1
|
Luo X, Zhang J, Guo J, Zhao W, Tian Y, Xiang H, Kang H, Ye F, Chen S, Li H, Ma Z. Transcriptomic Analysis Reveals the Effects of miR-122 Overexpression in the Liver of Qingyuan Partridge Chickens. Animals (Basel) 2024; 14:2132. [PMID: 39061594 PMCID: PMC11274173 DOI: 10.3390/ani14142132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The liver of chickens is essential for maintaining physiological activities and homeostasis. This study aims to investigate the specific function and molecular regulatory mechanism of microRNA-122 (miR-122), which is highly expressed in chicken liver. A lentivirus-mediated overexpression vector of miR-122 was constructed and used to infect 12-day-old female Qingyuan Partridge chickens. Transcriptome sequencing analysis was performed to identify differentially expressed genes in the liver. Overexpression of miR-122 resulted in 776 differentially expressed genes (DEGs). Enrichment analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed associations with lipid metabolism, cellular senescence, cell adhesion molecules, and the MAPK signaling pathway. Eight potential target genes of miR-122 (ARHGAP32, CTSD, LBH, PLEKHB2, SEC14L1, SLC2A1, SLC6A14, and SP8) were identified through miRNA target prediction platforms and literature integration. This study provides novel insights into the molecular regulatory mechanisms of miR-122 in chicken liver, highlighting its role in key biological processes and signaling pathways. These discoveries enhance our understanding of miR-122's impact on chicken liver function and offer valuable information for improving chicken production performance and health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.L.); (J.Z.); (J.G.); (W.Z.); (Y.T.); (H.X.); (H.K.); (F.Y.); (S.C.); (H.L.)
| |
Collapse
|
2
|
Mazurkiewicz Ł, Czernikiewicz K, Grygiel-Górniak B. Immunogenetic Aspects of Sarcopenic Obesity. Genes (Basel) 2024; 15:206. [PMID: 38397196 PMCID: PMC10888391 DOI: 10.3390/genes15020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Sarcopenic obesity (SO) is a combination of obesity and sarcopenia, with diagnostic criteria defined as impaired skeletal muscle function and altered body composition (e.g., increased fat mass and reduced muscle mass). The mechanism of SO is not yet perfectly understood; however, the pathogenesis includes aging and its complications, chronic inflammation, insulin resistance (IR), and hormonal changes. Genetic background is apparent in the pathogenesis of isolated obesity, which is most often polygenic and is characterized by the additive effect of various genetic factors. The genetic etiology has not been strictly established in SO. Still, many data confirm the existence of pathogenic gene variants, e.g., Fat Mass and Obesity Associated Gene (FTO), beta-2-adrenergic receptor (ADRB2) gene, melanocortin-4 receptor (MC4R) and others with obesity. The literature on the role of these genes is scarce, and their role has not yet been thoroughly established. On the other hand, the involvement of systemic inflammation due to increased adipose tissue in SO plays a significant role in its pathophysiology through the synthesis of various cytokines such as monocyte chemoattractant protein-1 (MCP-1), IL-1Ra, IL-15, adiponectin or CRP. The lack of anti-inflammatory cytokine (e.g., IL-15) can increase SO risk, but further studies are needed to evaluate the exact mechanisms of implications of various cytokines in SO individuals. This manuscript analyses various immunogenetic and non-genetic factors and summarizes the recent findings on immunogenetics potentially impacting SO development.
Collapse
Affiliation(s)
| | | | - Bogna Grygiel-Górniak
- Department of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
3
|
Kukułowicz J, Pietrzak-Lichwa K, Klimończyk K, Idlin N, Bajda M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol Rev 2023; 76:142-193. [PMID: 37940347 DOI: 10.1124/pharmrev.123.000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pietrzak-Lichwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Klimończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Nathalie Idlin
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
4
|
Flux coupling, not specificity, shapes the transport and phylogeny of SLC6 glycine transporters. Proc Natl Acad Sci U S A 2022; 119:e2205874119. [PMID: 36191186 PMCID: PMC9564218 DOI: 10.1073/pnas.2205874119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATB[Formula: see text] (SLC6A14) is a member of the amino acid transporter branch of the SLC6 family along with GlyT1 (SLC6A9) and GlyT2 (SLC6A5), two glycine-specific transporters coupled to 2:1 and 3:1 Na[Formula: see text]:Cl[Formula: see text], respectively. In contrast, ATB[Formula: see text] exhibits broad substrate specificity for all neutral and cationic amino acids, and its ionic coupling remains unsettled. Using the reversal potential slope method, we demonstrate a 3:1:1 Na[Formula: see text]:Cl[Formula: see text]:Gly stoichiometry for ATB[Formula: see text] that is consistent with its 2.1 e/Gly charge coupling. Like GlyT2, ATB[Formula: see text] behaves as a unidirectional transporter with virtually no glycine efflux at negative potentials after uptake, except by heteroexchange as remarkably shown by leucine activation of NMDARs in Xenopus oocytes coexpressing both membrane proteins. Analysis and computational modeling of the charge movement of ATB[Formula: see text] reveal a higher affinity for sodium in the absence of substrate than GlyT2 and a gating mechanism that locks Na[Formula: see text] into the apo-transporter at depolarized potentials. A 3:1 Na[Formula: see text]:Cl[Formula: see text] stoichiometry justifies the concentrative transport properties of ATB[Formula: see text] and explains its trophic role in tumor growth, while rationalizing its phylogenetic proximity to GlyT2 despite their extreme divergence in specificity.
