1
|
Cuellar CJ, A Zayas G, Amaral TF, S McGraw M, Yu F, Mateescu RG, Hansen PJ. Ovarian hyperplasia linked to a mutation in MAN1A2 in a cow with excessive follicular growth and functional oocytes. Vet Res Commun 2024; 48:3239-3243. [PMID: 38954257 DOI: 10.1007/s11259-024-10435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
Here we report the case of a cow with two ovaries that each exhibited hyperplasia but that otherwise had normal gross morphology. Both ovaries had a large number of tertiary follicles on the ovarian surface. Oocytes from one ovary were studied in more detail. The transcriptome was largely similar to other oocytes. Oocytes could undergo cleavage at a rate consistent with other oocytes and result in blastocyst-stage embryo formation after in vitro maturation and fertilization. Review of the literature from cattle and other species did not reveal reports of a similar type of spontaneous ovarian abnormality. Whole genome sequencing revealed many single nucleotide polymorphisms with predicted large effects on protein structure that could potentially be causative for the phenotype. The variant considered most likely to cause the observed alteration in ovarian function was a mutation in the glycoprotein-modifying enzyme MAN1A2.
Collapse
Affiliation(s)
- Camila J Cuellar
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, 32611-0910, FL, USA
| | - Gabriel A Zayas
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, 32611-0910, FL, USA
| | - Thiago F Amaral
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, 32611-0910, FL, USA
- Genus PLC/ABS, Mogi Miri, São Paulo, 13800-478, Brazil
| | - Maura S McGraw
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, 32611-0910, FL, USA
| | - Fahong Yu
- University of Florida Interdisciplinary Center for Biotechnology Research, Gainesville, FL, USA
| | - Raluca G Mateescu
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, 32611-0910, FL, USA
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, 32611-0910, FL, USA.
| |
Collapse
|
2
|
Shpakov AO. Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. FRONT BIOSCI-LANDMRK 2024; 29:313. [PMID: 39344322 DOI: 10.31083/j.fbl2909313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (CG), like follicle-stimulating hormone, are the most important regulators of the reproductive system. They exert their effect on the cell through the LH/CG receptor (LHCGR), which belongs to the family of G protein-coupled receptors. Binding to gonadotropin induces the interaction of LHCGR with various types of heterotrimeric G proteins (Gs, Gq/11, Gi) and β-arrestins, which leads to stimulation (Gs) or inhibition (Gi) of cyclic adenosine monophosphate-dependent cascades, activation of the phospholipase pathway (Gq/11), and also to the formation of signalosomes that mediate the stimulation of mitogen-activated protein kinases (β-arrestins). The efficiency and selectivity of activation of intracellular cascades by different gonadotropins varies, which is due to differences in their interaction with the ligand-binding site of LHCGR. Gonadotropin signaling largely depends on the status of N- and O-glycosylation of LH and CG, on the formation of homo- and heterodimeric receptor complexes, on the cell-specific microenvironment of LHCGR and the presence of autoantibodies to it, and allosteric mechanisms are important in the implementation of these influences, which is due to the multiplicity of allosteric sites in different loci of the LHCGR. The development of low-molecular-weight allosteric regulators of LHCGR with different profiles of pharmacological activity, which can be used in medicine for the correction of reproductive disorders and in assisted reproductive technologies, is promising. These and other issues regarding the hormonal and allosteric regulation of LHCGR are summarized and discussed in this review.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
3
|
Byambaragchaa M, Park SH, Kim SG, Shin MG, Kim SK, Park MH, Kang MH, Min KS. Stable Production of a Recombinant Single-Chain Eel Follicle-Stimulating Hormone Analog in CHO DG44 Cells. Int J Mol Sci 2024; 25:7282. [PMID: 39000389 PMCID: PMC11242883 DOI: 10.3390/ijms25137282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
This study aimed to produce single-chain recombinant Anguillid eel follicle-stimulating hormone (rec-eel FSH) analogs with high activity in Cricetulus griseus ovary DG44 (CHO DG44) cells. We recently reported that an O-linked glycosylated carboxyl-terminal peptide (CTP) of the equine chorionic gonadotropin (eCG) β-subunit contributes to high activity and time-dependent secretion in mammalian cells. We constructed a mutant (FSH-M), in which a linker including the eCG β-subunit CTP region (amino acids 115-149) was inserted between the β-subunit and α-subunit of wild-type single-chain eel FSH (FSH-wt). Plasmids containing eel FSH-wt and eel FSH-M were transfected into CHO DG44 cells, and single cells expressing each protein were isolated from 10 and 7 clones. Secretion increased gradually during the cultivation period and peaked at 4000-5000 ng/mL on day 9. The molecular weight of eel FSH-wt was 34-40 kDa, whereas that of eel FSH-M increased substantially, with two bands at 39-46 kDa. Treatment with PNGase F to remove the N glycosylation sites decreased the molecular weight remarkably to approximately 8 kDa. The EC50 value and maximal responsiveness of eel FSH-M were approximately 1.23- and 1.06-fold higher than those of eel FSH-wt, indicating that the mutant showed slightly higher biological activity. Phosphorylated extracellular-regulated kinase (pERK1/2) activation exhibited a sharp peak at 5 min, followed by a rapid decline. These findings indicate that the new rec-eel FSH molecule with the eCG β-subunit CTP linker shows potent activity and could be produced in massive quantities using the stable CHO DG44 cell system.
Collapse
Affiliation(s)
- Munkhzaya Byambaragchaa
- Carbon-Neutral Resources Research Center, Hankyong National University, Anseong 17579, Republic of Korea;
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| | - Sei Hyen Park
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea; (S.H.P.); (S.-G.K.)
| | - Sang-Gwon Kim
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea; (S.H.P.); (S.-G.K.)
| | - Min Gyu Shin
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (M.G.S.); (S.-K.K.)
| | - Shin-Kwon Kim
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (M.G.S.); (S.-K.K.)
| | | | - Myung-Hwa Kang
- Department of Food Science and Nutrition, Hoseo University, Asan 31499, Republic of Korea;
| | - Kwan-Sik Min
- Carbon-Neutral Resources Research Center, Hankyong National University, Anseong 17579, Republic of Korea;
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
- Division of Animal BioScience, School of Animal Life Convergence Sciences, Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
4
|
Byambaragchaa M, Park SH, Kim SG, Shin MG, Kim SK, Hur SP, Park MH, Kang MH, Min KS. Stable Production of a Tethered Recombinant Eel Luteinizing Hormone Analog with High Potency in CHO DG44 Cells. Curr Issues Mol Biol 2024; 46:6085-6099. [PMID: 38921034 PMCID: PMC11202772 DOI: 10.3390/cimb46060363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
We produced a recombinant eel luteinizing hormone (rec-eel LH) analog with high potency in Chinese hamster ovary DG44 (CHO DG44) cells. The tethered eel LH mutant (LH-M), which had a linker comprising the equine chorionic gonadotropin (eLH/CG) β-subunit carboxyl-terminal peptide (CTP) region (amino acids 115 to 149), was inserted between the β-subunit and α-subunit of wild-type tethered eel LH (LH-wt). Monoclonal cells transfected with the tethered eel LH-wt and eel LH-M plasmids were isolated from five to nine clones of CHO DG44 cells, respectively. The secreted quantities abruptly increased on day 3, with peak levels of 5000-7500 ng/mL on day 9. The molecular weight of tethered rec-eel LH-wt was 32-36 kDa, while that of tethered rec-eel LH-M increased to approximately 38-44 kDa, indicating the detection of two bands. Treatment with the peptide N-glycanase F decreased the molecular weight by approximately 8 kDa. The oligosaccharides at the eCG β-subunit O-linked glycosylation sites were appropriately modified post-translation. The EC50 value and maximal responsiveness of eel LH-M increased by approximately 2.90- and 1.29-fold, respectively, indicating that the mutant exhibited more potent biological activity than eel LH-wt. Phosphorylated extracellular regulated kinase (pERK1/2) activation resulted in a sharp peak 5 min after agonist treatment, with a rapid decrease thereafter. These results indicate that the new tethered rec-eel LH analog had more potent activity in cAMP response than the tethered eel LH-wt in vitro. Taken together, this new eel LH analog can be produced in large quantities using a stable CHO DG44 cell system.
Collapse
Affiliation(s)
- Munkhzaya Byambaragchaa
- Carbon-Neutral Resources Research Center, Hankyong National University, Anseong 17579, Republic of Korea; (M.B.); (M.-H.P.)
| | - Sei Hyen Park
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea;
| | - Sang-Gwon Kim
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea;
| | - Min Gyu Shin
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea (M.G.S.); (S.-K.K.)
| | - Shin-Kwon Kim
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea (M.G.S.); (S.-K.K.)
| | - Sung-Pyo Hur
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Myung-Hum Park
- Carbon-Neutral Resources Research Center, Hankyong National University, Anseong 17579, Republic of Korea; (M.B.); (M.-H.P.)
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea;
| | - Myung-Hwa Kang
- Department of Food Science and Nutrition, Hoseo University, Asan 31499, Republic of Korea;
| | - Kwan-Sik Min
- Carbon-Neutral Resources Research Center, Hankyong National University, Anseong 17579, Republic of Korea; (M.B.); (M.-H.P.)
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea;
- Division of Animal BioScience, School of Animal Life Convergence Sciences, Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
5
|
Byambaragchaa M, Kim SG, Park SH, Shin MG, Kim SK, Kang MH, Min KS. Production of Recombinant Single-Chain Eel Luteinizing Hormone and Follicle-Stimulating Hormone Analogs in Chinese Hamster Ovary Suspension Cell Culture. Curr Issues Mol Biol 2024; 46:542-556. [PMID: 38248337 PMCID: PMC10814319 DOI: 10.3390/cimb46010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024] Open
Abstract
We produced rec-single chain eel luteinizing (rec-eel LH) and follicle-stimulating (rec- eel FSH) hormones displaying high biological activity in Chinese hamster ovary suspension (CHO-S) cells. We constructed several mutants, in which a linker, including an O-linked glycosylated carboxyl-terminal peptide (CTP) of an equine chorionic gonadotropin (eCG) β-subunit, was attached between the β- and α-subunit (LH-M and FSH-M) or in the N-terminal (C-LH and C-FSH) or C-terminal (LH-C and FSH-C) regions. The plasmids were transfected into CHO-S cells, and culture supernatants were collected. The secretion of mutants from the CHO-S cells was faster than that of eel LHβ/α-wt and FSHβ/α-wt proteins. The molecular weight of eel LHβ/α-wt and eel FSHβ/α-wt was 32-34 and 34-36 kDa, respectively, and that of LH-M and FSH-M was 40-43 and 42-45 kDa, respectively. Peptide-N-glycanase F-treatment markedly decreased the molecular weight by approximately 8-10 kDa. The EC50 value and the maximal responsiveness of the eel LH-M and eel FSH-M increased compared with the wild-type proteins. These results show that the CTP region plays a pivotal role in early secretion and signal transduction. We suggest that novel rec-eel LH and FSH proteins, exhibiting potent activity, could be produced in large quantities using a stable CHO cell system.
Collapse
Affiliation(s)
- Munkhzaya Byambaragchaa
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea;
| | - Sang-Gwon Kim
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea; (S.-G.K.); (S.H.P.)
| | - Sei Hyun Park
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea; (S.-G.K.); (S.H.P.)
| | - Min Gyu Shin
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (M.G.S.); (S.-K.K.)
| | - Shin-Kwon Kim
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (M.G.S.); (S.-K.K.)
| | - Myung-Hwa Kang
- Department of Food Science and Nutrition, Hoseo University, Asan 31499, Republic of Korea;
| | - Kwan-Sik Min
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea;
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea; (S.-G.K.); (S.H.P.)
