein 4 (BRD4) is the most well-studied BET protein that is important for the innate immune response. We recently revealed that targeting BRD4 triggers apoptosis in tumor-associated macrophages, but its role in synovial macrophages and joint inflammation is largely unknown. Herein, we demonstrated that BRD4 was highly expressed in the iNOS-positive M1 macrophages in the human and mouse osteoarthritis (OA) synovium, and conditional knockout of BRD4 in the myeloid lineage using Lyz2-cre; BRD4flox/flox mice significantly abolished anterior cruciate ligament transection (ACLT)-induced M1 macrophage accumulation and synovial inflammation. Accordingly, we successfully constructed apoptotic body-inspired phosphatidylserine-containing nanoliposomes (PSLs) loaded with the BRD4 inhibitor JQ1 to regulate inflammatory macrophages. JQ1-loaded PSLs (JQ1@PSLs) exhibited a higher cellular uptake by macrophages than fibroblast-like synoviocytes (FLSs) in vitro and in vivo, as well as the reduction in proinflammatory M1 macrophage polarization. Intra-articular injections of JQ1@PSLs showed prolonged retention within the joint, and remarkably reduced synovial inflammation and joint pain via suppressing M1 polarization accompanied by reduced TRPA1 expression by targeted inhibition of BRD4 in the macrophages, thus attenuating cartilage degradation during OA development. The results show that BRD4-inhibiting JQ1@PSLs can targeted-modulate macrophage polarization, which opens a new avenue for efficient OA therapy via a "Trojan horse".
Collapse
Affiliation(s)
- Yi-Di Xu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Xiang-Chao Liang
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhi-Peng Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Zhao-Sheng Wu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Jie Yang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Shi-Zhen Jia
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, Guangdong 510632, China
| | - Rui Peng
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Zhen-Yan Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Xiao-He Wang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Fang-Ji Luo
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Jia-Jing Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Wen-Xiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China.
| | - Rong Zeng
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
6
|
Du X, Xin R, Chen X, Wang G, Huang C, Zhou K, Zhang S. TAF15 regulates the BRD4/GREM1 axis and activates the gremlin-1-NF-κB pathway to promote OA progression. Regen Ther 2023; 24:227-236. [PMID: 37496731 PMCID: PMC10366938 DOI: 10.1016/j.reth.2023.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023] Open
Abstract
Background Anterior cruciate ligament (ACL) injury is recognized as a risk factor for osteoarthritis (OA) progression. Herein, the function of TAF15 in ACL injury-induced OA was investigated. Methods OA cell model and OA mouse model were established by interleukin-1 beta (IL-1β) stimulation and ACL transection administration, respectively. The pathological changes were analyzed by histopathology. The mRNA and protein expressions were assessed using qRT-PCR, Western blot and IHC. Chondrocyte viability and apoptosis were examined by CCK8 assay and TUNEL staining, respectively. The interactions between TAF15, BRD4 and GREM1 were analyzed by RIP or ChIP assay. Results TAF15 expression was markedly elevated in OA, and its knockdown suppressed IL-1β-induced chondrocyte apoptosis and ECM degradation in vivo and cartilage pathological changes in vitro. TAF15 promoted BRD4 mRNA stability, and TAF15 silencing's repression on chondrocyte apoptosis and ECM degradation induced by IL-1β was abrogated following BRD4 overexpression. BRD4 promoted GREM1 expression by directly binding with GREM1. In addition, the GREM1/NF-κB pathway functioned as the downstream pathway of BRD4 in promoting OA progression. Conclusion TAF15 upregulation facilitated chondrocyte apoptosis and ECM degradation during OA development by acting on the BRD4/GREM1/NF-κB axis, which provided a theoretical basis for the development of novel therapies for OA.
Collapse
Affiliation(s)
- Xiufan Du
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Department of Sports Medicine, Haikou, 570311, Hainan, PR China
| | - Ruomei Xin
- Danzhou People's Hospital, Nursing Department, Danzhou, 571700, Hainan, PR China
| | - Xiaoyan Chen
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Department of Stomatology, Haikou, 570311, Hainan, PR China
| | - Guangji Wang
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Department of Sports Medicine, Haikou, 570311, Hainan, PR China
| | - Chunhang Huang
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Department of Sports Medicine, Haikou, 570311, Hainan, PR China
| | - Kai Zhou
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Department of Sports Medicine, Haikou, 570311, Hainan, PR China
| | - Shunli Zhang
- The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, Hainan, PR China
| |
Collapse
|
7
|
Lee H, Nam J, Jang H, Park YS, Son MH, Lee IH, Eyun SI, Jeon J, Yang S. Novel molecule BBC0901 inhibits BRD4 and acts as a catabolic regulator in the pathogenesis of osteoarthritis. Biomed Pharmacother 2023; 166:115426. [PMID: 37666177 DOI: 10.1016/j.biopha.2023.115426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023] Open
Abstract
Osteoarthritis (OA) is induced by matrix degradation and inflammation mediated by bromo-domain-containing protein 4 (BRD4)-dependent catabolic factors. BRD4 acts as both a transcriptional regulator and an epigenetic reader. BBC0901 was identified as an inhibitor of BRD4 using a DNA-encoded library screening system. We aimed to demonstrate the effects of BBC0901 on OA pathogenesis by in vitro, ex vivo, and in vivo analyses. BBC0901 inhibited the expression of catabolic factors that degrade cartilage without significantly affecting the viability of mouse articular chondrocytes. Additionally, ex vivo experiments under conditions mimicking OA showed that BBC0901 suppressed extracellular matrix degradation. RNA sequencing analysis of gene expression patterns showed that BBC0901 inhibited the expression of catabolic factors, such as matrix metalloproteinases (MMPs) and cyclooxygenase (COX)2, along with reactive oxygen species (ROS) production. Furthermore, intra-articular (IA) injection of BBC0901 into the knee joint blocked osteoarthritic cartilage destruction by inhibition of MMP3, MMP13, COX2, interleukin (IL)6, and ROS production, thereby obstructing the nuclear factor kappa-light-chain-enhancer of activated B cell and mitogen activated protein kinase signaling. In conclusion, BBC0901-mediated BRD4 inhibition prevented OA development by attenuating catabolic signaling and hence, can be considered a promising IA therapeutic for OA.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jiho Nam
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Hahyeong Jang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Young-Sik Park
- Benobio Co., Ltd., Gyeonggi-do 13494, Republic of Korea.
| | - Min-Hee Son
- Benobio Co., Ltd., Gyeonggi-do 13494, Republic of Korea.
| | - In-Hyun Lee
- Benobio Co., Ltd., Gyeonggi-do 13494, Republic of Korea.
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Jimin Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
8
|
Zhu Y, Ni H, Chen Q, Qian H, Fang Y, Gao R, Liu B. Inhibition of BRD4 expression attenuates the inflammatory response and apoptosis by downregulating the HMGB-1/NF-κB signaling pathway following traumatic brain injury in rats. Neurosci Lett 2023; 812:137385. [PMID: 37423465 DOI: 10.1016/j.neulet.2023.137385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Neuroinflammation plays an important part in secondary traumatic brain injury (TBI). Bromodomain-4 (BRD4) exerts specific proinflammatory effects in various neuropathological conditions. However, the underlying mechanism of action of BRD4 after TBI is not known. We measured BRD4 expression after TBI and investigated its possible mechanism of action. We established a model of craniocerebral injury in rats. After different intervention measures, we used western blotting, immunofluorescence, real-time reverse transcription-quantitative polymerase chain reaction, neuronal apoptosis, and behavioral tests to evaluate the effect of BRD4 on brain injury. At 72 h after brain injury, BRD4 overexpression aggravated the neuroinflammatory response, neuronal apoptosis, neurological dysfunction, and blood-brain-barrier damage, whereas upregulating expression of HMGB-1 and NF-κB had the opposite effect. Glycyrrhizic acid could reverse the proinflammatory effect of BRD4 overexpression upon TBI. Our results suggest that: (i) BRD4 may have a proinflammatory role in secondary brain injury through the HMGB-1/NF-κB signaling pathway; (ii) inhibition of BRD4 expression may play a part in secondary brain injury. BRD4 could be targeted therapy strategy for brain injury.
Collapse
Affiliation(s)
- Yongkui Zhu
- Department of Intensive Care Unit, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Haibo Ni
- Department of Neurosurgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China; Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian Chen
- Department of Intensive Care Unit, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Huan Qian
- Department of Anesthesia, Zhangjiagang Hospital of Traditional Medicine, Suzhou, China
| | - Yiling Fang
- Department of General Practice, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Rong Gao
- Department of Neurosurgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China.
| | - Bofei Liu
- Department of Intensive Care Unit, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Palumbo A, Atzeni F, Murdaca G, Gangemi S. The Role of Alarmins in Osteoarthritis Pathogenesis: HMGB1, S100B and IL-33. Int J Mol Sci 2023; 24:12143. [PMID: 37569519 PMCID: PMC10418664 DOI: 10.3390/ijms241512143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Osteoarthritis (OA) is a multifactorial disease in which genetics, aging, obesity, and trauma are well-known risk factors. It is the most prevalent joint disease and the largest disability problem worldwide. Recent findings have described the role of damage-associated molecular patterns (DAMPs) in the course of the disease. In particular, alarmins such as HMGB1, IL-33, and S100B, appear implicated in enhancing articular inflammation and favouring a catabolic switch in OA chondrocytes. The aims of this review are to clarify the molecular signalling of these three molecules in OA pathogenesis, to identify their possible use as staging biomarkers, and, most importantly, to find out whether they could be possible therapeutic targets. Osteoarthritic cartilage expresses increased levels of all three alarmins. HMGB1, in particular, is the most studied alarmin with increased levels in cartilage, synovium, and synovial fluid of OA patients. High levels of HMGB1 in synovial fluid of OA joints are positively correlated with radiological and clinical severity. Counteracting HMGB1 strategies have revealed improving results in articular cells from OA patients and in OA animal models. Therefore, drugs against this alarmin, such as anti-HMGB1 antibodies, could be new treatment possibilities that can modify the disease course since available medications only alleviate symptoms.
Collapse
Affiliation(s)
- Antonino Palumbo
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, 98124 Messina, Italy; (A.P.); (F.A.)
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, 98124 Messina, Italy; (A.P.); (F.A.)