Collapse
|
5
|
Koopen A, Witjes J, Wortelboer K, Majait S, Prodan A, Levin E, Herrema H, Winkelmeijer M, Aalvink S, Bergman JJGHM, Havik S, Hartmann B, Levels H, Bergh PO, van Son J, Balvers M, Bastos DM, Stroes E, Groen AK, Henricsson M, Kemper EM, Holst J, Strauch CM, Hazen SL, Bäckhed F, De Vos WM, Nieuwdorp M, Rampanelli E. Duodenal Anaerobutyricum soehngenii infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects: a randomised double-blind placebo-controlled cross-over study. Gut 2022; 71:1577-1587. [PMID: 34697034 PMCID: PMC9279853 DOI: 10.1136/gutjnl-2020-323297] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/09/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Although gut dysbiosis is increasingly recognised as a pathophysiological component of metabolic syndrome (MetS), the role and mode of action of specific gut microbes in metabolic health remain elusive. Previously, we identified the commensal butyrogenic Anaerobutyricum soehngenii to be associated with improved insulin sensitivity in subjects with MetS. In this proof-of-concept study, we investigated the potential therapeutic effects of A. soehngenii L2-7 on systemic metabolic responses and duodenal transcriptome profiles in individuals with MetS. DESIGN In this randomised double-blind placebo-controlled cross-over study, 12 male subjects with MetS received duodenal infusions of A. soehngenii/ placebo and underwent duodenal biopsies, mixed meal tests (6 hours postinfusion) and 24-hour continuous glucose monitoring. RESULTS A. soehngenii treatment provoked a markedly increased postprandial excursion of the insulinotropic hormone glucagon-like peptide 1 (GLP-1) and an elevation of plasma secondary bile acids, which were positively associated with GLP-1 levels. Moreover, A. soehngenii treatment robustly shaped the duodenal expression of 73 genes, with the highest fold induction in the expression of regenerating islet-protein 1B (REG1B)-encoding gene. Strikingly, duodenal REG1B expression positively correlated with GLP-1 levels and negatively correlated with peripheral glucose variability, which was significantly diminished in the 24 hours following A. soehngenii intake. Mechanistically, Reg1B expression is induced upon sensing butyrate or bacterial peptidoglycan. Importantly, A. soehngenii duodenal administration was safe and well tolerated. CONCLUSIONS A single dose of A. soehngenii improves peripheral glycaemic control within 24 hours; it specifically stimulates intestinal GLP-1 production and REG1B expression. Further studies are needed to delineate the specific pathways involved in REG1B induction and function in insulin sensitivity. TRIAL REGISTRATION NUMBER NTR-NL6630.