- Division of Animal BioScience, School of Animal Life Convergence Sciences, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
6
|
Deng Q, He L, Xu F, Deng Q, Xu T, Jiang J, Hu Z, Yang J. Characterization of beta subunit variants of recombinant human chorionic gonadotrophin. Anal Biochem 2023; 668:115089. [PMID: 36858250 DOI: 10.1016/j.ab.2023.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/23/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
Human chorionic gonadotropin (hCG), an endogenous glycoprotein hormone, has been widely used for the treatment of infertility and corpus luteum defect in women. The biological specificity of hCG is essentially determined by its beta (β-) subunit, whereas the alpha (α-) subunit is a common subunit shared among the gonadotropin family. In development of a therapeutic recombinant hCG, the purity analysis showed that the beta (β-) subunit has two variants, β1 and β2. Structural characterization using a combination of analytical techniques has demonstrated that β1-subunit is derived from non-glycosylation at Asn 13, whereas β2-subunit is a normal species with complete N-glycosylation at both Asn 13 and Asn 30. In vivo Bioactivity evaluation of the r-hCG fractions with various ratios of β1-and β2-subunits showed that incomplete glycosylation at Asn 13 potentially reduced the biological activity of r-hCG to promote uterus growth. Although hCG has a long history of medicinal use, this is the first report to identify the structural difference of hCG β-subunit variants, as well as to preliminary establish the structure-activity relationship of this variation. The obtained results also suggest the importance of variant characterization and necessary quality control of product variants during the development of recombinant protein therapeutics.
Collapse
Affiliation(s)
- Qinpei Deng
- Livzon MabPharm Inc., Zhuhai, Guangdong, China
| | - Lixiu He
- Livzon MabPharm Inc., Zhuhai, Guangdong, China
| | - Fangyan Xu
- Livzon MabPharm Inc., Zhuhai, Guangdong, China
| | | | - Tongze Xu
- Livzon MabPharm Inc., Zhuhai, Guangdong, China
| | | | | | | |
Collapse
|
7
|
Banerjee A, Biswas D, Barpanda A, Halder A, Sibal S, Kattimani R, Shah A, Mahadevan A, Goel A, Srivastava S. The First Pituitary Proteome Landscape From Matched Anterior and Posterior Lobes for a Better Understanding of the Pituitary Gland. Mol Cell Proteomics 2022; 22:100478. [PMID: 36470533 PMCID: PMC9877467 DOI: 10.1016/j.mcpro.2022.100478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
To date, very few mass spectrometry (MS)-based proteomics studies are available on the anterior and posterior lobes of the pituitary. In the past, MS-based investigations have focused exclusively on the whole pituitary gland or anterior pituitary lobe. In this study, for the first time, we performed a deep MS-based analysis of five anterior and five posterior matched lobes to build the first lobe-specific pituitary proteome map, which documented 4090 proteins with isoforms, mostly mapped into chromosomes 1, 2, and 11. About 1446 differentially expressed significant proteins were identified, which were studied for lobe specificity, biological pathway enrichment, protein-protein interaction, regions specific to comparison of human brain and other neuroendocrine glands from Human Protein Atlas to identify pituitary-enriched proteins. Hormones specific to each lobe were also identified and validated with parallel reaction monitoring-based target verification. The study identified and validated hormones, growth hormone and thyroid-stimulating hormone subunit beta, exclusively to the anterior lobe whereas oxytocin-neurophysin 1 and arginine vasopressin to the posterior lobe. The study also identified proteins POU1F1 (pituitary-specific positive transcription factor 1), POMC (pro-opiomelanocortin), PCOLCE2 (procollagen C-endopeptidase enhancer 2), and NPTX2 (neuronal pentraxin-2) as pituitary-enriched proteins and was validated for their lobe specificity using parallel reaction monitoring. In addition, three uPE1 proteins, namely THEM6 (mesenchymal stem cell protein DSCD75), FSD1L (coiled-coil domain-containing protein 10), and METTL26 (methyltransferase-like 26), were identified using the NeXtProt database, and depicted tumor markers S100 proteins having high expression in the posterior lobe. In summary, the study documents the first matched anterior and posterior pituitary proteome map acting as a reference control for a better understanding of functional and nonfunctional pituitary adenomas and extrapolating the aim of the Human Proteome Project towards the investigation of the proteome of life.
Collapse
Affiliation(s)
- Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Deepatarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Abhilash Barpanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ankit Halder
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shamira Sibal
- Lokmanya Tilak Municipal Medical College, Mumbai, India
| | | | - Abhidha Shah
- Department of Neurosurgery at King Edward Memorial Hospital and Seth G. S. Medical College, Mumbai, India
| | - Anita Mahadevan
- Human Brain Bank, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Atul Goel
- Department of Neurosurgery at King Edward Memorial Hospital and Seth G. S. Medical College, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
8
|
Mohammadzadeh S, Ahmadifar E, Masoudi E, Milla S, El-Shall NA, Alagawany M, Emran TB, Michalak I, Dhama K. Applications of recombinant proteins in aquaculture. AQUACULTURE 2022; 561:738701. [DOI: 10.1016/j.aquaculture.2022.738701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
9
|
Pu C, Biyuan, Xu K, Zhao Y. Glycosylation and its research progress in endometrial cancer. Clin Transl Oncol 2022; 24:1865-1880. [PMID: 35752750 PMCID: PMC9418304 DOI: 10.1007/s12094-022-02858-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Endometrial cancer (EC) is one of the most common tumors in the female reproductive system, which seriously threatens women's health, particularly in developed countries. 13% of the patients with EC have a poor prognosis due to recurrence and metastasis. Therefore, identifying good predictive biomarkers and therapeutic targets is critical to enable the early detection of metastasis and improve the prognosis. For decades, extensive studies had focused on glycans and glycoproteins in the progression of cancer. The types of glycans that are covalently attached to the polypeptide backbone, usually via nitrogen or oxygen linkages, are known as N‑glycans or O‑glycans, respectively. The degree of protein glycosylation and the aberrant changes in the carbohydrate structures have been implicated in the extent of tumorigenesis and reported to play a critical role in regulating tumor invasion, metabolism, and immunity. This review summarizes the essential biological role of glycosylation in EC, with a focus on the recent advances in glycomics and glycosylation markers, highlighting their implications in the diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Congli Pu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Biyuan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Lee SY, Byambaragchaa M, Choi SH, Kang HJ, Kang MH, Min KS. Roles of N-linked and O-linked glycosylation sites in the activity of equine chorionic gonadotropin in cells expressing rat luteinizing hormone/chorionic gonadotropin receptor and follicle-stimulating hormone receptor. BMC Biotechnol 2021; 21:52. [PMID: 34482828 PMCID: PMC8419929 DOI: 10.1186/s12896-021-00712-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/01/2021] [Indexed: 12/04/2022] Open
Abstract
Background Equine chorionic gonadotropin (eCG), which comprises highly glycosylated α-subunit and β-subunit, is a unique member of the glycoprotein hormone family as it elicits both follicle-stimulating hormone (FSH)-like and luteinizing hormone (LH)-like responses in non-equid species. To examine the biological function of glycosylated sites in eCG, the following glycosylation site mutants were constructed: eCGβ/αΔ56, substitution of Asn56 of α-subunit with Gln; eCGβ-D/α, deletion of the O-linked glycosylation site at the carboxyl-terminal peptide (CTP) region of the β-subunit; eCGβ-D/αΔ56, double mutant. The recombinant eCG (rec-eCG) mutants were expressed in Chinese hamster ovary suspension (CHO-S) cells. The FSH-like and LH-like activities of the mutants were examined using CHO-K1 cells expressing rat lutropin/CG receptor (rLH/CGR) and rat FSH receptor (rFSHR). Results Both rec-eCGβ/α and rec-eCGβ/αΔ56 were efficiently secreted into the CHO-S cell culture medium on day 1 post-transfection. However, the secretion of eCGβ-D/α and eCGβ-D/αΔ56, which lack approximately 12 O-linked glycosylation sites, was slightly delayed. The expression levels of all mutants were similar (200–250 mIU/mL) from days 3 to 7 post-transfection. The molecular weight of rec-eCGβ/α, rec-eCGβ/αΔ56 and rec-eCG β-D/α were in the ranges of 40–45, 37–42, and 34–36 kDa, respectively. Treatment with peptide-N-glycanase F markedly decreased the molecular weight to approximately 5–10 kDa. Rec-eCGβ/αΔ56 exhibited markedly downregulated LH-like activity. The signal transduction activity of both double mutants was completely impaired. This indicated that the glycosylation site at Asn56 of the α-subunit plays a pivotal role in the LH-like activity of eCG. Similarly, the FSH-like activity of the mutants was markedly downregulated. eCGβ-D/α exhibited markedly downregulated LH-like and FSH-like activities. Conclusions Rec-eCGβ/α exhibits potent biological activity in cells expressing rLH/CGR and rFSHR. The findings of this study suggest that the LH-like and FSH-like activities of eCG are regulated by the N-linked glycosylation site at Asn56 of the eCG α-subunit and/or by the O-linked glycosylation sites of the eCG β-subunit. These findings improved our understanding of the mechanisms underlying both LH-like and FSH-like activities of eCG.
Collapse
Affiliation(s)
- So-Yun Lee
- Animal Biotechnology, Graduate School of Future Convergence Technology, Institute of Genetic Engineering, Hankyong National University, Ansung, 17579, Korea
| | - Munkhzaya Byambaragchaa
- Animal Biotechnology, Graduate School of Future Convergence Technology, Institute of Genetic Engineering, Hankyong National University, Ansung, 17579, Korea
| | - Seung-Hee Choi
- Animal Biotechnology, Graduate School of Future Convergence Technology, Institute of Genetic Engineering, Hankyong National University, Ansung, 17579, Korea
| | - Han-Ju Kang
- Animal Biotechnology, Graduate School of Future Convergence Technology, Institute of Genetic Engineering, Hankyong National University, Ansung, 17579, Korea
| | - Myung-Hwa Kang
- Department of Food Science and Nutrition, Hoseo University, Asan, 31499, Korea
| | - Kwan-Sik Min
- Animal Biotechnology, Graduate School of Future Convergence Technology, Institute of Genetic Engineering, Hankyong National University, Ansung, 17579, Korea. .,School of Animal Life Biotechnology, Institute of Genetic Engineering, Hankyong National University, Ansung, 17579, Korea.
| |
Collapse
|
11
|
Kazeto Y, Suzuki H, Ozaki Y, Gen K. C-terminal peptide (hCTP) of human chorionic gonadotropin enhances in vivo biological activity of recombinant Japanese eel follicle-stimulating hormone and luteinizing hormone produced in FreeStyle 293-F cell lines. Gen Comp Endocrinol 2021; 306:113731. [PMID: 33539901 DOI: 10.1016/j.ygcen.2021.113731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Gonadotropins (Gths), follicle-stimulating hormone (Fsh), and luteinizing hormone (Lh) play central roles in the reproductive biology of vertebrates. In this study, recombinant single-chain Japanese eel Gths (rGth: rFsh and rLh), and recombinant chimeric Gths (rGth-hCTPs: rFsh-hCTP and rLh-hCTP; rGth-eCTPs: rFsh-eCTP and rLh-eCTP) with an extra O-glycosylation site (either a C-terminal peptide of human (hCTP) or equine (eCTP) chorionic gonadotropin), which are known to prolong the half-life of glycoprotein were produced in HEK293 cells and highly purified. Lectin blot analyses demonstrated that all these recombinant Gths contained N-glycans of the high mannose and complex types. In contrast, only rGth-hCTPs and rGth-eCTPs possessed highly sialylated O-linked oligosaccharides. Further analyses of glycans by liquid chromatography-mass spectrometry suggested that the species, amount, and degree of sialylation of N-glycans were comparable among recombinant Fshs and recombinant Lhs, while the amount of O-glycans with sialic acids in rGth-hCTPs was higher than that in the corresponding rGth-eCTPs. The serum levels of recombinant Gths in male eels significantly increased 12-24 h after a single injection of the Gths. The levels of rGth-hCTPs tended to be higher than those of the corresponding rGths and rGth-eCTPs throughout the experimental period, coinciding with the serum fluctuations of 11-ketotestosterone (11KT). The long-term treatment of male eels with these recombinant Gths also revealed the superiority of rGth-hCTPs in assisted reproduction; thus, the serum levels of 11KT and gonadosomatic indices in eels treated with rGth-hCTPs were higher than those in eels treated with the corresponding rGths and rGth-eCTPs. The induction of the entire process of spermatogenesis was only histologically observed in rGth-hCTPs-treated eels. These findings strongly suggest that hCTP enhances the in vivo biological activity of recombinant Japanese eel Gths due to the high abundance of O-linked glycans with sialylated antennae.