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
10
|
Pulik Ł, Łęgosz P, Motyl G. Matrix metalloproteinases in rheumatoid arthritis and osteoarthritis: a state of the art review. Reumatologia 2023; 61:191-201. [PMID: 37522140 PMCID: PMC10373173 DOI: 10.5114/reum/168503] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Although the pathological mechanisms involved in osteoarthritis (OA) and rheumatoid arthritis (RA) are different, the onset and progression of both diseases are associated with several analogous clinical manifestations, inflammation, and immune mechanisms. In both diseases, cartilage destruction is mediated by matrix metalloproteinases (MMPs) synthesized by chondrocytes and synovium fibroblasts. This review aims to summarize recent articles regarding the role of MMPs in OA and RA, as well as the possible methods of targeting MMPs to alleviate the degradation processes taking part in OA and RA. The novel experimental MMP-targeted treatments in OA and RA are MMP inhibitors eg. 3-B2, taraxasterol, and naringin, while other treatments aim to silence miRNAs, lncRNAs, or transcription factors. Additionally, other recent MMP-related developments include gene polymorphism of MMPs, which have been linked to OA susceptibility, and the MMP-generated neoepitope of CRP, which could serve as a biomarker of OA progression.
Collapse
Affiliation(s)
- Łukasz Pulik
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Poland
| | - Paweł Łęgosz
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Poland
| | - Gabriela Motyl
- Scientific Association of Reconstructive and Oncological Orthopedics of the Department of Orthopedics and Traumatology, Medical University of Warsaw, Poland
| |
Collapse
|
11
|
Dudakovic A, Bayram B, Bettencourt JW, Limberg AK, Galvan ML, Carrasco ME, Stans B, Thaler R, Morrey ME, Sanchez-Sotelo J, Berry DJ, van Wijnen AJ, Abdel MP. The epigenetic regulator BRD4 is required for myofibroblast differentiation of knee fibroblasts. J Cell Biochem 2023; 124:320-334. [PMID: 36648754 PMCID: PMC9990907 DOI: 10.1002/jcb.30368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023]
Abstract
Arthrofibrosis, which is characterized by excessive scar tissue and limited motion, can complicate the daily functioning of patients after total knee arthroplasty (TKA). Molecular hallmarks of arthrofibrosis include pathologic accumulation of myofibroblasts and disproportionate collagen deposition. Epigenetic mechanisms, including posttranslation modification of histones, control gene expression and may regulate fibrotic events. This study assessed the role of the bromodomain and extra-terminal (BET) proteins on myofibroblast differentiation. This group of epigenetic regulators recognize acetylated lysines and are targeted by a class of drugs known as BET inhibitors. RNA-seq analysis revealed robust mRNA expression of three BET members (BRD2, BRD3, and BRD4) while the fourth member (BRDT) is not expressed in primary TKA knee outgrowth fibroblasts. RT-qPCR and western blot analyses revealed that BET inhibition with the small molecule JQ1 impairs TGFβ1-induced expression of ACTA2, a key myofibroblast marker, in primary outgrowth knee fibroblasts. Similarly, JQ1 administration also reduced COL3A1 mRNA levels and collagen deposition as monitored by picrosirius red staining. Interestingly, the inhibitory effects of JQ1 on ACTA2 mRNA and protein expression, as well as COL3A1 expression and collagen deposition, were paralleled by siRNA-mediated depletion of BRD4. Together, these data reveal that BRD4-mediated epigenetic events support TGFβ1-mediated myofibroblast differentiation and collagen deposition as seen in arthrofibrosis. To our knowledge, these are the first studies that assess epigenetic regulators and their downstream events in the context of arthrofibrosis. Future studies may reveal clinical utility for drugs that target epigenetic pathways, specifically BET proteins, in the prevention and treatment of arthrofibrosis.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Banu Bayram
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Afton K. Limberg
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - M. Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Britta Stans
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Mark E. Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Zhong X, Chen Z, Wang Y, Mao M, Deng Y, Shi M, Xu Y, Chen L, Cao W. JQ1 attenuates neuroinflammation by inhibiting the inflammasome-dependent canonical pyroptosis pathway in SAE. Brain Res Bull 2022; 189:174-183. [PMID: 36100190 DOI: 10.1016/j.brainresbull.2022.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022]
Abstract
Sepsis-associated encephalopathy (SAE) manifests clinically in hyperneuroinflammation. Pyroptosis, which can induce an inflammatory cascade response, has been considered to be a causative factor of SAE. Evidence has shown that the bromo- and extraterminal (BET) proteins (including BRD2, BRD3, BRD4 and BRDT) inhibitor JQ1 can inhibit inflammation and suppress pyroptosis in various diseases. Therefore, we examined the effect of JQ1 on inflammasome-induced pyroptosis in the hippocampus in a mouse model of sepsis induced by lipopolysaccharide (LPS) injection. The results showed that JQ1 treatment alleviated sepsis-related symptoms, protected the blood-brain barrier (BBB), as indicated by upregulated expression of the tight junction proteins occludin and ZO-1, and remarkably rescued neuronal damage in SAE mice. Mechanistically, we demonstrated that JQ1 intervention inhibited the expression of BRD proteins and decreased the expression of inflammasomes by blocking phospho-nuclear factor kappa B (p-NF-κB) signalling, attenuating the canonical pyroptosis (mediated by cleaved-Caspase1/11) pathway and the release of proinflammatory factors in the hippocampus of septic mice. Interestingly, we also found that JQ1 selectively suppressed the activation of hippocampal microglia in SAE mice. Thus, JQ1 protected the hippocampal BBB and neuronal damage through the attenuation of neuroinflammation by inhibiting the inflammasome-dependent canonical pyroptosis pathway induced by LPS injection in mice, and JQ1 may be a promising target for the prevention of SAE.
Collapse
Affiliation(s)
- Xiaolin Zhong
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Zuyao Chen
- The First Affiliated Hospital, Department of Otorhinolaryngology, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yajuan Wang
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Mingli Mao
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yingcheng Deng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Mengmeng Shi
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Ling Chen
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| |
Collapse
|
13
|
Zhong Y, Xu Y, Xue S, Zhu L, Lu H, Wang C, Chen H, Sang W, Ma J. Nangibotide attenuates osteoarthritis by inhibiting osteoblast apoptosis and TGF-β activity in subchondral bone. Inflammopharmacology 2022; 30:1107-1117. [PMID: 35391646 DOI: 10.1007/s10787-022-00984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
Abstract
Osteoarthritis (OA) is a chronic joint disorder that causes cartilage degradation and subchondral bone abnormalities. Nangibotide, also known as LR12, is a dodecapeptide with considerable anti-inflammatory properties, but its significance in OA is uncertain. The aim of the study was to determine whether nangibotide could attenuate the progression of OA, and elucidate the underlying mechanism. In vitro experiments showed that nangibotide strongly inhibited TNF-α-induced osteogenic reduction, significantly enhanced osteoblast proliferation and prevented apoptosis in MC3T3-E1 cells. Male C57BL/6 J mice aged 2 months were randomly allocated to three groups: sham, ACLT, and ACLT with nangibotide therapy. Nangibotide suppressed ACLT-induced cartilage degradation and MMP-13 expression. MicroCT analysis revealed that nangibotide attenuated in vivo subchondral bone loss induced by ACLT. Histomorphometry results showed that nangibotide attenuated ACLT-induced osteoblast inhibition; TUNEL assays and immunohistochemical staining of cleaved-caspase3 further confirmed the in vivo anti-apoptotic effect of nangibotide on osteoblasts. Furthermore, we found that nangibotide exerted protective effects by suppressing TGF-β signaling mediated by Smad2/3 to restore coupled bone remodeling in the subchondral bone. In conclusion, the findings suggest that nangibotide might exert a protective effect on the bone-cartilage unit and maybe an alternative treatment option for OA.
Collapse
Affiliation(s)
- Yiming Zhong
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Yiming Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Song Xue
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Libo Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Haiming Lu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Cong Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Hongjie Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China
| | - Weilin Sang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China.
| | - Jinzhong Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Rd, Shanghai, 200080, China.
| |
Collapse
|
14
|
BRD4 Inhibition Suppresses Senescence and Apoptosis of Nucleus Pulposus Cells by Inducing Autophagy during Intervertebral Disc Degeneration: An In Vitro and In Vivo Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9181412. [PMID: 35308165 PMCID: PMC8933081 DOI: 10.1155/2022/9181412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/10/2021] [Accepted: 02/06/2022] [Indexed: 01/10/2023]
Abstract
Intervertebral disc degeneration (IDD) is the most common chronic skeletal muscle degeneration disease. Although the underlying mechanisms remain unclear, nucleus pulposus (NP) autophagy, senescence, and apoptosis are known to play a critical role in this process. Previous studies suggest that bromodomain-containing protein 4 (BRD4) promotes senescent and apoptotic effects in several age-related degenerative diseases. It is not known, however, if BRD4 inhibition is protective in IDD. In this study, we explored whether BRD4 influenced IDD. In human clinical specimens, the BRD4 level was markedly increased with the increasing Pfirrmann grade. At the cellular level, BRD4 inhibition prevented IL-1β-induced senescence and apoptosis of NP cells and activated autophagy via the AMPK/mTOR/ULK1 signaling pathway. Inhibition of autophagy by 3-methyladenine (3-MA) partially reversed the antisenescence and antiapoptotic effects of BRD4. In vivo, BRD4 inhibition attenuated IDD. Taken together, the results of this study showed that BRD4 inhibition reduced NP cell senescence and apoptosis by induced autophagy, which ultimately alleviated IDD. Therefore, BRD4 may serve as a novel potential therapeutic target for the treatment of IDD.
Collapse
|
15
|
Khalil NFW, El-sherif S, El Hamid MMA, Elnemr R, Taleb RSZ. Role of global femoral cartilage in assessing severity of primary knee osteoarthritis. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2022. [DOI: 10.1186/s43166-022-00115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background/objective
Osteoarthritis is a degenerative joint disease marked by structural changes in the joint. Radiological evaluation can be used to assess structural changes. Pain, inflammation, and stiffness are common clinical symptoms, leading to limitations in daily activities. Ultrasound, unlike traditional radiography, allows for a direct examination of changes in soft tissues. In addition, it is sensitive in detecting osteophytes as well as identifying early OA changes in femoral cartilage associated with clinical manifestations and function.
Results
A cross- sectional study of 40 patients with primary KOA diagnosed according to the American College of Rheumatology (ACR) criteria. After radiographic evaluation using Kellgren-Lawrence (K-L) scale and US examination assessing global femoral hyaline cartilage (GFC), osteophytes, meniscal extrusion, effusion, and Baker’s cyst of the most symptomatic knee, there was significant correlation between (K-L) grading and (GFC) ultrasonographic grading (p = < 0.001). After assessment of pain and functional disability using Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scale, there was significant correlation between KL and GFC grading with age (p = < 0.001 for both), disease duration (p = < 0.001 for both) as well as WOMAC total scores (p = < 0.001 for both). GFC grading was the only independent predictor relative to other ultrasonographic variables for WOMAC total score (p = < 0.001).
Conclusions
US is a valid tool to evaluate knee joint space and is well correlated with radiographic images. KOA severity assessed by KL grading and GFC ultrasonographic grading showed good correlation with age, duration of the disease, pain intensity, and functional disability.
