1
|
Cui Y, Yu L, Cong W, Jiang S, Qiu X, Wei C, Zheng G, Mao J, Liu R, Patzak A, Persson PB, Chen J, Zhao L, Lai EY. Irisin preserves mitochondrial integrity and function in tubular epithelial cells after ischemia-reperfusion-induced acute kidney injury. Acta Physiol (Oxf) 2024; 240:e14211. [PMID: 39073055 DOI: 10.1111/apha.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
AIMS A myokine secreted by skeletal muscles during exercise called irisin mitigates ischemia-reperfusion (I/R) injury in epithelial cells of various organs by limiting damage to mitochondria. We test whether irisin may preserve the mitochondrial integrity and function in renal tubular epithelial cells and protect against ischemia-reperfusion-induced acute kidney injury (AKI). METHODS We correlated serum irisin levels with serum creatinine and BUN levels from both AKI patients and healthy individuals. In mice with irisin administration, various renal injury markers such as serum creatinine, BUN, kidney injury molecule-1 (Kim-1), and neutrophil gelatinase-associated lipocalin (NGAL), and renal histopathology were assessed after I/R. To identify the potential mechanisms of the protective of irisin's protective effect, we perfused proximal tubules under confocal microscopy and analyzed kidney tissues by qPCR, western blot, and immunohistochemistry. RESULTS Serum irisin correlated inversely with serum creatinine and BUN levels were significantly lower in AKI patients than in healthy subjects. Administering irisin to mice after I/R decreased biomarker levels for AKI including serum creatinine, BUN, Kim-1, NAGL and lessened histological changes. In kidney tissues of mice, irisin upregulated the mitochondrial autophagy marker protein microtubule-associated protein 1 light chain 3 (LC3), the mitochondrial autophagy pathway-related proteins PTEN-induced putative kinase 1 (PINK1) and Parkinson's disease 2 parkin (PARK2) and downregulated the reactive substrate protein sequestosome 1 (P62) and mitochondrial membrane proteins translocase of outer mitochondrial membrane 20 (TOM20) and translocase of inner mitochondrial membrane 23 (TIM23). CONCLUSION Irisin protects against renal I/R injury, which may involve the preservation of mitochondrial integrity and function.
Collapse
Affiliation(s)
- Yu Cui
- Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Lu Yu
- Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Wenqi Cong
- Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Shan Jiang
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyu Qiu
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunchun Wei
- Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Gui Zheng
- Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianhua Mao
- Provincial Key Laboratory of Neonatal Diseases, Department of Nephrology, National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Andreas Patzak
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pontus B Persson
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jianghua Chen
- Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Liang Zhao
- Provincial Key Laboratory of Neonatal Diseases, Department of Nephrology, National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - En Yin Lai
- Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Zhang T, Yi Q, Huang W, Feng J, Liu H. New insights into the roles of Irisin in diabetic cardiomyopathy and vascular diseases. Biomed Pharmacother 2024; 175:116631. [PMID: 38663105 DOI: 10.1016/j.biopha.2024.116631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Diabetes mellitus (DM) is a prevalent chronic disease in the 21st century due to increased lifespan and unhealthy lifestyle choices. Extensive research indicates that exercise can play a significant role in regulating systemic metabolism by improving energy metabolism and mitigating various metabolic disorders, including DM. Irisin, a well-known exerkine, was initially reported to enhance energy expenditure by indicating the browning of white adipose tissue (WAT) through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) signaling. In this review, we summarize the potential mechanisms underlying the beneficial effects of Irisin on glucose dysmetabolism, including reducing gluconeogenesis, enhancing insulin energy expenditure, and promoting glycogenesis. Additionally, we highlight Irisin's potential to improve diabetic vascular diseases by stimulating nitric oxide (NO) production, reducing oxidative and nitrosative stress, curbing inflammation, and attenuating endothelial cell aging. Furthermore, we discuss the potential of Irisin to improve diabetic cardiomyopathy by preventing cardiomyocyte loss and reducing myocardial hypertrophy and fibrosis. Given Irisin's promising functions in managing diabetic cardiomyopathy and vascular diseases, targeting Irisin for therapeutic purposes could be a fruitful avenue for future research and clinical interventions.
