1
|
Arcia P, Curutchet A, Pérez-Pirotto C, Hernando I. Upcycling fruit pomaces (orange, apple, and grape-wine): The impact of particle size on phenolic compounds' bioaccessibility. Heliyon 2024; 10:e38737. [PMID: 39398048 PMCID: PMC11471267 DOI: 10.1016/j.heliyon.2024.e38737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024] Open
Abstract
This work aimed to analyse the effect of particle size on bioactive compounds of different by-products. Orange, apple, and grape-wine by-products obtained from industrial production were dried and ground at two sizes: 1 mm and 0.5 mm. Pomaces were analysed in composition (protein, fat, carbohydrates, moisture, and ash contents) and bioactive compounds (total phenol content by Folin- Ciocalteu method and antioxidant capacity by FRAP assay) and submitted to an in-vitro digestion. FESEM was used to observe the microstructure of samples. All pomaces showed high fibre content (21.7, 31.2, and 58.9 g/100 g, in apple, orange, and grape pomace respectively). Total phenol content in raw material was higher in grape > orange > apple, with no differences (apple) or slight differences (grape and orange) between 1 mm and 0.5 mm particle size. Grape pomace was observed as a porous, more accessible structure, where extracting polyphenols was easier. Orange pomace', was compact and apple pomace structure was even more compact hindering the raw materials polyphenol extraction. After digestion, total phenol content increased in orange and apple pomace for both particle size. In apple, bioaccessibility of phenolic compounds showed a 5 fold increase for 1 mm sample size and a 4 fold increase for 0.5 mm sample size. In orange, for both sizes bioaccessibility increased but to a lesser extent (2.4 fold). In the case of grape pomace, although polyphenol content decreased after digestion (0.7 fold for both sizes), they showed the highest antioxidant capacity. Regarding the effect of particle size on total polyphenol content and antioxidant capacity, no trend was found in this work for the fruit pomaces studied. In the case of grape and apple, grinding at 1 mm should be adequate regarding antioxidant capacity while in the case of orange, it may be better to use a pomace ground at 0.5 mm.
Collapse
Affiliation(s)
- Patricia Arcia
- Latitud – Fundación LATU, Montevideo, Uruguay
- Departamento de Ingeniería, Universidad Católica del Uruguay, Montevideo, Uruguay
| | - Ana Curutchet
- Latitud – Fundación LATU, Montevideo, Uruguay
- Departamento de Ingeniería, Universidad Católica del Uruguay, Montevideo, Uruguay
| | | | - Isabel Hernando
- Grupo de Investigación Microestructura y Química de Alimentos, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
2
|
Kasprzak-Drozd K, Mołdoch J, Gancarz M, Wójtowicz A, Kowalska I, Oniszczuk T, Oniszczuk A. In Vitro Digestion of Polyphenolic Compounds and the Antioxidant Activity of Acorn Flour and Pasta Enriched with Acorn Flour. Int J Mol Sci 2024; 25:5404. [PMID: 38791442 PMCID: PMC11121365 DOI: 10.3390/ijms25105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Acorn flour is a rich source of nutrients and is beneficial to human health due to, among other things, its low glycemic index and polyphenol content. In order to obtain more accurate data on the levels and activities of the substances tested after ingestion and digestion, it may be beneficial to use a simulated in vitro digestion method. Therefore, the objective of the present study was to elucidate the content of polyphenols, individual phenolic acids, flavonoids and antiradical properties of acorn flour and pasta enriched with acorn flour before and after simulated in vitro gastrointestinal digestion. The results indicate that the total polyphenol content (TPC), flavonoid content and radical scavenging activity exhibited an increasing trend following the initial digestion stage and a decreasing trend following the second stage. Nevertheless, the levels of phenolic acids demonstrated an increase in both digestion phases. The digestion processes of polyphenols in acorn flour differ significantly from those in pasta. In the case of pasta, total polyphenols, phenolic acids and flavonoids, as well as free radical scavenging properties, demonstrated a decreasing trend following each digestion stage.
Collapse
Affiliation(s)
- Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116b, 30-149 Kraków, Poland;
- Institute of Agrophysics Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
- Center of Innovation and Research on Healthy and Safe Food, University of Agriculture in Kraków, Balicka 104, 30-149 Kraków, Poland
| | - Agnieszka Wójtowicz
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland; (A.W.); (T.O.)
| | - Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland; (A.W.); (T.O.)
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| |
Collapse
|
3
|
Curiel-Fernández M, Cano-Mozo E, Ayestarán B, Guadalupe Z, Pérez-Magariño S. Influence of Grape Polysaccharide Extracts on the Phenolic Compounds and Color Characteristics of Different Red Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1985-1994. [PMID: 37587088 DOI: 10.1021/acs.jafc.3c02894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Polysaccharides have an important role in the technological and sensory characteristics of wines. The aim of this work was to study the effects of the addition of four polysaccharide extracts obtained from grape products and byproducts to red wines during storage for 2 months on their phenolic composition and color. The four extracts rich in polysaccharides were obtained from grape must, white grape pomace, red grape marc, and red wine, and they were compared with a commercial inactivated yeast. These products were studied in three wines selected for their highest astringency and acidity characteristics. The highest differences were found in the red wines with high initial phenolic concentrations, which reduced their values. The addition of polysaccharide extracts from grape pomace or marc, must, or yeast can mainly be interesting in wines with high phenolic content since they may be useful to modulate the astringency of red wines. This is the first work that studies the effect of polysaccharide extracts obtained from grape byproducts in red wines, showing great possibilities of these products.