Collapse
Affiliation(s)
- Yukinori Kazeto
- Tamaki Field Station, Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan.
| | - Hiroshi Suzuki
- Tamaki Field Station, Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan; Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Yuichi Ozaki
- Tamaki Field Station, Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan.
| | - Koichiro Gen
- Tuna Aquaculture Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan.
| |
Collapse
|
12
|
McMahon LM, Stewart WW, Cuthill L. Human chorionic gonadotrophin assays to monitor GTD. Best Pract Res Clin Obstet Gynaecol 2021; 74:109-121. [PMID: 34074603 DOI: 10.1016/j.bpobgyn.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/27/2022]
Abstract
Hydatidiform mole (HM) occurs in 1:500-1000 pregnancies and are generally characterised as a benign proliferative disorder of chorionic villous trophoblast. HM belongs to the group of disorders, collectively known as gestational trophoblastic disease (GTD), which include invasive mole, choriocarcinoma, placental site trophoblastic tumour and epitheloid trophoblastic tumour. Patients with HM are at increased risk of developing these malignant forms and hence accurate diagnosis is very important for monitoring persistent diseases and informing correct patient management. In this review, we describe the current model for HM follow-up in the UK, with special emphasis on the in-house human chorionic gonadotrophin (hCG) radioimmunoassay (RIA) currently employed for monitoring women in our programme. We briefly discuss the structure, function and significance of hCG monitoring in GTD and the limitations and benefits of the current assays used for measuring oncology hCG. In particular, we describe the preliminary work evaluating a replacement antibody for the current gold-standard UK-RIA method.
Collapse
Affiliation(s)
- Lesley M McMahon
- Hydatidiform Mole Follow-Up Service (HMFUS), Ninewells Hospital and Medical Teaching School, Dundee, Scotland, DD1 9SY, UK.
| | - Wilson W Stewart
- Hydatidiform Mole Follow-Up Service (HMFUS), Ninewells Hospital and Medical Teaching School, Dundee, Scotland, DD1 9SY, UK
| | - Lyndsey Cuthill
- Hydatidiform Mole Follow-Up Service (HMFUS), Ninewells Hospital and Medical Teaching School, Dundee, Scotland, DD1 9SY, UK
| |
Collapse
|
13
|
A Novel Follitropin Analog Inhibits Follitropin Activity In Vitro. Pharmaceutics 2021; 13:pharmaceutics13030325. [PMID: 33802415 PMCID: PMC7998534 DOI: 10.3390/pharmaceutics13030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/05/2022] Open
Abstract
Follitropin (FSH) is a heterodimeric protein composed of an α subunit that is shared with the glycoprotein hormone family, including lutropin (LH), thyrotropin (TSH), human choriogonadotropin (hCG), and a unique β specific subunit. Both α and FSHβ subunits contain two sites of N-linked oligosaccharides, which are important for its function. FSH has a crucial function in the reproductive process in mammals. However, there are some clinical conditions, such as menopausal osteoporosis or adiposity, associated with increased FSH activity. Moreover, in some cases, carcinogenesis is evidently associated with activation of FSH receptor. Therefore, developing a follitropin antagonist might be beneficial in the treatment of these conditions. Here, we describe a novel, engineered, non-glycosylated single-chain FSH variant, prepared by site-directed mutagenesis and fusion of the coding genes of the α and β subunits. The designed variant was expressed in Chinese hamster ovary (CHO) cells and successfully secreted into the culture medium. We found that the non-glycosylated single-chain FSH analog binds with high affinity to FSH receptor and efficiently inhibits FSH activity in vitro. This variant acts at the receptor level and has the potential to serve as a follitropin antagonist for clinical applications in the future.
Collapse
|
14
|
Biskup K, Blanchard V, Castillo-Binder P, Alexander H, Engeland K, Schug S. N- and O-glycosylation patterns and functional testing of CGB7 versus CGB3/5/8 variants of the human chorionic gonadotropin (hCG) beta subunit. Glycoconj J 2020; 37:599-610. [PMID: 32767150 PMCID: PMC7501100 DOI: 10.1007/s10719-020-09936-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/26/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
The classical function of human chorionic gonadotropin (hCG) is its role in supporting pregnancy. hCG is a dimer consisting of two highly glycosylated subunits, alpha (CGA) and beta (CGB). The beta-hCG protein is encoded by CGB3, CGB5, CGB7 and CGB8 genes. CGB3, 5 and 8 code for an identical protein, CGB3/5/8, whereas CGB7 differs in three amino acids from CGB3/5/8. We had observed earlier that CGB7 and CGB3/5/8 display very distinct tissue expression patterns and that the tumor suppressor and transcription factor p53 can activate expression of CGB7 but not of CGB3/5/8 genes. Here, we investigate the glycan structures and possible functional differences of the two CGB variants. To this end, we established a system to produce and isolate recombinant CGA, CGB7 and CGB3/5/8 proteins. We found that N- and O-glycosylation patterns of CGB7 and CGB3/5/8 are quite similar. Functional assays were performed by testing activation of the ERK1/2 pathway and demonstrated that CGB7 and CGB5/5/8 appear to be functionally redundant isoforms, although a slight difference in the kinetics of ERK1/2 pathway activation was observed. This is the first time that biological activity of CGB7 is shown. In summary, the results lead to the hypothesis that CGB7 and CGB3/5/8 do not hold significant functional differences but that timing and cell type of their expression is the key for understanding their divergent evolution.
Collapse
Affiliation(s)
- Karina Biskup
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Véronique Blanchard
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Paola Castillo-Binder
- Division of Molecular Oncology and Division of Human Reproduction and Endocrinology, Department of Obstetrics and Gynecology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103, Leipzig, Germany
| | - Henry Alexander
- Division of Molecular Oncology and Division of Human Reproduction and Endocrinology, Department of Obstetrics and Gynecology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103, Leipzig, Germany
| | - Kurt Engeland
- Division of Molecular Oncology and Division of Human Reproduction and Endocrinology, Department of Obstetrics and Gynecology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103, Leipzig, Germany.
| | - Sindy Schug
- Division of Molecular Oncology and Division of Human Reproduction and Endocrinology, Department of Obstetrics and Gynecology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103, Leipzig, Germany
| |
Collapse
|
15
|
Nabizadeh Z, Minuchehr Z, Shabani AA. Rational Design of Hyper-glycosylated Human Chorionic Gonadotropin Analogs (A Bioinformatics Approach). LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817666200225101938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Protein pharmaceuticals routinely display a series of intrinsic physicochemical instabilities during their production and administration that can unfavorably affect their therapeutic effectiveness. Glycoengineering is one of the most desirable techniques to improve the attributes of therapeutic proteins. One aspect of glycoengineering is the rational manipulation of the peptide backbone to introduce new N-glycosylation consensus sequences (Asn-X-Ser/Thr, where X is any amino acid except proline).Methods:In this work, the amino acid sequence of human chorionic gonadotropin (hCG) was analyzed to identify suitable positions in order to create new N-glycosylation sites. This survey led to the detection of 46 potential N-glycosylation sites. The N-glycosylation probability of all the potential positions was measured with the NetNGlyc 1.0 server. After theoretical reviews and the removal of unsuitable positions, the five acceptable ones were selected for more analyses. Then, threedimensional (3D) structures of the selected analogs were generated and evaluated by SPDBV software. The molecular stability and flexibility profile of five designed analogs were examined using Molecular Dynamics (MD) simulations.Results:Finally, three analogs with one additional N-glycosylation site (V68T, V79N and R67N) were proposed as the qualified analogs that could be glycosylated at the new sites.Conclusion:According to the results of this study, further experimental investigations could be guided on the three analogs. Therefore, our computational strategy can be a valuable method due to the reduction in the number of the expensive, tiresome and time-consuming experimental studies of hCG analogs.
Collapse
Affiliation(s)
- Zahra Nabizadeh
- Dept. and Center for Biotechnology Research, Semnan University of Medical Sciences, Semnan, Iran
| | - Zarrin Minuchehr
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology (IIEB), National Institute for Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, Iran
| | - Ali Akbar Shabani
- Dept. and Center for Biotechnology Research, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
16
|
Zhu L, Xiao N, Zhang T, Kong P, Xu B, Fang Z, Jin L. Clinical and genetic analysis of an isolated follicle-stimulating hormone deficiency female patient. J Assist Reprod Genet 2020; 37:1441-1448. [PMID: 32367462 PMCID: PMC7311626 DOI: 10.1007/s10815-020-01786-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 04/17/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To characterize the clinical features of a female patient with isolated follicle-stimulating hormone (FSH) deficiency and to investigate the underlying mechanisms of FSH inactivation. METHODS The proband was a 29-year-old woman with primary amenorrhea, impaired pubertal development, and infertility. Subsequently, reproductive endocrine was screened. DNA sequencing was conducted for the identification of FSHβ mutation. RT-PCR, western blots, in vitro immunometric assay, and bioassay were performed to confirm the impact of the mutation on FSH expression and biological activity. Molecular model consisting of FSHα and mutant FSHβ subunit was built for the structural analysis of FSH protein. RESULTS The evaluation of reproductive endocrine revealed undetectable basal and GnRH-stimulated serum FSH. Sequencing of the FSHβ gene identified a homozygous nonsense mutation at codon 97 (Arg97X). RT-PCR and western blot analysis revealed the mutation Arg97X did not affect FSHβ mRNA and protein expression. But in vitro immunometric assay and bioassay demonstrated the production of normal bioactive FSH protein was disturbed by the mutation Arg97X. Structural analysis showed the surface structure of the resulting mutant FSH presented with lock-and-key, mosaic binding pattern, while the native structure was an encircling binding mode. CONCLUSION The mutation Arg97X could disturb structural stability of the resulting FSH protein consisting of FSHα and mutant FSHβ subunit, which may lead to FSH deficiency.
Collapse
Affiliation(s)
- Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China
| | - Nan Xiao
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, People's Republic of China
| | - Tao Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China
| | - Pingping Kong
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Bei Xu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China
| | - Zishui Fang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
17
|
Casarini L, Crépieux P, Reiter E, Lazzaretti C, Paradiso E, Rochira V, Brigante G, Santi D, Simoni M. FSH for the Treatment of Male Infertility. Int J Mol Sci 2020; 21:ijms21072270. [PMID: 32218314 PMCID: PMC7177393 DOI: 10.3390/ijms21072270] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Follicle-stimulating hormone (FSH) supports spermatogenesis acting via its receptor (FSHR), which activates trophic effects in gonadal Sertoli cells. These pathways are targeted by hormonal drugs used for clinical treatment of infertile men, mainly belonging to sub-groups defined as hypogonadotropic hypogonadism or idiopathic infertility. While, in the first case, fertility may be efficiently restored by specific treatments, such as pulsatile gonadotropin releasing hormone (GnRH) or choriogonadotropin (hCG) alone or in combination with FSH, less is known about the efficacy of FSH in supporting the treatment of male idiopathic infertility. This review focuses on the role of FSH in the clinical approach to male reproduction, addressing the state-of-the-art from the little data available and discussing the pharmacological evidence. New compounds, such as allosteric ligands, dually active, chimeric gonadotropins and immunoglobulins, may represent interesting avenues for future personalized, pharmacological approaches to male infertility.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-0593961705; Fax: +39-0593962018
| | - Pascale Crépieux
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Vincenzo Rochira
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| |
Collapse
|
18
|
Wang H, Qu X, Zhang Z, Lei M, Tan H, Bao C, Lin S, Zhu L, Kohn J, Liu C. Tag-Free Site-Specific BMP-2 Immobilization with Long-Acting Bioactivities via a Simple Sugar-Lectin Interaction. ACS Biomater Sci Eng 2020; 6:2219-2230. [PMID: 33455345 DOI: 10.1021/acsbiomaterials.9b01730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The construction of a biomaterial matrix with biological properties is of great importance to developing functional materials for clinical use. However, the site-specific immobilization of growth factors to endow materials with bioactivities has been a challenge to date. Considering the wide existence of glycosylation in mammalian proteins or recombinant proteins, we establish a bioaffinity-based protein immobilization strategy (bioanchoring method) utilizing the native sugar-lectin interaction between concanavalin A (Con A) and the oligosaccharide chain on glycosylated bone morphogenetic protein-2 (GBMP-2). The interaction realizes the site-specific immobilization of GBMP-2 to a substrate modified with Con A while preserving its bioactivity in a sustained and highly efficient way, as evidenced by its enhanced ability to induce osteodifferentiation compared with that of the soluble GBMP-2. Moreover, the surface with Con A-bioanchored GBMP-2 can be reused to stimulate multiple batches of C2C12 cells to differentiate almost to the same degree. Even after 4 month storage at 4 °C in phosphate-buffered saline (PBS), the Con A-bioanchored GBMP-2 still maintains the bioactivity to stimulate the differentiation of C2C12 cells. Furthermore, the ectopic ossification test proves the in vivo bioactivity of bioanchored GBMP-2. Overall, our results demonstrate that the tag-free and site (i.e., sugar chain)-specific protein immobilization strategy represents a simple and generic alternative, which is promising to apply for other glycoprotein immobilization and application. It should be noted that although the lectin we utilized can only bind to d-mannose/d-glucose, the diversity of the lectin family assures that a specific lectin could be offered for other sugar types, thus expanding the applicable scope further.
