1
|
Wei Y, Jiang Y, Lu Y, Hu Q. Histone modifications in Duchenne muscular dystrophy: pathogenesis insights and therapeutic implications. J Med Genet 2024; 61:1003-1010. [PMID: 39327039 DOI: 10.1136/jmg-2024-110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a commonly encountered genetic ailment marked by loss-of-function mutations in the Dystrophin gene, ultimately resulting in progressive debilitation of skeletal muscle. The investigation into the pathogenesis of DMD has increasingly converged on the role of histone modifications within the broader context of epigenetic regulation. These modifications, including histone acetylation, methylation and phosphorylation, are catalysed by specific enzymes and play a critical role in gene expression. This article provides an overview of the histone modifications occurring in DMD and analyses the research progress and potential of different types of histone modifications in DMD due to changes in cellular signalling for muscle regeneration, to provide new insights into diagnostic and therapeutic options for DMD.
Collapse
Affiliation(s)
- Yanning Wei
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Key Laboratory of Biological Molecular Medicine Research of Education, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanyuan Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yufei Lu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiping Hu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Longevity and Aging-related Diseases, Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Huang F, He Y. Epigenetic control of gene expression by cellular metabolisms in plants. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102572. [PMID: 38875845 DOI: 10.1016/j.pbi.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Covalent modifications on DNA and histones can regulate eukaryotic gene expression and are often referred to as epigenetic modifications. These chemical reactions require various metabolites as donors or co-substrates, such as acetyl coenzyme A, S-adenosyl-l-methionine, and α-ketoglutarate. Metabolic processes that take place in the cytoplasm, nucleus, or other cellular compartments may impact epigenetic modifications in the nucleus. Here, we review recent advances on metabolic control of chromatin modifications and thus gene expression in plants, with a focus on the functions of nuclear compartmentalization of metabolic processes and enzymes in DNA and histone modifications. Furthermore, we discuss the functions of cellular metabolisms in fine-tuning gene expression to facilitate the responses or adaptation to environmental changes in plants.
Collapse
Affiliation(s)
- Fei Huang
- Peking-Tsinghua Center for Life Sciences & National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- Peking-Tsinghua Center for Life Sciences & National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| |
Collapse
|
3
|
Souza TBD, Parteka LM, Kuo YT, Nascimento T, Schubert V, Pedrosa-Harand A, Marques A, Houben A, Vanzela ALL. Distinct patterns of satDNA distribution in holocentric chromosomes of spike-sedges ( Eleocharis, Cyperaceae). Genome 2024. [PMID: 39284229 DOI: 10.1139/gen-2024-0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Eleocharis R. Br. (Cyperaceae) species are known for having holocentric chromosomes, which enable rapid karyotype differentiation. High intra- and interspecific variations in chromosome numbers and genome sizes are documented for different Eleocharis species, frequently accompanied by fluctuations in the repetitive DNA fraction. However, a lack of detailed analysis has hampered a better understanding of the interplay between holocentricity and repetitive DNA evolution in this genus. In our study, we confirmed the holocentricity of Eleocharis chromosomes by immunostaining against the kinetochore protein KNL1 and the cell-cycle dependent posttranslational modifications histone H2AThr121ph and H3S10ph. We further studied the composition and chromosomal distribution of the main satellite DNA repeats found in the newly sequenced species Eleocharis maculosa, Eleocharis geniculata, Eleocharis parodii, Eleocharis elegans, and Eleocharis montana. Five of the six satellites discovered were arranged in clusters, while EmaSAT14 was distributed irregularly along the chromatid length in a line-like manner. EmaSAT14 monomers were present in a few copies in few species across the Eleocharis phylogenetic tree. Nonetheless, they were accumulated within a restricted group of Maculosae series, subgenus Eleocharis. The data indicates that the amplification and line-like distribution of EmaSAT14 along chromatids may have occurred recently within a section of the genus.
Collapse
Affiliation(s)
- Thaíssa Boldieri de Souza
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570 Paraná, Brazil
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Letícia Maria Parteka
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570 Paraná, Brazil
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Yi-Tzu Kuo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Thiago Nascimento
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife-PE, Brazil
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife-PE, Brazil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - André Luís Laforga Vanzela
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570 Paraná, Brazil
| |
Collapse
|
4
|
Kelemen A, Garda T, Kónya Z, Erdődi F, Ujlaky-Nagy L, Juhász GP, Freytag C, M-Hamvas M, Máthé C. Treatments with Diquat Reveal the Relationship between Protein Phosphatases (PP2A) and Oxidative Stress during Mitosis in Arabidopsis thaliana Root Meristems. PLANTS (BASEL, SWITZERLAND) 2024; 13:1896. [PMID: 39065423 PMCID: PMC11279869 DOI: 10.3390/plants13141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Reversible protein phosphorylation regulates various cellular mechanisms in eukaryotes by altering the conformation, activity, localization, and stability of substrate proteins. In Arabidopsis thaliana root meristems, histone post-translational modifications are crucial for proper cell division, and they are also involved in oxidative stress signaling. To investigate the link between reactive oxygen species (ROS) and mitosis, we treated various Arabidopsis genotypes, including wild-types and mutants showing dysfunctional PP2A, with the ROS-inducing herbicide diquat (DQ). Studying the c3c4 double catalytic subunit mutant and fass regulatory subunit mutants of PP2A provided insights into phosphorylation-dependent mitotic processes. DQ treatment reduced mitotic activity in all genotypes and caused early mitotic arrest in PP2A mutants, likely due to oxidative stress-induced damage to essential mitotic processes. DQ had a minimal effect on reversible histone H3 phosphorylation in wild-type plants but significantly decreased phospho-histone H3 levels in PP2A mutants. Following drug treatment, the phosphatase activity decreased only in the stronger phenotype mutant plants (fass-5 and c3c4). Our findings demonstrate that (i) the studied PP2A loss-of-function mutants are more sensitive to increased intracellular ROS and (ii) DQ has indirect altering effects of mitotic activities and histone H3 phosphorylation. All these findings underscore the importance of PP2A in stress responses.
Collapse
Affiliation(s)
- Adrienn Kelemen
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Tamás Garda
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (Z.K.); (F.E.)
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (Z.K.); (F.E.)
| | - László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary;
| | - Gabriella Petra Juhász
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Csongor Freytag
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
- “One Health” Institute, Faculty of Health Science, University of Debrecen, Nagyerdei Blvd. 98, 4032 Debrecen, Hungary
| | - Márta M-Hamvas
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| | - Csaba Máthé
- Plant Cell and Developmental Biology Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem sq. 1, 4032 Debrecen, Hungary; (T.G.); (G.P.J.); (C.F.); (M.M.-H.)
| |
Collapse
|
5
|
Kalfusová R, Herklotz V, Kumke K, Houben A, Kovařík A, Ritz CM, Lunerová J. Epigenetic histone H3 phosphorylation marks discriminate between univalent- and bivalent-forming chromosomes during canina asymmetrical meiosis. ANNALS OF BOTANY 2024; 133:435-446. [PMID: 38127060 PMCID: PMC11006542 DOI: 10.1093/aob/mcad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND AND AIMS Dogroses (Rosa sect. Caninae) are mostly pentaploid, bearing 2n = 5x = 35 chromosomes in somatic cells. They evolved a unique form of asymmetrical meiosis characterized by two types of chromosomes: (1) chromosomes forming bivalents and distributed in the normal sexual way; and (2) chromosomes occurring as univalents and transferred by a female gamete only. In the mature pollen of pentaploid species, seven bivalent-derived chromosomes are transmitted to offspring, and 21 unpaired univalent chromosomes are eliminated during microsporogenesis. To discriminate between bivalent- and univalent-forming chromosomes, we studied histone H3 phosphorylation patterns regulating meiotic chromosome condensation and segregation. METHODS We analysed histone modification patterns during male canina meiosis in two representative dogrose species, 5x Rosa canina and 5x Rosa rubiginosa, by immunohistochemical and molecular cytogenetics approaches. Immunostaining of meiotic cells included α-tubulin, histone H3 phosphorylation (H3S10p, H3S28p and H3T3p) and methylation (H3K4me3 and H3K27me3) marks. In addition, fluorescent in situ hybridization was carried out with an 18S rDNA probe. KEY RESULTS In the first meiotic division, univalent chromosomes underwent equational division into chromatids, while homologues in bivalents were segregated as regular dyads. In diakinesis, bivalent chromosomes displayed strong H3 phosphorylation signals in proximal regions, spreading to the rest of the chromosome. In contrast, in univalents, the H3 phosphorylation signals were weaker, occurring mostly outside proximal regions largely overlapping with the H3K4me3 signals. Reduced phosphorylation was associated with relative under-condensation of the univalent chromosomes, particularly at early diakinesis. CONCLUSIONS We hypothesize that the absence of pairing and/or recombination in univalent chromosomes negatively affects the histone H3 phosphorylation of their chromatin and perhaps the loading of meiotic-specific cohesins. This apparently destabilizes cohesion of sister chromatids, leading to their premature split in the first meiotic division.