Collapse
Affiliation(s)
- María Curiel-Fernández
- Grupo de Enología, Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Ctra Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain
| | - Estela Cano-Mozo
- Grupo de Enología, Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Ctra Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain
| | - Belén Ayestarán
- Instituto de Ciencias de la Vid y el Vino, Universidad de La Rioja, Gobierno de La Rioja, CSIC, Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain
| | - Zenaida Guadalupe
- Instituto de Ciencias de la Vid y el Vino, Universidad de La Rioja, Gobierno de La Rioja, CSIC, Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain
| | - Silvia Pérez-Magariño
- Grupo de Enología, Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Ctra Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain
| |
Collapse
|
4
|
Li H, Liu T, Li F, Wu X, Wu W. Effects of rice bran rancidity on the release of phenolics and antioxidative properties of rice bran dietary fiber in vitro gastrointestinal digestion products. Food Res Int 2023; 173:113483. [PMID: 37803806 DOI: 10.1016/j.foodres.2023.113483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Rice bran (RB) as the raw material for rice bran dietary fiber (RBDF) extraction, is rapidly rancidified prior to stabilization. To enhance the RBDF utilization in food industry, effects of RB rancidity (RB was stored for 0, 1, 5, 7, and 10 d) on the bioaccessibility and bioavailability of RBDF-bound phenolics were investigated. With the increase in RB storage time, the RB rancidity degree significantly increased (the acid value of rice bran oil from 5.08 mg KOH/g to 60.59 mg KOH/g), and the endogenous phenolics content in RBDF also increased. Simultaneously, RB rancidity reduced the antioxidant activity of RBDF digestion products during the gastric digestion phase, while RB rancidity increased the antioxidant activity of RBDF digestion products during the intestinal digestion phase. In addition, in vitro gastrointestinal digestion stimulated the release of RBDF-bound phenolics. The released monomeric phenolics (especially ferulic acid and p-coumaric acid) were the major contributors to the increased antioxidant properties of RBDF digestion products. RBDF digestion products could inhibit H2O2-induced oxidative stress and apoptosis of HUVECs. In conclusion, the study found that RB rancidity could improve the antioxidant capacity of RBDF in the small intestine by promoting RB endogenous phenolics bound to RBDF release.
Collapse
Affiliation(s)
- Helin Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing, 498 South Shaoshan Road, Changsha, Hunan 410004, China
| | - Tiantian Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing, 498 South Shaoshan Road, Changsha, Hunan 410004, China
| | - Fang Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing, 498 South Shaoshan Road, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing, 498 South Shaoshan Road, Changsha, Hunan 410004, China.
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing, 498 South Shaoshan Road, Changsha, Hunan 410004, China.
| |
Collapse
|
5
|
Suominen E, Savila S, Sillanpää M, Damlin P, Karonen M. Affinity of Tannins to Cellulose: A Chromatographic Tool for Revealing Structure-Activity Patterns. Molecules 2023; 28:5370. [PMID: 37513244 PMCID: PMC10384774 DOI: 10.3390/molecules28145370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Food, feed and beverage processing brings tannins into contact with macromolecules, such as proteins and polysaccharides, leading to different chemical and physical interactions. The interactions of tannins with proteins are well known but less is known about the affinity of tannins to polysaccharides. We used bacterial cellulose from nata de coco as a model compound to investigate how tannins and cellulose interact by adsorption measurements using UPLC-DAD. We also explored how the structure of tannins influences these interactions. The model tannins included nine individual structurally different hydrolysable tannins (HTs) and eight well-defined proanthocyanidin (PA) fractions with different monomeric units, mean degree of polymerization and both A- and B-type linkages. Tannins were found to have both strong and weak interactions with bacterial cellulose, depending on the exact structure of the tannin. For HTs, the main structural features affecting the interactions were the structural flexibility of the HT molecule and the number of free galloyl groups. For PAs, prodelphinidins were found to have a higher affinity to cellulose than procyanidins. Similarly to HTs, the presence of free galloyl groups in galloylated PAs and the flexibility of the PA molecule led to a stronger interaction. Adsorption measurements by UPLC-DAD proved to be a sensitive and rapid tool to evaluate the affinity of tannins to cellulose.
Collapse
Affiliation(s)
- Essi Suominen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Santeri Savila
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Mimosa Sillanpää
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Pia Damlin
- Materials Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
6
|
Del Mundo JT, Rongpipi S, Yang H, Ye D, Kiemle SN, Moffitt SL, Troxel CL, Toney MF, Zhu C, Kubicki JD, Cosgrove DJ, Gomez EW, Gomez ED. Grazing-incidence diffraction reveals cellulose and pectin organization in hydrated plant primary cell wall. Sci Rep 2023; 13:5421. [PMID: 37012389 PMCID: PMC10070456 DOI: 10.1038/s41598-023-32505-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The primary cell wall is highly hydrated in its native state, yet many structural studies have been conducted on dried samples. Here, we use grazing-incidence wide-angle X-ray scattering (GIWAXS) with a humidity chamber, which enhances scattering and the signal-to-noise ratio while keeping outer onion epidermal peels hydrated, to examine cell wall properties. GIWAXS of hydrated and dried onion reveals that the cellulose ([Formula: see text]) lattice spacing decreases slightly upon drying, while the (200) lattice parameters are unchanged. Additionally, the ([Formula: see text]) diffraction intensity increases relative to (200). Density functional theory models of hydrated and dry cellulose microfibrils corroborate changes in crystalline properties upon drying. GIWAXS also reveals a peak that we attribute to pectin chain aggregation. We speculate that dehydration perturbs the hydrogen bonding network within cellulose crystals and collapses the pectin network without affecting the lateral distribution of pectin chain aggregates.
Collapse
Affiliation(s)
- Joshua T Del Mundo
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sintu Rongpipi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hui Yang
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Dan Ye
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sarah N Kiemle
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Charles L Troxel
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Michael F Toney
- Department of Chemical and Biological Engineering and the Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - James D Kubicki
- Department of Earth, Environmental and Resource Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Daniel J Cosgrove
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Enrique D Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
7
|
Liu Q, Zou X, Yi Y, Sun Y, Wang H, Jiang X, Peng K. Physicochemical and Functional Changes in Lotus Root Polysaccharide Associated with Noncovalent Binding of Polyphenols. Foods 2023; 12:foods12051049. [PMID: 36900568 PMCID: PMC10001286 DOI: 10.3390/foods12051049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
To promote the functional applications of lotus root polysaccharides (LRPs), the effects of noncovalent polyphenol binding on their physicochemical properties, as well as antioxidant and immunomodulatory activities, were investigated. Ferulic acid (FA) and chlorogenic acid (CHA) were spontaneously bound to the LRP to prepare the complexes LRP-FA1, LRP-FA2, LRP-FA3, LRP-CHA1, LRP-CHA2 and LRP-CHA3, and their mass ratios of polyphenol to LRP were, respectively, 121.57, 61.18, 34.79, 2359.58, 1276.71 and 545.08 mg/g. Using the physical mixture of the LRP and polyphenols as a control, the noncovalent interaction between them in the complexes was confirmed by ultraviolet and Fourier-transform infrared spectroscopy. The interaction increased their average molecular weights by 1.11~2.27 times compared to the LRP. The polyphenols enhanced the antioxidant capacity and macrophage-stimulating activity of the LRP depending on their binding amount. Particularly, the DPPH radical scavenging activity and FRAP antioxidant ability were positively related to the FA binding amount but negatively related to the CHA binding amount. The NO production of the macrophages stimulated by the LRP was inhibited by the co-incubation with free polyphenols; however, the inhibition was eliminated by the noncovalent binding. The complexes could stimulate the NO production and tumor necrosis factor-α secretion more effectively than the LRP. The noncovalent binding of polyphenols may be an innovative strategy for the structural and functional modification of natural polysaccharides.