Collapse
Affiliation(s)
| | | | - Zheng Zhang
- Department of Chemistry and Chemical Biology and New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | | | | | | | | | | | - Joachim Kohn
- Department of Chemistry and Chemical Biology and New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | | |
Collapse
|
19
|
Yuan WM, Zhang R, Zhang Q, Ma FL, Wang C, Wang YZ, Zeng Y, Zheng LS. The generation and biological activity of a long-lasting recombinant human interferon-λ1. Protein Eng Des Sel 2019; 31:355-360. [PMID: 30496575 DOI: 10.1093/protein/gzy029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/15/2018] [Indexed: 11/15/2022] Open
Abstract
The previously generated recombinant human (rh) interferon (IFN)-λ1 protein has a short half-life, and this feature makes it challenging to conduct studies on potential clinical applications for rhIFN-λ1. In an attempt to overcome this difficulty, we constructed a 'long-life' version of rhIFN-λ1. This modified rhIFN-λ1, named rhIFN-λ1-CTPON, has a human chorionic gonadotropin β subunit carboxyl-terminal peptide (CTP) and an N-glycosylation sequence linked to its C-terminus. We confirmed the sequence of rhIFN-λ1-CTPON by mass spectrometry and then measured its biological activities. The results show that rhIFN-λ1-CTPON had antiviral activity and anti-proliferation activity in vitro that were similar to those of rhIFN-λ1 and that it similarly promoted natural killer cell cytotoxicity. Notably, the in vivo half-life of rhIFN-λ1-CTPON was determined to be 3-fold higher than that of rhIFN-λ1. We also assessed the anti-hepatitis B virus activity of rhIFN-λ1-CTPON; it was able to inhibit the production of the antigens HBs-Ag and HBe-Ag and induce antiviral gene expression. In conclusion, rhIFN-λ1-CTPON has a longer half-life than rhIFN-λ1 and has similar biological activities, so rhIFN-λ1-CTPON is an appropriate substitute for rhIFN-λ1 in the further study of potential clinical applications for rhIFN- λ1.
Collapse
Affiliation(s)
- Wu-Mei Yuan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, Xinjiang, China.,Key Laboratory for Medical Virology, National Health Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Rui Zhang
- Medical Teaching Experiment Center, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Qian Zhang
- Key Laboratory for Medical Virology, National Health Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Fen-Lian Ma
- Key Laboratory for Medical Virology, National Health Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Chao Wang
- Key Laboratory for Medical Virology, National Health Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Ying-Zi Wang
- Medical Teaching Experiment Center, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yan Zeng
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Li-Shu Zheng
- Key Laboratory for Medical Virology, National Health Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| |
Collapse
|
20
|
Burow S, Fontaine R, von Krogh K, Mayer I, Nourizadeh-Lillabadi R, Hollander-Cohen L, Cohen Y, Shpilman M, Levavi-Sivan B, Weltzien FA. Medaka follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh): Developmental profiles of pituitary protein and gene expression levels. Gen Comp Endocrinol 2019; 272:93-108. [PMID: 30576646 DOI: 10.1016/j.ygcen.2018.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/30/2018] [Accepted: 12/16/2018] [Indexed: 02/06/2023]
Abstract
The two gonadotropins follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are of particular importance within the hypothalamic-pituitary-gonadal (HPG) axis of vertebrates. In the current study, we demonstrate the production and validation of Japanese medaka (Oryzias latipes) recombinant (md) gonadotropins Fshβ (mdFshβ), Lhβ (mdLhβ), Fshβα (mdFshβα), and Lhβα (mdLhβα) by Pichia pastoris, the generation of specific rabbit antibodies against their respective β subunits, and their use within the development and validation of competitive enzyme-linked immunosorbent assays (ELISAs) for quantification of medaka Fsh and Lh. mdFsh and mdLh were produced as single-chain polypeptides by linking the α subunit with mdFshβ or mdLhβ mature protein coding sequences to produce a "tethered" polypeptide with the β-chain at the N-terminal and the α-chain at the C-terminal. The specificity of the antibodies raised against mdFshβ and mdLhβ was determined by immunofluorescence (IF) for Fshβ and Lhβ on medaka pituitary tissue, while comparison with fluorescence in situ hybridization (FISH) for fshb and lhb mRNA was used for validation. Competitive ELISAs were developed using antibodies against mdFshβ or mdLhβ, and the tethered proteins mdFshβα or mdLhβα for standard curves. The standard curve for the Fsh ELISA ranged from 97.6 pg/ml to 50 ng/ml, and for the Lh ELISA from 12.21 pg/ml to 6.25 ng/ml. The sensitivity of the assays for Fsh and Lh was 44.7 and 70.8 pg/ml, respectively. A profile of pituitary protein levels of medaka Fsh and Lh comparing juveniles with adults showed significant increase of protein amount from juvenile group (body length from 12 mm to 16.5 mm) to adult group (body length from 21 mm to 26.5 mm) for both hormones in male medaka. Comparing these data to a developmental profile of pituitary mRNA expression of medaka fshb and lhb, the mRNA expression of lhb also increased during male maturation and a linear regression analysis revealed a significant increase of lhb expression with increased body length that proposes a linear model. However, fshb mRNA expression did not change significantly during male development and therefore was not correlated with body length. In summary, we have developed and validated homologous ELISA assays for medaka Fsh and Lh based on proteins produced in P. pastoris, assays that will be used to study the functions and regulations of Fsh and Lh in more detail.
Collapse
Affiliation(s)
- Susann Burow
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Kristine von Krogh
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Ian Mayer
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Lian Hollander-Cohen
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Yaron Cohen
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Michal Shpilman
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
21
|
Anderson RC, Newton CL, Anderson RA, Millar RP. Gonadotropins and Their Analogs: Current and Potential Clinical Applications. Endocr Rev 2018; 39:911-937. [PMID: 29982442 DOI: 10.1210/er.2018-00052] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Abstract
The gonadotropin receptors LH receptor and FSH receptor play a central role in governing reproductive competency/fertility. Gonadotropin hormone analogs have been used clinically for decades in assisted reproductive therapies and in the treatment of various infertility disorders. Though these treatments are effective, the clinical protocols demand multiple injections, and the hormone preparations can lack uniformity and stability. The past two decades have seen a drive to develop chimeric and modified peptide analogs with more desirable pharmacokinetic profiles, with some displaying clinical efficacy, such as corifollitropin alfa, which is now in clinical use. More recently, low-molecular-weight, orally active molecules with activity at gonadotropin receptors have been developed. Some have excellent characteristics in animals and in human studies but have not reached the market-largely as a result of acquisitions by large pharma. Nonetheless, such molecules have the potential to mitigate risks currently associated with gonadotropin-based fertility treatments, such as ovarian hyperstimulation syndrome and the demands of injection-based therapies. There is also scope for novel use beyond the current remit of gonadotropin analogs in fertility treatments, including application as novel contraceptives; in the treatment of polycystic ovary syndrome; in the restoration of function to inactivating mutations of gonadotropin receptors; in the treatment of ovarian and prostate cancers; and in the prevention of bone loss and weight gain in postmenopausal women. Here we review the properties and clinical application of current gonadotropin preparations and their analogs, as well as the development of novel orally active, small-molecule nonpeptide analogs.
Collapse
Affiliation(s)
- Ross C Anderson
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa.,Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Claire L Newton
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa.,Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P Millar
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa.,Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
22
|
Emerging roles of proteoglycans in cardiac remodeling. Int J Cardiol 2018; 278:192-198. [PMID: 30528626 DOI: 10.1016/j.ijcard.2018.11.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
Abstract
Cardiac remodeling is the response of the heart to a range of pathological stimuli. Cardiac remodeling is initially adaptive; however, if sustained, it ultimately causes adverse clinical outcomes. Cardiomyocyte loss or hypertrophy, inflammation and fibrosis are hallmarks of cardiac remodeling. Proteoglycans, which are composed of glycosaminoglycans and a core protein, are a non-structural component of the extracellular matrix. The lack of proteoglycans results in cardiovascular defects during development. Moreover, emerging evidence has indicated that proteoglycans act as significant modifiers in ischemia and pressure overload-related cardiac remodeling. Proteoglycans may also provide novel therapeutic strategies for further improvement in the prognosis of cardiovascular diseases.
Collapse
|
23
|
Dubeykovskaya ZA, Duddempudi PK, Deng H, Valenti G, Cuti KL, Nagar K, Tailor Y, Guha C, Kitajewski J, Wang TC. Therapeutic potential of adenovirus-mediated TFF2-CTP-Flag peptide for treatment of colorectal cancer. Cancer Gene Ther 2018; 26:48-57. [PMID: 30042499 PMCID: PMC6760534 DOI: 10.1038/s41417-018-0036-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023]
Abstract
TFF2 is a small, secreted protein with anti-inflammatory properties. We previously have shown that TFF2 gene delivery via adenovirus (Ad-Tff2) suppresses colon tumor growth in colitis associated cancer. Therefore, systemic administration of TFF2 peptide could potentially provide a similar benefit. Because TFF2 shows a poor pharmacokinetic, we sought to modify the TFF2 peptide in a manner that would lower its clearance rate but retain bioactivity. Given the absence of a sequence-based prediction of TFF2 functionality, we chose to genetically fuse the C-terminus of TFF2 with the carboxyl-terminal peptide of human chorionic gonadotropin β subunit, and inserted into adenoviral vector that expresses Flag. The resulting Ad-Tff2-CTP-Flag construct translates into a TFF2 fused with two CTP and three Flag motifs. Administered Ad-Tff2-CTP-Flag decreased tumorigenesis and suppressed the expansion of myeloid cells in vivo. The fusion peptide TFF2-CTP-Flag delivered by adenovirus Ad-Tff2-CTP-Flag as well purified recombinant fusion TFF2-CTP-Flag was retained in the blood longer compared with wild-type TFF2 delivered by Ad-Tff2 or recombinant TFF2. Consistently, purified recombinant fusion TFF2-CTP-Flag suppressed expansion of myeloid cells by down-regulating cyclin D1 mRNA in vitro. Here, we demonstrate for the very first time the retained bioactivity and possible pharmacokinetic advantages of TFF2 with a modified C-terminus.