Collapse
|
16
|
Xu Y, Xue S, Zhang T, Jin X, Wang C, Lu H, Zhong Y, Chen H, Zhu L, Ma J, Sang W. Toddalolactone protects against osteoarthritis by ameliorating chondrocyte inflammation and suppressing osteoclastogenesis. Chin Med 2022; 17:18. [PMID: 35123541 PMCID: PMC8817519 DOI: 10.1186/s13020-022-00576-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Osteoarthritis (OA) is widely recognized as the most common chronic joint disease accompanied by progressive cartilage and subchondral bone damage. Toddalolactone (TOD), a natural compound extracted from Toddalia asiatica (L.) Lam., has been widely used in the treatment of stroke, rheumatoid arthritis, and oedema. Nevertheless, what TOD acts as in the pathogenesis and progression of OA hasn’t been reported. In this investigation, we have aimed to determine how TOD affects OA in vitro and in vivo. Methods LPS (10 µg/ml) and IL-1β (10 ng/ml) were employed to induce chondrocyte inflammation or RANKL to induce osteoclast differentiation in bone marrow derived macrophages (BMMs). The effects of TOD on chondrocyte inflammation and osteoclast differentiation were evaluated. Anterior cruciate ligament transection (ACLT) was performed to develop an OA animal model and study the effects of TOD. Results We found that TOD inhibited the expression of inflammatory and catabolic mediators (IL-6, IL-8, TNF-α, MMP2, MMP9, and MMP13) in inflammatory chondrocytes in vitro. Furthermore, TOD was proven to inhibit RANKL-induced-osteoclastogenesis and inhibit the expression of osteoclast marker genes. Our data also confirmed that TOD suppressed the destruction of articular cartilage and osteoclastogenesis via inhibiting the activation of NF-κB and MAPK signalling pathways. In the ACLT mouse model, we found that TOD attenuated cartilage erosion and inhibited bone resorption. Conclusions These results showed that TOD can be adopted as a potential therapeutic agent for OA. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00576-w.
Collapse
|
17
|
Gu W, Jiang X, Wang W, Mujagond P, Liu J, Mai Z, Tang H, li S, Xiao H, Zhao J. Super-Enhancer-Associated Long Non-Coding RNA LINC01485 Promotes Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells by Regulating MiR-619-5p/RUNX2 Axis. Front Endocrinol (Lausanne) 2022; 13:846154. [PMID: 35663324 PMCID: PMC9161675 DOI: 10.3389/fendo.2022.846154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the mechanisms of super-enhancer-associated LINC01485/miR-619-5p/RUNX2 signaling axis involvement in osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). METHODS Osteogenic differentiation of hBMSCs was induced in vitro. The expression levels of LINC01485 and miR-619-5p during osteogenesis were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Osteogenic differentiation was examined by qRT-PCR, western blot, alkaline phosphatase (ALP) staining, ALP activity measurement, and Alizarin Red S (ARS) staining assays. Thereafter, the effects of LINC01485 and miR-619-5p on osteogenic differentiation of hBMSCs were evaluated by performing loss- and gain-of-function experiments. Subsequently, a fluorescence in situ hybridization (FISH) assay was employed to determine the cellular localization of LINC01485. Bioinformatics analysis, RNA antisense purification (RAP) assay, and dual-luciferase reporter assays were conducted to analyze the interactions of LINC01485, miR-619-5p, and RUNX2. Rescue experiments were performed to further delineate the role of the competitive endogenous RNA (ceRNA) signaling axis consisting of LINC01485/miR-619-5p/RUNX2 in osteogenic differentiation of hBMSCs. RESULTS The expression of LINC01485 was up-regulated during osteogenic differentiation of hBMSCs. The overexpression of LINC01485 promoted osteogenic differentiation of hBMSCs by up-regulating the expression of osteogenesis-related genes [e.g., runt-related transcription factor 2 (RUNX2), osterix (OSX), collagen type 1 alpha 1 (COL1A1), osteocalcin (OCN), and osteopontin (OPN)], and increasing the activity of ALP. ALP staining and ARS staining were also found to be increased upon overexpression of LINC01485. The opposing results were obtained upon LINC01485 interference in hBMSCs. miR-619-5p was found to inhibit osteogenic differentiation. FISH assay displayed that LINC01485 was mainly localized in the cytoplasm. RAP assay results showed that LINC01485 bound to miR-619-5p, and dual-luciferase reporter assay verified that LINC01485 bound to miR-619-5p, while miR-619-5p and RUNX2 bound to each other. Rescue experiments illustrated that LINC01485 could promote osteogenesis by increasing RUNX2 expression by sponging miR-619-5p. CONCLUSION LINC01485 could influence RUNX2 expression by acting as a ceRNA of miR-619-5p, thereby promoting osteogenic differentiation of hBMSCs. The LINC01485/miR-619-5p/RUNX2 axis might comprise a novel target in the bone tissue engineering field.
Collapse
Affiliation(s)
- Wenli Gu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Jiang
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wei Wang
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | | | - Jingpeng Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhaoyi Mai
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hai Tang
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Simin li
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hui Xiao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Hui Xiao, ; Jianjiang Zhao,
| | - Jianjiang Zhao
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
- *Correspondence: Hui Xiao, ; Jianjiang Zhao,
| |
Collapse
|
18
|
Liu Y, Liu W, Yu Z, Zhang Y, Li Y, Xie D, Xie G, Fan L, He S. A novel BRD4 inhibitor suppresses osteoclastogenesis and ovariectomized osteoporosis by blocking RANKL-mediated MAPK and NF-κB pathways. Cell Death Dis 2021; 12:654. [PMID: 34175898 PMCID: PMC8236062 DOI: 10.1038/s41419-021-03939-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) has emerged as a promising treatment target for bone-related disorders. (+)-JQ1, a thienotriazolodiazepine compound, has been shown to inhibit pro-osteoclastic activity in a BRD4-dependent approach and impede bone loss caused by ovariectomy (OVX) in vivo. However, clinical trials of (+)-JQ1 are limited because of its poor druggability. In this study, we synthesized a new (+)-JQ1 derivative differing in structure and chirality. One such derivative, (+)-ND, exhibited higher solubility and excellent inhibitory activity against BRD4 compared with its analogue (+)-JQ1. Interestingly, (-)-JQ1 and (-)-ND exhibited low anti-proliferative activity and had no significant inhibitory effect on RANKL-induced osteoclastogenesis as compared with (+)-JQ1 and (+)-ND, suggesting the importance of chirality in the biological activity of compounds. Among these compounds, (+)-ND displayed the most prominent inhibitory effect on RANKL-induced osteoclastogenesis. Moreover, (+)-ND could inhibit osteoclast-specific gene expression, F-actin ring generation, and bone resorption in vitro and prevent bone loss in OVX mice. Collectively, these findings indicated that (+)-ND represses RANKL-stimulated osteoclastogenesis and averts OVX-triggered osteoporosis by suppressing MAPK and NF-κB signalling cascades, suggesting that it may be a prospective candidate for osteoporosis treatment.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wenjie Liu
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Ziqiang Yu
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yan Zhang
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Dantao Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Gang Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Li Fan
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
19
|
Wang W, Wang R, Jiang Z, Li H, Zhu Z, Khalid A, Liu D, Pan F. Inhibiting Brd4 alleviated PTSD-like behaviors and fear memory through regulating immediate early genes expression and neuroinflammation in rats. J Neurochem 2021; 158:912-927. [PMID: 34050937 DOI: 10.1111/jnc.15439] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by depression/anxiety and memory failure, primarily fear memory. According to the reports, neuroinflammation and synaptic plasticity can play a role in the neurophysiological mechanisms underlying PTSD. Bromodomain-containing protein 4 (Brd4) intriguingly affects regulating of inflammatory responses and learning and memory. This study aimed to explore the effect of inhibiting Brd4 on depression/anxiety-like behaviors, spatial and fear memory, and underlying mechanisms in a model of PTSD. Inescapable foot shocks (IFS) with a sound reminder in 6 days were used to induce PTSD-like behaviors which were tested using contextual and cue fear tests, sucrose preference test, open-field test, elevated plus maze test, and Y-maze test. Meanwhile, the Brd4 inhibitor JQ1 was used as an intervention. The results found that IFS induced PTSD-like behaviors and indicated obvious Brd4 expression in microglia of the prefrontal cortex (PFC), hippocampus, and amygdala, pro-inflammatory cytokines over-expression, microglial activation, and nuclear factor-kappa B over-expression in PFC and hippocampus but not in amygdala. Meanwhile, the alterations of immediate early genes (IEGs) were found in PFC, hippocampus, and amygdala. Besides, dendritic spine density was reduced in PFC and hippocampus but was elevated in amygdala of rats with IFS. In addition, treatment with JQ1 significantly reduced freezing time in the contextual and cue fear test, reversed the behavioral impairment, decreased the elevated neuroinflammation, and normalized the alteration in IEGs and dendritic spine densities. The results suggested that Brd4 was involved in IFS-induced PTSD-like behaviors through regulating neuroinflammation, dynamics of IEGs, and synaptic plasticity.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Rui Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Zhijun Jiang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Haonan Li
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Zemeng Zhu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Arslan Khalid
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| |
Collapse
|
20
|
Sang W, Xue S, Jiang Y, Lu H, Zhu L, Wang C, Ma J. METTL3 involves the progression of osteoarthritis probably by affecting ECM degradation and regulating the inflammatory response. Life Sci 2021; 278:119528. [PMID: 33894271 DOI: 10.1016/j.lfs.2021.119528] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/18/2022]
Abstract
We aimed to identify RNA N6-methyladenosine methylation associated genes in osteoarthritis (OA), and to explore possible regulatory mechanisms of these RNA methylation associated genes. Bioinformatics analyses, including differential expression analysis, functional enrichment analysis, verification analysis, and box plot analysis, were conducted based on different datasets from OA and non-OA patients. Gene expression at mRNA and protein levels was determined by quantitative reverse transcription PCR, western blot and immunofluorescence. Interleukin 1β (IL-1β)-treated SW1353 cells was used as cell model. Lentiviral vector was used for over-expression METTL3 in vitro. CCK-8 assay kit was used to determine cell viability and inflammatory cytokines (IL-1α, IL-6, IL-8, IL-10 and TNF-α) was detected using ELISA kits. Bioinformatics analysis showed that METTL3 expression was decreased in OA group, which was confirmed in clinical samples. Expression of METTL3 was also reduced in IL-1β-treated cells. Levels of inflammatory cytokines were obviously reduced in the METTL3 overexpression group, while IL-1β treatment reversed such decrease caused by METTL3 overexpression (p < 0.05). Both METTL3 overexpression and IL-1β treatment promoted expression of p65 protein and p-ERK (p < 0.01). Additionally, increased expression of MMP1 and MMP3, and decreased expression of MMP13, TIMP-1, and TIMP-2 at both mRNA and protein levels were observed in the METTL3 overexpression group when compared with the control group (p < 0.01). Expression of m6A methylation gene METTL3 was reduced in OA. METTL3 is involved in OA probably by regulating the inflammatory response. METTL3 overexpression may affect extracellular matrix degradation in OA by adjusting the balance between TIMPs and MMPs.