Collapse
Affiliation(s)
- Radka Kalfusová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Veit Herklotz
- Senckenberg Museum of Natural History, Senckenberg – Member of the Leibniz Association, Am Museum 1, 02826 Görlitz, Germany
| | - Katrin Kumke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Aleš Kovařík
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Christiane M Ritz
- Senckenberg Museum of Natural History, Senckenberg – Member of the Leibniz Association, Am Museum 1, 02826 Görlitz, Germany
- Chair of Biodiversity of Higher Plants, Technical University Dresden, D-01069, Dresden, Germany
| | - Jana Lunerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| |
Collapse
|
6
|
Yung WS, Huang C, Li MW, Lam HM. Changes in epigenetic features in legumes under abiotic stresses. THE PLANT GENOME 2023; 16:e20237. [PMID: 35730915 DOI: 10.1002/tpg2.20237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Legume crops are rich in nutritional value for human and livestock consumption. With global climate change, developing stress-resilient crops is crucial for ensuring global food security. Because of their nitrogen-fixing ability, legumes are also important for sustainable agriculture. Various abiotic stresses, such as salt, drought, and elevated temperatures, are known to adversely affect legume production. The responses of plants to abiotic stresses involve complicated cellular processes including stress hormone signaling, metabolic adjustments, and transcriptional regulations. Epigenetic mechanisms play a key role in regulating gene expressions at both transcriptional and posttranscriptional levels. Increasing evidence suggests the importance of epigenetic regulations of abiotic stress responses in legumes, and recent investigations have extended the scope to the epigenomic level using next-generation sequencing technologies. In this review, the current knowledge on the involvement of epigenetic features, including DNA methylation, histone modification, and noncoding RNAs, in abiotic stress responses in legumes is summarized and discussed. Since most of the available information focuses on a single aspect of these epigenetic features, integrative analyses involving omics data in multiple layers are needed for a better understanding of the dynamic chromatin statuses and their roles in transcriptional regulation. The inheritability of epigenetic modifications should also be assessed in future studies for their applications in improving stress tolerance in legumes through the stable epigenetic optimization of gene expressions.
Collapse
Affiliation(s)
- Wai-Shing Yung
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese Univ. of Hong Kong, Shatin, Hong Kong SAR, P.R. China
| | - Cheng Huang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese Univ. of Hong Kong, Shatin, Hong Kong SAR, P.R. China
- College of Agronomy, Hunan Agricultural Univ., Changsha, 410128, P.R. China
| | - Man-Wah Li
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese Univ. of Hong Kong, Shatin, Hong Kong SAR, P.R. China
| | - Hon-Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese Univ. of Hong Kong, Shatin, Hong Kong SAR, P.R. China
| |
Collapse
|
7
|
Sharma M, Sidhu AK, Samota MK, Gupta M, Koli P, Choudhary M. Post-Translational Modifications in Histones and Their Role in Abiotic Stress Tolerance in Plants. Proteomes 2023; 11:38. [PMID: 38133152 PMCID: PMC10747722 DOI: 10.3390/proteomes11040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Abiotic stresses profoundly alter plant growth and development, resulting in yield losses. Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular responses to maintain tissue hydration and temperature stability during stress. A pivotal player in this defense is histone modification, governing gene expression in response to diverse environmental cues. Post-translational modifications (PTMs) of histone tails, including acetylation, phosphorylation, methylation, ubiquitination, and sumoylation, regulate transcription, DNA processes, and stress-related traits. This review comprehensively explores the world of PTMs of histones in plants and their vital role in imparting various abiotic stress tolerance in plants. Techniques, like chromatin immune precipitation (ChIP), ChIP-qPCR, mass spectrometry, and Cleavage Under Targets and Tag mentation, have unveiled the dynamic histone modification landscape within plant cells. The significance of PTMs in enhancing the plants' ability to cope with abiotic stresses has also been discussed. Recent advances in PTM research shed light on the molecular basis of stress tolerance in plants. Understanding the intricate proteome complexity due to various proteoforms/protein variants is a challenging task, but emerging single-cell resolution techniques may help to address such challenges. The review provides the future prospects aimed at harnessing the full potential of PTMs for improved plant responses under changing climate change.
Collapse
Affiliation(s)
- Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Amanpreet K. Sidhu
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Mahesh Kumar Samota
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Regional Station, Abohar 152116, India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
| | - Pushpendra Koli
- Plant Animal Relationship Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi 284003, India;
- Post-Harvest Biosecurity, Murdoch University, Perth, WA 6150, Australia
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
8
|
Nunez-Vazquez R, Desvoyes B, Gutierrez C. Histone variants and modifications during abiotic stress response. FRONTIERS IN PLANT SCIENCE 2022; 13:984702. [PMID: 36589114 PMCID: PMC9797984 DOI: 10.3389/fpls.2022.984702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/28/2022] [Indexed: 06/17/2023]
Abstract
Plants have developed multiple mechanisms as an adaptive response to abiotic stresses, such as salinity, drought, heat, cold, and oxidative stress. Understanding these regulatory networks is critical for coping with the negative impact of abiotic stress on crop productivity worldwide and, eventually, for the rational design of strategies to improve plant performance. Plant alterations upon stress are driven by changes in transcriptional regulation, which rely on locus-specific changes in chromatin accessibility. This process encompasses post-translational modifications of histone proteins that alter the DNA-histones binding, the exchange of canonical histones by variants that modify chromatin conformation, and DNA methylation, which has an implication in the silencing and activation of hypervariable genes. Here, we review the current understanding of the role of the major epigenetic modifications during the abiotic stress response and discuss the intricate relationship among them.
Collapse
Affiliation(s)
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del Genoma, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del Genoma, Madrid, Spain
| |
Collapse
|
9
|
Vozárová R, Wang W, Lunerová J, Shao F, Pellicer J, Leitch IJ, Leitch AR, Kovařík A. Mega-sized pericentromeric blocks of simple telomeric repeats and their variants reveal patterns of chromosome evolution in ancient Cycadales genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:646-663. [PMID: 36065632 PMCID: PMC9827991 DOI: 10.1111/tpj.15969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Simple telomeric repeats composed of six to seven iterating nucleotide units are important sequences typically found at the ends of chromosomes. Here we analyzed their abundance and homogeneity in 42 gymnosperm (29 newly sequenced), 29 angiosperm (one newly sequenced), and eight bryophytes using bioinformatics, conventional cytogenetic and molecular biology approaches to explore their diversity across land plants. We found more than 10 000-fold variation in the amounts of telomeric repeats among the investigated taxa. Repeat abundance was positively correlated with increasing intragenomic sequence heterogeneity and occurrence at non-telomeric positions, but there was no correlation with genome size. The highest abundance/heterogeneity was found in the gymnosperm genus Cycas (Cycadaceae), in which megabase-sized blocks of telomeric repeats (i.e., billions of copies) were identified. Fluorescent in situ hybridization experiments using variant-specific probes revealed canonical Arabidopsis-type telomeric TTTAGGG repeats at chromosome ends, while pericentromeric blocks comprised at least four major telomeric variants with decreasing abundance: TTTAGGG>TTCAGGG >TTTAAGG>TTCAAGG. Such a diversity of repeats was not found in the sister cycad family Zamiaceae or in any other species analyzed. Using immunocytochemistry, we showed that the pericentromeric blocks of telomeric repeats overlapped with histone H3 serine 10 phosphorylation signals. We show that species of Cycas have amplified their telomeric repeats in centromeric and telomeric positions on telocentric chromosomes to extraordinary high levels. The ancestral chromosome number reconstruction suggests their occurrence is unlikely to be the product of ancient Robertsonian chromosome fusions. We speculate as to how the observed chromosome dynamics may be associated with the diversification of cycads.
Collapse
Affiliation(s)
- Radka Vozárová
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
- Department of Experimental Biology, Faculty of ScienceMasaryk University611 37BrnoCzech Republic
| | - Wencai Wang
- Science and Technology Innovation CentreGuangzhou University of Chinese MedicineGuangzhou510405China
| | - Jana Lunerová
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
| | - Fengqing Shao
- Science and Technology Innovation CentreGuangzhou University of Chinese MedicineGuangzhou510405China
| | - Jaume Pellicer
- Royal Botanic GardensKew, RichmondSurreyTW9 3ABUK
- Institut Botànic de Barcelona (IBB, CSIC‐Ajuntament de Barcelona)Passeig del Migdia sn08038BarcelonaSpain
| | | | - Andrew R. Leitch
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonE1 4NSUK
| | - Aleš Kovařík
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
| |
Collapse
|
10
|
Islam R, Zhao L, Wang Y, Lu-Yao G, Liu LZ. Epigenetic Dysregulations in Arsenic-Induced Carcinogenesis. Cancers (Basel) 2022; 14:cancers14184502. [PMID: 36139662 PMCID: PMC9496897 DOI: 10.3390/cancers14184502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Arsenic is a crucial environmental metalloid whose high toxicity levels negatively impact human health. It poses significant health concerns to millions of people in developed and developing countries such as the USA, Canada, Bangladesh, India, China, and Mexico by enhancing sensitivity to various types of diseases, including cancers. However, how arsenic causes changes in gene expression that results in heinous conditions remains elusive. One of the proposed essential mechanisms that still has seen limited research with regard to causing disease upon arsenic exposure is the dysregulation of epigenetic components. In this review, we have extensively summarized current discoveries in arsenic-induced epigenetic modifications in carcinogenesis and angiogenesis. Importantly, we highlight the possible mechanisms underlying epigenetic reprogramming through arsenic exposure that cause changes in cell signaling and dysfunctions of different epigenetic elements.