Collapse
Affiliation(s)
- Qiulan Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoqin Zou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Yi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (Y.Y.); (Y.S.); Tel.: +86-138-8615-2207 (Y.Y.); +86-151-7150-7535 (Y.S.)
| | - Ying Sun
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (Y.Y.); (Y.S.); Tel.: +86-138-8615-2207 (Y.Y.); +86-151-7150-7535 (Y.S.)
| | - Hongxun Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xueyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Kaidi Peng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
8
|
Ziółkiewicz A, Kasprzak-Drozd K, Wójtowicz A, Oniszczuk T, Gancarz M, Kowalska I, Mołdoch J, Kondracka A, Oniszczuk A. The Effect of In Vitro Digestion on Polyphenolic Compounds and Antioxidant Properties of Sorghum ( Sorghum bicolor (L.) Moench) and Sorghum-Enriched Pasta. Molecules 2023; 28:molecules28041706. [PMID: 36838694 PMCID: PMC9962817 DOI: 10.3390/molecules28041706] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The phenol content of sorghum is a unique feature among all cereal grains; hence this fact merits the special attention of scientists. It should be remembered that before polyphenols can be used in the body, they are modified within the digestive tract. In order to obtain more accurate data on the level and activity of tested ingredients after ingestion and digestion in the in vivo digestive tract, in vitro simulated digestion may be used. Thus, the aim of this study was to determine the content of polyphenols, flavonoids, and individual phenolic acids, as well as the antiradical properties, of sorghum and sorghum-enriched pasta before and after in vitro simulated gastrointestinal digestion. We observed that the total content of polyphenols decreased after gastric digestion of sorghum, and slightly increased after duodenal digestion. Moreover, the flavonoid content decreased after the first stage of digestion, while antioxidant properties increased after the first stage of digestion and slightly decreased after the second stage. The digestion of polyphenolics in sorghum is completely different to that in pasta-both in varieties with, and without, the addition of sorghum. For pasta, the content of total polyphenols and flavonoids, and free radical scavenging properties, decrease after each stage of digestion.
Collapse
Affiliation(s)
- Agnieszka Ziółkiewicz
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (K.K.-D.); (A.O.)
| | - Agnieszka Wójtowicz
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116b, 30-149 Krakow, Poland
- Institute of Agrophysics Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (K.K.-D.); (A.O.)
| |
Collapse
|
9
|
He J, Wang Z, Zhen F, Wang Z, Song Z, Chen J, Hrynsphan D, Tatsiana S. Mechanisms of flame retardant tris (2-ethylhexyl) phosphate biodegradation via novel bacterial strain Ochrobactrum tritici WX3-8. CHEMOSPHERE 2023; 311:137071. [PMID: 36328323 DOI: 10.1016/j.chemosphere.2022.137071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Tris (2-ethylhexyl) phosphate (TEHP) is a common organophosphorus flame retardant analog with considerable ecological toxicity. Here, novel strain Ochrobactrum tritici WX3-8 capable of degrading TEHP as the sole C source was isolated. Our results show that the strain's TEHP degradation efficiency reached 75% after 104 h under optimal conditions, i.e., 30 °C, pH 7, bacterial inoculum 3%, and
Collapse
Affiliation(s)
- Jiamei He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Fengzhen Zhen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Zhaoyun Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhongdi Song
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| |
Collapse
|
10
|
Martínez-Meza Y, Pérez-Jiménez J, Castaño-Tostado E, Pérez-Ramírez IF, Alonzo-Macías M, Reynoso-Camacho R. Instant Controlled Pressure Drop as a Strategy To Modify Extractable and Non-extractable Phenolic Compounds: A Study in Different Grape Pomace Materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6911-6921. [PMID: 34761923 DOI: 10.1021/acs.jafc.1c04583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Instant controlled pressure drop (DIC) is a technology able to modify the polyphenol profile in vegetal materials. However, information about how polyphenols are transformed, particularly regarding non-extractable polyphenol (NEPP), as well as the association with the initial content of polyphenols of the material is scarce. Thus, this work aimed to evaluate the DIC effect, modifying the pressure (0.2 and 0.4 MPa), the number of cycles (2 and 4), and grape pomace material (Malbec, Merlot, and Syrah) on extractable polyphenol (EPP) and NEPP contents. The EPP content increased during DIC application, an effect associated with the pressure, cycles, and initial polyphenol content. While for extractable and non-extractable proanthocyanidin contents, the main factors explaining the DIC effect are the pressure and number of cycles. Therefore, changes in polyphenols from grape pomace by DIC treatment are dependent upon experimental conditions, but the origin of the grape pomace also influences the extraction of EPP.