Collapse
Affiliation(s)
- Annefleur Koopen
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Julia Witjes
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Soumia Majait
- Clinical Pharmacy, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Andrei Prodan
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Evgeni Levin
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Hilde Herrema
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Maaike Winkelmeijer
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Steven Aalvink
- Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Stephan Havik
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Bolette Hartmann
- Biomedical Sciences, University of Copenhagen Novo Nordisk Foundation Center for Basic Metabolic Research, Kobenhavn, Denmark
| | - Han Levels
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Per-Olof Bergh
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Jamie van Son
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Manon Balvers
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | | | - Erik Stroes
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Albert K Groen
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Marcus Henricsson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | | | - Jens Holst
- Biomedical Sciences, University of Copenhagen Novo Nordisk Foundation Center for Basic Metabolic Research, Kobenhavn, Denmark
| | - Christopher M Strauch
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stanley L Hazen
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Fredrik Bäckhed
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Willem M De Vos
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
| | - Max Nieuwdorp
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Zielińska M, Albrecht J, Popek M. Dysregulation of Astrocytic Glutamine Transport in Acute Hyperammonemic Brain Edema. Front Neurosci 2022; 16:874750. [PMID: 35733937 PMCID: PMC9207324 DOI: 10.3389/fnins.2022.874750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acute liver failure (ALF) impairs ammonia clearance from blood, which gives rise to acute hyperammonemia and increased ammonia accumulation in the brain. Since in brain glutamine synthesis is the only route of ammonia detoxification, hyperammonemia is as a rule associated with increased brain glutamine content (glutaminosis) which correlates with and contributes along with ammonia itself to hyperammonemic brain edema-associated with ALF. This review focuses on the effects of hyperammonemia on the two glutamine carriers located in the astrocytic membrane: Slc38a3 (SN1, SNAT3) and Slc7a6 (y + LAT2). We emphasize the contribution of the dysfunction of either of the two carriers to glutaminosis- related aspects of brain edema: retention of osmotically obligated water (Slc38a3) and induction of oxidative/nitrosative stress (Slc7a6). The changes in glutamine transport link glutaminosis- evoked mitochondrial dysfunction to oxidative-nitrosative stress as formulated in the “Trojan Horse” hypothesis.
Collapse
|
7
|
Mercier J, Calmel C, Mésinèle J, Sutanto E, Merabtene F, Longchampt E, Sage E, Kicic A, Boëlle PY, Corvol H, Ruffin M, Guillot L. SLC6A14 Impacts Cystic Fibrosis Lung Disease Severity via mTOR and Epithelial Repair Modulation. Front Mol Biosci 2022; 9:850261. [PMID: 35372502 PMCID: PMC8965518 DOI: 10.3389/fmolb.2022.850261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis (CF), due to pathogenic variants in CFTR gene, is associated with chronic infection/inflammation responsible for airway epithelium alteration and lung function decline. Modifier genes induce phenotype variability between people with CF (pwCF) carrying the same CFTR variants. Among these, the gene encoding for the amino acid transporter SLC6A14 has been associated with lung disease severity and age of primary airway infection by the bacteria Pseudomonas aeruginosa. In this study, we investigated whether the single nucleotide polymorphism (SNP) rs3788766, located within SLC6A14 promoter, is associated with lung disease severity in a large French cohort of pwCF. We also studied the consequences of this SNP on SLC6A14 promoter activity using a luciferase reporter and the role of SLC6A14 in the mechanistic target of rapamycin kinase (mTOR) signaling pathway and airway epithelial repair. We confirm that SLC6A14 rs3788766 SNP is associated with lung disease severity in pwCF (p = 0.020; n = 3,257, pancreatic insufficient, aged 6-40 years old), with the minor allele G being deleterious. In bronchial epithelial cell lines deficient for CFTR, SLC6A14 promoter activity is reduced in the presence of the rs3788766 G allele. SLC6A14 inhibition with a specific pharmacological blocker reduced 3H-arginine transport, mTOR phosphorylation, and bronchial epithelial repair rates in wound healing assays. To conclude, our study highlights that SLC6A14 genotype might affect lung disease severity of people with cystic fibrosis via mTOR and epithelial repair mechanism modulation in the lung.