Collapse
Affiliation(s)
- Zinaida A Dubeykovskaya
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Phaneendra Kumar Duddempudi
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461-1602, USA
| | - Huan Deng
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Giovanni Valenti
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Krystle L Cuti
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Karan Nagar
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Yagnesh Tailor
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| | - Jan Kitajewski
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 835S. Wolcott Ave. E-202, Chicago, IL, 60612, USA
| | - Timothy C Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
24
|
Riccetti L, Klett D, Ayoub MA, Boulo T, Pignatti E, Tagliavini S, Varani M, Trenti T, Nicoli A, Capodanno F, La Sala GB, Reiter E, Simoni M, Casarini L. Heterogeneous hCG and hMG commercial preparations result in different intracellular signalling but induce a similar long-term progesterone response in vitro. Mol Hum Reprod 2018; 23:685-697. [PMID: 29044421 DOI: 10.1093/molehr/gax047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/12/2017] [Indexed: 12/24/2022] Open
Abstract
STUDY QUESTION Are four urinary hCG/menotropin (hMG) and one recombinant preparation characterized by different molecular features and do they mediate specific intracellular signaling and steroidogenesis? SUMMARY ANSWER hCG and hMG preparations have heterogeneous compositions and mediate preparation-specific cell signaling and early steroidogenesis, although similar progesterone plateau levels are achieved in 24 h-treated human primary granulosa cells in vitro. WHAT IS KNOWN ALREADY hCG is the pregnancy hormone marketed as a drug for ARTs to induce final oocyte maturation and ovulation, and to support FSH action. Several hCG formulations are commercially available, differing in source, purification methods and biochemical composition. STUDY DESIGN, SIZE, DURATION Commercial hCG preparations for ART or research purposes were compared in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS The different preparations were quantified by immunoassay with calibration against the hCG standard (Fifth IS; NIBSC 07/364). Immunoreactivity patterns, isoelectric points and oligosaccharide contents of hCGs were evaluated using reducing and non-reducing Western blotting, capillary isoelectric-focusing immunoassay and lectin-ELISA, respectively. Functional studies were performed in order to evaluate intracellular and total cAMP, progesterone production and β-arrestin 2 recruitment by ELISA and BRET, in both human primary granulosa lutein cells (hGLC) and luteinizing hormone (LH)/hCG receptor (LHCGR)-transfected HEK293 cells, stimulated by increasing hormone concentrations. Statistical analysis was performed using two-way ANOVA and Bonferroni post-test or Mann-Whitney's U-test as appropriate. MAIN RESULTS AND THE ROLE OF CHANCE Heterogeneous profiles were found among preparations, revealing specific molecular weight patterns (20-75 KDa range), isoelectric points (4.0-9.0 pI range) and lectin binding (P < 0.05; n = 7-10). These drug-specific compositions were linked to different potencies on cAMP production (EC50 1.0-400.0 ng/ml range) and β-arrestin 2 recruitment (EC50 0.03-2.0 μg/ml) in hGLC and transfected HEK293 cells (P < 0.05; n = 3-5). In hGLC, these differences were reflected by preparation-specific 8-h progesterone production although similar plateau levels of progesterone were acheived by 24-h treatment (P ≥ 0.05; n = 3). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The biological activity of commercial hCG/hMG preparations is provided in International Units (IU) by in-vivo bioassay and calibration against an International Standard, although it is an unsuitable unit of measure for in-vitro studies. The re-calibration against recombinant hCG,quantified in grams, is based on the assumption that all of the isoforms and glycosylation variants have similar immunoreactivity. WIDER IMPLICATIONS OF THE FINDINGS hCG/hMG preparation-specific cell responses in vitro may be proposed to ART patients affected by peculiar ovarian response, such as that caused by polycystic ovary syndrome. Otherwise, all the preparations available for ART may provide a similar clinical outcome in healthy women. STUDY FUNDING AND COMPETING INTEREST(S) This study was supported by a grant of the Italian Ministry of Education, University and Research (PRIN 2015XCR88M). The authors have no conflict of interest.
Collapse
Affiliation(s)
- Laura Riccetti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy
| | - Danièle Klett
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Mohammed Akli Ayoub
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
- LE STUDIUM® Loire Valley Institute for Advanced Studies, F-45000 Orléans, France
- Biology Department, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Thomas Boulo
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Elisa Pignatti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL, NOCSAE, Via P. Giardini 1355, 41126 Modena, Italy
| | - Manuela Varani
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL, NOCSAE, Via P. Giardini 1355, 41126 Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL, NOCSAE, Via P. Giardini 1355, 41126 Modena, Italy
| | - Alessia Nicoli
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, via Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Francesco Capodanno
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, via Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Giovanni Battista La Sala
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, via Risorgimento 80, 42123 Reggio Emilia, Italy
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via del Pozzo 71, 41124 Modena, Italy
| | - Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy
- Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda Ospedaliero-Universitaria di Modena, NOCSAE, Via P. Giardini 1355, 41126 Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy
| |
Collapse
|
25
|
Gilbert SB, Roof AK, Rajendra Kumar T. Mouse models for the analysis of gonadotropin secretion and action. Best Pract Res Clin Endocrinol Metab 2018; 32:219-239. [PMID: 29779578 PMCID: PMC5973545 DOI: 10.1016/j.beem.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gonadotropins are pituitary gonadotrope-derived glycoprotein hormones. They act by binding to G-protein coupled receptors on gonads. Gonadotropins play critical roles in reproduction by regulating both gametogenesis and steroidogenesis. Although biochemical and physiological studies provided a wealth of knowledge, gene manipulation techniques using novel mouse models gave new insights into gonadotropin synthesis, secretion and action. Both gain of function and loss of function mouse models for understanding gonadotropin action in a whole animal context have already been generated. Moreover, recent studies on gonadotropin actions in non-gonadal tissues challenged the central dogma of classical gonadotropin actions in gonads and revealed new signaling pathways in these non-gonadal tissues. In this Chapter, we have discussed our current understanding of gonadotropin synthesis, secretion and action using a variety of genetically engineered mouse models.
Collapse
Affiliation(s)
- Sara Babcock Gilbert
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Allyson K Roof
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - T Rajendra Kumar
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
26
|
Coss D. Regulation of reproduction via tight control of gonadotropin hormone levels. Mol Cell Endocrinol 2018; 463:116-130. [PMID: 28342855 PMCID: PMC6457911 DOI: 10.1016/j.mce.2017.03.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/04/2023]
Abstract
Mammalian reproduction is controlled by the hypothalamic-pituitary-gonadal axis. GnRH from the hypothalamus regulates synthesis and secretion of gonadotropins, LH and FSH, which then control steroidogenesis and gametogenesis. In females, serum LH and FSH levels exhibit rhythmic changes throughout the menstrual or estrous cycle that are correlated with pulse frequency of GnRH. Lack of gonadotropins leads to infertility or amenorrhea. Dysfunctions in the tightly controlled ratio due to levels slightly outside the normal range occur in a larger number of women and are correlated with polycystic ovaries and premature ovarian failure. Since the etiology of these disorders is largely unknown, studies in cell and mouse models may provide novel candidates for investigations in human population. Hence, understanding the mechanisms whereby GnRH regulates gonadotropin hormone levels will provide insight into the physiology and pathophysiology of the reproductive system. This review discusses recent advances in our understanding of GnRH regulation of gonadotropin synthesis.
Collapse
Affiliation(s)
- Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, United States.
| |
Collapse
|
27
|
Nikbin S, Panandam JM, Yaakub H, Murugaiyah M. Association of novel SNPs in gonadotropin genes with sperm quality traits of Boer goats and Boer crosses. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2017.1336441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Saeid Nikbin
- Department of Animal Science, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Jothi Malar Panandam
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Halimatun Yaakub
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | | |
Collapse
|
28
|
García M, González de Buitrago J, Jiménez-Rosés M, Pardo L, Hinkle PM, Moreno JC. Central Hypothyroidism Due to a TRHR Mutation Causing Impaired Ligand Affinity and Transactivation of Gq. J Clin Endocrinol Metab 2017; 102:2433-2442. [PMID: 28419241 PMCID: PMC5505191 DOI: 10.1210/jc.2016-3977] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/12/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Central congenital hypothyroidism (CCH) is an underdiagnosed disorder characterized by deficient production and bioactivity of thyroid-stimulating hormone (TSH) leading to low thyroid hormone synthesis. Thyrotropin-releasing hormone (TRH) receptor (TRHR) defects are rare recessive disorders usually associated with incidentally identified CCH and short stature in childhood. OBJECTIVES Clinical and genetic characterization of a consanguineous family of Roma origin with central hypothyroidism and identification of underlying molecular mechanisms. DESIGN All family members were phenotyped with thyroid hormone profiles, pituitary magnetic resonance imaging, TRH tests, and dynamic tests for other pituitary hormones. Candidate TRH, TRHR, TSHB, and IGSF1 genes were screened for mutations. A mutant TRHR was characterized in vitro and by molecular modeling. RESULTS A homozygous missense mutation in TRHR (c.392T > C; p.I131T) was identified in an 8-year-old boy with moderate hypothyroidism (TSH: 2.61 mIU/L, Normal: 0.27 to 4.2; free thyroxine: 9.52 pmol/L, Normal: 10.9 to 25.7) who was overweight (body mass index: 20.4 kg/m2, p91) but had normal stature (122 cm; -0.58 standard deviation). His mother, two brothers, and grandmother were heterozygous for the mutation with isolated hyperthyrotropinemia (TSH: 4.3 to 8 mIU/L). The I131T mutation, in TRHR intracellular loop 2, decreases TRH affinity and increases the half-maximal effective concentration for signaling. Modeling of TRHR-Gq complexes predicts that the mutation disrupts the interaction between receptor and a hydrophobic pocket formed by Gq. CONCLUSIONS A unique missense TRHR defect identified in a consanguineous family is associated with central hypothyroidism in homozygotes and hyperthyrotropinemia in heterozygotes, suggesting compensatory elevation of TSH with reduced biopotency. The I131T mutation decreases TRH binding and TRHR-Gq coupling and signaling.
Collapse
Affiliation(s)
- Marta García
- Thyroid Molecular Laboratory, Institute for Medical and Molecular Genetics, La Paz University Hospital, Autonomous University of Madrid, 28046 Madrid, Spain
| | | | - Mireia Jiménez-Rosés
- Computational Medicine Laboratory, Biostatistics Unit, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Leonardo Pardo
- Computational Medicine Laboratory, Biostatistics Unit, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Patricia M. Hinkle
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642
| | - José C. Moreno
- Thyroid Molecular Laboratory, Institute for Medical and Molecular Genetics, La Paz University Hospital, Autonomous University of Madrid, 28046 Madrid, Spain
| |
Collapse
|
29
|
The syndrome of central hypothyroidism and macroorchidism: IGSF1 controls TRHR and FSHB expression by differential modulation of pituitary TGFβ and Activin pathways. Sci Rep 2017; 7:42937. [PMID: 28262687 PMCID: PMC5338029 DOI: 10.1038/srep42937] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
IGSF1 (Immunoglobulin Superfamily 1) gene defects cause central hypothyroidism and macroorchidism. However, the pathogenic mechanisms of the disease remain unclear. Based on a patient with a full deletion of IGSF1 clinically followed from neonate to adulthood, we investigated a common pituitary origin for hypothyroidism and macroorchidism, and the role of IGSF1 as regulator of pituitary hormone secretion. The patient showed congenital central hypothyroidism with reduced TSH biopotency, over-secretion of FSH at neonatal minipuberty and macroorchidism from 3 years of age. His markedly elevated inhibin B was unable to inhibit FSH secretion, indicating a status of pituitary inhibin B resistance. We show here that IGSF1 is expressed both in thyrotropes and gonadotropes of the pituitary and in Leydig and germ cells in the testes, but at very low levels in Sertoli cells. Furthermore, IGSF1 stimulates transcription of the thyrotropin-releasing hormone receptor (TRHR) by negative modulation of the TGFβ1-Smad signaling pathway, and enhances the synthesis and biopotency of TSH, the hormone secreted by thyrotropes. By contrast, IGSF1 strongly down-regulates the activin-Smad pathway, leading to reduced expression of FSHB, the hormone secreted by gonadotropes. In conclusion, two relevant molecular mechanisms linked to central hypothyroidism and macroorchidism in IGSF1 deficiency are identified, revealing IGSF1 as an important regulator of TGFβ/Activin pathways in the pituitary.
Collapse
|
30
|
Núñez Miguel R, Sanders J, Furmaniak J, Rees Smith B. Glycosylation pattern analysis of glycoprotein hormones and their receptors. J Mol Endocrinol 2017; 58:25-41. [PMID: 27875255 DOI: 10.1530/jme-16-0169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/13/2016] [Indexed: 11/08/2022]
Abstract
We have studied glycosylation patterns in glycoprotein hormones (GPHs) and glycoprotein hormone receptor (GPHR) extracellular domains (ECD) from different species to identify areas not glycosylated that could be involved in intermolecular or intramolecular interactions. Comparative models of the structure of the TSHR ECD in complex with TSH and in complex with TSHR autoantibodies (M22, stimulating and K1-70, blocking) were obtained based on the crystal structures of the FSH-FSHR ECD, M22-TSHR leucine-rich repeat domain (LRD) and K1-70-TSHR LRD complexes. The glycosylation sites of the GPHRs and GPHs from all species studied were mapped on the model of the human TSH TSHR ECD complex. The areas on the surfaces of GPHs that are known to interact with their receptors are not glycosylated and two areas free from glycosylation, not involved in currently known interactions, have been identified. The concave faces of GPHRs leucine-rich repeats 3-7 are free from glycosylation, consistent with known interactions with the hormones. In addition, four other non-glycosylated areas have been identified, two located on the receptors' convex surfaces, one in the long loop of the hinge regions and one at the C-terminus of the extracellular domains. Experimental evidence suggests that the non-glycosylated areas identified on the hormones and receptors are likely to be involved in forming intramolecular or intermolecular interactions.