Collapse
|
11
|
Guarino F, Cicatelli A, Castiglione S, Agius DR, Orhun GE, Fragkostefanakis S, Leclercq J, Dobránszki J, Kaiserli E, Lieberman-Lazarovich M, Sõmera M, Sarmiento C, Vettori C, Paffetti D, Poma AMG, Moschou PN, Gašparović M, Yousefi S, Vergata C, Berger MMJ, Gallusci P, Miladinović D, Martinelli F. An Epigenetic Alphabet of Crop Adaptation to Climate Change. Front Genet 2022; 13:818727. [PMID: 35251130 PMCID: PMC8888914 DOI: 10.3389/fgene.2022.818727] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/28/2022] [Indexed: 01/10/2023] Open
Abstract
Crop adaptation to climate change is in a part attributed to epigenetic mechanisms which are related to response to abiotic and biotic stresses. Although recent studies increased our knowledge on the nature of these mechanisms, epigenetics remains under-investigated and still poorly understood in many, especially non-model, plants, Epigenetic modifications are traditionally divided into two main groups, DNA methylation and histone modifications that lead to chromatin remodeling and the regulation of genome functioning. In this review, we outline the most recent and interesting findings on crop epigenetic responses to the environmental cues that are most relevant to climate change. In addition, we discuss a speculative point of view, in which we try to decipher the “epigenetic alphabet” that underlies crop adaptation mechanisms to climate change. The understanding of these mechanisms will pave the way to new strategies to design and implement the next generation of cultivars with a broad range of tolerance/resistance to stresses as well as balanced agronomic traits, with a limited loss of (epi)genetic variability.
Collapse
Affiliation(s)
- Francesco Guarino
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università Degli Studi di Salerno, Salerno, Italy
| | - Angela Cicatelli
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università Degli Studi di Salerno, Salerno, Italy
| | - Stefano Castiglione
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università Degli Studi di Salerno, Salerno, Italy
| | - Dolores R. Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Gul Ebru Orhun
- Bayramic Vocational College, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | | | - Julie Leclercq
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Institut Agro, Montpellier, France
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, FAFSEM, University of Debrecen, Debrecen, Hungary
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cristina Vettori
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Donatella Paffetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Anna M. G. Poma
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, Aquila, Italy
| | - Panagiotis N. Moschou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Mateo Gašparović
- Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, Zagreb, Croatia
| | - Sanaz Yousefi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Chiara Vergata
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Margot M. J. Berger
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, Bordeaux, France
| | - Philippe Gallusci
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, Bordeaux, France
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
- *Correspondence: Dragana Miladinović, ; Federico Martinelli,
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- *Correspondence: Dragana Miladinović, ; Federico Martinelli,
| |
Collapse
|
12
|
Marimuthu MPA, Maruthachalam R, Bondada R, Kuppu S, Tan EH, Britt A, Chan SWL, Comai L. Epigenetically mismatched parental centromeres trigger genome elimination in hybrids. SCIENCE ADVANCES 2021; 7:eabk1151. [PMID: 34797718 PMCID: PMC8604413 DOI: 10.1126/sciadv.abk1151] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Wide crosses result in postzygotic elimination of one parental chromosome set, but the mechanisms that result in such differential fate are poorly understood. Here, we show that alterations of centromeric histone H3 (CENH3) lead to its selective removal from centromeres of mature Arabidopsis eggs and early zygotes, while wild-type CENH3 persists. In the hybrid zygotes and embryos, CENH3 and essential centromere proteins load preferentially on the CENH3-rich centromeres of the wild-type parent, while CENH3-depleted centromeres fail to reconstitute new CENH3-chromatin and the kinetochore and are frequently lost. Genome elimination is opposed by E3 ubiquitin ligase VIM1. We propose a model based on cooperative binding of CENH3 to chromatin to explain the differential CENH3 loading rates. Thus, parental CENH3 polymorphisms result in epigenetically distinct centromeres that instantiate a strong mating barrier and produce haploids.
Collapse
Affiliation(s)
- Mohan P. A. Marimuthu
- UC Davis Genome Center, UC Davis, Davis, CA, USA
- Department of Plant Biology, UC Davis, Davis, CA, USA
| | - Ravi Maruthachalam
- School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Ramesh Bondada
- School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Vithura, Kerala 695551, India
| | | | | | - Anne Britt
- Department of Plant Biology, UC Davis, Davis, CA, USA
| | | | - Luca Comai
- UC Davis Genome Center, UC Davis, Davis, CA, USA
- Department of Plant Biology, UC Davis, Davis, CA, USA
- Corresponding author.
| |
Collapse
|
13
|
Garrido-Ramos MA. The Genomics of Plant Satellite DNA. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:103-143. [PMID: 34386874 DOI: 10.1007/978-3-030-74889-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.
Collapse
|
14
|
Douglas RN, Yang H, Zhang B, Chen C, Han F, Cheng J, Birchler JA. De novo centromere formation on chromosome fragments with an inactive centromere in maize (Zea mays). Chromosome Res 2021; 29:313-325. [PMID: 34406545 PMCID: PMC8710440 DOI: 10.1007/s10577-021-09670-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/02/2023]
Abstract
The B chromosome of maize undergoes nondisjunction at the second pollen mitosis as part of its accumulation mechanism. Previous work identified 9-Bic-1 (9-B inactivated centromere-1), which comprises an epigenetically silenced B chromosome centromere that was translocated to the short arm of chromosome 9(9S). This chromosome is stable in isolation, but when normal B chromosomes are added to the genotype, it will attempt to undergo nondisjunction during the second pollen mitosis and usually fractures the chromosome in 9S. These broken chromosomes allow a test of whether the inactive centromere is reactivated or whether a de novo centromere is formed elsewhere on the chromosome to allow recovery of fragments. Breakpoint determination on the B chromosome and chromosome 9 showed that mini chromosome B1104 has the same breakpoint as 9-Bic-1 in the B centromere region and includes a portion of 9S. CENH3 binding was found on the B centromere region and on 9S, suggesting both centromere reactivation and de novo centromere formation. Another mini chromosome, B496, showed evidence of rearrangement, but it also only showed evidence for a de novo centromere. Other mini chromosome fragments recovered were directly derived from the B chromosome with breakpoints concentrated near the centromeric knob region, which suggests that the B chromosome is broken at a low frequency due to the failure of the sister chromatids to separate at the second pollen mitosis. Our results indicate that both reactivation and de novo centromere formation could occur on fragments derived from the progenitor possessing an inactive centromere.
Collapse
Affiliation(s)
- Ryan N Douglas
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Bing Zhang
- State Key Lab of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Fangpu Han
- State Key Lab of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
15
|
Subcellular Alterations Induced by Cyanotoxins in Vascular Plants-A Review. PLANTS 2021; 10:plants10050984. [PMID: 34069255 PMCID: PMC8157112 DOI: 10.3390/plants10050984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 01/26/2023]
Abstract
Phytotoxicity of cyanobacterial toxins has been confirmed at the subcellular level with consequences on whole plant physiological parameters and thus growth and productivity. Most of the data are available for two groups of these toxins: microcystins (MCs) and cylindrospermopsins (CYNs). Thus, in this review we present a timely survey of subcellular cyanotoxin effects with the main focus on these two cyanotoxins. We provide comparative insights into how peculiar plant cellular structures are affected. We review structural changes and their physiological consequences induced in the plastid system, peculiar plant cytoskeletal organization and chromatin structure, the plant cell wall, the vacuolar system, and in general, endomembrane structures. The cyanotoxins have characteristic dose-and plant genotype-dependent effects on all these structures. Alterations in chloroplast structure will influence the efficiency of photosynthesis and thus plant productivity. Changing of cell wall composition, disruption of the vacuolar membrane (tonoplast) and cytoskeleton, and alterations of chromatin structure (including DNA strand breaks) can ultimately lead to cell death. Finally, we present an integrated view of subcellular alterations. Knowledge on these changes will certainly contribute to a better understanding of cyanotoxin–plant interactions.
Collapse
|
16
|
Wurm CJ, Lindermayr C. Nitric oxide signaling in the plant nucleus: the function of nitric oxide in chromatin modulation and transcription. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:808-818. [PMID: 33128375 DOI: 10.1093/jxb/eraa404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) is involved in a vast number of physiologically important processes in plants, such as organ development, stress resistance, and immunity. Transduction of NO bioactivity is generally achieved by post-translational modification of proteins, with S-nitrosation of cysteine residues as the predominant form. While traditionally the subcellular location of the factors involved was of lesser importance, recent studies identified the connection between NO and transcriptional activity and thereby raised the question about the route of NO into the nuclear sphere. Identification of NO-affected transcription factors and chromatin-modifying histone deacetylases implicated the important role of NO signaling in the plant nucleus as a regulator of epigenetic mechanisms and gene transcription. Here, we discuss the relationship between NO and its directly regulated protein targets in the nuclear environment, focusing on S-nitrosated chromatin modulators and transcription factors.