Collapse
Affiliation(s)
- Yuridia Martínez-Meza
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 10, 28040 Madrid, Spain
| | - Eduardo Castaño-Tostado
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Iza F Pérez-Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Maritza Alonzo-Macías
- Bioengineering Department, Tecnológico de Monterrey, Santiago de Querétaro, Querétaro 76130, Mexico
| | - Rosalía Reynoso-Camacho
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, Mexico
| |
Collapse
|
11
|
Abi-Habib E, Vernhet A, Roi S, Carrillo S, Jørgensen B, Hansen J, Doco T, Poncet-Legrand C. Impact of the variety on the adsorption of anthocyanins and tannins on grape flesh cell walls. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3379-3392. [PMID: 34820844 DOI: 10.1002/jsfa.11685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/15/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND During winemaking, after extraction from the skins, anthocyanins and tannins adsorb onto the pulp flesh cell walls. The present study aimed to quantify the amounts adsorbed and their impact on wine composition, the impact of variety and ethanol on adsorption, and whether the presence of anthocyanins plays a role and impacts tannin adsorption. RESULTS Anthocyanin and tannin fractions obtained by mimicking winemaking conditions were mixed with fresh flesh cell walls of two varieties: Carignan and Grenache. Adsorption isotherms were measured. Adsorption of tannins was higher with Carignan than with Grenache and decreased when the ethanol content increased. In comparison, anthocyanins were adsorbed in small amounts, and their mixing with tannins had no impact on their adsorption. The differences were related to differences in pulp cell wall composition, particularly in terms of extensins and arabinans. CONCLUSION Adsorption of tannins, which can reach 50% of the initial amount, depends on the pulp cell wall composition. This needs to be investigated further. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elissa Abi-Habib
- SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Aude Vernhet
- SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Stéphanie Roi
- SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Stéphanie Carrillo
- SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jeanett Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Thierry Doco
- SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
12
|
Apple Fibers as Carriers of Blackberry Juice Polyphenols: Development of Natural Functional Food Additives. Molecules 2022; 27:molecules27093029. [PMID: 35566379 PMCID: PMC9101031 DOI: 10.3390/molecules27093029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/11/2022] Open
Abstract
Blackberry polyphenols possess various health-promoting properties. Since they are very sensitive to environmental conditions such as the presence of light, oxygen and high temperatures, the application of such compounds is restricted. Fibers are recognized as efficient carriers of polyphenols and are often used in polyphenols encapsulation. In the present study, the ability of apple fiber to adsorb blackberry juice polyphenols was examined. Freeze-dried apple fiber/blackberry juice complexes were prepared with different amounts of fibers (1%, 2%, 4%, 6%, 8% and 10%) and a constant amount of blackberry juice. Polyphenol profile, antioxidant activity, inhibition of the α-amylase, color parameters, as well as the IR spectra, of the obtained complexes were assessed. The results showed a negative effect of higher amounts of fiber (more than 2%) on the adsorption of polyphenols and the antioxidant activity of complexes. With the proper formulation, apple fibers can serve as polyphenol carriers, and thus the application as novel food additives can be considered.
Collapse
|
13
|
Younes A, Li M, Karboune S. Cocoa bean shells: a review into the chemical profile, the bioactivity and the biotransformation to enhance their potential applications in foods. Crit Rev Food Sci Nutr 2022; 63:9111-9135. [PMID: 35467453 DOI: 10.1080/10408398.2022.2065659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During processing, cocoa bean shells (CBS) are de-hulled from the bean and discarded as waste. Undermined by its chemical and bioactive composition, CBS is abundant in dietary fiber and phenolic compounds that may serve the valorization purpose of this by-product material into prebiotic and functional ingredients. In addition, the cell-wall components of CBS can be combined through enzymatic feruloylation to obtain feruloylated oligo- and polysaccharides (FOs), further enhancing the techno-functional properties. FOs have attracted scientific attention due to their prebiotic, antimicrobial, anti-inflammatory and antioxidant functions inherent to their structural features. This review covers the chemical and bioactive compositions of CBS as well as their modifications upon cocoa processing. Physical, chemical, and enzymatic approaches to extract and bio-transform bioactive components from the cell wall matrix of CBS were also discussed. Although nonspecific to CBS, studies were compiled to investigate efforts done to extract and produce feruloylated oligo- and polysaccharides from the cell wall materials.
Collapse
Affiliation(s)
- Amalie Younes
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Mingqin Li
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| |
Collapse
|
14
|
Liu X, Renard CM, Bureau S, Le Bourvellec C. Interactions between heterogeneous cell walls and two procyanidins: Insights from the effects of chemical composition and physical structure. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Jakobek L, Matić P, Ištuk J, Barron A. Study of Interactions Between Individual Phenolics of Aronia with Barley Beta-Glucan. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/136051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Liu X, Renard CM, Rolland-Sabaté A, Le Bourvellec C. Exploring interactions between pectins and procyanidins: Structure-function relationships. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Liu X, Renard CM, Rolland-Sabaté A, Bureau S, Le Bourvellec C. Modification of apple, beet and kiwifruit cell walls by boiling in acid conditions: Common and specific responses. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Formulation and Stability of Cellulose-Based Delivery Systems of Raspberry Phenolics. Processes (Basel) 2021. [DOI: 10.3390/pr9010090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Encapsulation of bioactives is a tool to prepare their suitable delivery systems and ensure their stability. For this purpose, cellulose was selected as carrier of raspberry juice phenolics and freeze-dried cellulose/raspberry encapsulates (C/R_Es) were formulated. Influence of cellulose amount (2.5%, 5%, 7.5% and 10%) and time (15 or 60 min) on the complexation of cellulose and raspberry juice was investigated. Obtained C/R_Es were evaluated for total phenolics, anthocyanins, antioxidant activity, inhibition of α-amylase and color. Additionally, encapsulation was confirmed by FTIR. Stability of C/R_Es was examined after 12 months of storage at room temperature. Increasing the amount of cellulose during formulation of C/R_E from 2.5% to 10%, resulted in the decrease of content of total phenolics and anthocyanins. Additionally, encapsulates formulated by 15 min of complexation had a higher amount of investigated compounds. This tendency was retained after storage. The highest antioxidant activities were determined for C/R_E with 2.5% of cellulose and the lowest for those with 10% of cellulose, regardless of the methods used for its evaluation. After storage of 12 months, antioxidant activity slightly increased. Encapsulates with 2.5% of cellulose had the highest and those with 10% of cellulose the lowest capability for inhibition of α-amylase. The amount of cellulose also had an impact on color of C/R_Es. Results of this study suggest that cellulose could be a good encapsulation polymer for delivering raspberry bioactives, especially when cellulose was used in lower percentages for formulation of encapsulates.
Collapse
|
19
|
Netzel G, Mikkelsen D, Flanagan BM, Netzel ME, Gidley MJ, Williams BA. Metabolism of Black Carrot Polyphenols during In Vitro Fermentation is Not Affected by Cellulose or Cell Wall Association. Foods 2020; 9:E1911. [PMID: 33371245 PMCID: PMC7766557 DOI: 10.3390/foods9121911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 12/19/2022] Open
Abstract
Fruit and vegetable polyphenols are associated with health benefits, and those not absorbed could be fermented by the gastro-intestinal tract microbiota. Many fermentation studies focus on "pure" polyphenols, rather than those associated with plant cell walls (PCW). Black carrots (BlkC), are an ideal model plant food as their polyphenols bind to PCW with minimal release after gastro-intestinal digestion. BlkC were fractionated into three components-supernatant, pellet after centrifugation, and whole puree. Bacterial cellulose (BCell) was soaked in supernatant (BCell&S) as a model substrate. All substrates were fermented in vitro with a pig faecal inoculum. Gas kinetics, short chain fatty acids, and ammonium production, and changes in anthocyanins and phenolic acids were compared. This study showed that metabolism of BlkC polyphenols during in vitro fermentation was not affected by cellulose/cell wall association. In addition, BCell&S is an appropriate model to represent BlkC fermentation, suggesting the potential to examine fermentability of PCW-associated polyphenols in other fruits/vegetables.