Collapse
Affiliation(s)
- Weilin Sang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 301620, China
| | - Song Xue
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 301620, China
| | - Yafei Jiang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 301620, China
| | - Haiming Lu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 301620, China
| | - Libo Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 301620, China
| | - Cong Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 301620, China
| | - Jinzhong Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 301620, China.
| |
Collapse
|
21
|
Wan C, Zhang F, Yao H, Li H, Tuan RS. Histone Modifications and Chondrocyte Fate: Regulation and Therapeutic Implications. Front Cell Dev Biol 2021; 9:626708. [PMID: 33937229 PMCID: PMC8085601 DOI: 10.3389/fcell.2021.626708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
The involvement of histone modifications in cartilage development, pathology and regeneration is becoming increasingly evident. Understanding the molecular mechanisms and consequences of histone modification enzymes in cartilage development, homeostasis and pathology provides fundamental and precise perspectives to interpret the biological behavior of chondrocytes during skeletal development and the pathogenesis of various cartilage related diseases. Candidate molecules or drugs that target histone modifying proteins have shown promising therapeutic potential in the treatment of cartilage lesions associated with joint degeneration and other chondropathies. In this review, we summarized the advances in the understanding of histone modifications in the regulation of chondrocyte fate, cartilage development and pathology, particularly the molecular writers, erasers and readers involved. In addition, we have highlighted recent studies on the use of small molecules and drugs to manipulate histone signals to regulate chondrocyte functions or treat cartilage lesions, in particular osteoarthritis (OA), and discussed their potential therapeutic benefits and limitations in preventing articular cartilage degeneration or promoting its repair or regeneration.
Collapse
Affiliation(s)
- Chao Wan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fengjie Zhang
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hanyu Yao
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Rocky S Tuan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
22
|
Chen L, Zhong X, Cao W, Mao M, Li W, Yang H, Li M, Shi M, Zhang Y, Deng Y, Zu X, Liu J. JQ1 as a BRD4 Inhibitor Blocks Inflammatory Pyroptosis-Related Acute Colon Injury Induced by LPS. Front Immunol 2021; 12:609319. [PMID: 33679744 PMCID: PMC7930386 DOI: 10.3389/fimmu.2021.609319] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Endotoxemia is a severe inflammation response induced by infection especially bacterial endotoxin translocation, which severely increases mortality in combination with acute colon injury. Bromodomain-containing protein 4 (BRD4) is an important Bromo and Extra-Terminal (BET) protein to participate in inflammatory responses. However, it is still unknown about the specific connection between BRD4 and inflammation-related pyroptosis in endotoxemia colon. Here, through evaluating the mucous morphology and the expression of tight junction proteins such as occludin and ZO1, we found the upregulation of BRD4 in damaged colon with poor tight junction in an endotoxemia mouse model induced by lipopolysaccharides (LPS). Firstly, the BRD4 inhibitor JQ1 was used to effectively protect colon tight junction in endotoxemia. As detected, high levels of pro-inflammation cytokines IL6, IL1β and IL18 in endotoxemia colon were reversed by JQ1 pretreatment. In addition, JQ1 injection reduced endotoxemia-induced elevation of the phosphorylated NF κB and NLRP3/ASC/caspase 1 inflammasome complex in colon injury. Furthermore, activated pyroptosis markers gasdermins in endotoxemia colon were also blocked by JQ1 pretreatment. Together, our data indicate that BRD4 plays a critical role in regulating pyroptosis-related colon injury induced by LPS, and JQ1 as a BRD4 inhibitors can effectively protect colon from endotoxemia-induced inflammation injury.
Collapse
Affiliation(s)
- Ling Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xiaolin Zhong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Mingli Mao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Wei Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Hui Yang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Menglin Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Mengmeng Shi
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuan Zhang
- Department of Pathology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yincheng Deng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Department of Tumor Research, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jianghua Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
23
|
Xue S, Zhou X, Sang W, Wang C, Lu H, Xu Y, Zhong Y, Zhu L, He C, Ma J. Cartilage-targeting peptide-modified dual-drug delivery nanoplatform with NIR laser response for osteoarthritis therapy. Bioact Mater 2021; 6:2372-2389. [PMID: 33553822 PMCID: PMC7844135 DOI: 10.1016/j.bioactmat.2021.01.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Cartilage-targeting delivery of therapeutic agents is still an effective strategy for osteoarthritis (OA) therapy. Recently, scavenging for reactive oxygen species (ROS) and activating autophagy have been increasingly reported to treat OA effectively. In this study, we designed, for the first time, a dual-drug delivery system based on metal organic framework (MOF)-decorated mesoporous polydopamine (MPDA) which composed of rapamycin (Rap) loaded into the mesopores and bilirubin (Br) loaded onto the shell of MOF. The collagen II-targeting peptide (WYRGRL) was then conjugated on the surface of above nanocarrier to develop a cartilage-targeting dual-drug delivery nanoplatform (RB@MPMW). Our results indicated the sequential release of two agents from RB@MPMW could be achieved via near-infrared (NIR) laser irritation. Briefly, the rapid release of Br from the MOF shell exhibited excellent ROS scavenging ability and anti-apoptosis effects, however responsively reduced autophagy activity, to a certain extent. Meanwhile, following the NIR irradiation, Rap was rapidly released from MPDA core and further enhanced autophagy activation and chondrocyte protection. RB@MPMW continuously phosphorylated AMPK and further rescued mitochondrial energy metabolism of chondrocytes following IL-1β stimulation via activating SIRT1-PGC-1α signaling pathway. Additionally, the cartilage-targeting property of peptide-modified nanocarrier could be monitored via Magnetic Resonance (MR) and IVIS imaging. More significantly, RB@MPMW effectively delayed cartilage degeneration in ACLT rat model. Overall, our findings indicated that the as-prepared dual-drug delivery nanoplatform exerted potent anti-inflammation and anti-apoptotic effects, rescued energy metabolism of chondrocytes in vitro and prevented cartilage degeneration in vivo, which thereby showed positive performance for OA therapy. Collagen type II-targeting peptide and positive surface potential endow RB@MPMW with a fine cartilage affinity ability. RB@MPMW possess superb biological functions of scavenging free radicals and autophagy induction. RB@MPMW effectively promotes chondrocyte mitochondrial energy metabolism in the inflammatory microenvironment. RB@MPMW has a good MR imaging ability, which could monitor its therapeutic effects in vivo.
Collapse
Affiliation(s)
- Song Xue
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Weilin Sang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Cong Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Haiming Lu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yiming Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yiming Zhong
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Libo Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Jinzhong Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
24
|
Wang N, Wu R, Tang D, Kang R. The BET family in immunity and disease. Signal Transduct Target Ther 2021; 6:23. [PMID: 33462181 PMCID: PMC7813845 DOI: 10.1038/s41392-020-00384-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/27/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Innate immunity serves as the rapid and first-line defense against invading pathogens, and this process can be regulated at various levels, including epigenetic mechanisms. The bromodomain and extraterminal domain (BET) family of proteins consists of four conserved mammalian members (BRD2, BRD3, BRD4, and BRDT) that regulate the expression of many immunity-associated genes and pathways. In particular, in response to infection and sterile inflammation, abnormally expressed or dysfunctional BETs are involved in the activation of pattern recognition receptor (e.g., TLR, NLR, and CGAS) pathways, thereby linking chromatin machinery to innate immunity under disease or pathological conditions. Mechanistically, the BET family controls the transcription of a wide range of proinflammatory and immunoregulatory genes by recognizing acetylated histones (mainly H3 and H4) and recruiting transcription factors (e.g., RELA) and transcription elongation complex (e.g., P-TEFb) to the chromatin, thereby promoting the phosphorylation of RNA polymerase II and subsequent transcription initiation and elongation. This review covers the accumulating data about the roles of the BET family in innate immunity, and discusses the attractive prospect of manipulating the BET family as a new treatment for disease.
Collapse
Affiliation(s)
- Nian Wang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
25
|
Huang Z, Yang R, Zhang L, Zhu M, Zhang C, Wen J, Li H. BRD4 inhibition alleviates mechanical stress-induced TMJ OA-like pathological changes and attenuates TREM1-mediated inflammatory response. Clin Epigenetics 2021; 13:10. [PMID: 33446277 PMCID: PMC7809762 DOI: 10.1186/s13148-021-01008-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this paper was to investigate the protective effects of bromodomain containing 4 (BRD4) inhibition on the temporomandibular joint osteoarthritis (TMJ OA) induced by compressive mechanical stress and to explore the underlying mechanism. In vivo, a rat model of TMJ compressive loading device was used and BRD4 inhibitor was injected into the TMJ region. HE staining and micro-CT analysis were used for histological and radiographic assessment. Immunohistochemistry and qPCR were performed to detect inflammatory cytokines expressions. High-throughput ChIP-sequencing screening was performed to compare the BRD4 and H3K27ac binding patterns between condylar cartilage from control and mechanical force groups. In vitro, the mandibular condylar chondrocytes were treated with IL-1β. Small Interference RNA (siRNA) infection was used to silencing BRD4 or TREM1. qPCR was performed to detect inflammatory cytokines expressions. Our study showed that BRD4 inhibition can alleviate the thinning of condylar cartilage and subchondral bone resorption, as well as decrease the inflammatory factors expression both in vivo and in vitro. ChIP-seq analysis showed that BRD4 was more enriched in the promoter region of genes related to the stress and inflammatory pathways under mechanical stress in vivo. Trem1, a pro-inflammatory gene, was screened out from the overlapped BRD4 and H3K27ac increased binding sites, and Trem1 mRNA was found to be regulated by BRD4 inhibition both in vivo and in vitro. TREM1 inhibition reduced the expression of inflammatory factors induced by IL-1β in vitro. In summary, we concluded that BRD4 inhibition can protect TMJ OA-like pathological changes induced by mechanical stress and attenuate TREM1-mediated inflammatory response.