Collapse
Affiliation(s)
- Julia Mercier
- Sorbonne Université, Inserm, Centre de Recherche Saint Antoine, CRSA, Paris, France
| | - Claire Calmel
- Sorbonne Université, Inserm, Centre de Recherche Saint Antoine, CRSA, Paris, France
| | - Julie Mésinèle
- Sorbonne Université, Inserm, Centre de Recherche Saint Antoine, CRSA, Paris, France
- Sorbonne Université, Inserm, Institut Pierre Louis D'épidémiologie et de Santé Publique, IPLESP, APHP, Hôpital Saint-Antoine, Paris, France
| | - Erika Sutanto
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
| | - Fatiha Merabtene
- Sorbonne Université, Inserm, Centre de Recherche Saint Antoine, CRSA, Paris, France
| | | | - Edouard Sage
- Départment de Chirurgie Thoracique et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
- UMR 0892 UVSQ-INRAE, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Anthony Kicic
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Pierre-Yves Boëlle
- Sorbonne Université, Inserm, Institut Pierre Louis D'épidémiologie et de Santé Publique, IPLESP, APHP, Hôpital Saint-Antoine, Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm, Centre de Recherche Saint Antoine, CRSA, Paris, France
- AP-HP, Hôpital Trousseau, Service de Pneumologie Pédiatrique, Paris, France
| | - Manon Ruffin
- Sorbonne Université, Inserm, Centre de Recherche Saint Antoine, CRSA, Paris, France
| | - Loïc Guillot
- Sorbonne Université, Inserm, Centre de Recherche Saint Antoine, CRSA, Paris, France
| |
Collapse
|
8
|
Factors Predisposing the Response to Lumacaftor/Ivacaftor in People with Cystic Fibrosis. J Pers Med 2022; 12:jpm12020252. [PMID: 35207740 PMCID: PMC8876860 DOI: 10.3390/jpm12020252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Lumacaftor/ivacaftor (LUMA-IVA) therapy is prescribed to people with cystic fibrosis (pwCF) homozygous for the Phe508del-CFTR variant to restore CFTR protein function. There is, however, large inter-individual variability in treatment response. Here, we seek to identify clinical and/or genetic factors that may modulate the response to this CFTR modulator therapy. A total of 765 pwCF older than 12 years under LUMA-IVA therapy and with lung function and nutritional measurements available before and after treatment initiation were included. Response to treatment was determined by the change in lung function and nutritional status, from baseline and over the first two years after initiation, and it was assessed by weighted generalized estimating equation models. Gains in lung function and nutritional status were observed after 6 months of treatment (on average 2.11 ± 7.81% for percent predicted FEV1 and 0.44 ± 0.77 kg/m2 for BMI) and sustained over the 2 years. We observed that the more severe patients gained the most in lung function and nutritional status. While females started with a nutritional status more impaired than males, they had a larger response and regained BMI Z-score values similar to men after 2 years of treatment. We observed no association between variants in solute carrier (SLC) genes and the respiratory function response to LUMA-IVA, but the SLC6A14 rs12839137 variant was associated with the nutritional response. Further investigations, including other genomic regions, will be needed to fully explore the inter-individual variability of the response to LUMA-IVA.
Collapse
|
9
|
Bhutia YD, Mathew M, Sivaprakasam S, Ramachandran S, Ganapathy V. Unconventional Functions of Amino Acid Transporters: Role in Macropinocytosis (SLC38A5/SLC38A3) and Diet-Induced Obesity/Metabolic Syndrome (SLC6A19/SLC6A14/SLC6A6). Biomolecules 2022; 12:biom12020235. [PMID: 35204736 PMCID: PMC8961558 DOI: 10.3390/biom12020235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Amino acid transporters are expressed in mammalian cells not only in the plasma membrane but also in intracellular membranes. The conventional function of these transporters is to transfer their amino acid substrates across the lipid bilayer; the direction of the transfer is dictated by the combined gradients for the amino acid substrates and the co-transported ions (Na+, H+, K+ or Cl−) across the membrane. In cases of electrogenic transporters, the membrane potential also contributes to the direction of the amino acid transfer. In addition to this expected traditional function, several unconventional functions are known for some of these amino acid transporters. This includes their role in intracellular signaling, regulation of acid–base balance, and entry of viruses into cells. Such functions expand the biological roles of these transporters beyond the logical amino acid homeostasis. In recent years, two additional unconventional biochemical/metabolic processes regulated by certain amino acid transporters have come to be recognized: macropinocytosis and obesity. This adds to the repertoire of biological processes that are controlled and regulated by amino acid transporters in health and disease. In the present review, we highlight the unusual involvement of selective amino acid transporters in macropinocytosis (SLC38A5/SLC38A3) and diet-induced obesity/metabolic syndrome (SLC6A19/SLC6A14/SLC6A6).
Collapse
|
10
|
Papalazarou V, Maddocks ODK. Supply and demand: Cellular nutrient uptake and exchange in cancer. Mol Cell 2021; 81:3731-3748. [PMID: 34547236 DOI: 10.1016/j.molcel.2021.08.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/27/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022]
Abstract
Nutrient supply and demand delineate cell behavior in health and disease. Mammalian cells have developed multiple strategies to secure the necessary nutrients that fuel their metabolic needs. This is more evident upon disruption of homeostasis in conditions such as cancer, when cells display high proliferation rates in energetically challenging conditions where nutritional sources may be scarce. Here, we summarize the main routes of nutrient acquisition that fuel mammalian cells and their implications in tumorigenesis. We argue that the molecular mechanisms of nutrient acquisition not only tip the balance between nutrient supply and demand but also determine cell behavior upon nutrient limitation and energetic stress and contribute to nutrient partitioning and metabolic coordination between different cell types in inflamed or tumorigenic environments.