Collapse
|
31
|
Wang MM, Laborda P, Conway LP, Duan XC, Huang K, Liu L, Voglmeir J. An integrated 3D-printed platform for the automated isolation of N-glycans. Carbohydr Res 2016; 433:14-7. [DOI: 10.1016/j.carres.2016.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/13/2022]
|
32
|
Mouse Models for the Study of Synthesis, Secretion, and Action of Pituitary Gonadotropins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:49-84. [PMID: 27697204 DOI: 10.1016/bs.pmbts.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gonadotropins play fundamental roles in reproduction. More than 30years ago, Cga transgenic mice were generated, and more than 20years ago, the phenotypes of Cga null mice were reported. Since then, numerous mouse strains have been generated and characterized to address several questions in reproductive biology involving gonadotropin synthesis, secretion, and action. More recently, extragonadal expression, and in some cases, functions of gonadotropins in nongonadal tissues have been identified. Several genomic and proteomic approaches including novel mouse genome editing tools are available now. It is anticipated that these and other emerging technologies will be useful to build an integrated network of gonadotropin signaling pathways in various tissues. Undoubtedly, research on gonadotropins will continue to provide new knowledge and allow us transcend from benchside to the bedside.
Collapse
|
33
|
Yom-Din S, Hollander-Cohen L, Aizen J, Boehm B, Shpilman M, Golan M, Hurvitz A, Degani G, Levavi-Sivan B. Gonadotropins in the Russian Sturgeon: Their Role in Steroid Secretion and the Effect of Hormonal Treatment on Their Secretion. PLoS One 2016; 11:e0162344. [PMID: 27622546 PMCID: PMC5021361 DOI: 10.1371/journal.pone.0162344] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022] Open
Abstract
In the reproduction process of male and female fish, pituitary derived gonadotropins (GTHs) play a key role. To be able to specifically investigate certain functions of Luteinizing (LH) and Follicle stimulating hormone (FSH) in Russian sturgeon (Acipenser gueldenstaedtii; st), we produced recombinant variants of the hormones using the yeast Pichia pastoris as a protein production system. We accomplished to create in vitro biologically active heterodimeric glycoproteins consisting of two associated α- and β-subunits in sufficient quantities. Three dimensional modelling of both GTHs was conducted in order to study the differences between the two GTHs. Antibodies were produced against the unique β-subunit of each of the GTHs, in order to be used for immunohistochemical analysis and to develop an ELISA for blood and pituitary hormone quantification. This detection technique revealed the specific localization of the LH and FSH cells in the sturgeon pituitary and pointed out that both cell types are present in substantially higher numbers in mature males and females, compared to immature fish. With the newly attained option to prevent cross-contamination when investigating on the effects of GTH administration, we compared the steroidogeneic response (estradiol and 11-Keto testosterone (11-KT) in female and males, respectively) of recombinant stLH, stFSH, and carp pituitary extract in male and female sturgeon gonads at different developmental stages. Finally, we injected commercially available gonadotropin releasing hormones analog (GnRH) to mature females, and found a moderate effect on the development of ovarian follicles. Application of only testosterone (T) resulted in a significant increase in circulating levels of 11-KT whereas the combination of GnRH + T did not affect steroid levels at all. The response pattern for estradiol demonstrated a similar situation. FSH levels showed significant increases when GnRH + T was administered, while no changes were present in LH levels.
Collapse
Affiliation(s)
- Svetlana Yom-Din
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Lian Hollander-Cohen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Joseph Aizen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Benjamin Boehm
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Michal Shpilman
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Matan Golan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Avshalom Hurvitz
- MIGAL Galilee Technology Center, PO Box 831, Kiryat Shmona, 10200, Israel
| | - Gad Degani
- MIGAL Galilee Technology Center, PO Box 831, Kiryat Shmona, 10200, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- * E-mail:
| |
Collapse
|
34
|
Gergics P, Christian HC, Choo MS, Ajmal A, Camper SA. Gene Expression in Mouse Thyrotrope Adenoma: Transcription Elongation Factor Stimulates Proliferation. Endocrinology 2016; 157:3631-46. [PMID: 27580811 PMCID: PMC5007889 DOI: 10.1210/en.2016-1183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyrotrope hyperplasia and hypertrophy are common responses to primary hypothyroidism. To understand the genetic regulation of these processes, we studied gene expression changes in the pituitaries of Cga(-/-) mice, which are deficient in the common α-subunit of TSH, LH, and FSH. These mice have thyrotrope hypertrophy and hyperplasia and develop thyrotrope adenoma. We report that cell proliferation is increased, but the expression of most stem cell markers is unchanged. The α-subunit is required for secretion of the glycoprotein hormone β-subunits, and mutants exhibit elevated expression of many genes involved in the unfolded protein response, consistent with dilation and stress of the endoplasmic reticulum. Mutants have elevated expression of transcription factors that are important in thyrotrope function, such as Gata2 and Islet 1, and those that stimulate proliferation, including Nupr1, E2f1, and Etv5. We characterized the expression and function of a novel, overexpressed gene, transcription elongation factor A (SII)-like 5 (Tceal5). Stable expression of Tceal5 in a pituitary progenitor cell line is sufficient to increase cell proliferation. Thus, Tceal5 may act as a proto-oncogene. This study provides a rich resource for comparing pituitary transcriptomes and an analysis of gene expression networks.
Collapse
Affiliation(s)
- Peter Gergics
- Department of Human Genetics (P.G., M.S.C., S.A.C.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology, Anatomy and Genetics (H.C.C.), University of Oxford, Oxford OX3 0RZ, United Kingdom; and Department of Internal Medicine, Metabolism, Endocrinology and Diabetes (A.A.), University of Michigan, Ann Arbor, Michigan 48105
| | - Helen C Christian
- Department of Human Genetics (P.G., M.S.C., S.A.C.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology, Anatomy and Genetics (H.C.C.), University of Oxford, Oxford OX3 0RZ, United Kingdom; and Department of Internal Medicine, Metabolism, Endocrinology and Diabetes (A.A.), University of Michigan, Ann Arbor, Michigan 48105
| | - Monica S Choo
- Department of Human Genetics (P.G., M.S.C., S.A.C.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology, Anatomy and Genetics (H.C.C.), University of Oxford, Oxford OX3 0RZ, United Kingdom; and Department of Internal Medicine, Metabolism, Endocrinology and Diabetes (A.A.), University of Michigan, Ann Arbor, Michigan 48105
| | - Adnan Ajmal
- Department of Human Genetics (P.G., M.S.C., S.A.C.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology, Anatomy and Genetics (H.C.C.), University of Oxford, Oxford OX3 0RZ, United Kingdom; and Department of Internal Medicine, Metabolism, Endocrinology and Diabetes (A.A.), University of Michigan, Ann Arbor, Michigan 48105
| | - Sally A Camper
- Department of Human Genetics (P.G., M.S.C., S.A.C.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology, Anatomy and Genetics (H.C.C.), University of Oxford, Oxford OX3 0RZ, United Kingdom; and Department of Internal Medicine, Metabolism, Endocrinology and Diabetes (A.A.), University of Michigan, Ann Arbor, Michigan 48105
| |
Collapse
|
35
|
Kleinau G, Kalveram L, Köhrle J, Szkudlinski M, Schomburg L, Biebermann H, Grüters-Kieslich A. Minireview: Insights Into the Structural and Molecular Consequences of the TSH-β Mutation C105Vfs114X. Mol Endocrinol 2016; 30:954-64. [PMID: 27387040 DOI: 10.1210/me.2016-1065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Naturally occurring thyrotropin (TSH) mutations are rare, which is also the case for the homologous heterodimeric glycoprotein hormones (GPHs) follitropin (FSH), lutropin (LH), and choriogonadotropin (CG). Patients with TSH-inactivating mutations present with central congenital hypothyroidism. Here, we summarize insights into the most frequent loss-of-function β-subunit of TSH mutation C105Vfs114X, which is associated with isolated TSH deficiency. This review will address the following question. What is currently known on the molecular background of this TSH variant on a protein level? It has not yet been clarified how C105Vfs114X causes early symptoms in affected patients, which are comparably severe to those observed in newborns lacking any functional thyroid tissue (athyreosis). To better understand the mechanisms of this mutant, we have summarized published reports and complemented this information with a structural perspective on GPHs. By including the ancestral TSH receptor agonist thyrostimulin and pathogenic mutations reported for FSH, LH, and choriogonadotropin in the analysis, insightful structure function and evolutionary restrictions become apparent. However, comparisons of immunogenicity and bioactivity of different GPH variants is hindered by a lack of consensus for functional analysis and the diversity of used GPH assays. Accordingly, relevant gaps of knowledge concerning details of GPH mutation-related effects are identified and highlighted in this review. These issues are of general importance as several previous and recent studies point towards the high impact of GPH variants in differential signaling regulation at GPH receptors (GPHRs), both endogenously and under diseased conditions. Further improvement in this area is of decisive importance for the development of novel targeted therapies.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Laura Kalveram
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Josef Köhrle
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Mariusz Szkudlinski
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Lutz Schomburg
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| | - Annette Grüters-Kieslich
- Institute of Experimental Pediatric Endocrinology (G.K., L.K., H.B.), Charité-Universitätsmedizin, Berlin, 13353 Germany; Institute of Experimental Endocrinology (J.K., L.S.), Charité-Universitätsmedizin Berlin, 13353 Germany; Trophogen, Inc (M.S.), Rockville, Maryland 20850; and Department of Pediatric Endocrinology and Diabetes (A.G.-K.), Charité-Universitätsmedizin, Berlin, 13353 Germany
| |
Collapse
|
36
|
Casarini L, Riccetti L, De Pascali F, Nicoli A, Tagliavini S, Trenti T, La Sala GB, Simoni M. Follicle-stimulating hormone potentiates the steroidogenic activity of chorionic gonadotropin and the anti-apoptotic activity of luteinizing hormone in human granulosa-lutein cells in vitro. Mol Cell Endocrinol 2016; 422:103-114. [PMID: 26690776 DOI: 10.1016/j.mce.2015.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 01/15/2023]
Abstract
Luteinizing hormone (LH) and choriogonadotropin (hCG) are glycoprotein hormones regulating ovarian function and pregnancy, respectively. Since these molecules act on the same receptor (LHCGR), they were traditionally assumed as equivalent in assisted reproduction techniques (ART), although differences between LH and hCG were demonstrated at molecular and physiological level. In this study, we demonstrated for the first time that co-treatment with a follicle-stimulating hormone (FSH) dose in the ART therapeutic range potentiates different LH- and hCG-dependent responses in vitro, measured in terms of cAMP, phospho-CREB, -ERK1/2 and -AKT activation, gene expression, progesterone and estradiol production in human granulosa-lutein cells (hGLC). We show that in the presence of FSH, hCG biopotency is about 5-fold increased, in the presence of FSH, in terms of cAMP activation. Accordingly, CREB phosphorylation and steroid production is increased under hCG and FSH co-treatment. LH effects, evaluated as steroidogenic cAMP/PKA pathway activation, do not change in the presence of FSH, which, however, increases LH-dependent ERK1/2 and AKT, but not CREB phosphorylation, resulting in anti-apoptotic effects. The different modulatory activity of FSH on LH and hCG action in vitro corresponds to their different physiological functions, reflecting proliferative effects exerted by LH during the follicular phase and before trophoblast development, and the high steroidogenic potential of hCG requested to sustain pregnancy from the luteal phase onwards.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for the Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.