Collapse
Affiliation(s)
- Ziwei Huang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ren Yang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lu Zhang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mengjiao Zhu
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Caixia Zhang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Juan Wen
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Central Road, Nanjing, 210008, China.
| |
Collapse
|
26
|
Zhang T, Li H, Ouyang C, Cao G, Gao J, Wu J, Yang J, Yu N, Min Q, Zhang C, Zhang W. Liver kinase B1 inhibits smooth muscle calcification via high mobility group box 1. Redox Biol 2020; 38:101828. [PMID: 33338919 PMCID: PMC7750422 DOI: 10.1016/j.redox.2020.101828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification is a common pathological feature of atherosclerosis, chronic kidney disease, vascular injury, and aging. Liver kinase B1 (LKB1) plays pivotal roles in cellular processes such as apoptosis, metabolism, and cell cycle regulation. In addition, growing evidence has indicated that LKB1 functions as a tumor suppressor gene. However, its role in vascular calcification has not been reported. LKB1flox/flox mice were hybridized with SM22-CreERT2 transgenic mice and adult mice received tamoxifen to obtain smooth muscle-specific LKB1-knockout (LKB1SMKO) mice. LKB1 expression was decreased under calcifying conditions, and LKB1 overexpression had a protective effect on vascular calcification. However, high mobility group box 1 (HMGB1) overexpression partially counteracted the promotion of vascular calcification induced by LKB1 overexpression. Mechanically, LKB1 could bind to HMGB1 to promote HMGB1 degradation. Furthermore, LKB1SMKO mice showed intensified vascular calcification, which was alleviated by treatment with the HMGB1 inhibitor glycyrrhizic acid. Based on our results, LKB1 may inhibit vascular calcification via inhibiting HMGB1 expression. LKB1 expression was reduced under calcifying conditions. LKB1 overexpression had a protective effect on vascular calcification. Binding of LKB1 to HMGB1 promoted HMGB1 degradation. LKB1 may inhibit vascular calcification by inhibiting HMGB1 expression.
Collapse
Affiliation(s)
- Tianran Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongxuan Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changhan Ouyang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Guangqing Cao
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Jiliang Wu
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jianmin Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nengwang Yu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China.
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Wencheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China.
| |
Collapse
|
27
|
Hao K, Jiang W, Zhou M, Li H, Chen Y, Jiang F, Hu Q. Targeting BRD4 prevents acute gouty arthritis by regulating pyroptosis. Int J Biol Sci 2020; 16:3163-3173. [PMID: 33162822 PMCID: PMC7645998 DOI: 10.7150/ijbs.46153] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/04/2020] [Indexed: 11/05/2022] Open
Abstract
Background: Acute gouty arthritis is a common inflammatory arthropathy resulting from urate deposition in joints during persistent hyperuricemia. Nevertheless, effective therapeutic strategies are still unavailable. Here, we propose the crucial role of bromodomain-containing protein 4 (BRD4) in acute gouty arthritis. Methods: Therapeutic effect of BRD4 specific inhibitor JQ-1 on acute gouty arthritis was evaluated in vivo and in vitro. Pyroptosis was analyzed by Caspase-1/PI double staining and cleavage of gasdermin D (GSDMD). Expression of key factors involved in BRD4/NF-κB/NLRP3/GSDMD signaling pathway were measured by western blot, and colocalization of NLRP3 and ASC was detected using immunofluorescence. In addition, the role of BRD4 on monosodium uric acid crystals (MSU)-induced pyroptosis was verified in BRD4 siRNA-transfected THP-1 cells. Results: Pretreatment of JQ1 and BRD4 siRNA significantly suppressed pyroptosis and inhibited activation of p65 NF-κB signaling as well as NLRP3 inflammasome in THP-1 cells exposed to MSU. In vivo, JQ-1 administration could effectively attenuate joint swelling and synovial inflammation in rats treated by intra-articular injection of MSU. More importantly, MSU led to macrophage pyroptosis and Brd4/NF-κB/NLRP3/GSDMD signaling induction in rat synoviums, which was improved by JQ-1. Conclusions: Our study identifies the role of BRD4 in MSU-induced pyroptosis through regulating NF-κB/NLRP3/GSDMD signaling pathways, which provides a potential target for treatment of acute gouty arthritis.
Collapse
Affiliation(s)
- Kun Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenjiao Jiang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Mengze Zhou
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hanwen Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, Nanjing 211198, PR China
| | - Fei Jiang
- School of Science, China Pharmaceutical University, Nanjing 211198, PR China
| | - Qinghua Hu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, PR China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| |
Collapse
|
28
|
Meng Y, Qiu S, Sun L, Zuo J. Knockdown of exosome‑mediated lnc‑PVT1 alleviates lipopolysaccharide‑induced osteoarthritis progression by mediating the HMGB1/TLR4/NF‑κB pathway via miR‑93‑5p. Mol Med Rep 2020; 22:5313-5325. [PMID: 33174011 PMCID: PMC7646997 DOI: 10.3892/mmr.2020.11594] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis is a chronic degenerative joint disease. Long non‑coding RNA plasmacytoma variant translocation 1 (PVT1) is involved in the progression of osteoarthritis and exosomes serve a central role in intercellular communication. However, whether PVT1 can be mediated by exosomes in osteoarthritis has not been reported. Whole blood was drawn from osteoarthritis patients and healthy volunteers. Lipopolysaccharide (LPS) was used to stimulate human normal chondrocytes (C28/I2) to construct a cell damage model in vitro. Protein levels were examined via western blot analysis. eThe expression of PVT1, microRNA (miR)‑93‑5p and high mobility groupprotein B1 (HMGB1) was evaluated through reverse transcription‑quantitative PCR. Cell viability and apoptosis were determined through CCK‑8 or flow cytometric assay. Inflammatory cytokines were measured via ELISA. The relationship between PVT1 or HMGB1 and miR‑93‑5p was confirmed by dual‑luciferase reporter assay. PVT1, HMGB1 and exosomal PVT1 were upregulated while miR‑93‑5p was downregulated in osteoarthritis patient serum and LPS‑induced C28/I2 cells. Exosomes from osteoarthritis patient serum and LPS‑treated C28/I2 cells increased PVT1 expression in C28/I2 cells. PVT1 depletion reversed the decrease of viability and the increase of apoptosis, inflammation responses and collagen degradation of C28/I2 cells induced by LPS. PVT1 regulated HMGB1 expression via sponging miR‑93‑5p. miR‑93‑5p inhibition abolished PVT1 silencing‑mediated viability, apoptosis, inflammation responses and collagen degradation of LPS‑stimulated C28/I2 cells. HMGB1 increase overturned miR‑93‑5p upregulation‑mediated viability, apoptosis, inflammation responses and collagen degradation of LPS‑stimulated C28/I2 cells. Furthermore, PVT1 modulated the Toll‑like receptor 4/NF‑κB pathway through an miR‑93‑5p/HMGB1 axis. In summary, exosome‑mediated PVT1 regulated LPS‑induced osteoarthritis progression by modulating the HMGB1/TLR4/NF‑κB pathway via miR‑93‑5p, providing a new route for possible osteoarthritis treatment.
Collapse
Affiliation(s)
- Yong Meng
- Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Siqiang Qiu
- Department of Spine Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Long Sun
- Department of Orthopedics, Weihai Municipal Hospital, Weihai, Shandong 264200, P.R. China
| | - Jinliang Zuo
- Department of Spine Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
29
|
Ye A, Li W, Zhou L, Ao L, Fang W, Li Y. Targeting pyroptosis to regulate ischemic stroke injury: Molecular mechanisms and preclinical evidences. Brain Res Bull 2020; 165:146-160. [PMID: 33065175 DOI: 10.1016/j.brainresbull.2020.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Stroke is one of the leading causes of death worldwide with limited therapies. After ischemic stroke occurs, a robust sterile inflammatory response happens and lasts for days and determines neurological prognosis. Pyroptosis is an inflammatory programmed cell death characterized by cleavage of pore-forming proteins gasdermins as a result of activating caspases and inflammasomes. It has morphological characteristics of rapid plasma-membrane rupture and release of proinflammatory intracellular contents as well as cytokines. Recent researches implicate pyroptosis involvement in the pathogenesis of ischemic stroke and inhibition of pyroptosis attenuates ischemic brain injury. In this review, we discussed molecular mechanisms of pyroptosis, evidences for pyroptosis involvement in different kinds of the central nervous system cells, as well as potential inhibitors for intervention of pyroptosis. Based on the review, we hypothesize the feasibility of therapeutic strategies targeting pyroptosis in the context of ischemic stroke.
Collapse
Affiliation(s)
- Anqi Ye
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wanting Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lin Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Luyao Ao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
30
|
Neefjes M, van Caam APM, van der Kraan PM. Transcription Factors in Cartilage Homeostasis and Osteoarthritis. BIOLOGY 2020; 9:biology9090290. [PMID: 32937960 PMCID: PMC7563835 DOI: 10.3390/biology9090290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease, and it is characterized by articular cartilage loss. In part, OA is caused by aberrant anabolic and catabolic activities of the chondrocyte, the only cell type present in cartilage. These chondrocyte activities depend on the intra- and extracellular signals that the cell receives and integrates into gene expression. The key proteins for this integration are transcription factors. A large number of transcription factors exist, and a better understanding of the transcription factors activated by the various signaling pathways active during OA can help us to better understand the complex etiology of OA. In addition, establishing such a profile can help to stratify patients in different subtypes, which can be a very useful approach towards personalized therapy. In this review, we discuss crucial transcription factors for extracellular matrix metabolism, chondrocyte hypertrophy, chondrocyte senescence, and autophagy in chondrocytes. In addition, we discuss how insight into these factors can be used for treatment purposes.
Collapse
|
31
|
Liu X, Cai HX, Cao PY, Feng Y, Jiang HH, Liu L, Ke J, Long X. TLR4 contributes to the damage of cartilage and subchondral bone in discectomy-induced TMJOA mice. J Cell Mol Med 2020; 24:11489-11499. [PMID: 32914937 PMCID: PMC7576306 DOI: 10.1111/jcmm.15763] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023] Open
Abstract
The abundance of inflammatory mediators in injured joint indicates innate immune reactions activated during temporomandibular joint osteoarthritis (TMJOA) progression. Toll‐like receptor 4 (TLR4) can mediate innate immune reaction. Herein, we aimed to investigate the expression profile and effect of TLR4 in the cartilage and subchondral bone of the discectomy‐induced TMJOA mice. The expression of TLR4 and NFκB p65 in the synovium of TMJOA patients was measured by immunohistochemistry, Western blotting and RT‐PCR. H&E and Masson staining were utilized to assess the damage of cartilage and subchondral bone of the discectomy‐induced TMJOA mice. A TLR4 inhibitor, TAK‐242, was used to assess the effect of TLR4 in the cartilage and subchondral bone of the discectomy‐induced TMJOA mice by Safranin O, micro‐CT, immunofluorescence and immunohistochemistry. Western blotting was used to quantify the expression and effect of TLR4 in IL‐1β–induced chondrocytes. The expression of TLR4 and NFκB p65 was elevated in the synovium of TMJOA patients, compared with the normal synovium. TLR4 elevated in the damaged cartilage and subchondral bone of discectomy‐induced TMJOA mice, and the rate of TLR4 expressing chondrocytes positively correlated with OA score. Intraperitoneal injections of TAK‐242 ameliorate the extent of TMJOA. Furthermore, TLR4 promotes the expression of MyD88/NFκB, pro‐inflammatory and catabolic mediators in cartilage of discectomy‐induced TMJOA. Besides, TLR4 participates in the production of MyD88/NFκB, pro‐inflammatory and catabolic mediators in IL‐1β–induced chondrocytes. TLR4 contributes to the damage of cartilage and subchondral bone in discectomy‐induced TMJOA mice through activation of MyD88/NFκB and release of pro‐inflammatory and catabolic mediators.