Collapse
Affiliation(s)
- Tiandong Zhang
- Collage of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wenhua Huang
- Collage of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China; Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; The Third People's Hospital of Longmatan District, Luzhou, Sichuan 646000, China.
| |
Collapse
|
3
|
Picciotto D, Macciò L, Verzola D, Baciga F, Momentè C, Russo E, Viazzi F, Battaglia Y, Esposito P. Pathophysiology of Physical Exercise in Kidney Patients: Unveiling New Players - The Role of Myokines. Kidney Blood Press Res 2024; 49:457-471. [PMID: 38815556 DOI: 10.1159/000539489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a progressive systemic condition characterized by numerous complications. Among these, alterations in skeletal muscle physiology, such as sarcopenia, are particularly significant, as they are associated with poor outcomes and reduced quality of life. SUMMARY Various interventions, including pharmacological approaches and lifestyle modifications have been investigated to slow CKD progression and prevent or treat its complications. Physical exercise, in particular, has emerged as a promising intervention with multiple beneficial effects. These include improvements in physical functioning, increased muscle mass, modulation of metabolic abnormalities, and reduced cardiovascular risk. However, the pathophysiology of physical exercise in patients with kidney disease is complex and remains only partially understood. A crucial advancement in understanding this phenomenon has been the identification of myokines - molecules expressed and released by skeletal muscle in response to physical activity. These myokines can exert both paracrine and systemic effects, influencing not only skeletal muscle physiology but also other processes such as energy metabolism and lipid regulation. KEY MESSAGES The interplay among skeletal muscle, physical activity, and myokines may act as a pivotal regulator in various physiological processes, including aging, as well as in pathological conditions like cachexia and sarcopenia, frequently observed in CKD patients at different stages, including patients on dialysis. Despite the potential importance of this relationship, only a limited number of studies have explored the relationship between exercise and myokine, and the effect of this interaction on experimental models or individuals with kidney disease. In the following sections, we review and discuss this topic.
Collapse
Affiliation(s)
- Daniela Picciotto
- Nephrology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Macciò
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genoa, Italy
| | - Daniela Verzola
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genoa, Italy
| | - Federica Baciga
- Department of Medicine, University of Verona, Verona, Italy
- Nephrology and Dialysis Unit, Pederzoli Hospital, Peschiera del Garda, Italy
| | | | - Elisa Russo
- Nephrology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genoa, Italy
| | - Francesca Viazzi
- Nephrology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genoa, Italy
| | - Yuri Battaglia
- Department of Medicine, University of Verona, Verona, Italy
- Nephrology and Dialysis Unit, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Pasquale Esposito
- Nephrology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genoa, Italy
| |
Collapse
|
4
|
Li X, Lindholm B. The role of irisin in kidney diseases. Clin Chim Acta 2024; 554:117756. [PMID: 38218331 DOI: 10.1016/j.cca.2023.117756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/15/2024]
Abstract
Irisin is a hormone that is produced mainly by skeletal muscles in response to exercise. It has been found to have a close correlation with obesity and diabetes mellitus for its energy expenditure and metabolic properties. Recent research has revealed that irisin also possesses anti-inflammatory, anti-oxidative and anti-apoptotic properties, which make it associated with major chronic diseases, such as chronic kidney disease (CKD), liver diseases, osteoporosis, atherosclerosis and Alzheimer s disease. The identification of irisin has not only opened up new possibilities for monitoring metabolic and non-metabolic diseases but also presents a promising therapeutic target due to its multiple biological functions. Studies have shown that circulating irisin levels are lower in CKD patients than in non-CKD patients and decrease with increasing CKD stage. Furthermore, irisin also plays a role in many CKD-related complications like protein energy wasting (PEW), cardiovascular disease (CVD) and chronic kidney disease-mineral and bone disorder (CKD-MBD). In this review, we present the current knowledge on the role of irisin in kidney diseases and their complications.