Collapse
Affiliation(s)
- Vasileios Papalazarou
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Oliver D K Maddocks
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK.
| |
Collapse
|
11
|
α-Methyl-l-tryptophan as a weight-loss agent in multiple models of obesity in mice. Biochem J 2021; 478:1347-1358. [PMID: 33720280 PMCID: PMC8038855 DOI: 10.1042/bcj20210100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/13/2023]
Abstract
α-Methyl-L-tryptophan (α-MLT) is currently in use as a tracer in its 11C-labeled form to monitor the health of serotonergic neurons in humans. In the present study, we found this compound to function as an effective weight-loss agent at pharmacological doses in multiple models of obesity in mice. The drug was able to reduce the body weight when given orally in drinking water (1 mg/ml) in three different models of obesity: normal mice on high-fat diet, Slc6a14-null mice on high-fat diet, and ob/ob mice on normal diet. Only the l-enantiomer (α-MLT) was active while the d-enantiomer (α-MDT) had negligible activity. The weight-loss effect was freely reversible, with the weight gain resuming soon after the withdrawal of the drug. All three models of obesity were associated with hyperglycemia, insulin resistance, and hepatic steatosis; α-MLT reversed these features. There was a decrease in food intake in the treatment group. Mice on a high-fat diet showed decreased cholesterol and protein in the serum when treated with α-MLT; there was however no evidence of liver and kidney dysfunction. Plasma amino acid profile indicated a significant decrease in the levels of specific amino acids, including tryptophan; but the levels of arginine were increased. We conclude that α-MLT is an effective, reversible, and orally active drug for the treatment of obesity and metabolic syndrome.
Collapse
|
12
|
Le J, Fu Y, Han Q, Wei X, Ji H, Chen Y, Wang Q, Pi P, Li J, Lin X, Zhang X, Zhang Y, Ye J. Restoration of mRNA Expression of Solute Carrier Proteins in Liver of Diet-Induced Obese Mice by Metformin. Front Endocrinol (Lausanne) 2021; 12:720784. [PMID: 34659115 PMCID: PMC8515182 DOI: 10.3389/fendo.2021.720784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/08/2021] [Indexed: 02/05/2023] Open
Abstract
Metformin (MET), the most common medicine for type 2 diabetes (T2DM), improves insulin sensitivity by targeting the liver, intestine and other organs. Its impact on expression of the solute carrier (Slc) transporter genes have not been reported in the mechanism of insulin sensitization. In this study, we examined Slc gene expression in the liver and colon of diet-induced obese (DIO) mice treated with MET by transcriptomic analysis. There were 939 differentially expressed genes (DEGs) in the liver of DIO mice vs lean mice, which included 34 Slc genes. MET altered 489 DEGs in the liver of DIO mice, in which 23 were Slc genes. Expression of 20 MET-responsive Slc DEGs was confirmed by qRT-PCR, in which 15 Slc genes were altered in DIO mice and their expressions were restored by MET, including Slc2a10, Slc2a13, Slc5a9, Slc6a14, Slc7a9, Slc9a2, Slc9a3, Slc13a2, Slc15a2, Slc26a3, Slc34a2, Slc37a1, Slc44a4, Slc51b and Slc52a3. While, there were only 97 DEGs in the colon of DIO mice with 5 Slc genes, whose expression was not restored by MET. The data suggest that more genes were altered in the liver over the colon by the high fat diet (HFD). There were 20 Slc genes with alteration confirmed in the liver of DIO mice and 15 of them were restored by MET, which was associated with improvement of insulin sensitivity and obesity. The restoration may improve the uptake of glucose, amino acids, mannose, fructose, 1,5-anhydro-D-glucitol and bumetanide in hepatocytes of the liver of DIO mice. The study provides new insight into the mechanism of metformin action in insulin sensitization and obesity.
Collapse
Affiliation(s)
- Jiamei Le
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yi Fu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qiuqin Han
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xindong Wei
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Surgical Oncology, Nanjing University of Chinese Medicin Affiliated 81st Hospital, Nanjing, China
| | - Houlin Ji
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Chen
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qiuying Wang
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Peixian Pi
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jilei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xinjie Lin
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiaoying Zhang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou, China
- Shanghai Diabetes Institute, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Jianping Ye, ;
| |
Collapse
|