Collapse
Affiliation(s)
- Christoph J Wurm
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
17
|
Loginova DB, Zhuravleva AA, Silkova OG. Random chromosome distribution in the first meiosis of F1 disomic substitution line 2R(2D) x rye hybrids (ABDR, 4× = 28) occurs without bipolar spindle assembly. COMPARATIVE CYTOGENETICS 2020; 14:453-482. [PMID: 33117496 PMCID: PMC7567738 DOI: 10.3897/compcytogen.v14.i4.55827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The assembly of the microtubule-based spindle structure in plant meiosis remains poorly understood compared with our knowledge of mitotic spindle formation. One of the approaches in our understanding of microtubule dynamics is to study spindle assembly in meiosis of amphyhaploids. Using immunostaining with phH3Ser10, CENH3 and α-tubulin-specific antibodies, we studied the chromosome distribution and spindle organisation in meiosis of F1 2R(2D)xR wheat-rye hybrids (genome structure ABDR, 4× = 28), as well as in wheat and rye mitosis and meiosis. At the prometaphase of mitosis, spindle assembly was asymmetric; one half of the spindle assembled before the other, with simultaneous chromosome alignment in the spindle mid-zone. At diakinesis in wheat and rye, microtubules formed a pro-spindle which was subsequently disassembled followed by a bipolar spindle assembly. In the first meiosis of hybrids 2R(2D)xR, a bipolar spindle was not found and the kinetochore microtubules distributed the chromosomes. Univalent chromosomes are characterised by a monopolar orientation and maintenance of sister chromatid and centromere cohesion. Presence of bivalents did not affect the formation of a bipolar spindle. Since the central spindle was absent, phragmoplast originates from "interpolar" microtubules generated by kinetochores. Cell plate development occurred with a delay. However, meiocytes in meiosis II contained apparently normal bipolar spindles. Thus, we can conclude that: (1) cohesion maintenance in centromeres and between arms of sister chromatids may negatively affect bipolar spindle formation in the first meiosis; (2) 2R/2D rye/wheat chromosome substitution affects the regulation of the random chromosome distribution in the absence of a bipolar spindle.
Collapse
Affiliation(s)
- Dina B. Loginova
- Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russian FederationInstitute of Cytology and GeneticsNovosibirskRussia
| | - Anastasia A. Zhuravleva
- Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russian FederationInstitute of Cytology and GeneticsNovosibirskRussia
| | - Olga G. Silkova
- Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russian FederationInstitute of Cytology and GeneticsNovosibirskRussia
| |
Collapse
|
18
|
Dong MY, Lei L, Fan XW, Li YZ. Dark response genes: a group of endogenous pendulum/timing players in maize? PLANTA 2020; 252:1. [PMID: 32504137 DOI: 10.1007/s00425-020-03403-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 05/21/2023]
Abstract
MAIN CONCLUSION Maize has a set of dark response genes, expression of which is influenced by multiple factor and varies with maize inbred lines but without germplasm specificity. The response to photoperiod is a common biological issue across the species kingdoms. Dark is as important as light in photoperiod. However, further in-depth understanding of responses of maize (Zea mays) to light and dark transition under photoperiod is hindered due to the lack of understanding of dark response genes. With multiple public "-omic" datasets of temperate and tropical/subtropical maize, 16 maize dark response genes, ZmDRGs, were found and had rhythmic expression under dark and light-dark cycle. ZmDRGs 6-8 were tandemly duplicated. ZmDRGs 2, 13, and 14 had a chromosomal collinearity with other maize genes. ZmDRGs 1-11 and 13-16 had copy-number variations. ZmDRGs 2, 9, and 16 showed 5'-end sequence deletion mutations. Some ZmDRGs had chromatin interactions and underwent DNA methylation and/or m6A mRNA methylation. Chromosomal histones associated with 15 ZmDRGs were methylated and acetylated. ZmDRGs 1, 2, 4, 9, and 13 involved photoperiodic phenotypes. ZmDRG16 was within flowering-related QTLs. ZmDRGs 1, 3, and 6-11 were present in cis-acting expression QTLs (eQTLs). ZmDRGs 1, 4, 6-9, 11, 12, and 14-16 showed co-expression with other maize genes. Some of ZmDRG-encoded ZmDRGs showed obvious differences in abundance and phosphorylation. CONCLUSION Sixteen ZmDRGs 1-16 are associated with the dark response of maize. In the process of post-domestication and/or breeding, the ZmDRGs undergo the changes without germplasm specificity, including epigenetic modifications, gene copy numbers, chromatin interactions, and deletion mutations. In addition to effects by these factors, ZmDRG expression is influenced by promoter elements, cis-acting eQTLs, and co-expression networks.
Collapse
Affiliation(s)
- Ming-You Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Ling Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
19
|
Kang J, Wang Z. Mut9p-LIKE KINASE Family Members: New Roles of the Plant-Specific Casein Kinase I in Plant Growth and Development. Int J Mol Sci 2020; 21:ijms21051562. [PMID: 32106561 PMCID: PMC7084540 DOI: 10.3390/ijms21051562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 11/16/2022] Open
Abstract
: Casein kinase I (CK1), a ubiquitous serine/threonine (Ser/Thr) protein kinase in eukaryotes, plays pivotal roles in a wide spectrum of cellular functions including metabolism, cell cycle progression, developmental control and stress responses. Plant CK1 evolves a lineage expansion, resulting in a unique branch of members exclusive to the kingdom. Among them, Arabidopsis Mut9p-LIKE KINASEs (MLKs) target diverse substrates including histones and the key regulatory proteins involving in physiological processes of light signaling, circadian rhythms, phytohormone and plant defense. Deregulation of the kinase activity by mutating the enzyme or the phosphorylation sites of substrates causes developmental disorders and susceptibility to adverse environmental conditions. MLKs have evolved as a general kinase that modifies transcription factors or primary regulatory proteins in a dynamic way. Here, we summarize the current knowledge of the roles of MLKs and MLK orthologs in several commercially important crops.
Collapse
Affiliation(s)
| | - Zhen Wang
- Correspondence: ; Tel.: +10-86-62816357
| |
Collapse
|
20
|
Quantitative Phosphoproteomic Analysis of Legume Using TiO 2-Based Enrichment Coupled with Isobaric Labeling. Methods Mol Biol 2020; 2107:395-406. [PMID: 31893461 DOI: 10.1007/978-1-0716-0235-5_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphorylation of proteins is the most dynamic protein modification, and its analysis aids in determining the functional and regulatory principles of important cellular pathways. The legumes constitute the third largest family of higher plants, Fabaceae, comprising about 20,000 species and are second to cereals in agricultural importance on the basis of global production. Therefore, an understanding of the developmental and adaptive processes of legumes demands identification of their regulatory components. The most crucial signature of the legume family is the symbiotic nitrogen fixation, which makes this fascinating and interesting to investigate phosphorylation events. The research on protein phosphorylation in legumes has been focused primarily on two model species, Medicago truncatula and Lotus japonicus. The development of reciprocal research in other species, particularly the crops, is lagging behind which has limited its beneficial uses in agricultural productivity. In this chapter, we outline the titanium dioxide-based enrichment of phosphopeptides for nuclear proteome analysis of a grain legume, chickpea.
Collapse
|
21
|
Karakkat JV, Kaimala S, Sreedharan SP, Jayaprakash P, Adeghate EA, Ansari SA, Guccione E, Mensah-Brown EPK, Starling Emerald B. The metabolic sensor PASK is a histone 3 kinase that also regulates H3K4 methylation by associating with H3K4 MLL2 methyltransferase complex. Nucleic Acids Res 2019; 47:10086-10103. [PMID: 31529049 PMCID: PMC6821284 DOI: 10.1093/nar/gkz786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022] Open
Abstract
The metabolic sensor Per-Arnt-Sim (Pas) domain-containing serine/threonine kinase (PASK) is expressed predominantly in the cytoplasm of different cell types, although a small percentage is also expressed in the nucleus. Herein, we show that the nuclear PASK associates with the mammalian H3K4 MLL2 methyltransferase complex and enhances H3K4 di- and tri-methylation. We also show that PASK is a histone kinase that phosphorylates H3 at T3, T6, S10 and T11. Taken together, these results suggest that PASK regulates two different H3 tail modifications involving H3K4 methylation and H3 phosphorylation. Using muscle satellite cell differentiation and functional analysis after loss or gain of Pask expression using the CRISPR/Cas9 system, we provide evidence that some of the regulatory functions of PASK during development and differentiation may occur through the regulation of these histone modifications.
Collapse
Affiliation(s)
- Jimsheena V Karakkat
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Sreejisha P Sreedharan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Princy Jayaprakash
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Ernest A Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Eric P K Mensah-Brown
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
22
|
Ujvárosi AZ, Riba M, Garda T, Gyémánt G, Vereb G, M-Hamvas M, Vasas G, Máthé C. Attack of Microcystis aeruginosa bloom on a Ceratophyllum submersum field: Ecotoxicological measurements in real environment with real microcystin exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:735-745. [PMID: 30703731 DOI: 10.1016/j.scitotenv.2019.01.226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/20/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Overproduction of toxic cyanobacteria is a type of harmful algal blooms (HABs). The heptapeptide microcystins (MCs) are one of the most common cyanotoxins. There is increasing research concerning the effects of MCs on growth and physiology of vascular plants, however there is a lack of studies on their direct effects on aquatic macrophytes in the real environment. Here we report the occurrence of a MC producing HAB in Lake Bárdos, Hungary in 2012 with harmful effects on cytological, histological and biochemical parameters of Ceratophyllum submersum (soft hornwort) plants naturally growing at the blooming site. Blue-Green Sinapis Test (BGST) showed high toxicity of HAB samples. Cell-free water samples contained a significant amount of MCs (7.31 ± 0.17 μg L-1) while C. submersum plants contained 1.01 ± 0.21 μg g DW-1 MCs. Plants showed significant increases of protein content and decreases of anthocyanin content and carotenoid/chlorophyll ratio, indicating physiological stress- as compared to plants from the control (MC free) sampling site of the same water body. Histological and cytological studies showed (i) radial swelling and the abnormal formation of lateral buds at the shoot tip leading to abnormal development; (ii) the fragmentation of nuclei as well as accumulation of phenolics in the nucleus indicating that the HAB induced cell death and stress reactions at the nuclear level. The most relevant effect was the increase of histone H3 phosphorylation in metaphase chromosomes: since MCs are strong inhibitors of protein phosphatases, this alteration is related to the biochemical targets of these toxins. The HAB decreased peroxidase activity, but increased nuclease and protease activities, showing the decreased capacity of plants to face biotic stress and as the cytological changes, the induction of cell death. This study is one of the first to show the complex harmful changes in aquatic plants that co-exist with HABs.