Collapse
Affiliation(s)
- Xiejia Li
- Department of Nephrology, The 2nd Xiangya Hospital, Central South University, Changsha, Hunan, China; Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Bengt Lindholm
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Jeong K, Je J, Dusabimana T, Kim H, Park SW. Early Growth Response 1 Contributes to Renal IR Injury by Inducing Proximal Tubular Cell Apoptosis. Int J Mol Sci 2023; 24:14295. [PMID: 37762598 PMCID: PMC10532368 DOI: 10.3390/ijms241814295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Renal ischemia-reperfusion (IR) causes acute kidney injury due to oxidative stress, tubular inflammation, and apoptosis. Early growth response 1 (Egr-1) is a transcription factor belonging to the immediate early gene family and is known to regulate cell proliferation, differentiation, and survival. Egr-1 expression is induced during renal IR; however, its pathogenic role and underlying mechanisms remain elusive. Here, we investigated the function of Egr-1 during renal IR using C57BL/6 mice and cultured renal proximal tubular HK-2 cells. Egr-1 expression increased immediately, 1-4 h after IR, whereas plasma creatinine and oxidative stress increased progressively over 24 h after IR. Egr-1 overexpression showed greater increases in plasma creatinine, renal tubular injury, and apoptosis than in the control after IR. Egr-1 overexpression also showed significant neutrophil infiltration and increased pro-inflammatory cytokines (TNF-α, MIP-2, and IL-6) after IR. Consistently, proximal tubular HK-2 cells showed immediate induction of Egr-1 at 1 h after hypoxia and reoxygenation, where its downstream target, p53, was also increased. Interestingly, Egr-1 overexpression enhanced p53 levels and tubular apoptosis, while the knockdown of Egr-1 reduced p53 levels and tubular apoptosis after H2O2 treatment. Egr-1 was recruited to the p53 promoter, which activates p53 transcription, and Egr-1 induction occurred through Erk/JNK signaling kinases, as the specific inhibitors blocked its expression. Taken together, these results show that Egr-1 is upregulated in proximal tubular cells and contributes to renal IR injury by inducing tubular apoptosis, mediated by p53 transcriptional activation. Thus, Egr-1 could be a potential therapeutic target for renal IR injury.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
| | - Jihyun Je
- Department of Pharmacology, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (J.J.); (T.D.)
- Antiaging Bio Cell Factory-Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (J.J.); (T.D.)
- Antiaging Bio Cell Factory-Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (J.J.); (T.D.)
- Antiaging Bio Cell Factory-Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (J.J.); (T.D.)
- Antiaging Bio Cell Factory-Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| |
Collapse
|
6
|
Guan C, Li C, Shen X, Yang C, Liu Z, Zhang N, Xu L, Zhao L, Zhou B, Man X, Luo C, Luan H, Che L, Wang Y, Xu Y. Hexarelin alleviates apoptosis on ischemic acute kidney injury via MDM2/p53 pathway. Eur J Med Res 2023; 28:344. [PMID: 37710348 PMCID: PMC10500723 DOI: 10.1186/s40001-023-01318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION Hexarelin exhibits significant protection against organ injury in models of ischemia/reperfusion (I/R)-induced injury (IRI). Nevertheless, the impact of Hexarelin on acute kidney injury (AKI) and its underlying mechanism remains unclear. In this study, we investigated the therapeutic potential of Hexarelin in I/R-induced AKI and elucidated its molecular mechanisms. METHODS We assessed the protective effects of Hexarelin through both in vivo and in vitro experiments. In the I/R-induced AKI model, rats were pretreated with Hexarelin at 100 μg/kg/d for 7 days before being sacrificed 24 h post-IRI. Subsequently, kidney function, histology, and apoptosis were assessed. In vitro, hypoxia/reoxygenation (H/R)-induced HK-2 cell model was used to investigate the impact of Hexarelin on apoptosis in HK-2 cells. Then, we employed molecular docking using a pharmmapper server and autodock software to identify potential target proteins of Hexarelin. RESULTS In this study, rats subjected to I/R developed severe kidney injury characterized by tubular necrosis, tubular dilatation, increased serum creatinine levels, and cell apoptosis. However, pretreatment with Hexarelin exhibited a protective effect by mitigating post-ischemic kidney pathological changes, improving renal function, and inhibiting apoptosis. This was achieved through the downregulation of conventional apoptosis-related genes, such as Caspase-3, Bax and Bad, and the upregulation of the anti-apoptotic protein Bcl-2. Consistent with the in vivo results, Hexarelin also reduced cell apoptosis in post-H/R HK-2 cells. Furthermore, our analysis using GSEA confirmed the essential role of the apoptosis pathway in I/R-induced AKI. Molecular docking revealed a strong binding affinity between Hexarelin and MDM2, suggesting the potential mechanism of Hexarelin's anti-apoptosis effect at least partially through its interaction with MDM2, a well-known negative regulator of apoptosis-related protein that of p53. To validate these findings, we evaluated the relative expression of MDM2 and p53 in I/R-induced AKI with or without Hexarelin pre-administration and observed a significant suppression of MDM2 and p53 by Hexarelin in both in vivo and in vitro experiments. CONCLUSION Collectively, Hexarelin was identified as a promising medication in protecting apoptosis against I/R-induced AKI.