Collapse
Affiliation(s)
- Xin Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng-Xing Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Pin-Yin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaping Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng-Hua Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Qu J, Ouyang Z, Wu W, Li G, Wang J, Lu Q, Li Z. Functions and Clinical Significance of Super-Enhancers in Bone-Related Diseases. Front Cell Dev Biol 2020; 8:534. [PMID: 32714929 PMCID: PMC7344144 DOI: 10.3389/fcell.2020.00534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Super-enhancers (SEs) are a large cluster of cis-regulatory DNA elements that contain many binding motifs, which master transcription factors and cofactors bind to with high density. SEs usually regulate the expression of genes that can control the cell identity and fate, and SEs can be used to explain the patterns of the expression of cell-specific genes. Hence, it shows great potential for application in the treatment of diseases like cancer. At present, the clinical treatments for osteosarcoma, Ewing sarcoma, and other bone-related diseases remain challenging. The poor prognosis and difficult treatment of these diseases imposes heavy economic burden on patients and society. In recent years, research on SEs with respect to bone-related diseases has attracted increasing attention. In this paper, we first review the identification and functional mechanisms of SEs. Then, we integrate the findings of the emerging studies on SEs in bone-related diseases. Finally, we summarize recent strategies for targeting SEs for the treatment of bone-related diseases. This review aims to provide comprehensive insights into the roles of SEs in bone-related diseases.
Collapse
Affiliation(s)
- Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhanbo Ouyang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenqiang Wu
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guohua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Lan Y, Yan R, Shan W, Chu J, Sun R, Wang R, Zhao Y, Wang Z, Zhang N, Yao J. Salvianic acid A alleviates chronic alcoholic liver disease by inhibiting HMGB1 translocation via down-regulating BRD4. J Cell Mol Med 2020; 24:8518-8531. [PMID: 32596881 PMCID: PMC7412690 DOI: 10.1111/jcmm.15473] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Alcoholic liver disease (ALD) is the major cause of chronic liver disease and a global health concern. ALD pathogenesis is initiated with liver steatosis, and ALD can progress to steatohepatitis, fibrosis, cirrhosis and even hepatocellular carcinoma. Salvianic acid A (SAA) is a phenolic acid component of Danshen, a Chinese herbal medicine with possible hepatoprotective properties. The purpose of this study was to investigate the effect of SAA on chronic alcoholic liver injury and its molecular mechanism. We found that SAA significantly inhibited alcohol‐induced liver injury and ameliorated ethanol‐induced hepatic inflammation. These protective effects of SAA were likely carried out through its suppression of the BRD4/HMGB1 signalling pathway, because SAA treatment largely diminished alcohol‐induced BRD4 expression and HMGB1 nuclear translocation and release. Importantly, BRD4 knockdown prevented ethanol‐induced HMGB1 release and inflammatory cytokine production in AML‐12 cells. Similarly, alcohol‐induced pro‐inflammatory cytokines were blocked by HMGB1 siRNA. Collectively, our results reveal that activation of the BRD4/HMGB1 pathway is involved in ALD pathogenesis. Therefore, manipulation of the BRD4/HMGB1 pathway through strategies such as SAA treatment holds great therapeutic potential for chronic alcoholic liver disease therapy.
Collapse
Affiliation(s)
- Yanwen Lan
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, China.,Department of Pharmacology, Dalian Medical University, Dalian, China.,Department of Pharmacy, Dalian Seventh People's Hospital, Dalian, China
| | - Ran Yan
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, China.,Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Wen Shan
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, China.,Department of Pharmacy, The Third Hospital of Dalian Medical University, Dalian, China
| | - Junyi Chu
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, China.,Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Ruimin Sun
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Ruiwen Wang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhanyu Wang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ning Zhang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| |
Collapse
|
34
|
Gacaferi H, Mimpen JY, Baldwin MJ, Snelling SJB, Nelissen RGHH, Carr AJ, Dakin SG. The potential roles of high mobility group box 1 (HMGB1) in musculoskeletal disease: A systematic review. TRANSLATIONAL SPORTS MEDICINE 2020. [DOI: 10.1002/tsm2.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hamez Gacaferi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
- Department of Orthopaedics Leiden University Medical Centre Leiden The Netherlands
| | - Jolet Y. Mimpen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Mathew J. Baldwin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Sarah J. B. Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | | | - Andrew J. Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Stephanie G. Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| |
Collapse
|
35
|
Shen S, Li B, Dai J, Wu Z, He Y, Wen L, Wang X, Hu G. BRD4 Inhibition Protects Against Acute Pancreatitis Through Restoring Impaired Autophagic Flux. Front Pharmacol 2020; 11:618. [PMID: 32457617 PMCID: PMC7227015 DOI: 10.3389/fphar.2020.00618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Impaired autophagy has been shown to play a critical role in experimental and human acute pancreatitis (AP). However, the mechanism for transcriptional regulation of autophagy remains largely unknown. In this study, we aim to explore the role of BRD4 (bromodomain-containing protein 4), a transcriptional repressor of autophagy, during AP. Changes in pancreatic BRD4 expression and the effect of BRD4 inhibition were measured in mice with AP (induced by caerulein and ethanol and palmitoleic acid) and in isolated pancreatic acinar cells stimulated with cholecystokinin (CCK). Pancreatitis severity was evaluated by serum amylase and pancreatic histopathology. The autophagic flux, the fusion of autophagosome and lysosome, and lysosomal degradation were evaluated. Sirtuin 1 (SIRT1) expression and the effect of SIRT1 inhibition were assessed. We found that pancreatic BRD4 expression was upregulated during various models of AP. BRD4 inhibition reduced CCK-stimulated pancreatic acinar cell injury and pro-inflammatory expression in vitro and protected against two models of experimental AP. Mechanistically, BRD4 inhibition restored impaired autophagic flux via promoting autophagosome-lysosome fusion and lysosomal degradation. BRD4 inhibition also upregulated SIRT1 and inhibition of SIRT1 reversed the effects of BRD4 inhibition on autophagic flux. Our data suggest that BRD4 is a potential therapeutic target for treating AP.
Collapse
Affiliation(s)
- Shuangjun Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengkai Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan He
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Jun Z, Xinmeng J, Yue L, Zhi W, Yan Z, Tieyi Y, Jiangan T. Jumonji domain containing-3 (JMJD3) inhibition attenuates IL-1β-induced chondrocytes damage in vitro and protects osteoarthritis cartilage in vivo. Inflamm Res 2020; 69:657-666. [PMID: 32394143 DOI: 10.1007/s00011-020-01356-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES This study aimed to explore the effects and relative mechanism of JMJD3 on knee osteoarthritis (OA). METHODS In this study, we first analyzed the expression of JMJD3 in OA cartilage using western blot and immunohistochemistry. In an in vitro study, the effects of GSK-J4, JMJD3 inhibitor, on ATDC-5 chondrocytes were evaluated by CCK-8 assay. Real-time PCR and western blot were used to examine the inhibitory effect of GSK-J4 on the inflammation and ECM degradation of chondrocytes. NF-κB p65 phosphorylation and nuclear translocation were measured by western blot and immunofluorescence. In the animal study, twenty mice were randomized into four experimental groups: sham group, DMM-induced OA + DMSO group, OA + low-dose GSK-J4 group, and OA + high-dose GSK-J4 group. After the treatment, hematoxylin-eosin and safranin O/fast green staining were used to evaluate cartilage degradation of knee joint, with OARSI scores for quantitative assessment of cartilage damage. RESULTS Our results revealed that JMJD3 was overexpressed in OA cartilage and GSK-J4 could suppress the IL-1β-induced production of pro-inflammatory cytokines and catabolic enzymes, including IL-6, IL-8, MMP-9 and ADAMTS-5. Consistent with these findings, GSK-J4 could inhibit IL-1β-induced degradation of collagen II and aggrecan. Mechanistically, GSK-J4 dramatically suppressed IL-1β-stimulated NF-κB signal pathway activation. In vivo, GSK-J4 prevented cartilage damage in mouse DMM-induced OA model. CONCLUSIONS This study elucidates the important role of JMJD3 in cartilage degeneration in OA, and our results indicate that JDJM3 may become a novel therapeutic target in OA therapy.
Collapse
Affiliation(s)
- Zhou Jun
- Department of Orthopaedics, Gongli Hospital, The Second Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Jin Xinmeng
- Department of Orthopaedics, Gongli Hospital, The Second Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Liu Yue
- Department of Orthopaedics, Gongli Hospital, The Second Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Wang Zhi
- Department of Orthopaedics, Gongli Hospital, The Second Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Zhang Yan
- Department of Orthopaedics, Gongli Hospital, The Second Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Yang Tieyi
- Department of Orthopaedics, Gongli Hospital, The Second Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Tang Jiangan
- Department of Orthopaedics, Gongli Hospital, The Second Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China.
| |
Collapse
|
37
|
Cheng WX, Zhong S, Meng XB, Zheng NY, Zhang P, Wang Y, Qin L, Wang XL. Cinnamaldehyde Inhibits Inflammation of Human Synoviocyte Cells Through Regulation of Jak/Stat Pathway and Ameliorates Collagen-Induced Arthritis in Rats. J Pharmacol Exp Ther 2020; 373:302-310. [PMID: 32029577 DOI: 10.1124/jpet.119.262907] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/03/2020] [Indexed: 08/19/2024] Open
Abstract
Cinnamaldehyde (Cin), a bioactive cinnamon essential oil from traditional Chinese medicine herb Cinnamomum cassia, has been reported to have multipharmacological activities including anti-inflammation. However, its role and molecular mechanism of anti-inflammatory activity in musculoskeletal tissues remains unclear. Here, we first investigated the effects and molecular mechanisms of Cin in human synoviocyte cells. Then in vivo therapeutic effect of Cin on collagen-induced arthritis (CIA) also studied. Cell Counting Kit CCK-8 assay was performed to evaluate the cell cytotoxicity. Proinflammatory cytokine expression was evaluated using quantitative polymerase chain reaction and ELISA. Protein expression was measured by western blotting. The in vivo effect of Cin (75 mg/kg per day) was evaluated in rats with CIA by gavage administration. Disease progression was assessed by clinical scoring, radiographic, and histologic examinations. Cin significantly inhibited interleukin (IL)-1β-induced IL-6, IL-8, and tumor necrosis factor-α release from human synoviocyte cells. The molecular analysis revealed that Cin impaired IL-6-induced activation of Janus kinase 2 (JAK2), signal transducer and activator of transcription 1 (STAT1), and STAT3 signaling pathway by inhibiting the phosphorylation of JAK2, STAT1, and STAT3, without affecting NF-κB pathway. Cin reduced collagen-induced swollen paw volume of arthritic rats. The anti-inflammation effects of Cin were associated with decreased severity of arthritis, joint swelling, and reduced bone erosion and destruction. Furthermore, serum IL-6 level was decreased when Cin administered therapeutically to CIA rats. Cin suppresses IL-1β-induced inflammation in synoviocytes through the JAK/STAT pathway and alleviated collagen-induced arthritis in rats. These data indicated that Cin might be a potential traditional Chinese medicine-derived, disease-modifying, antirheumatic herbal drug. SIGNIFICANCE STATEMENT: In this study, we found that cinnamaldehyde (Cin) suppressed proinflammatory cytokines secretion in rheumatology arthritis synoviocyte cells by Janus kinase/signal transducer and activator of transcription pathway. The in vivo results showed that Cin ameliorated collagen-induced arthritis in rats. These findings indicate that Cin is a potential traditional Chinese medicine-derived, disease-modifying, antirheumatic herbal drug.