Collapse
Affiliation(s)
- Andrea Zsuzsanna Ujvárosi
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary
| | - Milán Riba
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary
| | - Tamás Garda
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary
| | - Gyöngyi Gyémánt
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Chemistry, Department of Inorganic and Analytical Chemistry, Hungary
| | - György Vereb
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Medicine, Department of Biophysics and Cell Biology and Faculty of Pharmacy, Hungary
| | - Márta M-Hamvas
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary.
| | - Gábor Vasas
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary.
| | - Csaba Máthé
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary.
| |
Collapse
|
23
|
Abstract
Circadian rhythms in transcription ultimately result in oscillations of key biological processes. Understanding how transcriptional rhythms are generated in plants provides an opportunity for fine-tuning growth, development, and responses to the environment. Here, we present a succinct description of the plant circadian clock, briefly reviewing a number of recent studies but mostly emphasizing the components and mechanisms connecting chromatin remodeling with transcriptional regulation by the clock. The possibility that intergenomic interactions govern hybrid vigor through epigenetic changes at clock loci and the function of epialleles controlling clock output traits during crop domestication are also discussed.
Collapse
Affiliation(s)
- Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Paloma Mas
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain. .,Consejo Superior de Investigaciones Científicas, 08028, Barcelona, Spain.
| |
Collapse
|
24
|
Garda T, Kónya Z, Freytag C, Erdődi F, Gonda S, Vasas G, Szücs B, M-Hamvas M, Kiss-Szikszai A, Vámosi G, Máthé C. Allyl-Isothiocyanate and Microcystin-LR Reveal the Protein Phosphatase Mediated Regulation of Metaphase-Anaphase Transition in Vicia faba. FRONTIERS IN PLANT SCIENCE 2018; 9:1823. [PMID: 30619398 PMCID: PMC6300510 DOI: 10.3389/fpls.2018.01823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Horseradish allyl isothiocyanate (AITC, a volatile oil) and cyanobacterial microcystin-LR (MCY-LR, a cyclic heptapeptide) affect eukaryotic cell cycle. MCY-LR inhibits protein phosphatases PP1 and PP2A. We aimed to reveal the mechanisms of their cellular effects in a model eukaryote, Vicia faba. We have shown for the first time that AITC had minor effects on PP1 and PP2A activities in vitro, but it inhibited significantly PP1 in vivo. The combination of 10 μM AITC with 10 μM MCY-LR induced metaphase arrest after short-term (12 h) treatments. 10 μM AITC, 0.2-10 μM MCY-LR and their combinations induced histone H3 hyperphosphorylation, associated with the regulation of metaphase-anaphase transition. This hyperphosphorylation event occurred at any treatment which led to the inhibition of PP1 activity. 10 μM AITC + 10 μM MCY-LR increased the frequency of metaphase spindle anomalies, associated with metaphase arrest. We provide new insights into the mechanisms of metaphase-anaphase transition. Metaphase arrest is induced at the concomitant hyperphosphorylation of histone H3, alteration of metaphase spindle assembly and strong inhibition of PP1 + PP2A activity. Near-complete blocking of metaphase-anaphase transition by rapid protein phosphatase inhibition is shown here for the first time in plants, confirming a crucial role of serine-threonine phosphatases in this checkpoint of cell cycle regulation. Tissue-dependent differences in PP1 and PP2A activities induced by AITC and MCY-LR suggest that mainly regulatory subunits are affected. AITC is a potential tool for the study of protein phosphatase function and regulation. We raise the possibility that one of the biochemical events occurring during AITC release upon wounding is the modulation of protein phosphatase dependent signal transduction pathways during the plant defense response.
Collapse
Affiliation(s)
- Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csongor Freytag
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Gonda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Boglárka Szücs
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Attila Kiss-Szikszai
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
25
|
Zhou Q, Xi S. A review on arsenic carcinogenesis: Epidemiology, metabolism, genotoxicity and epigenetic changes. Regul Toxicol Pharmacol 2018; 99:78-88. [PMID: 30223072 DOI: 10.1016/j.yrtph.2018.09.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022]
Abstract
Long-term exposure to arsenic (inorganic arsenic) is a world-wide environmental health concern. Arsenic is classified as the Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). Epidemiological studies have established a strong association between inorganic arsenic (iAs) exposure in drinking water and an increased incidence of cancer including bladder, liver, lung, prostate, and skin cancer. iAs also increases the risk of other diseases such as cardiovascular disease, hypertension and diabetes. The molecular mechanisms of carcinogenesis of iAs remain poorly defined, several mechanisms have been proposed, including genotoxicity, altered cell proliferation, oxidative stress, changes to the epigenome, disturbances of signal transduction pathways, cytotoxicity and regenerative proliferation. In this article, we will summarize current knowledge on the mechanisms of arsenic carcinogenesis and focus on integrating all these issues to garner a broader perspective.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China
| | - Shuhua Xi
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
26
|
Sharma SK, Yamamoto M, Mukai Y. Delineation of methylation and histone modification: the epigenetic regulatory marks show slightly altered distribution with the elevation in ploidy level in the orchid Dendrobium nobile. THE NUCLEUS 2018. [DOI: 10.1007/s13237-018-0231-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
27
|
Mursalimov S, Deineko E. Cytomixis in plants: facts and doubts. PROTOPLASMA 2018; 255:719-731. [PMID: 29192339 DOI: 10.1007/s00709-017-1188-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/21/2017] [Indexed: 05/12/2023]
Abstract
The migration of nuclei between plant cells (cytomixis) is a mysterious cellular phenomenon frequently observable in the male meiosis of higher plants. Cytomixis attracts attention because of unknown cellular mechanisms underlying migration of nuclei and its potential evolutionary significance, since the genetic material is transferred between the cells that form pollen. Although cytomixis was discovered over a century ago, the advance in our understanding of this process has been rather insignificant because of methodological difficulties. The data that allowed for a new insight into this phenomenon were obtained by examining the migrating nuclei with electron and confocal laser microscopy, immunostaining, and fluorescence in situ hybridization. As has been shown, the chromatin migrating between cells is surrounded by an undamaged nuclear membrane. Such chromatin does not undergo heterochromatization and contains normal euchromatin markers. The condensation degree of the migrating chromatin corresponds to the current meiotic stage, and normal structures of synaptonemal complex are present in the migrating part of the nucleus. The cells involved in cytomixis lack any detectable morphological and molecular markers of programmed cell death. It has been shown that individual chromosomes and genomes (in the case of allopolyploids) have no predisposition to the migration between cells, i.e., parts of the nucleus are involved in cytomixis in a random manner. However, the fate of migrating chromatin after it has entered the recipient cell is still vague. A huge amount of indirect data suggests that migrating chromatin is incorporated into the nucleus of the recipient cell; nonetheless, the corresponding direct evidences are still absent. No specific markers of cytomictic chromatin have been yet discovered. Thus, the causes and consequences of cytomixis are still disputable. This review briefs the recent data on the relevant issues, describes the classical and modern methodological approaches to analysis of the intercellular migration of nuclei, and discusses the problems in cytomixis research and its prospects.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, pr. Lavrentieva 10, Novosibirsk, Russian Federation, 630090.
| | - Elena Deineko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, pr. Lavrentieva 10, Novosibirsk, Russian Federation, 630090
| |
Collapse
|
28
|
Liu Y, Su H, Liu Y, Zhang J, Dong Q, Birchler JA, Han F. Cohesion and centromere activity are required for phosphorylation of histone H3 in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1121-1131. [PMID: 29032586 DOI: 10.1111/tpj.13748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 05/03/2023]
Abstract
Haspin-mediated phosphorylation of histone H3 at threonine 3 (H3T3ph) promotes proper deposition of Aurora B at the inner centromere to ensure faithful chromosome segregation in metazoans. However, the function of H3T3ph remains relatively unexplored in plants. Here, we show that in maize (Zea mays L.) mitotic cells, H3T3ph is concentrated at pericentromeric and centromeric regions. Additional weak H3T3ph signals occur between cohered sister chromatids at prometaphase. Immunostaining on dicentric chromosomes reveals that an inactive centromere cannot maintain H3T3ph at metaphase, indicating that a functional centromere is required for H3T3 phosphorylation. H3T3ph locates at a newly formed centromeric region that lacks detectable CentC sequences and strongly reduced CRM and ZmBs repeat sequences at metaphase II. These results suggest that centromeric localization of H3T3ph is not dependent on centromeric sequences. In maize meiocytes, H3T3 phosphorylation occurs at the late diakinesis and extends to the entire chromosome at metaphase I, but is exclusively limited to the centromere at metaphase II. The H3T3ph signals are absent in the afd1 (absence of first division) and sgo1 (shugoshin) mutants during meiosis II when the sister chromatids exhibit random distribution. Further, we show that H3T3ph is mainly located at the pericentromere during meiotic prophase II but is restricted to the inner centromere at metaphase II. We propose that this relocation of H3T3ph depends on tension at the centromere and is required to promote bi-orientation of sister chromatids.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qianhua Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211-7400, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
29
|
Sharma SK, Yamamoto M, Mukai Y. Distinct chromatin environment associated with phosphorylated H3S10 histone during pollen mitosis I in orchids. PROTOPLASMA 2017; 254:161-165. [PMID: 26769710 DOI: 10.1007/s00709-015-0925-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Pollen developmental pathway in plants involving synchronized transferal of cellular divisions from meiosis (microsporogenesis) to mitosis (pollen mitosis I/II) eventually offers a unique "meiosis-mitosis shift" at pollen mitosis I. Since the cell type (haploid microspore) and fate of pollen mitosis I differ from typical mitosis (in meristem cells), it is immensely important to analyze the chromosomal distribution of phosphorylated H3S10 histone during atypical pollen mitosis I to comprehend the role of histone phosphorylation in pollen development. We investigated the chromosomal phosphorylation of H3S10 histone during pollen mitosis I in orchids using immunostaining technique. The chromosomal distribution of H3S10ph during pollen mitosis I revealed differential pattern than that of typical mitosis in plants, however, eventually following the similar trends of mitosis in animals where H3S10 phosphorylation begins in the pericentromeric regions first, later extending to the whole chromosomes, and finally declining at anaphase/early cytokinesis (differentiation of vegetative and generative cells). The study suggests that the chromosomal distribution of H3S10ph during cell division is not universal and can be altered between different cell types encoded for diverse cellular processes. During pollen development, phosphorylation of histone might play a critical role in chromosome condensation events throughout pollen mitosis I in plants.