Collapse
Affiliation(s)
- Chen Guan
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Chenyu Li
- Medizinische Klinik Und Poliklinik IV, Klinikum Der Universität, LMU München, Munich, Germany
| | - Xuefei Shen
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Chengyu Yang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Zengying Liu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Ningxin Zhang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Lingyu Xu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Long Zhao
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Bin Zhou
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Xiaofei Man
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Congjuan Luo
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Hong Luan
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Lin Che
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Yanfei Wang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Yan Xu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
7
|
Vanhorebeek I, Gunst J, Casaer MP, Derese I, Derde S, Pauwels L, Segers J, Hermans G, Gosselink R, Van den Berghe G. Skeletal Muscle Myokine Expression in Critical Illness, Association With Outcome and Impact of Therapeutic Interventions. J Endocr Soc 2023; 7:bvad001. [PMID: 36726836 PMCID: PMC9879715 DOI: 10.1210/jendso/bvad001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 01/09/2023] Open
Abstract
Context Muscle expresses and secretes several myokines that bring about benefits in distant organs. Objective We investigated the impact of critical illness on muscular expression of irisin, kynurenine aminotransferases, and amylase; association with clinical outcome; and impact of interventions that attenuate muscle wasting/weakness. Methods We studied critically ill patients who participated in 2 randomized controlled trials (EPaNIC/NESCI) and documented time profiles in critically ill mice. Included in the study were 174 intensive care unit (ICU) patients (day 8 ± 1) vs 19 matched controls, and 60 mice subjected to surgery/sepsis vs 60 pair-fed healthy mice. Interventions studied included 7-day neuromuscular electrical stimulation (NMES), and withholding parenteral nutrition (PN) in the first ICU week (late PN) vs early PN. The main outcome measures were FNDC5 (irisin- precursor), KYAT1, KYAT3, and amylase mRNA expression in skeletal muscle. Results Critically ill patients showed 34% to 80% lower mRNA expression of FNDC5, KYAT1, and amylases than controls (P < .0001). Critically ill mice showed time-dependent reductions in all mRNAs compared with healthy mice (P ≤ .04). The lower FNDC5 expression in patients was independently associated with a higher ICU mortality (P = .015) and ICU-acquired weakness (P = .012), whereas the lower amylase expression in ICU survivors was independently associated with a longer ICU stay (P = .0060). Lower amylase expression was independently associated with a lower risk of death (P = .048), and lower KYAT1 expression with a lower risk of weakness (P = .022). NMES increased FNDC5 expression compared with unstimulated muscle (P = .016), and late PN patients had a higher KYAT1 expression than early PN patients (P = .022). Conclusion Expression of the studied myokines was affected by critical illness and associated with clinical outcomes, with limited effects of interventions that attenuate muscle wasting or weakness.
Collapse
Affiliation(s)
- Ilse Vanhorebeek
- Correspondence: Prof. Ilse Vanhorebeek, MEng, PhD, Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;. ; or Prof. Greet Van den Berghe, MD, PhD, Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Jan Gunst
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium,Clinical Division of Intensive Care Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Michaël P Casaer
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium,Clinical Division of Intensive Care Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Inge Derese
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sarah Derde
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Lies Pauwels
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Johan Segers
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Greet Hermans
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium,Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Rik Gosselink
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Greet Van den Berghe
- Correspondence: Prof. Ilse Vanhorebeek, MEng, PhD, Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;. ; or Prof. Greet Van den Berghe, MD, PhD, Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
8
|
Liu C, Li S, Ji S, Zhang J, Zheng F, Guan Y, Yang G, Chen L. Proximal tubular Bmal1 protects against chronic kidney injury and renal fibrosis by maintaining of cellular metabolic homeostasis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166572. [PMID: 36252941 DOI: 10.1016/j.bbadis.2022.166572] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Recent studies suggest that deletion of the core clock gene Bmal1 in the kidney has a significant influence on renal physiological functions. However, the role of renal Bmal1 in chronic kidney disease (CKD) remains poorly understood. Here by generating mice lacking Bmal1 in proximal tubule (Bmal1flox/flox-KAP-Cre+, ptKO) and inducing CKD with the adenine diet model, we found that lack of Bmal1 in proximal tubule did not alter renal water and electrolyte homeostasis. However, adenine-induced renal injury indexes, including blood urea nitrogen, serum creatinine, and proteinuria, were markedly augmented in the ptKO mice. The ptKO kidneys also developed aggravated tubulointerstitial fibrosis and epithelial-mesenchymal transformation. Mechanistically, RNAseq analysis revealed significant downregulation of the expression of genes related to energy and substance metabolism, in particular fatty acid oxidation and glutathione/homocysteine metabolism, in the ptKO kidneys. Consistently, the renal contents of ATP and glutathione were markedly reduced in the ptKO mice, suggesting the disruption of cellular metabolic homeostasis. Moreover, we demonstrated that Bmal1 can activate the transcription of cystathionine β-synthase (CBS), a key enzyme for homocysteine metabolism and glutathione biosynthesis, through direct recruitment to the E-box motifs of its promoter. Supporting the in vivo findings, knockdown of Bmal1 in cultured proximal tubular cells inhibited CBS expression and amplified albumin-induced cell injury and fibrogenesis, while glutathione supplementation remarkably reversed these changes. Taken together, we concluded that deletion of Bmal1 in proximal tubule may aggravate chronic kidney injury and exacerbate renal fibrosis, the mechanism is related to suppressing CBS transcription and disturbing glutathione related metabolic homeostasis. These findings suggest a protective role of Bmal1 in chronic tubular injury and offer a novel target for treating CKD.