Collapse
Affiliation(s)
- Wen-Xiang Cheng
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China (W.-X.C., S.Z., X.-B.M., P.Z., L.Q., X.-L.W.); University of Chinese Academy of Sciences, Beijing, China (W.-X.C., P.Z., X.-L.W.); Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China (N.-Y.Z., L.Q., X.-L.W.); and Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China (S.Z., Y.W.)
| | - Shan Zhong
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China (W.-X.C., S.Z., X.-B.M., P.Z., L.Q., X.-L.W.); University of Chinese Academy of Sciences, Beijing, China (W.-X.C., P.Z., X.-L.W.); Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China (N.-Y.Z., L.Q., X.-L.W.); and Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China (S.Z., Y.W.)
| | - Xiang-Bo Meng
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China (W.-X.C., S.Z., X.-B.M., P.Z., L.Q., X.-L.W.); University of Chinese Academy of Sciences, Beijing, China (W.-X.C., P.Z., X.-L.W.); Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China (N.-Y.Z., L.Q., X.-L.W.); and Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China (S.Z., Y.W.)
| | - Nian-Ye Zheng
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China (W.-X.C., S.Z., X.-B.M., P.Z., L.Q., X.-L.W.); University of Chinese Academy of Sciences, Beijing, China (W.-X.C., P.Z., X.-L.W.); Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China (N.-Y.Z., L.Q., X.-L.W.); and Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China (S.Z., Y.W.)
| | - Peng Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China (W.-X.C., S.Z., X.-B.M., P.Z., L.Q., X.-L.W.); University of Chinese Academy of Sciences, Beijing, China (W.-X.C., P.Z., X.-L.W.); Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China (N.-Y.Z., L.Q., X.-L.W.); and Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China (S.Z., Y.W.)
| | - Yun Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China (W.-X.C., S.Z., X.-B.M., P.Z., L.Q., X.-L.W.); University of Chinese Academy of Sciences, Beijing, China (W.-X.C., P.Z., X.-L.W.); Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China (N.-Y.Z., L.Q., X.-L.W.); and Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China (S.Z., Y.W.)
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China (W.-X.C., S.Z., X.-B.M., P.Z., L.Q., X.-L.W.); University of Chinese Academy of Sciences, Beijing, China (W.-X.C., P.Z., X.-L.W.); Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China (N.-Y.Z., L.Q., X.-L.W.); and Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China (S.Z., Y.W.)
| | - Xin-Luan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China (W.-X.C., S.Z., X.-B.M., P.Z., L.Q., X.-L.W.); University of Chinese Academy of Sciences, Beijing, China (W.-X.C., P.Z., X.-L.W.); Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China (N.-Y.Z., L.Q., X.-L.W.); and Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China (S.Z., Y.W.)
| |
Collapse
|
38
|
The Role of Inflammation in the Pathogenesis of Osteoarthritis. Mediators Inflamm 2020; 2020:8293921. [PMID: 32189997 PMCID: PMC7072120 DOI: 10.1155/2020/8293921] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 01/15/2023] Open
Abstract
A joint is the point of connection between two bones in our body. Inflammation of the joint leads to several diseases, including osteoarthritis, which is the concern of this review. Osteoarthritis is a common chronic debilitating joint disease mainly affecting the elderly. Several studies showed that inflammation triggered by factors like biomechanical stress is involved in the development of osteoarthritis. This stimulates the release of early-stage inflammatory cytokines like interleukin-1 beta (IL-1β), which in turn induces the activation of signaling pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), and mitogen-activated protein kinase (MAPK). These events, in turn, generate more inflammatory molecules. Subsequently, collagenase like matrix metalloproteinases-13 (MMP-13) will degrade the extracellular matrix. As a result, anatomical and physiological functions of the joint are altered. This review is aimed at summarizing the previous studies highlighting the involvement of inflammation in the pathogenesis of osteoarthritis.
Collapse
|
39
|
Hong J, Li S, Markova DZ, Liang A, Kepler CK, Huang Y, Zhou J, Yan J, Chen W, Huang D, Xu K, Ye W. Bromodomain-containing protein 4 inhibition alleviates matrix degradation by enhancing autophagy and suppressing NLRP3 inflammasome activity in NP cells. J Cell Physiol 2020; 235:5736-5749. [PMID: 31975410 DOI: 10.1002/jcp.29508] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Abstract
An imbalance between matrix synthesis and degradation is the hallmark of intervertebral disc degeneration while inflammatory cytokines contribute to the imbalance. Bromodomain and extra-terminal domain (BET) family is associated with the pathogenesis of inflammation, and inhibition of BRD4, a vital member of BET family, plays an anti-inflammatory role in many diseases. However, it remains elusive whether BRD4 plays a similar role in nucleus pulposus (NP) cells and participates in the pathogenesis of intervertebral disc degeneration. The present study aims to observe whether BRD4 inhibition regulates matrix metabolism by controlling autophagy and NLRP3 inflammasome activity. Besides, the relationship was investigated among nuclear factor κB (NF-κB) signaling, autophagy and NLRP3 inflammasome in NP cells. Here, real-time polymerase chain reaction, western blot analysis and adenoviral GFP-LC3 vector transduction in vitro were used, and it was revealed that BRD4 inhibition alleviated the matrix degradation and increased autophagy in the presence or absence of tumor necrosis factor α. Moreover, p65 knockdown or treatment with JQ1 and Bay11-7082 demonstrated that BRD4 inhibition attenuated NLRP3 inflammasome activity through NF-κB signaling, while autophagy inhibition by bafilomycin A1 promoted matrix degradation and NLRP3 inflammasome activity in NP cells. In addition, analysis of BRD4 messenger RNA expression in human NP tissues further verified the destructive function of BRD4. Simply, BRD4 inhibition alleviates matrix degradation by enhancing autophagy and suppressing NLRP3 inflammasome activity through NF-κB signaling in NP cells.
Collapse
Affiliation(s)
- Junmin Hong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuangxing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dessislava Z Markova
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Anjing Liang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Christopher K Kepler
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yingjie Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Orthopedics, The fifth affiliated hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Zhou
- Department of Breast Cancer Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiansen Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weijian Chen
- Department of Orthopedics, The fifth affiliated hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongsheng Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kang Xu
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Experimental Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Shu Z, Miao X, Tang T, Zhan P, Zeng L, Jiang Y. The GSK‑3β/β‑catenin signaling pathway is involved in HMGB1‑induced chondrocyte apoptosis and cartilage matrix degradation. Int J Mol Med 2020; 45:769-778. [PMID: 31922219 PMCID: PMC7015138 DOI: 10.3892/ijmm.2020.4460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/10/2019] [Indexed: 01/06/2023] Open
Abstract
Knee osteoarthritis (KOA) is a common joint disease with a high incidence rate among middle‑aged and elderly individuals. However, the precise underlying pathological mechanisms and effective treatment of this disease remain to be determined. To explore the effect of high mobility group box 1 (HMGB1) on chondrocyte apoptosis and catabolism, the ATDC5 cell line was cultured as an in vitro model for cartilage research. Cultured cells were treated with recombinant HMGB1 at different concentrations. Hoechst staining and flow cytometry demonstrated that HMGB1 administration significantly induced apoptosis of ATDC5 cells, which was the same as the effect of interleukin‑1β treatment. HMGB1 also induced cartilage matrix degradation, as shown by Alcian blue staining. Moreover, HMGB1 markedly upregulated the expression levels of matrix metallopeptidases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), while genetic silencing of HMGB1 significantly suppressed their expressions. The glycogen synthase kinase (GSK)‑3β/β‑catenin pathway was activated upon HMGB1 treatment. Pharmacological inhibitors or HMGB1 knockdown inactivated the GSK‑3β/β‑catenin pathway, inhibited the expression levels of downstream genes, including MMPs and ADAMTS, and attenuated the apoptosis of ATDC5 cells. Furthermore, the data demonstrated that HMGB1 promoted chondrocyte dysfunction via the regulation of estrogen sulfotransferase and Runt‑related transcription factor 2. Thus, the findings of the present study demonstrated that HMGB1 induces chondrocyte cell apoptosis via activation of GSK‑3β/β‑catenin and the subsequent expression of multiple targeted genes.