Collapse
Affiliation(s)
- Santosh Kumar Sharma
- Laboratory of Plant Molecular Genetics, Division of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan.
| | - Maki Yamamoto
- Department of Rehabilitation Sciences, Kansai University of Welfare Sciences, Kashiwara, Osaka, Japan
| | - Yasuhiko Mukai
- Laboratory of Plant Molecular Genetics, Division of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan
| |
Collapse
|
30
|
Sharma SK, Yamamoto M, Mukai Y. Dual modified antiphospho (Ser10)-acetyl (Lys14)-histone H3 predominantly mark the pericentromeric chromatin during mitosis in monokinetic plants. J Genet 2016; 95:965-973. [PMID: 27994196 DOI: 10.1007/s12041-016-0723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epigenetic regulatory posttranslational histone modification marks not only function individually but also capable to act in combination as a unique pattern. A total of 16 plant species belonging to 11 genera of eight families (five dicots and three monocots) including land plants, epiphytes (orchids) and the holokinetic taxa (Drosera spp.) were analysed for chromosomal distribution of dual modified antiphospho (Ser10)-acetyl (K14)-histone H3 (H3S10phK14ac) to understand the combinatorial chromatin dynamics during mitotic cell division in plants. The anti-H3S10phK14ac evidently mark the pericentromeric chromatin on mitotic chromosomes of the plants excluding the holokinetic Drosera species, which revealed the immunolabelling of whole chromosomes all along the arms. The dual modified immunosignals were absent during early stages of mitosis, appeared intensively at metaphase and remained visible until late-anaphase/telophase however, labelled the whole chromosomes during meiotic metaphase I. Colocalization of anti-H3S10phK14ac with an onion's CENH3 antibody on mitotic chromosomes of Allium revealed the chromosomal location of anti-H3S10phK14ac in the region between signals for CENH3 detection. Overall analysis suggests that the unique localization of combinatorial histone modification mark at pericentromeric chromatin might have attributed through 'phospho-acetyl' cross talk that ultimately facilitate the sister chromatid cohesion at pericentromeres following condensation events in mitotic chromosomes. Here, we propose that dual modified H3S10phK14ac histone may serve as an additional cytogenetic landmark to identify pericentromeric chromatin during mitosis in plants. The plausible role of histone cross talk and future perspectives of combinatorial histone modification marks in plant cytogenetics with special reference to chromatin dynamics have been discussed.
Collapse
Affiliation(s)
- Santosh Kumar Sharma
- Laboratory of Plant Molecular Genetics, Division of Natural Sciences, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan.
| | | | | |
Collapse
|
31
|
Kim J, Lee HY, Lee KH, Park SJ. Phosphorylation of Serine 148 in Giardia lamblia
End-binding 1 Protein is Important for Cell Division. J Eukaryot Microbiol 2016; 64:464-480. [DOI: 10.1111/jeu.12384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/07/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Juri Kim
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul 03722 South Korea
| | - Hye-Yeon Lee
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul 03722 South Korea
| | - Kyu-Ho Lee
- Department of Life Science; Sogang University; Seoul 04107 South Korea
| | - Soon-Jung Park
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science; Yonsei University College of Medicine; Seoul 03722 South Korea
| |
Collapse
|
32
|
Baerenfaller K, Shu H, Hirsch-Hoffmann M, Fütterer J, Opitz L, Rehrauer H, Hennig L, Gruissem W. Diurnal changes in the histone H3 signature H3K9ac|H3K27ac|H3S28p are associated with diurnal gene expression in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:2557-2569. [PMID: 27487196 DOI: 10.1111/pce.12811] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 05/18/2023]
Abstract
Post-translational chromatin modifications are an important regulatory mechanism in light signalling and circadian clock function. The regulation of diurnal transcript level changes requires fine-tuning of the expression of generally active genes depending on the prevailing environmental conditions. We investigated the association of histone modifications H3K4me3, H3K9ac, H3K9me2, H3S10p, H3K27ac, H3K27me3 and H3S28p with diurnal changes in transcript expression using chromatin immunoprecipitations followed by sequencing (ChIP-Seq) in fully expanded leaves 6 of Arabidopsis thaliana grown in short-day optimal and water-deficit conditions. We identified a differential H3K9ac, H3K27ac and H3S28p signature between end-of-day and end-of-night that is correlated with changes in diurnal transcript levels. Genes with this signature have particular over-represented promoter elements and encode proteins that are significantly enriched for transcription factors, circadian clock and starch catabolic process. Additional activating modifications were prevalent in optimally watered (H3S10p) and in water-deficit (H3K4me3) plants. The data suggest a mechanism for diurnal transcript level regulation in which reduced binding of repressive transcription factors facilitates activating H3K9ac, H3K27ac and H3S28p chromatin modifications. The presence of activating chromatin modification patterns on genes only at times of the day when their expression is required can explain why some genes are differentially inducible during the diurnal cycle.
Collapse
Affiliation(s)
| | - Huan Shu
- Department of Biology, ETH Zurich, Zurich, 8092, Switzerland
- Program of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | - Lennart Opitz
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, 8057, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, 8057, Switzerland
| | - Lars Hennig
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, SE-75007, Sweden
| | | |
Collapse
|
33
|
Tissue-specific genome instability in synthetic interspecific hybrids of Pennisetum purpureum (Napier grass) and Pennisetum glaucum (pearl millet) is caused by micronucleation. Chromosome Res 2016; 24:285-97. [DOI: 10.1007/s10577-016-9521-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
|
34
|
Neumann P, Schubert V, Fuková I, Manning JE, Houben A, Macas J. Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes. FRONTIERS IN PLANT SCIENCE 2016; 7:234. [PMID: 26973677 PMCID: PMC4771749 DOI: 10.3389/fpls.2016.00234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/11/2016] [Indexed: 05/19/2023]
Abstract
Species of the legume genera Lathyrus and Pisum possess chromosomes that exhibit a unique structure of their centromeric regions, which is clearly apparent during metaphase by the formation of extended primary constrictions which span up to a third of the length of the chromosome. In addition, these species express two different variants of the CenH3 protein which are co-localized in multiple domains along the poleward surface of the primary constrictions. Here, we show that the constrictions represent a distinct type of chromatin differing from the chromosome arms. In metaphase, histone phosphorylation patterns including H3S10ph, H3S28ph, and H3T3ph were observed along the entire constriction, in a way similar to holocentric chromosomes. On the other hand, distribution of phosphorylated H2AT120 was different from that previously reported from either, holocentric and monocentric chromosomes, occurring at chromatin surrounding but not overlapping CenH3 domains. Since some of these phosphorylations play a role in chromatid cohesion, it can be assumed that they facilitate correct chromosome segregation by ensuring that multiple separate CenH3 domains present on the same chromatid are oriented toward the same pole. The constrictions also displayed distinct patterns of histone methylation marks, being enriched in H3K9me2 and depleted in H3K4me3 and H3K27me2 compared to the chromosome arms. Super-resolution fluorescence microscopy revealed that although both CenH3 protein variants are present in all CenH3 domains detected on metaphase chromosomes, they are only partially co-localized while there are chromatin subdomains which are mostly made of only one CenH3 variant. Taken together, these data revealed specific features of extended primary constrictions of Lathyrus and Pisum and support the idea that they may represent an intermediate stage between monocentric and holocentric chromosomes.
Collapse
Affiliation(s)
- Pavel Neumann
- Laboratory of Molecular Cytogenetics, Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular BiologyČeské Budějovice, Czech Republic
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Iva Fuková
- Laboratory of Molecular Cytogenetics, Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular BiologyČeské Budějovice, Czech Republic
| | - Jasper E. Manning
- Laboratory of Molecular Cytogenetics, Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular BiologyČeské Budějovice, Czech Republic
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Jiří Macas
- Laboratory of Molecular Cytogenetics, Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular BiologyČeské Budějovice, Czech Republic
- *Correspondence: Jiří Macas
| |
Collapse
|
35
|
Abstract
Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed.