| | - Laura Riccetti
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco De Pascali
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Nicoli
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | | | | | - Giovanni Battista La Sala
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy; Dept. of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for the Genomic Research, University of Modena and Reggio Emilia, Modena, Italy; Dept. of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda USL, Modena, Italy
| |
Collapse
|
37
|
Plasma levels of follicle-stimulating and luteinizing hormones during the reproductive cycle of wild and cultured Senegalese sole ( Solea senegalensis ). Comp Biochem Physiol A Mol Integr Physiol 2016; 191:35-43. [DOI: 10.1016/j.cbpa.2015.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 11/18/2022]
|
38
|
Nyuji M, Kazeto Y, Izumida D, Tani K, Suzuki H, Hamada K, Mekuchi M, Gen K, Soyano K, Okuzawa K. Greater amberjack Fsh, Lh, and their receptors: Plasma and mRNA profiles during ovarian development. Gen Comp Endocrinol 2016; 225:224-234. [PMID: 26519759 DOI: 10.1016/j.ygcen.2015.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 12/23/2022]
Abstract
To understand the endocrine regulation of ovarian development in a multiple spawning fish, the relationship between gonadotropins (Gths; follicle-stimulating hormone [Fsh] and luteinizing hormone [Lh]) and their receptors (Gthrs; Fshr and Lhr) were investigated in greater amberjack (Seriola dumerili). cDNAs encoding the Gth subunits (Fshβ, Lhβ, and glycoprotein α [Gpα]) and Gthrs were cloned. The in vitro reporter gene assay using recombinant hormones revealed that greater amberjack Fshr and Lhr responded strongly to their own ligands. Competitive enzyme-linked immunosorbent assays (ELISAs) were developed for measuring greater amberjack Fsh and Lh. Anti-Fsh and anti-Lh antibodies were raised against recombinant chimeric single-chain Gths consisting of greater amberjack Fshβ (or Lhβ) with rabbit GPα. The validation study showed that the ELISAs were precise (intra- and inter-assay coefficient of variation, <10%) and sensitive (detection limit of 0.2ng/ml for Fsh and 0.8ng/ml for Lh) with low cross-reactivity. A good parallelism between the standard curve and serial dilutions of greater amberjack plasma and pituitary extract were obtained. In female greater amberjack, pituitary fshb, ovarian fshr, and plasma E2 gradually increased during ovarian development, and plasma Fsh significantly increased during the post-spawning period. This suggests that Fsh plays a role throughout ovarian development and during the post-spawning period. Pituitary lhb, ovarian lhr, and plasma Lh were high during the spawning period, suggesting that the synthesis and secretion of Lh, and Lhr expression are upregulated to induce final oocyte maturation and ovulation.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama 236-8648, Japan.
| | - Yukinori Kazeto
- National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki 519-0423, Japan
| | - Daisuke Izumida
- Institute for East China Sea Research, Nagasaki University, Nagasaki 851-2213, Japan
| | - Kosuke Tani
- Institute for East China Sea Research, Nagasaki University, Nagasaki 851-2213, Japan
| | - Hiroshi Suzuki
- National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki 519-0423, Japan
| | - Kazuhisa Hamada
- Komame Branch, Stock Enhancement Technology Development Center, National Research Institute of Aquaculture, Fisheries Research Agency, Otsuki 788-0315, Japan
| | - Miyuki Mekuchi
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama 236-8648, Japan
| | - Koichiro Gen
- Seikai National Fisheries Research Institute, Fisheries Research Agency, Nagasaki 851-2231, Japan
| | - Kiyoshi Soyano
- Institute for East China Sea Research, Nagasaki University, Nagasaki 851-2213, Japan
| | - Koichi Okuzawa
- National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki 519-0423, Japan
| |
Collapse
|
39
|
Chauvigné F, Verdura S, Mazón MJ, Boj M, Zanuy S, Gómez A, Cerdà J. Development of a flatfish-specific enzyme-linked immunosorbent assay for Fsh using a recombinant chimeric gonadotropin. Gen Comp Endocrinol 2015; 221:75-85. [PMID: 25449660 DOI: 10.1016/j.ygcen.2014.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 12/30/2022]
Abstract
In flatfishes with asynchronous and semicystic spermatogenesis, such as the Senegalese sole (Solea senegalensis), the specific roles of the pituitary gonadotropins during germ cell development, particularly of the follicle-stimulating hormone (Fsh), are still largely unknown in part due to the lack of homologous immunoassays for this hormone. In this study, an enzyme-linked immunosorbent assay (ELISA) for Senegalese sole Fsh was developed by generating a rabbit antiserum against a recombinant chimeric single-chain Fsh molecule (rFsh-C) produced by the yeast Pichia pastoris. The rFsh-C N- and C-termini were formed by the mature sole Fsh β subunit (Fshβ) and the chicken glycoprotein hormone common α subunit (CGA), respectively. Depletion of the antiserum to remove anti-CGA antibodies further enriched the sole Fshβ-specific antibodies, which were used to develop the ELISA using the rFsh-C for the standard curve. The sensitivity of the assay was 10 and 50 pg/ml for Fsh measurement in plasma and pituitary, respectively, and the cross-reactivity with a homologous recombinant single-chain luteinizing hormone was 1%. The standard curve for rFsh-C paralleled those of serially diluted plasma and pituitary extracts of other flatfishes, such as the Atlantic halibut, common sole and turbot. In Senegalese sole males, the highest plasma Fsh levels were found during early spermatogenesis but declined during enhanced spermiation, as found in teleosts with cystic spermatogenesis. In pubertal males, however, the circulating Fsh levels were as high as in adult spermiating fish, but interestingly the Fsh receptor in the developing testis containing only spermatogonia was expressed in Leydig cells but not in the primordial Sertoli cells. These results indicate that a recombinant chimeric Fsh can be used to generate specific antibodies against the Fshβ subunit and to develop a highly sensitive ELISA for Fsh measurements in diverse flatfishes.
Collapse
Affiliation(s)
- François Chauvigné
- IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain; Department of Biology, University of Bergen, Bergen High Technology Centre, N-5020 Bergen, Norway
| | - Sara Verdura
- IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | - María José Mazón
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal (IATS), CSIC, Ribera de Cabanes, 12595 Castellón, Spain
| | - Mónica Boj
- IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | - Silvia Zanuy
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal (IATS), CSIC, Ribera de Cabanes, 12595 Castellón, Spain
| | - Ana Gómez
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal (IATS), CSIC, Ribera de Cabanes, 12595 Castellón, Spain
| | - Joan Cerdà
- IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain.
| |
Collapse
|
40
|
Critical role of evolutionarily conserved glycosylation at Asn211 in the intracellular trafficking and activity of sialyltransferase ST3Gal-II. Biochem J 2015; 469:83-95. [DOI: 10.1042/bj20150072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/28/2015] [Indexed: 01/19/2023]
Abstract
ST3Gal-II is largely responsible for ganglioside terminal α2,3-sialylation in mammals. We demonstrated that ST3Gal-II mainly distributes in proximal Golgi compartments and that the inhibition of N-glycosylation and oligosaccharide trimming is critical for its enzymatic activity and intracellular distribution.
Collapse
|
41
|
Bults P, van de Merbel NC, Bischoff R. Quantification of biopharmaceuticals and biomarkers in complex biological matrices: a comparison of liquid chromatography coupled to tandem mass spectrometry and ligand binding assays. Expert Rev Proteomics 2015; 12:355-74. [DOI: 10.1586/14789450.2015.1050384] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Nataraja SG, Yu HN, Palmer SS. Discovery and Development of Small Molecule Allosteric Modulators of Glycoprotein Hormone Receptors. Front Endocrinol (Lausanne) 2015; 6:142. [PMID: 26441832 PMCID: PMC4568768 DOI: 10.3389/fendo.2015.00142] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/31/2015] [Indexed: 11/30/2022] Open
Abstract
Glycoprotein hormones, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and thyroid-stimulating hormone (TSH) are heterodimeric proteins with a common α-subunit and hormone-specific β-subunit. These hormones are dominant regulators of reproduction and metabolic processes. Receptors for the glycoprotein hormones belong to the family of G protein-coupled receptors. FSH receptor (FSHR) and LH receptor are primarily expressed in somatic cells in ovary and testis to promote egg and sperm production in women and men, respectively. TSH receptor is expressed in thyroid cells and regulates the secretion of T3 and T4. Glycoprotein hormones bind to the large extracellular domain of the receptor and cause a conformational change in the receptor that leads to activation of more than one intracellular signaling pathway. Several small molecules have been described to activate/inhibit glycoprotein hormone receptors through allosteric sites of the receptor. Small molecule allosteric modulators have the potential to be administered orally to patients, thus improving the convenience of treatment. It has been a challenge to develop a small molecule allosteric agonist for glycoprotein hormones that can mimic the agonistic effects of the large natural ligand to activate similar signaling pathways. However, in the past few years, there have been several promising reports describing distinct chemical series with improved potency in preclinical models. In parallel, proposal of new structural model for FSHR and in silico docking studies of small molecule ligands to glycoprotein hormone receptors provide a giant leap on the understanding of the mechanism of action of the natural ligands and new chemical entities on the receptors. This review will focus on the current status of small molecule allosteric modulators of glycoprotein hormone receptors, their effects on common signaling pathways in cells, their utility for clinical application as demonstrated in preclinical models, and use of these molecules as novel tools to dissect the molecular signaling pathways of these receptors.
Collapse
Affiliation(s)
- Selvaraj G. Nataraja
- TocopheRx Inc., Burlington, MA, USA
- *Correspondence: Selvaraj G. Nataraja, TocopheRx Inc., 15 New England Executive Park, Suite 1087, Burlington, MA 01803, USA,
| | - Henry N. Yu
- TocopheRx Inc., Burlington, MA, USA
- EMD Serono Research and Development Institute Inc., Billerica, MA, USA
| | | |
Collapse
|
43
|
Mellergaard M, Skovbakke SL, Schneider CL, Lauridsen F, Andresen L, Jensen H, Skov S. N-glycosylation of asparagine 8 regulates surface expression of major histocompatibility complex class I chain-related protein A (MICA) alleles dependent on threonine 24. J Biol Chem 2014; 289:20078-91. [PMID: 24872415 DOI: 10.1074/jbc.m114.573238] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
NKG2D is an activating receptor expressed on several types of human lymphocytes. NKG2D ligands can be induced upon cell stress and are frequently targeted post-translationally in infected or transformed cells to avoid immune recognition. Virus infection and inflammation alter protein N-glycosylation, and we have previously shown that changes in cellular N-glycosylation are involved in regulation of NKG2D ligand surface expression. The specific mode of regulation through N-glycosylation is, however, unknown. Here we investigated whether direct N-glycosylation of the NKG2D ligand MICA itself is critical for cell surface expression and sought to identify the essential residues. We found that a single N-glycosylation site (Asn(8)) was important for MICA018 surface expression. The frequently expressed MICA allele 008, with an altered transmembrane and intracellular domain, was not affected by mutation of this N-glycosylation site. Mutational analysis revealed that a single amino acid (Thr(24)) in the extracellular domain of MICA018 was essential for the N-glycosylation dependence, whereas the intracellular domain was not involved. The HHV7 immunoevasin, U21, was found to inhibit MICA018 surface expression by affecting N-glycosylation, and the retention was rescued by T24A substitution. Our study reveals N-glycosylation as an allele-specific regulatory mechanism important for regulation of surface expression of MICA018, and we pinpoint the residues essential for this N-glycosylation dependence. In addition, we show that this regulatory mechanism of MICA surface expression is likely targeted during different pathological conditions.
Collapse
Affiliation(s)
- Maiken Mellergaard
- From the Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark and
| | - Sarah Line Skovbakke
- From the Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark and
| | | | - Felicia Lauridsen
- From the Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark and
| | - Lars Andresen
- From the Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark and
| | - Helle Jensen
- From the Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark and
| | - Søren Skov
- From the Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark and
| |
Collapse
|
44
|
Estrada JM, Soldin D, Buckey TM, Burman KD, Soldin OP. Thyrotropin isoforms: implications for thyrotropin analysis and clinical practice. Thyroid 2014; 24:411-23. [PMID: 24073798 PMCID: PMC3949435 DOI: 10.1089/thy.2013.0119] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Serum thyrotropin (TSH) is considered the single most sensitive and specific measure of thyroid function in the general population owing to its negative logarithmic association with free triiodothyronine and free thyroxine concentrations. It is therefore often the test of choice for screening, diagnosis, and monitoring of primary hypothyroidism. Serum TSH concentrations can be analyzed quantitatively using third-generation immunoassays, whereas its bioactivity can be measured by TSH activity assays in cell culture. Theoretically, if serum TSH concentrations are directly related to TSH activity, the two tests should yield comparable results. However, on occasion, the results are discordant, with serum concentrations being higher than TSH biological activity. This review focuses on the dissociation between the clinical state and serum TSH concentrations and addresses clinically important aspects of TSH analysis.