Collapse
Affiliation(s)
- Chengcheng Liu
- Health Science Center, East China Normal University, Shanghai 200241, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shuyao Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shuang Ji
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jiayang Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai 200241, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
9
|
PARK7 is induced to protect against endotoxic acute kidney injury by suppressing NF-κB. Clin Sci (Lond) 2022; 136:1877-1891. [PMID: 36449316 DOI: 10.1042/cs20220493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
Sepsis is a leading cause of acute kidney injury (AKI), and the pathogenesis of septic AKI remains largely unclear. Parkinson disease protein 7 (PARK7) is a protein of multiple functions that was recently implicated in septic AKI, but the underlying mechanism is unknown. In the present study, we determined the role of PARK7 in septic AKI and further explored the underlying mechanism in lipopolysaccharide (LPS)-induced endotoxic models. PARK7 was induced both in vivo and in vitro following LPS treatment. Compared with wild-type (WT) mice, Park7-deficient mice experienced aggravated kidney tissue damage and dysfunction, and enhanced tubular apoptosis and inflammation following LPS treatment. Consistently, LPS-induced apoptosis and inflammation in renal tubular cells in vitro were exacerbated by Park7 knockdown, whereas they were alleviated by PARK7 overexpression. Mechanistically, silencing Park7 facilitated nuclear translocation and phosphorylation of p65 (a key component of the nuclear factor kappa B [NF-κB] complex) during LPS treatment, whereas PARK7 overexpression partially prevented these changes. Moreover, we detected PARK7 interaction with p65 in the cytoplasm in renal tubular cells, which was enhanced by LPS treatment. Collectively, these findings suggest that PARK7 is induced to protect against septic AKI through suppressing NF-κB signaling.
Collapse
|
10
|
Renal protection induced by physical exercise may be mediated by the irisin/AMPK axis in diabetic nephropathy. Sci Rep 2022; 12:9062. [PMID: 35641586 PMCID: PMC9156698 DOI: 10.1038/s41598-022-13054-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/16/2022] [Indexed: 01/04/2023] Open
Abstract
In patients with diabetes, it has been suggested that physical exercise may reduce albuminuria and the progression of renal disease. However, the molecular mechanism by which physical exercise protects the kidney in diabetes remains poorly understood. The aim of the present study was to determine the contribution of muscle irisin secretion induced by aerobic physical exercise with the subsequent activation of AMPK for kidney protection under diabetic conditions. Aerobic physical exercise in rats protected the kidney in streptozotocin-induced diabetes. It reduced albuminuria, glomerular hypertrophy, and glomerular expression of collagen IV and fibronectin, as well as markers of kidney inflammation, when compared to sedentary diabetic rats. These effects were associated with elevation in muscle FNDC5/irisin and activity of AMPK in the diabetic kidney. However, the beneficial effects of exercise were lost when the diabetic rats were treated with CycloRGDyK, that in the bone it has been described as an irisin receptor blocker. In cultured human tubular (HK-2) cells, treatment with recombinant irisin counteracted the effect of high glucose in a dose-dependent manner. Irisin, per se, also activated AMPK in HK-2 cells. It is concluded that in diabetes, the renal protective effect of exercise may be mediated by the irisin/AMPK pathway.
Collapse
|
11
|
Irisin: A Promising Target for Ischemia-Reperfusion Injury Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5391706. [PMID: 34745418 PMCID: PMC8570861 DOI: 10.1155/2021/5391706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022]
Abstract
Ischemia-reperfusion injury (IRI) is defined as the total combined damage that occurs during a period of ischemia and following the recovery of blood flow. Oxidative stress, mitochondrial dysfunction, and an inflammatory response are factors contributing to IRI-related damage that can each result in cell death. Irisin is a polypeptide that is proteolytically cleaved from the extracellular domain of fibronectin type III domain-containing protein 5 (FNDC5). Irisin acts as a myokine that potentially mediates beneficial effects of exercise by reducing oxidative stress, improving mitochondrial fitness, and suppressing inflammation. The existing literature also suggests a possible link between irisin and IRI, involving mechanisms similar to those associated with exercise. This article will review the pathogenesis of IRI and the potential benefits and current limitations of irisin as a therapeutic strategy for IRI, while highlighting the mechanistic correlations between irisin and IRI.