Collapse
Affiliation(s)
- Gabriele Netzel
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland-St. Lucia Campus, Brisbane, QLD 4072, Australia; (G.N.); (B.M.F.); (M.E.N.); (M.J.G.); (B.A.W.)
| | - Deirdre Mikkelsen
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland-St. Lucia Campus, Brisbane, QLD 4072, Australia; (G.N.); (B.M.F.); (M.E.N.); (M.J.G.); (B.A.W.)
- School of Agriculture and Food Sciences, The University of Queensland-St. Lucia Campus, Brisbane, QLD 4072, Australia
| | - Bernadine M. Flanagan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland-St. Lucia Campus, Brisbane, QLD 4072, Australia; (G.N.); (B.M.F.); (M.E.N.); (M.J.G.); (B.A.W.)
| | - Michael E. Netzel
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland-St. Lucia Campus, Brisbane, QLD 4072, Australia; (G.N.); (B.M.F.); (M.E.N.); (M.J.G.); (B.A.W.)
| | - Michael J. Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland-St. Lucia Campus, Brisbane, QLD 4072, Australia; (G.N.); (B.M.F.); (M.E.N.); (M.J.G.); (B.A.W.)
| | - Barbara A. Williams
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland-St. Lucia Campus, Brisbane, QLD 4072, Australia; (G.N.); (B.M.F.); (M.E.N.); (M.J.G.); (B.A.W.)
| |
Collapse
|
20
|
Liu X, Le Bourvellec C, Renard CMGC. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Compr Rev Food Sci Food Saf 2020; 19:3574-3617. [PMID: 33337054 DOI: 10.1111/1541-4337.12632] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Cell wall polysaccharides (CPSs) and polyphenols are major constituents of the dietary fiber complex in plant-based foods. Their digestion (by gut microbiota) and bioefficacy depend not only on their structure and quantity, but also on their intermolecular interactions. The composition and structure of these compounds vary with their dietary source (i.e., fruit or vegetable of origin) and can be further modified by food processing. Various components and structures of CPSs and polyphenols have been observed to demonstrate common and characteristic behaviors during interactions. However, at a fundamental level, the mechanisms that ultimately drive these interactions are still not fully understood. This review summarizes the current state of knowledge on the internal factors that influence CPS-polyphenol interactions, describes the different ways in which these interactions can be mediated by molecular composition or structure, and introduces the main methods for the analysis of these interactions, as well as the mechanisms involved. Furthermore, a comprehensive overview is provided of recent key findings in the area of CPS-polyphenol interactions. It is becoming clear that these interactions are shaped by a multitude of factors, the most important of which are the physicochemical properties of the partners: their morphology (surface area and porosity/pore shape), chemical composition (sugar ratio, solubility, and non-sugar components), and molecular architecture (molecular weight, degree of esterification, functional groups, and conformation). An improved understanding of the molecular mechanisms that drive interactions between CPSs and polyphenols may allow us to better establish a bridge between food processing and the bioavailability of colonic fermentation products from CPSs and antioxidant polyphenols, which could ultimately lead to the development of new guidelines for the design of healthier and more nutritious foods.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France
| | | | - Catherine M G C Renard
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France.,INRAE, TRANSFORM, F-44000, Nantes, France
| |
Collapse
|
21
|
Polyphenols of Traditional Apple Varieties in Interaction with Barley β-Glucan: A Study of the Adsorption Process. Foods 2020; 9:foods9091278. [PMID: 32933005 PMCID: PMC7556014 DOI: 10.3390/foods9091278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
Apple polyphenols have been studied for various beneficial bioactivities. Especially interesting are traditional, old varieties of apples for which some initial studies have suggested significant bioactivities, but they are still not completely understood. Polyphenol bioactivities can be affected by interactions with dietary fibers such as β-glucans. The aim of this study was to investigate for the first time interactions between individual polyphenols from traditional, old apple varieties (“Božićnica” and “Batulenka”) and β-glucans by studying the adsorption process. Polyphenols were extracted from the peel and flesh of traditional apples by using an ultrasonic bath and characterized with high-performance liquid chromatography. The amounts of adsorbed (qe) and un-adsorbed (ce) polyphenols were modeled with adsorption isotherms (Langmuir, Dubinin–Radushkevich, and Hill) by using improved non-linear fitting in a novel R algorithm, developed specifically for the modeling of adsorption isotherms. Polyphenols adsorbed onto β-glucan from 9 to 203 (peel, “Božićnica”), 1 to 484 (peel, “Batulenka”), 5 to 160 (flesh, “Božićnica”), and 19 to 28 mg g−1 (flesh, “Batulenka”). The adsorption was concentration dependent (polyphenols present in higher amount adsorbed in higher amounts). Physical sorption can be suggested. Polyphenols from traditional apples adsorb onto β-glucan and should be further studied.
Collapse
|
22
|
Moser SE, Shin JE, Kasturi P, Hamaker BR, Ferruzzi MG, Bordenave N. Formulation of Orange Juice with Dietary Fibers Enhances Bioaccessibility of Orange Flavonoids in Juice but Limits Their Ability to Inhibit In Vitro Glucose Transport. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9387-9397. [PMID: 32786825 DOI: 10.1021/acs.jafc.0c03334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effect of formulating orange juice (OJ) with dietary fibers (DFs) on in vitro bioaccessibility of flavonoids and their ability to inhibit glucose transport in Caco-2 cells were investigated on Valencia orange fruit (OF), OJ, and OJ formulated with 1 and 2.8% DFs. DFs were either orange pomace (P) or commercial pulverized citrus pulp fiber (CF). Juice extraction and formulation with CF led to minimal loss of flavonoids compared to formulation with P (474 μmol/100 g for OF vs 315-368 μmol/100 g for OJ and OJ with CF, and 266-280 μmol/100 g for OJ with P). Addition of DFs led to similar or improved flavonoid bioaccessibility compared to OJ (9.5% in OJ vs 7.9-33.4% with DFs) but higher glucose transport in Caco-2 cells (0.45 μmol/min in OJ alone vs 0.64-0.94 μmol/min with DFs). This paradoxical effect was attributed to potential complexation of flavonoids and DFs, preventing flavonoids from interfering with glucose transport.