Collapse
Affiliation(s)
- Zhiyong Shu
- Department of Orthopedics, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Xiaogang Miao
- Department of Orthopedics, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Tainhua Tang
- Department of Orthopedics, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Peng Zhan
- Department of Orthopedics, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Langqing Zeng
- Department of Orthopedics, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Yuwen Jiang
- Department of Orthopedics, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
41
|
Jiang F, Hu Q, Zhang Z, Li H, Li H, Zhang D, Li H, Ma Y, Xu J, Chen H, Cui Y, Zhi Y, Zhang Y, Xu J, Zhu J, Lu T, Chen Y. Discovery of Benzo[cd]indol-2(1H)-ones and Pyrrolo[4,3,2-de]quinolin-2(1H)-ones as Bromodomain and Extra-Terminal Domain (BET) Inhibitors with Selectivity for the First Bromodomain with Potential High Efficiency against Acute Gouty Arthritis. J Med Chem 2019; 62:11080-11107. [DOI: 10.1021/acs.jmedchem.9b01010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fei Jiang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Qinghua Hu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Zhimin Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Hongmei Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Huili Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Dewei Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Hanwen Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yu Ma
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Jingjing Xu
- School of Medicine and Life Sciences, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haifang Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yong Cui
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yanle Zhi
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yanmin Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Junyu Xu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Jiapeng Zhu
- School of Medicine and Life Sciences, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| |
Collapse
|
42
|
Zhou Y, Gu Y, Liu J. BRD4 suppression alleviates cerebral ischemia-induced brain injury by blocking glial activation via the inhibition of inflammatory response and pyroptosis. Biochem Biophys Res Commun 2019; 519:481-488. [DOI: 10.1016/j.bbrc.2019.07.097] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022]
|
43
|
Xue S, Shao Q, Zhu LB, Jiang YF, Wang C, Xue B, Lu HM, Sang WL, Ma JZ. LDC000067 suppresses RANKL-induced osteoclastogenesis in vitro and prevents LPS-induced osteolysis in vivo. Int Immunopharmacol 2019; 75:105826. [DOI: 10.1016/j.intimp.2019.105826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022]
|
44
|
Chen J, Wu X. MicroRNA-103 contributes to osteoarthritis development by targeting Sox6. Biomed Pharmacother 2019; 118:109186. [DOI: 10.1016/j.biopha.2019.109186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 01/13/2023] Open
|
45
|
CDK9 attenuation exerts protective effects on catabolism and hypertrophy in chondrocytes and ameliorates osteoarthritis development. Biochem Biophys Res Commun 2019; 517:132-139. [DOI: 10.1016/j.bbrc.2019.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
|
46
|
Wang J, Hu J, Chen X, Huang C, Lin J, Shao Z, Gu M, Wu Y, Tian N, Gao W, Zhou Y, Wang X, Zhang X. BRD4 inhibition regulates MAPK, NF-κB signals, and autophagy to suppress MMP-13 expression in diabetic intervertebral disc degeneration. FASEB J 2019; 33:11555-11566. [PMID: 31331201 DOI: 10.1096/fj.201900703r] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus may lead to intervertebral disc degeneration (IVDD). Matrix metalloproteinase-13 (MMP-13) is one of the major catabolic factors in extracellular matrix (ECM) metabolism of nucleus pulposus cells (NPCs) and contributes to diabetic IVDD. Bromodomain-containing protein 4 (BRD4) is a member of the bromodomain and extraterminal protein family and is implicated in chronic inflammation. Here, we report that the expression of BRD4 and MMP-13 was elevated in diabetic nucleus pulposus tissues as well as in advanced glycation end products (AGEs)-treated NPCs; also, the regulatory effect of BRD4 on MMP-13 was studied. We found that MMP-13 was regulated by MAPK and NF-κB signaling as well as autophagy in AGEs-treated NPCs. Next, we explored the role of BRD4 in regulation of MAPK, NF-κB signaling, and autophagy. The results showed that BRD4 is the upstream regulator of all of these 3 factors, and inhibition of BRD4 may suppress MAPK and NF-κB signaling while activating autophagy in AGEs-treated NPCs. Finally, we demonstrated that BRD4 inhibition may suppress MMP-13 expression in diabetic NPCs in vitro as well as in vivo; meanwhile, it may preserve ECM in diabetic rats. Our study demonstrates that inhibition of BRD4 may suppress MAPK and NF-κB signaling and activate autophagy to suppress MMP-13 expression in diabetic IVDD, and diabetic IVDD may be compromised by BRD4 inhibitors.-Wang, J., Hu, J., Chen, X., Huang, C., Lin, J., Shao, Z., Gu, M., Wu, Y., Tian, N., Gao, W., Zhou, Y., Wang, X., Zhang, X. BRD4 inhibition regulates MAPK, NF-κB signals, and autophagy to suppress MMP-13 expression in diabetic intervertebral disc degeneration.
Collapse
Affiliation(s)
- Jianle Wang
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jianing Hu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ximiao Chen
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Affiliated Hospital of Guilin Medical College, Guilin, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jialiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Mingbao Gu
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
| |
Collapse
|
47
|
Wijnen AJ, Westendorf JJ. Epigenetics as a New Frontier in Orthopedic Regenerative Medicine and Oncology. J Orthop Res 2019; 37:1465-1474. [PMID: 30977555 PMCID: PMC6588446 DOI: 10.1002/jor.24305] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 02/04/2023]
Abstract
Skeletal regenerative medicine aims to repair or regenerate skeletal tissues using pharmacotherapies, cell-based treatments, and/or surgical interventions. The field is guided by biological principles active during development, wound healing, aging, and carcinogenesis. Skeletal development and tissue maintenance in adults represent highly intricate biological processes that require continuous adjustments in the expression of cell type-specific genes that generate, remodel, and repair the skeletal extracellular matrix. Errors in these processes can facilitate musculoskeletal disease including cancers or injury. The fundamental molecular mechanisms by which cell type-specific patterns in gene expression are established and retained during successive mitotic divisions require epigenetic control, which we review here. We focus on epigenetic regulatory proteins that control the mammalian epigenome at the level of chromatin with emphasis on proteins that are amenable to drug intervention to mitigate skeletal tissue degeneration (e.g., osteoarthritis and osteoporosis). We highlight recent findings on a number of druggable epigenetic regulators, including DNA methyltransferases (e.g., DNMT1, DNMT3A, and DNMT3B) and hydroxylases (e.g., TET1, TET2, and TET3), histone methyltransferases (e.g., EZH1, EZH2, and DOT1L) as well as histone deacetylases (e.g., HDAC3, HDAC4, and HDAC7) and histone acetyl readers (e.g., BRD4) in relation to the development of bone or cartilage regenerative drug therapies. We also review how histone mutations lead to epigenomic catastrophe and cause musculoskeletal tumors. The combined body of molecular and genetic studies focusing on epigenetic regulators indicates that these proteins are critical for normal skeletogenesis and viable candidate drug targets for short-term local pharmacological strategies to mitigate musculoskeletal tissue degeneration. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1465-1474, 2019.
Collapse
Affiliation(s)
- Andre J. Wijnen
- Department of Orthopedic SurgeryMayo Clinic200 First Street SW Rochester Minnesota
| | | |
Collapse
|
48
|
Sánchez-Ventura J, Amo-Aparicio J, Navarro X, Penas C. BET protein inhibition regulates cytokine production and promotes neuroprotection after spinal cord injury. J Neuroinflammation 2019; 16:124. [PMID: 31186006 PMCID: PMC6560758 DOI: 10.1186/s12974-019-1511-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) usually causes a devastating lifelong disability for patients. After a traumatic lesion, disruption of the blood-spinal cord barrier induces the infiltration of macrophages into the lesion site and the activation of resident glial cells, which release cytokines and chemokines. These events result in a persistent inflammation, which has both detrimental and beneficial effects, but eventually limits functional recovery and contributes to the appearance of neuropathic pain. Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that regulate the expression of inflammatory genes by interacting with acetylated lysine residues. While BET inhibitors are a promising therapeutic strategy for cancer, little is known about their implication after SCI. Thus, the current study was aimed to investigate the anti-inflammatory role of BET inhibitors in this pathologic condition. METHODS We evaluated the effectiveness of the BET inhibitor JQ1 to modify macrophage reactivity in vitro and to modulate inflammation in a SCI mice model. We analyzed the effects of BET inhibition in pro-inflammatory and anti-inflammatory cytokine production in vitro and in vivo. We determined the effectiveness of BET inhibition in tissue sparing, inflammation, neuronal protection, and behavioral outcome after SCI. RESULTS We have found that the BET inhibitor JQ1 reduced the levels of pro-inflammatory mediators and increased the expression of anti-inflammatory cytokines. A prolonged treatment with JQ1 also decreased reactivity of microglia/macrophages, enhanced neuroprotection and functional recovery, and acutely reduced neuropathic pain after SCI. CONCLUSIONS BET protein inhibition is an effective treatment to regulate cytokine production and promote neuroprotection after SCI. These novel results demonstrate for the first time that targeting BET proteins is an encouraging approach for SCI repair and a potential strategy to treat other inflammatory pathologies.
Collapse
Affiliation(s)
- Judith Sánchez-Ventura
- Institut of Neurosciences, Dept Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jesús Amo-Aparicio
- Institut of Neurosciences, Dept Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Xavier Navarro
- Institut of Neurosciences, Dept Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Clara Penas
- Institut of Neurosciences, Dept Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
49
|
Wang J, Chen J, Jin H, Lin D, Chen Y, Chen X, Wang B, Hu S, Wu Y, Wu Y, Zhou Y, Tian N, Gao W, Wang X, Zhang X. BRD4 inhibition attenuates inflammatory response in microglia and facilitates recovery after spinal cord injury in rats. J Cell Mol Med 2019; 23:3214-3223. [PMID: 30809946 PMCID: PMC6484335 DOI: 10.1111/jcmm.14196] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/12/2018] [Accepted: 01/05/2019] [Indexed: 12/13/2022] Open
Abstract
The pathophysiology of spinal cord injury (SCI) involves primary injury and secondary injury. For the irreversibility of primary injury, therapies of SCI mainly focus on secondary injury, whereas inflammation is considered to be a major target for secondary injury; however the regulation of inflammation in SCI is unclear and targeted therapies are still lacking. In this study, we found that the expression of BRD4 was correlated with pro‐inflammatory cytokines after SCI in rats; in vitro study in microglia showed that BRD4 inhibition either by lentivirus or JQ1 may both suppress the MAPK and NF‐κB signalling pathways, which are the two major signalling pathways involved in inflammatory response in microglia. BRD4 inhibition by JQ1 not only blocked microglial M1 polarization, but also repressed the level of pro‐inflammatory cytokines in microglia in vitro and in vivo. Furthermore, BRD4 inhibition by JQ1 can improve functional recovery and structural disorder as well as reduce neuron loss in SCI rats. Overall, this study illustrates that microglial BRD4 level is increased after SCI and BRD4 inhibition is able to suppress M1 polarization and pro‐inflammatory cytokine production in microglia which ultimately promotes functional recovery after SCI.
Collapse
Affiliation(s)
- Jianle Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dongdong Lin
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ximiao Chen
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi, China
| | - Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sunli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Chinese Orthopaedic Regenerative Medicine Society, Wenzhou, Zhejiang, China
| |
Collapse
|
50
|
van Meurs JB, Boer CG, Lopez-Delgado L, Riancho JA. Role of Epigenomics in Bone and Cartilage Disease. J Bone Miner Res 2019; 34:215-230. [PMID: 30715766 DOI: 10.1002/jbmr.3662] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
Phenotypic variation in skeletal traits and diseases is the product of genetic and environmental factors. Epigenetic mechanisms include information-containing factors, other than DNA sequence, that cause stable changes in gene expression and are maintained during cell divisions. They represent a link between environmental influences, genome features, and the resulting phenotype. The main epigenetic factors are DNA methylation, posttranslational changes of histones, and higher-order chromatin structure. Sometimes non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are also included in the broad term of epigenetic factors. There is rapidly expanding experimental evidence for a role of epigenetic factors in the differentiation of bone cells and the pathogenesis of skeletal disorders, such as osteoporosis and osteoarthritis. However, different from genetic factors, epigenetic signatures are cell- and tissue-specific and can change with time. Thus, elucidating their role has particular difficulties, especially in human studies. Nevertheless, epigenomewide association studies are beginning to disclose some disease-specific patterns that help to understand skeletal cell biology and may lead to development of new epigenetic-based biomarkers, as well as new drug targets useful for treating diffuse and localized disorders. Here we provide an overview and update of recent advances on the role of epigenomics in bone and cartilage diseases. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Laura Lopez-Delgado
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Jose A Riancho
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| |
Collapse
|