Collapse
|
12
|
Gan W, Chen W, Li T, Shao D, Xu F, Huo S, Li C, Yang Z, Zeng X. Circulating irisin level in chronic kidney disease patients: a systematic review and meta-analysis. Int Urol Nephrol 2021; 54:1295-1302. [PMID: 34585311 DOI: 10.1007/s11255-021-03000-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Irisin is not only a myokine but also an adipokine that is critical in many diseases including in the development of such diseases as obesity, diabetes mellitus, metabolic syndrome, coronary artery disease, and chronic inflammation. However, the association between irisin and chronic kidney disease (CKD) is unclear. This systematic review aimed to assess circulating irisin levels in patients with CKD and compare them with those in non-CKD patients. METHODS PubMed, EMBASE, CENTRAL, ISI Web of Science, and CNKI were searched to identify observational studies of circulating irisin levels in patients with CKD. Two reviewers independently searched the databases and screened studies according to the inclusion criteria. Data were extracted using a standardized collection form. Meta-analysis was performed to compare the differences in circulating irisin levels between CKD and non-CKD patients. RESULTS A total of 9 studies (6 cross-sectional and 3 case controls) involving 859 CKD patients and 393 non-CKD individuals were selected. The pooled data indicated that circulating irisin concentrations were significantly lower in CKD nondialysis patients (WMD = - 84.79, 95% CI - 170.23, 0.50; p < 0.05), peritoneal dialysis patients (WMD = - 235.81, 95% CI - 421.99, - 49.62; p = 0.01), and hemodialysis patients (WMD = - 217.46, 95% CI - 381.35, - 53.57; p = 0.009) than in healthy controls. CONCLUSIONS This study confirmed that irisin levels were decreased in patients with CKD. Moreover, circulating irisin levels were lower in dialysis patients than in nondialysis patients.
Collapse
Affiliation(s)
- Wenyuan Gan
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Wenli Chen
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Tianyu Li
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Danni Shao
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Fang Xu
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Shanshan Huo
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Chenchen Li
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Zhenhua Yang
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Xingruo Zeng
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.
| |
Collapse
|
13
|
Restuccia R, Perani F, Ficarra G, Trimarchi F, Bitto A, di Mauro D. Irisin and Vascular Inflammation: Beneficial Effects of a Healthy Lifestyle Beyond Physical Activity. Curr Pharm Des 2021; 27:2151-2155. [PMID: 33557732 DOI: 10.2174/1381612827666210208154105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022]
Abstract
Vascular inflammation is responsible for many cardiovascular diseases and endothelial dysfunction is often the first trigger. Many factors can contribute to altering vascular homeostasis and despite that some risk factors cannot be changed, some lifestyle changes might dramatically improve vascular function. In this regard, physical activity has been identified as one of the most important interventions that can positively affect endothelial dysfunction. In recent years, the discovery of irisin, a novel myokine with pleiotropic effects, has caught the attention of many researchers. This review summarizes the most relevant intervention trials, evaluating irisin modifications in subjects with or without cardiovascular risk factors assigned to physical activity programs, to improve cardiovascular risk markers.