Collapse
Affiliation(s)
- Sydney E Moser
- Department of Food Science, Purdue University, West Lafayette, Indiana 47905, United States
- PepsiCo R&D, Purchase, New York 10577, United States
| | - Jin-E Shin
- PepsiCo R&D, Barrington, Illinois 60010, United States
| | | | - Bruce R Hamaker
- Department of Food Science, Purdue University, West Lafayette, Indiana 47905, United States
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana 47905, United States
| | - Mario G Ferruzzi
- Department of Food Science, Purdue University, West Lafayette, Indiana 47905, United States
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana 47905, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081, United States
| | - Nicolas Bordenave
- PepsiCo R&D, Barrington, Illinois 60010, United States
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- School of Chemistry and Biomolecular Sciences, Faculty of Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
23
|
Li S, Li J, Zhu Z, Cheng S, He J, Lamikanra O. Soluble dietary fiber and polyphenol complex in lotus root: Preparation, interaction and identification. Food Chem 2020; 314:126219. [DOI: 10.1016/j.foodchem.2020.126219] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/31/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
24
|
Wellala CKD, Bi J, Liu X, Liu J, Lyu J, Zhou M, Marszałek K, Trych U. Effect of high pressure homogenization combined with juice ratio on water-soluble pectin characteristics, functional properties and bioactive compounds in mixed juices. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Adsorption between Quercetin Derivatives and β-Glucan Studied with a Novel Approach to Modeling Adsorption Isotherms. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Interactions between polyphenols and fibers are important for polyphenol bioactivities, and have been studied in vitro with adsorption process and isotherms. However, the theoretical interpretations of adsorption potentially can be affected by the method of isotherm modeling. The aim was to study the interactions between β-glucan and quercetin derivatives (quercetin-3-glucoside, quercetin-3-galactoside, quercetin-3-rhamnoside) by studying adsorption, and to potentially improve the modeling of adsorption isotherms. Quercetin derivatives were determined by using spectrophotometric method. Experimental results were modeled with Langmuir, Dubinin-Radushkevich, and Hill isotherms using non-linear regression, linear regression, and improved non-linear regression. For improved non-linear regression, code in the R programming language was developed. All quercetin derivatives adsorbed onto the surface of β-glucan. Improved non-linear regression gave somewhat lower errors and may be the most appropriate for adsorption interpretation. According to isotherms obtained with improved regression, it may be suggested that adsorption is higher for rhamnoside and glucoside of quercetin than for quercetin-3-galactoside which agrees with experimental results. Adsorption could be a physical process. The spatial arrangement of hydroxyl (OH) groups on the glycoside part of quercetin could affect the adsorption. In conclusion, a novel approach using improved non-linear regression has been shown to be a useful, novel tool for adsorption interpretation.
Collapse
|
26
|
Phenolic compounds are less degraded in presence of starch than in presence of proteins through processing in model porridges. Food Chem 2019; 309:125769. [PMID: 31734007 DOI: 10.1016/j.foodchem.2019.125769] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/19/2019] [Accepted: 10/21/2019] [Indexed: 11/20/2022]
Abstract
Phenolic compounds are known to bind non-covalently with starch, but the impact of this interaction on the stability of the phenolic compounds through processing and digestion has received little attention. In this study, we examined the recovery of intact phenolic compounds (gallic acid-GA, catechin-CAT and epigallocatechin gallate-EGCG) from processed and digested porridges with different formulations (starch or starch/protein). We observed that phenolics were less degraded in presence of starch only than in presence of starch + proteins. This protection seemed to be linked to the ability of the phenolic compounds to form V-type inclusion complexes with starch, with GA, CAT and EGCG in decreasing order of protection. This work could influence formulation of functional cereal-based foods containing phenolic compounds in order to maximize their retention.
Collapse
|
27
|
Juice related water-soluble pectin characteristics and bioaccessibility of bioactive compounds in oil and emulsion incorporated mixed juice processed by high pressure homogenization. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Impact of molecular interactions with phenolic compounds on food polysaccharides functionality. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:135-181. [PMID: 31445595 DOI: 10.1016/bs.afnr.2019.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Commercial trends based of the emergence of plant-based functional foods lead to investigate the structure-function relationship of their main bioactive constituents and their interactions in the food matrix and throughout the gastro-intestinal tract. Among these bioactive constituents, dietary polysaccharides and polyphenols have shown to interact at the molecular level and these interactions may have consequences on the polysaccharides physical and nutritional properties. The methods of investigation and mechanisms of interactions between polysaccharides and polyphenols are reviewed in light of their respective technological and nutritional functionalities. Finally, the potential impact of the co-occurrence or co-ingestion of polyphenols and polysaccharides on the technological and nutritional functionality of the polysaccharides are investigated.
Collapse
|
29
|
Brahem M, Renard CM, Bureau S, Watrelot AA, Le Bourvellec C. Pear ripeness and tissue type impact procyanidin-cell wall interactions. Food Chem 2019; 275:754-762. [DOI: 10.1016/j.foodchem.2018.09.156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
|
30
|
Chevalier LM, Rioux LE, Angers P, Turgeon SL. Study of the interactions between pectin in a blueberry puree and whey proteins: Functionality and application. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.07.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Jakobek L, Matić P. Non-covalent dietary fiber - Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Bermúdez-Oria A, Rodríguez-Gutiérrez G, Fernández-Prior Á, Vioque B, Fernández-Bolaños J. Strawberry dietary fiber functionalized with phenolic antioxidants from olives. Interactions between polysaccharides and phenolic compounds. Food Chem 2018; 280:310-320. [PMID: 30642502 DOI: 10.1016/j.foodchem.2018.12.057] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022]
Abstract
The interaction of strawberry cell wall with hydroxytyrosol (HT) and 3,4-dihydroxyphenylglycol (DHPG), two potent phenolic antioxidants naturally found in olive fruit with important biological properties, was investigated. The interaction occurred with drying and seemed to be more complex, strong and irreversible than a simple association. MALDI TOF-TOF analysis suggested covalent (ester bond) and non-covalent (strong hydrogen-bonding, mostly) interactions. The oxygen radical absorbance capacity (ORAC) assay confirmed that the phenols maintained partially their antioxidant activity after binding to the soluble dietary fraction. This soluble dietary fiber was obtained following digestion simulated in vitro with gastric and intestinal fluids. Although the antioxidant activity of HT and DHPG was affected by the dietary fiber interaction, this activity was restored when polysaccharide size was reduced by enzymatic treatment, suggesting that a similar process could occur in the colon. Thus, the use of this novel antioxidant-enriched soluble dietary fiber as a functional food ingredient could potentially promote intestinal health.