Collapse
|
36
|
Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:8487-92. [PMID: 26100864 DOI: 10.1073/pnas.1423325112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone phosphorylation plays key roles in stress-induced transcriptional reprogramming in metazoans but its function(s) in land plants has remained relatively unexplored. Here we report that an Arabidopsis mutant defective in At3g03940 and At5g18190, encoding closely related Ser/Thr protein kinases, shows pleiotropic phenotypes including dwarfism and hypersensitivity to osmotic/salt stress. The double mutant has reduced global levels of phosphorylated histone H3 threonine 3 (H3T3ph), which are not enhanced, unlike the response in the wild type, by drought-like treatments. Genome-wide analyses revealed increased H3T3ph, slight enhancement in trimethylated histone H3 lysine 4 (H3K4me3), and a modest decrease in histone H3 occupancy in pericentromeric/knob regions of wild-type plants under osmotic stress. However, despite these changes in heterochromatin, transposons and repeats remained transcriptionally repressed. In contrast, this reorganization of heterochromatin was mostly absent in the double mutant, which exhibited lower H3T3ph levels in pericentromeric regions even under normal environmental conditions. Interestingly, within actively transcribed protein-coding genes, H3T3ph density was minimal in 5' genic regions, coincidental with a peak of H3K4me3 accumulation. This pattern was not affected in the double mutant, implying the existence of additional H3T3 protein kinases in Arabidopsis. Our results suggest that At3g03940 and At5g18190 are involved in the phosphorylation of H3T3 in pericentromeric/knob regions and that this repressive epigenetic mark may be important for maintaining proper heterochromatic organization and, possibly, chromosome function(s).
Collapse
|
37
|
Sharma SK, Yamamoto M, Mukai Y. Immuno-cytogenetic manifestation of epigenetic chromatin modification marks in plants. PLANTA 2015; 241:291-301. [PMID: 25539867 DOI: 10.1007/s00425-014-2233-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/16/2014] [Indexed: 05/26/2023]
Abstract
Histone proteins and the nucleosomes along with DNA are the essential components of eukaryotic chromatin. Post-translational histone-DNA interactions and modifications eventually offer significant alteration in the chromatin environment and potentially influence diverse fundamental biological processes, some of which are known to be epigenetically inherited and constitute the "epigenetic code". Such chromatin modifications evidently uncover remarkable diversity and biological specificity associated with distinct patterns of covalent histone marks. The past few years have witnessed major breakthroughs in plant biology research by utilizing chromatin modification-specific antibodies through molecular cytogenetic tools to ascertain hallmark signatures of chromatin domains on the chromosomes. Here, we survey current information on chromosomal distribution patterns of chromatin modifications with special emphasis on histone methylation, acetylation, phosphorylation, and centromere-specific histone 3 (CENH3) marks in plants using immuno-FISH as a basic tool. Major available information has been classified under typical and comparative cytogenetic detection of chromatin modifications in plants. Further, spatial distribution of chromatin environment that exists between different cell types such as angiosperm/gymnosperm, monocot/dicot, diploid/polyploids, vegetative/generative cells, as well as different stages, i.e., mitosis versus meiosis has also been discussed in detail. Several challenges and future perspectives of molecular cytogenetics in the grooming field of plant chromatin dynamics have also been addressed.
Collapse
Affiliation(s)
- Santosh Kumar Sharma
- Division of Natural Sciences, Laboratory of Plant Molecular Genetics, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan,
| | | | | |
Collapse
|
38
|
Banaei-Moghaddam AM, Martis MM, Macas J, Gundlach H, Himmelbach A, Altschmied L, Mayer KF, Houben A. Genes on B chromosomes: Old questions revisited with new tools. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:64-70. [DOI: 10.1016/j.bbagrm.2014.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
|
39
|
Mursalimov S, Permyakova N, Deineko E, Houben A, Demidov D. Cytomixis doesn't induce obvious changes in chromatin modifications and programmed cell death in tobacco male meiocytes. FRONTIERS IN PLANT SCIENCE 2015; 6:846. [PMID: 26528310 PMCID: PMC4600909 DOI: 10.3389/fpls.2015.00846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/25/2015] [Indexed: 05/16/2023]
Abstract
Cytomixis is a poorly studied process of nuclear migration between plant cells. It is so far unknown what drives cytomixis and what is the functional state of the chromatin migrating between cells. Using immunostaining, we have analyzed the distribution of posttranslational histone modifications (methylation, acetylation, and phosphorylation) that reflect the functional state of chromatin in the tobacco microsporocytes involved in cytomixis. We demonstrate that the chromatin in the cytomictic cells does not differ from the chromatin in intact microsporocytes according to all 14 analyzed histone modification types. We have also for the first time demonstrated that the migrating chromatin contains normal structures of the synaptonemal complex (SC) and lacks any signs of apoptosis. As has been shown, the chromatin migrating between cells in cytomixis is neither selectively heterochromatized nor degraded both before its migration to another cell and after it enters a recipient cell as micronuclei. We also showed that cytomictic chromatin contains marks typical for transcriptionally active chromatin as well as heterochromatin. Moreover, marks typical for chromosome condensation, SC formation and key proteins required for the formation of bivalents were also detected at migrated chromatin.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia
| | - Natalya Permyakova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia
| | - Elena Deineko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant ResearchStadt Seeland, Germany
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant ResearchStadt Seeland, Germany
- *Correspondence: Dmitri Demidov,
| |
Collapse
|
40
|
Abstract
The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments.
Collapse
Affiliation(s)
- Craig S Pikaard
- Department of Biology, Department of Molecular and Cellular Biochemistry, and Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana 47405
| | - Ortrun Mittelsten Scheid
- Gregor Mendel-Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| |
Collapse
|
41
|
de Paula CMP, Techio VH. Immunolocalization of chromosome-associated proteins in plants - principles and applications. BOTANICAL STUDIES 2014; 55:63. [PMID: 28510982 PMCID: PMC5430351 DOI: 10.1186/s40529-014-0063-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/24/2014] [Indexed: 06/07/2023]
Abstract
The use of the immunolocalization technique combined with cytogenetic and epigenetic studies is an indispensable tool and has contributed significantly to the analysis of the structure and function of chromosomes, since it can provide information about the spatial or temporal distribution of a given protein in the nucleus and chromosomes. Several chromosome-associated proteins in plant cells have already been identified by immunolocalization, such as histone and non-histone proteins and cell division-related protein (mitosis and meiosis). The principle of the immunolocalization technique in plants basically involves fixation and permeabilization of cells, the use of monoclonal or polyclonal antibodies attached to a signaling molecule, usually a fluorochrome and detection of the target molecule by using an epifluorescence microscope.
Collapse
Affiliation(s)
| | - Vânia Helena Techio
- Department of Biology, Federal University of Lavras, Lavras, Zip code 372000-000 Minas Gerais State Brazil
| |
Collapse
|
42
|
Delporte A, De Zaeytijd J, De Storme N, Azmi A, Geelen D, Smagghe G, Guisez Y, Van Damme EJM. Cell cycle-dependent O-GlcNAc modification of tobacco histones and their interaction with the tobacco lectin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:151-8. [PMID: 25146688 DOI: 10.1016/j.plaphy.2014.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 07/25/2014] [Indexed: 05/22/2023]
Abstract
The Nicotiana tabacum agglutinin or Nictaba is a nucleocytoplasmic lectin that is expressed in tobacco after the plants have been exposed to jasmonate treatment or insect herbivory. Nictaba specifically recognizes GlcNAc residues. Recently, it was shown that Nictaba is interacting in vitro with the core histone proteins from calf thymus. Assuming that plant histones - similar to their animal counterparts - undergo O-GlcNAcylation, this interaction presumably occurs through binding of the lectin to the O-GlcNAc modification present on the histones. Hereupon, the question was raised whether this modification also occurs in plants and if it is cell cycle dependent. To this end, histones were purified from tobacco BY-2 suspension cells and the presence of O-GlcNAc modifications was checked. Concomitantly, O-GlcNAcylation of histone proteins was studied. Our data show that similar to animal histones plant histones are modified by O-GlcNAc in a cell cycle-dependent fashion. In addition, the interaction between Nictaba and tobacco histones was confirmed using lectin chromatography and far Western blot analysis. Collectively these findings suggest that Nictaba can act as a modulator of gene transcription through its interaction with core histones.
Collapse
Affiliation(s)
- Annelies Delporte
- Ghent University, Dept. Molecular Biotechnology, Lab Biochemistry and Glycobiology, Coupure Links 653, B-9000 Gent, Belgium
| | - Jeroen De Zaeytijd
- Ghent University, Dept. Molecular Biotechnology, Lab Biochemistry and Glycobiology, Coupure Links 653, B-9000 Gent, Belgium
| | - Nico De Storme
- Ghent University, Dept. Plant Production, Coupure Links 653, B-9000 Gent, Belgium
| | - Abdelkrim Azmi
- University of Antwerp, Dept. of Biology, Laboratory of Molecular Plant and Biotechnology (MPB), Centre for Proteome Analysis and Mass Spectrometry (CeProMa), Belgium
| | - Danny Geelen
- Ghent University, Dept. Plant Production, Coupure Links 653, B-9000 Gent, Belgium
| | - Guy Smagghe
- Ghent University, Dept. Crop Protection, Coupure Links 653, B-9000 Gent, Belgium
| | - Yves Guisez
- University of Antwerp, Dept. of Biology, Laboratory of Molecular Plant and Biotechnology (MPB), Centre for Proteome Analysis and Mass Spectrometry (CeProMa), Belgium
| | - Els J M Van Damme
- Ghent University, Dept. Molecular Biotechnology, Lab Biochemistry and Glycobiology, Coupure Links 653, B-9000 Gent, Belgium.
| |
Collapse
|
43
|
Bigeard J, Rayapuram N, Pflieger D, Hirt H. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. Proteomics 2014; 14:2127-40. [PMID: 24889195 DOI: 10.1002/pmic.201400073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/28/2014] [Accepted: 05/26/2014] [Indexed: 12/25/2022]
Abstract
In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.