Collapse
Affiliation(s)
- Joshua M. Estrada
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Danielle Soldin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Timothy M. Buckey
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Kenneth D. Burman
- Endocrine Section, Medstar Washington Hospital Center, Washington, District of Columbia
| | - Offie P. Soldin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
- Department of Medicine, Georgetown University Medical Center, Washington, District of Columbia
- Department of Obstetrics and Gynecology, Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
45
|
Li QK, Gabrielson E, Askin F, Chan DW, Zhang H. Glycoproteomics using fluid-based specimens in the discovery of lung cancer protein biomarkers: promise and challenge. Proteomics Clin Appl 2014; 7:55-69. [PMID: 23112109 DOI: 10.1002/prca.201200105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/29/2022]
Abstract
Lung cancer is the leading cancer in the United States and worldwide. In spite of the rapid progression in personalized treatments, the overall survival rate of lung cancer patients is still suboptimal. Over the past decade, tremendous efforts have been focused on the discovery of protein biomarkers to facilitate the early detection and monitoring of lung cancer progression during treatment. In addition to tumor tissues and cancer cell lines, a variety of biological material has been studied. Particularly in recent years, studies using fluid-based specimen or so-called "fluid-biopsy" specimens have progressed rapidly. Fluid specimens are relatively easier to collect than tumor tissue, and they can be repeatedly sampled during the disease progression. Glycoproteins are the major content of fluid specimens and have long been recognized to play fundamental roles in many physiological and pathological processes. In this review, we focus the discussion on recent advances of glycoproteomics, particularly in the identification of potential glyco protein biomarkers using fluid-based specimens in lung cancer. The purpose of this review is to summarize current strategies, achievements, and perspectives in the field. This insight will highlight the discovery of tumor-associated glycoprotein biomarkers in lung cancer and their potential clinical applications.
Collapse
Affiliation(s)
- Qing Kay Li
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
46
|
Jiang X, Dias JA, He X. Structural biology of glycoprotein hormones and their receptors: insights to signaling. Mol Cell Endocrinol 2014; 382:424-451. [PMID: 24001578 DOI: 10.1016/j.mce.2013.08.021] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/20/2013] [Accepted: 08/24/2013] [Indexed: 01/18/2023]
Abstract
This article reviews the progress made in the field of glycoprotein hormones (GPH) and their receptors (GPHR) by several groups of structural biologists including ourselves aiming to gain insight into GPH signaling mechanisms. The GPH family consists of four members, with follicle-stimulating hormone (FSH) being the prototypic member. GPH members belong to the cystine-knot growth factor superfamily, and their receptors (GPHR), possessing unusually large N-terminal ectodomains, belong to the G-protein coupled receptor Family A. GPHR ectodomains can be divided into two subdomains: a high-affinity hormone binding subdomain primarily centered on the N-terminus, and a second subdomain that is located on the C-terminal region of the ectodomain that is involved in signal specificity. The two subdomains unexpectedly form an integral structure comprised of leucine-rich repeats (LRRs). Following the structure determination of hCG in 1994, the field of FSH structural biology has progressively advanced. Initially, the FSH structure was determined in partially glycosylated free form in 2001, followed by a structure of FSH bound to a truncated FSHR ectodomain in 2005, and the structure of FSH bound to the entire ectodomain in 2012. Comparisons of the structures in three forms led a proposal of a two-step monomeric receptor activation mechanism. First, binding of FSH to the FSHR high-affinity hormone-binding subdomain induces a conformational change in the hormone to form a binding pocket that is specific for a sulfated-tyrosine found as sTyr 335 in FSHR. Subsequently, the sTyr is drawn into the newly formed binding pocket, producing a lever effect on a helical pivot whereby the docking sTyr provides as the 'pull & lift' force. The pivot helix is flanked by rigid LRRs and locked by two disulfide bonds on both sides: the hormone-binding subdomain on one side and the last short loop before the first transmembrane helix on the other side. The lift of the sTyr loop frees the tethered extracellular loops of the 7TM domain, thereby releasing a putative inhibitory influence of the ectodomain, ultimately leading to the activating conformation of the 7TM domain. Moreover, the data lead us to propose that FSHR exists as a trimer and to present an FSHR activation mechanism consistent with the observed trimeric crystal form. A trimeric receptor provides resolution of the enigmatic, but important, biological roles played by GPH residues that are removed from the primary FSH-binding site, as well as several important GPCR phenomena, including negative cooperativity and asymmetric activation. Further reflection pursuant to this review process revealed additional novel structural characteristics such as the identification of a 'seat' sequence in GPH. Together with the 'seatbelt', the 'seat' enables a common heteodimeric mode of association of the common α subunit non-covalently and non-specifically with each of the three different β subunits. Moreover, it was possible to establish a dimensional order that can be used to estimate LRR curvatures. A potential binding pocket for small molecular allosteric modulators in the FSHR 7TM domain has also been identified.
Collapse
Affiliation(s)
- Xuliang Jiang
- EMD Serono Research & Development Institute, Billerica, MA 01821, United States.
| | - James A Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany-SUNY, Albany, NY 12222, United States
| | - Xiaolin He
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| |
Collapse
|
47
|
Guzmán JM, Adam Luckenbach J, Swanson P. Molecular characterization and quantification of sablefish (Anoplopoma fimbria) gonadotropins and their receptors: reproductive dysfunction in female captive broodstock. Gen Comp Endocrinol 2013; 193:37-47. [PMID: 23892013 DOI: 10.1016/j.ygcen.2013.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 07/04/2013] [Accepted: 07/11/2013] [Indexed: 01/27/2023]
Abstract
Efforts to establish an aquaculture industry for sablefish (Anoplopoma fimbria) are constrained by reproductive dysfunction in wild-caught fish and by lack of reproduction of F1 females. Toward a better understanding of the reproductive dysfunction of captive broodstock, full-length cDNAs encoding the sablefish gonadotropin subunits (fshb, lhb and cga) and their receptors (fshr and lhcgr) were cloned, sequenced and quantitative real-time PCR assays developed. Sablefish gonadotropin subunits display some unique features, such as two additional Cys residues in the N-terminal region of Fshb and a lack of potential N-glycosylation sites in Fshb and Lhb, whereas Fshr and Lhcgr possess conserved structural characteristics described in other vertebrates. Wild females captured in fall completed gametogenesis in captivity the next spawning season, whereas females captured three months earlier, during summer, failed to mature. Interestingly, these wild non-maturing females exhibited similar reproductive features as prepubertal F1 females, including low levels of pituitary gonadotropin and ovarian receptor mRNAs and plasma sex steroids, and ovarian follicles arrested at the perinucleolus stage. In conclusion, this study described the cloning, molecular characterization and development of qPCRs for sablefish gonadotropins and their receptors. Rearing conditions may impair vitellogenic growth of ovarian follicles in sablefish, compromising the reproductive success of broodstock.
Collapse
Affiliation(s)
- José M Guzmán
- Resource Enhancement and Utilization Technologies Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA.
| | | | | |
Collapse
|
48
|
Kleinau G, Neumann S, Grüters A, Krude H, Biebermann H. Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev 2013; 34:691-724. [PMID: 23645907 PMCID: PMC3785642 DOI: 10.1210/er.2012-1072] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The TSH receptor (TSHR) is a member of the glycoprotein hormone receptors, a subfamily of family A G protein-coupled receptors. The TSHR is of great importance for the growth and function of the thyroid gland. The TSHR and its endogenous ligand TSH are pivotal proteins with respect to a variety of physiological functions and malfunctions. The molecular events of TSHR regulation can be summarized as a process of signal transduction, including signal reception, conversion, and amplification. The steps during signal transduction from the extra- to the intracellular sites of the cell are not yet comprehensively understood. However, essential new insights have been achieved in recent years on the interrelated mechanisms at the extracellular region, the transmembrane domain, and intracellular components. This review contains a critical summary of available knowledge of the molecular mechanisms of signal transduction at the TSHR, for example, the key amino acids involved in hormone binding or in the structural conformational changes that lead to G protein activation or signaling regulation. Aspects of TSHR oligomerization, signaling promiscuity, signaling selectivity, phenotypes of genetic variations, and potential extrathyroidal receptor activity are also considered, because these are relevant to an understanding of the overall function of the TSHR, including physiological, pathophysiological, and pharmacological perspectives. Directions for future research are discussed.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Ostring 3, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
49
|
Segers I, Adriaenssens T, Wathlet S, Smitz J. Gene expression differences induced by equimolar low doses of LH or hCG in combination with FSH in cultured mouse antral follicles. J Endocrinol 2012; 215:269-80. [PMID: 22906696 DOI: 10.1530/joe-12-0150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In a natural cycle, follicle growth is coordinated by FSH and LH. Follicle growth stimulation in Assisted Reproductive Technologies (ART) requires antral follicles to be exposed to both FSH and LH bioactivity, especially after GNRH analog pretreatment. The main aim was to detect possible differences in gene expression in granulosa cells after exposing the follicle during antral growth to LH or hCG, as LH and hCG are different molecules acting on the same receptor. Effects of five gonadotropin treatments were investigated for 16 genes using a mouse follicle culture model. Early (day 6) antral follicles were exposed to high recombinant FSH combined or not with equimolar concentrations of recombinant LH (rLH) or recombinant hCG (rhCG) and to highly purified human menopausal gonadotropin (HP-hMG) for 6 h, 12 h, or 3 days. Expression differences were tested for genes involved in steroidogenesis: Mvk, Lss, Cyp11a1, Hsd3b1, Cyp19a1, Nr4a1, and Timp1; final granulosa differentiation: Lhcgr, Oxtr, Pgr, Egfr, Hif1a, and Vegfa; and cytokines: Cxcl12, Cxcr4, and Sdc4. Lhcgr was present and upregulated by gonadotropins. Nr4a1, Cxcl12, and Cxcr4 showed a different expression pattern if LH bioactivity was added to high FSH in the first hours after exposure. However, no signs of premature luteinization were present even after a 3-day treatment as shown by Cyp19a1, Oxtr, Pgr, and Egfr and by estrogen and progesterone measurements. The downstream signaling by rhCG or rLH through the LHCGR was not different for this gene selection. Granulosa cells from follicles exposed to HP-hMG showed an enhanced expression level for several genes compared with recombinant gonadotropin exposure, possibly pointing to enhanced cellular activity.
Collapse
Affiliation(s)
- Ingrid Segers
- Follicle Biology Laboratory, Vrije Universiteit Brussel, Jette, Belgium.
| | | | | | | |
Collapse
|
50
|
Li QK, Gabrielson E, Zhang H. Application of glycoproteomics for the discovery of biomarkers in lung cancer. Proteomics Clin Appl 2012; 6:244-56. [PMID: 22641610 DOI: 10.1002/prca.201100042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths in the United States. Approximately 40-60% of lung cancer patients present with locally advanced or metastatic disease at the time of diagnosis. Lung cancer development and progression are a multistep process that is characterized by abnormal gene and protein expressions ultimately leading to phenotypic change. Glycoproteins have long been recognized to play fundamental roles in many physiological and pathological processes, particularly in cancer genesis and progression. In order to improve the survival rate of lung cancer patients, the discovery of early diagnostic and prognostic biomarkers is urgently needed. Herein, we reviewed the recent technological developments of glycoproteomics and published data in the field of glycoprotein biomarkers in lung cancer, and discussed their utility and limitations for the discovery of potential biomarkers in lung cancer. Although numerous papers have already acknowledged the importance of the discovery of cancer biomarkers, the systemic study of glycoproteins in lung cancer using glycoproteomic approaches is still suboptimal. Recent development in the glycoproteomics will provide new platforms for identification of potential protein biomarkers in lung cancers.
Collapse
Affiliation(s)
- Qing Kay Li
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|