Collapse
Affiliation(s)
- Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Guillermo Rodríguez-Gutiérrez
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - África Fernández-Prior
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Blanca Vioque
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain.
| |
Collapse
|
33
|
Stability of bioactive compounds in fruit jam and jelly during processing and storage: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Ji N, Liu C, Li M, Sun Q, Xiong L. Interaction of cellulose nanocrystals and amylase: Its influence on enzyme activity and resistant starch content. Food Chem 2018; 245:481-487. [DOI: 10.1016/j.foodchem.2017.10.130] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 11/30/2022]
|
35
|
Omosebi MO, Osundahunsi OF, Fagbemi TN. Effect of extrusion on protein quality, antinutritional factors, and digestibility of complementary diet from quality protein maize and soybean protein concentrate. J Food Biochem 2018. [DOI: 10.1111/jfbc.12508] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mary Omolola Omosebi
- Department of Food Science and Technology; Mountain Top University; Prayer City Nigeria
| | | | - Tayo Nathaniel Fagbemi
- Department of Food Science and Technology; Federal University of Technology; Akure Nigeria
| |
Collapse
|
36
|
G. Gómez-Mascaraque L, Dhital S, López-Rubio A, Gidley MJ. Dietary polyphenols bind to potato cells and cellular components. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
37
|
Abstract
In plant-based food systems such as fruits, vegetables, and cereals, cell wall polysaccharides and polyphenols co-exist and commonly interact during processing and digestion. The noncovalent interactions between cell wall polysaccharides and polyphenols may greatly influence the physicochemical and nutritional properties of foods. The affinity of cell wall polysaccharides with polyphenols depends on both endogenous and exogenous factors. The endogenous factors include the structures, compositions, and concentrations of both polysaccharides and polyphenols, and the exogenous factors are the environmental conditions such as pH, temperature, ionic strength, and the presence of other components (e.g., protein). Diverse methods used to directly characterize the interactions include NMR spectroscopy, size-exclusion chromatography, confocal microscopy, isothermal titration calorimetry, molecular dynamics simulation, and so on. The un-bound polyphenols are quantified by liquid chromatography or spectrophotometry after dialysis or centrifugation. The adsorption of polyphenols by polysaccharides is mostly driven by hydrophobic interactions and hydrogen bonding, and can be described by various isothermal models such as Langmuir and Freundlich equations. Quality attributes of various food and beverage products (e.g., wine) can be significantly affected by polysaccharide-polyphenol interactions. Nutritionally, the interactions play an important role in the digestive tract of humans for the metabolism of both polyphenols and polysaccharides.
Collapse
Affiliation(s)
- Fan Zhu
- a School of Chemical Sciences , University of Auckland , Auckland , New Zealand
| |
Collapse
|
38
|
Capuano E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit Rev Food Sci Nutr 2017; 57:3543-3564. [DOI: 10.1080/10408398.2016.1180501] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Edoardo Capuano
- Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
39
|
Sanz-Pintos N, Pérez-Jiménez J, Buschmann AH, Vergara-Salinas JR, Pérez-Correa JR, Saura-Calixto F. Macromolecular Antioxidants and Dietary Fiber in Edible Seaweeds. J Food Sci 2017; 82:289-295. [PMID: 28152188 DOI: 10.1111/1750-3841.13592] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/31/2016] [Accepted: 11/26/2016] [Indexed: 01/09/2023]
Abstract
Seaweeds are rich in different bioactive compounds with potential uses in drugs, cosmetics and the food industry. The objective of this study was to analyze macromolecular antioxidants or nonextractable polyphenols, in several edible seaweed species collected in Chile (Gracilaria chilensis, Callophyllis concepcionensis, Macrocystis pyrifera, Scytosyphon lomentaria, Ulva sp. and Enteromorpha compressa), including their 1st HPLC characterization. Macromolecular antioxidants are commonly ignored in studies of bioactive compounds. They are associated with insoluble dietary fiber and exhibit significant biological activity, with specific features that are different from those of both dietary fiber and extractable polyphenols. We also evaluated extractable polyphenols and dietary fiber, given their relationship with macromolecular antioxidants. Our results show that macromolecular antioxidants are a major polyphenol fraction (averaging 42% to total polyphenol content), with hydroxycinnamic acids, hydroxybenzoic acids and flavonols being the main constituents. This fraction also showed remarkable antioxidant capacity, as determined by 2 complementary assays. The dietary fiber content was over 50% of dry weight, with some samples exhibiting the target proportionality between soluble and insoluble dietary fiber for adequate nutrition. Overall, our data show that seaweed could be an important source of commonly ignored macromolecular antioxidants.
Collapse
Affiliation(s)
- Nerea Sanz-Pintos
- Dept. of Metabolism and Nutrition, Inst. of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Jara Pérez-Jiménez
- Dept. of Metabolism and Nutrition, Inst. of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | | | | | | | - Fulgencio Saura-Calixto
- Dept. of Metabolism and Nutrition, Inst. of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| |
Collapse
|
40
|
Renard CM, Watrelot AA, Le Bourvellec C. Interactions between polyphenols and polysaccharides: Mechanisms and consequences in food processing and digestion. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.10.022] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Liu D, Martinez-Sanz M, Lopez-Sanchez P, Gilbert EP, Gidley MJ. Adsorption behaviour of polyphenols on cellulose is affected by processing history. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Qiu C, Qin Y, Zhang S, Xiong L, Sun Q. A comparative study of size-controlled worm-like amylopectin nanoparticles and spherical amylose nanoparticles: Their characteristics and the adsorption properties of polyphenols. Food Chem 2016; 213:579-587. [DOI: 10.1016/j.foodchem.2016.07.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/13/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
|
43
|
Bindon KA, Li S, Kassara S, Smith PA. Retention of Proanthocyanidin in Wine-like Solution Is Conferred by a Dynamic Interaction between Soluble and Insoluble Grape Cell Wall Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8406-8419. [PMID: 27616021 DOI: 10.1021/acs.jafc.6b02900] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
For better understanding of the factors that impact proanthocyanidin (PA) adsorption by insoluble cell walls or interaction with soluble cell wall-derived components, application of a commercial polygalacturonase enzyme preparation was investigated to modify grape cell wall structure. Soluble and insoluble cell wall material was isolated from the skin and mesocarp components of Vitis vinifera Shiraz grapes. It was observed that significant depolymerization of the insoluble grape cell wall occurred following enzyme application to both grape cell wall fractions, with increased solubilization of rhamnogalacturonan-enriched, low molecular weight polysaccharides. However, in the case of grape mesocarp, the solubilization of protein from cell walls (in buffer) was significant and increased only slightly by the enzyme treatment. Enzyme treatment significantly reduced the adsorption of PA by insoluble cell walls, but this effect was observed only when material solubilized from grape cell walls had been removed. The loss of PA through interaction with the soluble cell wall fraction was observed to be greater for mesocarp than skin cell walls. Subsequent experiments on the soluble mesocarp cell wall fraction confirmed a role for protein in the precipitation of PA. This identified a potential mechanism by which extracted grape PA may be lost from wine during vinification, as a precipitate with solubilized grape mesocarp proteins. Although protein was a minor component in terms of total concentration, losses of PA via precipitation with proteins were in the order of 50% of available PA. PA-induced precipitation could proceed until all protein was removed from solution and may account for the very low levels of residual protein observed in red wines. The results point to a dynamic interaction of grape insoluble and soluble components in modulating PA retention in wine.