Collapse
Affiliation(s)
- Roberto Restuccia
- Department of Biomedical, Dental, Morphological and Functional Sciences, University of Messina, Messina, Italy
| | - Fulvio Perani
- Department of Biomedical, Dental, Morphological and Functional Sciences, University of Messina, Messina, Italy
| | - Giovanni Ficarra
- Department of Biomedical, Dental, Morphological and Functional Sciences, University of Messina, Messina, Italy
| | - Fabio Trimarchi
- Department of Biomedical, Dental, Morphological and Functional Sciences, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Debora di Mauro
- Department of Biomedical, Dental, Morphological and Functional Sciences, University of Messina, Messina, Italy
| |
Collapse
|
14
|
Wang R, Liu H. Association Between Serum Irisin and Diabetic Nephropathy in Patients with Type 2 Diabetes Mellitus: A Meta-Analysis. Horm Metab Res 2021; 53:293-300. [PMID: 33962476 DOI: 10.1055/a-1475-4444] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Irisin, an emerging adipokine, has been involved in the pathogenesis of type 2 diabetes mellitus (T2DM). However, previous studies evaluating the association between irisin and diabetic nephropathy (DN) showed inconsistent results. We performed a meta-analysis to evaluate the above association. Matched case-control studies evaluating the difference of serum irisin between T2DM patients with and without DN were identified via systematic search of PubMed, Embase, Cochranes' Library, China National Knowledge Infrastructure, and WanFang databases from inception to December 5, 2020. A random-effects model or a fixed-effects model was used to pool the results according to the heterogeneity. Overall, thirteen matched case-control studies including 1735 T2DM patients were included. Results of meta-analysis showed that compared to T2DM patients with normoalbuminuria, those with microalbuminuria [10 studies, standard mean difference (SMD): 1.12, 95% confidence interval (CI): 0.48-1.77, p<0.001; I2=94%] and macroalbuminuria (10 studies, SMD: 1.86, 95% CI: 0.93-2.79, p<0.001; I2=97%) had significantly lower serum irisin. Besides, the serum level of irisin was significantly lower in T2DM patients with macroalbuminuria than those with microalbuminuria (10 studies, SMD: 0.91, 95% CI: 0.44-1.38, p<0.001; I2=90%). In addition, patients with estimated glomerular infiltration rate (eGFR)<60 ml/min 1.73 m2 had lower serum irisin compared to those with eGFR≥60 ml/min 1.73 m2 (4 studies, SMD: 0.89, 95% CI: 0.32-1.46, p=0.002; I2=91%). In conclusion, serum irisin may be associated with albuminuria and reduced eGFR in T2DM patients.
Collapse
Affiliation(s)
- Rui Wang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyan Liu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Cao JY, Wang B, Tang TT, Wen Y, Li ZL, Feng ST, Wu M, Liu D, Yin D, Ma KL, Tang RN, Wu QL, Lan HY, Lv LL, Liu BC. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury. Theranostics 2021; 11:5248-5266. [PMID: 33859745 PMCID: PMC8039965 DOI: 10.7150/thno.54550] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cells-derived exosomes (MSC-exos) have attracted great interest as a cell-free therapy for acute kidney injury (AKI). However, the in vivo biodistribution of MSC-exos in ischemic AKI has not been established. The potential of MSC-exos in promoting tubular repair and the underlying mechanisms remain largely unknown. Methods: Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to characterize the properties of human umbilical cord mesenchymal stem cells (hucMSCs) derived exosomes. The biodistribution of MSC-exos in murine ischemia/reperfusion (I/R) induced AKI was imaged by the IVIS spectrum imaging system. The therapeutic efficacy of MSC-exos was investigated in renal I/R injury. The cell cycle arrest, proliferation and apoptosis of tubular epithelial cells (TECs) were evaluated in vivo and in HK-2 cells. The exosomal miRNAs of MSC-exos were profiled by high-throughput miRNA sequencing. One of the most enriched miRNA in MSC-exos was knockdown by transfecting miRNA inhibitor to hucMSCs. Then we investigated whether this candidate miRNA was involved in MSC-exos-mediated tubular repair. Results:Ex vivo imaging showed that MSC-exos was efficiently homing to the ischemic kidney and predominantly accumulated in proximal tubules by virtue of the VLA-4 and LFA-1 on MSC-exos surface. MSC-exos alleviated murine ischemic AKI and decreased the renal tubules injury in a dose-dependent manner. Furthermore, MSC-exos significantly attenuated the cell cycle arrest and apoptosis of TECs both in vivo and in vitro. Mechanistically, miR-125b-5p, which was highly enriched in MSC-exos, repressed the protein expression of p53 in TECs, leading to not only the up-regulation of CDK1 and Cyclin B1 to rescue G2/M arrest, but also the modulation of Bcl-2 and Bax to inhibit TEC apoptosis. Finally, inhibiting miR-125b-5p could mitigate the protective effects of MSC-exos in I/R mice. Conclusion: MSC-exos exhibit preferential tropism to injured kidney and localize to proximal tubules in ischemic AKI. We demonstrate that MSC-exos ameliorate ischemic AKI and promote tubular repair by targeting the cell cycle arrest and apoptosis of TECs through miR-125b-5p/p53 pathway. This study provides a novel insight into the role of MSC-exos in renal tubule repair and highlights the potential of MSC-exos as a promising therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Jing-Yuan Cao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Song-Tao Feng