Collapse
Affiliation(s)
- Jean Bigeard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, Evry, France
| | | | | | | |
Collapse
|
44
|
Marcon-Tavares AB, Felinto F, Feitoza L, Barros e Silva AE, Guerra M. Different Patterns of Chromosomal Histone H3 Phosphorylation in Land Plants. Cytogenet Genome Res 2014; 143:136-43. [DOI: 10.1159/000364815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
45
|
Nuclear phosphoproteome of developing chickpea seedlings (Cicer arietinum L.) and protein-kinase interaction network. J Proteomics 2014; 105:58-73. [PMID: 24747304 DOI: 10.1016/j.jprot.2014.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 11/21/2022]
Abstract
UNLABELLED Nucleus, the control centre of eukaryotic cell, houses most of the genetic machineries required for gene expression and their regulation. Post translational modifications of proteins, particularly phosphorylation control a wide variety of cellular processes but its functional connectivity, in plants, is still elusive. This study profiled the nuclear phosphoproteome of a grain legume, chickpea, to gain better understanding of such event. Intact nuclei were isolated from 3-week-old seedlings using two independent methods, and nuclear proteins were resolved by 2-DE. In a separate set of experiments, phosphoproteins were enriched using IMAC method and resolved by 1-DE. The separated proteins were stained with phosphospecific Pro-Q Diamond stain. Proteomic analyses led to the identification of 107 putative phosphoproteins, of which 86 were non-redundant. Multiple sites of phosphorylation were predicted on several key elements, which included both regulatory and functional proteins. The analysis revealed an array of phosphoproteins, presumably involved in a variety of cellular functions, viz., protein folding (24%), signalling and gene regulation (22%), DNA replication, repair and modification (16%), and metabolism (13%), among others. These results represent the first nucleus-specific phosphoproteome map of a non-model legume, which would provide insights into the possible function of protein phosphorylation in plants. BIOLOGICAL SIGNIFICANCE Chickpea is grown over 10 million hectares of land worldwide, and global production hovers around 8.5 million metric tons annually. Despite its nutritional merits, it is often referred to as 'orphan' legume and has remained outside the realm of large-scale functional genomics studies. While current chickpea genome initiative has primarily focused on sequence information and functional annotation, proteomics analyses are limited. It is thus important to study the proteome of the cell organelle particularly the nucleus, which harbors most of the genetic information and gene expression machinery. Phosphorylation-dependent modulation of gene expression plays a vital role but the complex networks of phosphorylation are poorly understood. This inventory of nuclear phosphoproteins would provide valuable insights into the dynamic regulation of cellular phenotype through phosphorylation. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
|
46
|
Zhang B, Dong Q, Su H, Birchler JA, Han F. Histone phosphorylation: its role during cell cycle and centromere identity in plants. Cytogenet Genome Res 2014; 143:144-9. [PMID: 24713809 DOI: 10.1159/000360435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
As the main protein components of chromatin, histones can alter the structural/functional capabilities of chromatin by undergoing extensive post-translational modifications (PTMs) such as phosphorylation, methylation, acetylation, ubiquitination, sumoylation, and so on. These PTMs are thought to transmit signals from the chromatin to the cell machinery to regulate various processes. Histone phosphorylation is associated with chromosome condensation/segregation, activation of transcription, and DNA damage repair. In this review, we focus on how different histone phosphorylations mark for chromatin change during the cell cycle, the relationship between histone phosphorylation and functional centromeres, and the candidate kinases that trigger and the phosphatase or kinase inhibitors that alter histone phosphorylation. Finally, we review the crosstalk between different PTMs.
Collapse
Affiliation(s)
- B Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
47
|
Golczyk H, Massouh A, Greiner S. Translocations of chromosome end-segments and facultative heterochromatin promote meiotic ring formation in evening primroses. THE PLANT CELL 2014; 26:1280-93. [PMID: 24681616 PMCID: PMC4001384 DOI: 10.1105/tpc.114.122655] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories.
Collapse
Affiliation(s)
- Hieronim Golczyk
- Department of Molecular Biology, Institute of Biotechnology, John Paul II Catholic University of Lublin, Konstantynów 1I 20-708, Poland
- Address correspondence to
| | - Amid Massouh
- Max Planck Institute of Molecular Plant Physiology, Department 3, Potsdam-Golm 14476, Germany
| | - Stephan Greiner
- Max Planck Institute of Molecular Plant Physiology, Department 3, Potsdam-Golm 14476, Germany
| |
Collapse
|
48
|
del Priore L, Pigozzi MI. Histone modifications related to chromosome silencing and elimination during male meiosis in Bengalese finch. Chromosoma 2014; 123:293-302. [PMID: 24493641 DOI: 10.1007/s00412-014-0451-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 11/24/2022]
Abstract
We report here that a germline-restricted chromosome (GRC) is regularly present in males and females of the Bengalese finch (Lonchura domestica). While the GRC is euchromatic in oocytes, in spermatocytes this chromosome is cytologically seen as entirely heterochromatic and presumably inactive. The GRC is observed in the cytoplasm of secondary spermatocytes, indicating that its elimination from the nucleus occurs during the first meiotic division. By immunofluorescence on microspreads, we investigated the presence of histone H3 modifications throughout male meiosis, as well as in postmeiotic stages. We found that the GRC is highly enriched in di- and trimethylated histone H3 at lysine 9 during prophase I, in agreement with the presumed inactive state of this chromosome. At metaphase I, dimethylated histone H3 is no longer detectable on the GRC and its chromatin is more faintly stained with DAPI. The condensed GRC is underphosphorylated at serine 10 compared to the regular chromosomes during metaphase I, being phosphorylated later at this site after the first meiotic division. From these results, we proposed that trimethylation of histone H3 at lysine 9 on the GRC chromatin increases during metaphase I. This hypermethylated state at lysine 9 may preclude the phosphorylation of the adjacent serine 10 residue, providing an example of cross-talk of histone H3 modifications as described in experimental systems. The differential underphosphorylation of the GRC chromatin before elimination is interpreted as a cytologically detectable byproduct of deficient activity of Aurora B kinase, which is responsible for the phosphorylation of H3 at serine 10 during mitosis and meiosis.
Collapse
Affiliation(s)
- Lucía del Priore
- INBIOMED, CONICET/University of Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
49
|
Desvoyes B, Fernández-Marcos M, Sequeira-Mendes J, Otero S, Vergara Z, Gutierrez C. Looking at plant cell cycle from the chromatin window. FRONTIERS IN PLANT SCIENCE 2014; 5:369. [PMID: 25120553 PMCID: PMC4110626 DOI: 10.3389/fpls.2014.00369] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/11/2014] [Indexed: 05/03/2023]
Abstract
The cell cycle is defined by a series of complex events, finely coordinated through hormonal, developmental and environmental signals, which occur in a unidirectional manner and end up in producing two daughter cells. Accumulating evidence reveals that chromatin is not a static entity throughout the cell cycle. In fact, there are many changes that include nucleosome remodeling, histone modifications, deposition and exchange, among others. Interestingly, it is possible to correlate the occurrence of several of these chromatin-related events with specific processes necessary for cell cycle progression, e.g., licensing of DNA replication origins, the E2F-dependent transcriptional wave in G1, the activation of replication origins in S-phase, the G2-specific transcription of genes required for mitosis or the chromatin packaging occurring in mitosis. Therefore, an emerging view is that chromatin dynamics must be considered as an intrinsic part of cell cycle regulation. In this article, we review the main features of several key chromatin events that occur at defined times throughout the cell cycle and discuss whether they are actually controlling the transit through specific cell cycle stages.
Collapse
Affiliation(s)
| | | | | | | | | | - Crisanto Gutierrez
- *Correspondence: Crisanto Gutierrez, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Nicolas Cabrera 1, Cantoblanco, Madrid 28049, Spain e-mail:
| |
Collapse
|
50
|
Ghenoiu C, Wheelock MS, Funabiki H. Autoinhibition and Polo-dependent multisite phosphorylation restrict activity of the histone H3 kinase Haspin to mitosis. Mol Cell 2013; 52:734-45. [PMID: 24184212 PMCID: PMC3865225 DOI: 10.1016/j.molcel.2013.10.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/05/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
Abstract
The mitosis-specific phosphorylation of histone H3 at Thr3 (H3T3ph) plays an important role in chromosome segregation by recruiting Aurora B. H3T3 phosphorylation is catalyzed by Haspin, an atypical protein kinase whose kinase domain is intrinsically active without phosphorylation at the activation loop. Here, we report the molecular basis for Haspin inhibition during interphase and its reactivation in M phase. We identify a conserved basic segment that autoinhibits Haspin during interphase. This autoinhibition is neutralized when Cdk1 phosphorylates the N terminus of Haspin in order to recruit Polo-like kinase (Plk1/Plx1), which, in turn, further phosphorylates multiple sites at the Haspin N terminus. Although Plx1, and not Aurora B, is critical for H3T3 phosphorylation in Xenopus egg extracts, Plk1 and Aurora B both promote this modification in human cells. Thus, M phase-specific H3T3 phosphorylation is governed by the combinatorial action of mitotic kinases that neutralizes Haspin autoinhibition through a mechanism dependent on multisite phosphorylation.
Collapse
Affiliation(s)
- Cristina Ghenoiu
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Michael S Wheelock
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|