Collapse
Affiliation(s)
- Keren A Bindon
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, South Australia 5064, Australia
| | - Sijing Li
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, South Australia 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, School of Agriculture, Food, and Wine, The University of Adelaide , PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Stella Kassara
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, South Australia 5064, Australia
| | - Paul A Smith
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
44
|
Liu C, Ge S, Yang J, Xu Y, Zhao M, Xiong L, Sun Q. Adsorption mechanism of polyphenols onto starch nanoparticles and enhanced antioxidant activity under adverse conditions. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Aura AM, Holopainen-Mantila U, Sibakov J, Kössö T, Mokkila M, Kaisa P. Bilberry and bilberry press cake as sources of dietary fibre. Food Nutr Res 2015; 59:28367. [PMID: 26652738 PMCID: PMC4677278 DOI: 10.3402/fnr.v59.28367] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Dietary recommendations for Nordic countries urge the use of plant foods as a basis for healthy nutrition. Currently, the level of dietary fibre (DF) intake is not adequate. Berries are an elementary part of the recommended Nordic healthy diet and could be consumed in higher amounts. MATERIALS AND METHODS Finnish bilberries and a bilberry press cake from juice processing were studied for DF content, carbohydrate composition, and non-carbohydrate fibre content, which was analysed as sulphuric acid insoluble and soluble material. The microstructure of all samples was also studied using light microscopy and toluidine blue O, calcofluor, and acid fuchsin staining. RESULTS The total DF contents of fresh and freeze-dried bilberries and the press cake were 3.0, 24.1, and 58.9%, respectively. Most of the DF was insoluble. Only about half of it was carbohydrate, the rest being mostly sulphuric acid-insoluble material, waxy cutin from skins, and resilient seeds. Bilberry seeds represented over half of the press cake fraction, and in addition to skin, they were the major DF sources. Microscopy revealed that skins in the press cake were intact and the surface of the seeds had thick-walled cells. CONCLUSIONS Bilberry press cake is thus a good source of insoluble non-carbohydrate DF, and could be used to provide DF-rich foods to contribute to versatile intake of DF.
Collapse
Affiliation(s)
- Anna-Marja Aura
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland;
| | | | - Juhani Sibakov
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Tuija Kössö
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Mirja Mokkila
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Poutanen Kaisa
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|
46
|
Phan ADT, D'Arcy BR, Gidley MJ. Polyphenol-cellulose interactions: effects of pH, temperature and salt. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.13009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anh Dao T. Phan
- ARC Centre of Excellence in Plant Cell Walls; Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Innovation; The University of Queensland; St. Lucia Qld 4072 Australia
| | - Bruce R. D'Arcy
- School of Agriculture and Food Sciences; The University of Queensland; St. Lucia Qld 4072 Australia
| | - Michael J. Gidley
- ARC Centre of Excellence in Plant Cell Walls; Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Innovation; The University of Queensland; St. Lucia Qld 4072 Australia
| |
Collapse
|
47
|
Hirth M, Preiß R, Mayer-Miebach E, Schuchmann HP. Influence of HTST extrusion cooking process parameters on the stability of anthocyanins, procyanidins and hydroxycinnamic acids as the main bioactive chokeberry polyphenols. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.08.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Liao L, Chen S, Peng H, Yin H, Ye J, Liu Z, Dang Z, Liu Z. Biosorption and biodegradation of pyrene by Brevibacillus brevis and cellular responses to pyrene treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 115:166-173. [PMID: 25700095 DOI: 10.1016/j.ecoenv.2015.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/07/2015] [Accepted: 02/08/2015] [Indexed: 06/04/2023]
Abstract
Biodegradation has been proposed as an effective approach to remove pyrene, however, the information regarding cellular responses to pyrene treatment is limited thus far. In this study, the biodegradation and biosorption of pyrene by Brevibacillus brevis, along with cellular responses caused by pollutant were investigated by means of flow cytometry assay and scanning electron microscopy. The experimental results showed that pyrene was initially adsorbed by B. brevis and subsequently transported and intracellularly degraded. During this process, pyrene removal was primarily dependent on biodegradation. Cell invagination and cell surface corrugation occurred due to pyrene exposure. Nevertheless, cell regrowth after 96h treatment was observed, and the proportion of necrotic cell was only 2.8% after pyrene exposure for 120h, confirming that B. brevis could utilize pyrene as a sole carbon source for growth. The removal and biodegradation amount of pyrene (1mg/L) at 168h were 0.75 and 0.69mg/L, respectively, and the biosorption amount by inactivated cells was 0.41mg/L at this time.
Collapse
Affiliation(s)
- Liping Liao
- Department of Environmental Engineering, Jinan University, Guangzhou 510632, China
| | - Shuona Chen
- Department of Environmental Engineering, Jinan University, Guangzhou 510632, China
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Jinshao Ye
- Department of Environmental Engineering, Jinan University, Guangzhou 510632, China.
| | - Zehua Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhichen Liu
- Department of Environmental Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
49
|
Camelo-Méndez GA, Ferruzzi MG, González-Aguilar GA, Bello-Pérez LA. Carbohydrate and Phytochemical Digestibility in Pasta. FOOD ENGINEERING REVIEWS 2015. [DOI: 10.1007/s12393-015-9117-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Effect of Alternative Physical Treatments (Ultrasounds, Pulsed Electric Fields, and High-Voltage Electrical Discharges) on Selective Recovery of Bio-compounds from Fermented Grape Pomace. FOOD BIOPROCESS TECH 2015. [DOI: 10.1007/s11947-015-1482-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|