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Min Wu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Dan Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Di Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Kun-Ling Ma
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Qiu-Li Wu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Liu Che Woo Institute of Innovative Medicine, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| |
Collapse
|
16
|
Marrano N, Biondi G, Borrelli A, Cignarelli A, Perrini S, Laviola L, Giorgino F, Natalicchio A. Irisin and Incretin Hormones: Similarities, Differences, and Implications in Type 2 Diabetes and Obesity. Biomolecules 2021; 11:286. [PMID: 33671882 PMCID: PMC7918991 DOI: 10.3390/biom11020286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
Incretins are gut hormones that potentiate glucose-stimulated insulin secretion (GSIS) after meals. Glucagon-like peptide-1 (GLP-1) is the most investigated incretin hormone, synthesized mainly by L cells in the lower gut tract. GLP-1 promotes β-cell function and survival and exerts beneficial effects in different organs and tissues. Irisin, a myokine released in response to a high-fat diet and exercise, enhances GSIS. Similar to GLP-1, irisin augments insulin biosynthesis and promotes accrual of β-cell functional mass. In addition, irisin and GLP-1 share comparable pleiotropic effects and activate similar intracellular pathways. The insulinotropic and extra-pancreatic effects of GLP-1 are reduced in type 2 diabetes (T2D) patients but preserved at pharmacological doses. GLP-1 receptor agonists (GLP-1RAs) are therefore among the most widely used antidiabetes drugs, also considered for their cardiovascular benefits and ability to promote weight loss. Irisin levels are lower in T2D patients, and in diabetic and/or obese animal models irisin administration improves glycemic control and promotes weight loss. Interestingly, recent evidence suggests that both GLP-1 and irisin are also synthesized within the pancreatic islets, in α- and β-cells, respectively. This review aims to describe the similarities between GLP-1 and irisin and to propose a new potential axis-involving the gut, muscle, and endocrine pancreas that controls energy homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; (N.M.); (G.B.); (A.B.); (A.C.); (S.P.); (L.L.); (A.N.)
| | | |
Collapse
|
17
|
Jiang S, Oh DS, Dorotea D, Son E, Kim DS, Ha H. Dojuksan ameliorates tubulointerstitial fibrosis through irisin-mediated muscle-kidney crosstalk. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153393. [PMID: 33120292 DOI: 10.1016/j.phymed.2020.153393] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sarcopenia progresses in chronic kidney disease (CKD) and is positively correlated with mortality in end-stage kidney disease patients. Circulating irisin, an exercise-induced myokine, gradually decreases during CKD stage progression. Irisin inhibits the progression of kidney fibrosis, which is the final common outcome of CKD. Our preliminary study with C2C12 cells showed that Dojuksan, a herbal decoction, increases the expression of PGC1α (a regulator of irisin) and FNDC5 (a precursor of irisin). HYPOTHESIS Dojuksan may increase circulating irisin and prevent the progression of kidney fibrosis. STUDY DESIGN AND METHODS Unilateral ureteral obstruction (UUO) was performed on seven-week-old male C57BL/6 mice to induce kidney tubulointerstitial fibrosis. Dojuksan (50, 100, or 200 mg/kg/day) or losartan (1.5 mg/kg/day), a standard clinical treatment for CKD, was administered orally one day prior to surgery and continued for seven days thereafter. To determine the role of irisin released from muscles, TGFβ-stimulated murine proximal tubular epithelial cells (mProx24 cells) were treated with conditioned media (CM) from Dojuksan-treated C2C12 muscle cells transfected with FNDC5 siRNA. RESULTS UUO mice exhibited muscle wasting along with progressive kidney injury. Similar to losartan, Dojuksan ameliorated kidney inflammation and fibrosis in UUO mice. Dojuksan, but not losartan, increased plasma irisin concentration in UUO mice. Dojuksan significantly increased basal FNDC5 expression and inhibited TNFα-induced and indoxyl sulfate-induced FNDC5 down-regulation in C2C12 cells. The TGFβ-induced collagen I (COL1) up-regulation in mProx24 cells was effectively inhibited by CM from C2C12 cells after Dojuksan treatment. Moreover, irisin inhibited TGFβ-induced COL1 in mProx24 cells, which was not affected by CM from C2C12 cells transfected with FNDC5 siRNA. CONCLUSION Dojuksan ameliorates kidney fibrosis through irisin-mediated muscle-kidney crosstalk, suggesting that Dojuksan may be used as an alternative therapeutic agent against CKD.
Collapse
Affiliation(s)
- Songling Jiang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Dal-Seok Oh
- The Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Eunjung Son
- The Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Dong-Seon Kim
- The Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|