1
|
Dustin E, McQuiston AR, Honke K, Palavicini JP, Han X, Dupree JL. Adult-onset depletion of sulfatide leads to axonal degeneration with relative myelin sparing. Glia 2023; 71:2285-2303. [PMID: 37283058 PMCID: PMC11007682 DOI: 10.1002/glia.24423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
3-O-sulfogalactosylceramide (sulfatide) constitutes a class of sphingolipids that comprise about 4% of myelin lipids in the central nervous system. Previously, our group characterized a mouse with sulfatide's synthesizing enzyme, cerebroside sulfotransferase (CST), constitutively disrupted. Using these mice, we demonstrated that sulfatide is required for establishment and maintenance of myelin, axoglial junctions, and axonal domains and that sulfatide depletion results in structural pathologies commonly observed in Multiple Sclerosis (MS). Interestingly, sulfatide is reduced in regions of normal appearing white matter (NAWM) of MS patients. Sulfatide reduction in NAWM suggests depletion occurs early in disease development and consistent with functioning as a driving force of disease progression. To closely model MS, an adult-onset disease, our lab generated a "floxed" CST mouse and mated it against the PLP-creERT mouse, resulting in a double transgenic mouse that provides temporal and cell-type specific ablation of the Cst gene (Gal3st1). Using this mouse, we demonstrate adult-onset sulfatide depletion has limited effects on myelin structure but results in the loss of axonal integrity including deterioration of domain organization accompanied by axonal degeneration. Moreover, structurally preserved myelinated axons progressively lose the ability to function as myelinated axons, indicated by the loss of the N1 peak. Together, our findings indicate that sulfatide depletion, which occurs in the early stages of MS progression, is sufficient to drive the loss of axonal function independent of demyelination and that axonal pathology, which is responsible for the irreversible loss of neuronal function that is prevalent in MS, may occur earlier than previously recognized.
Collapse
Affiliation(s)
- E Dustin
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
- Research Service, Central Virginia Veterans Affairs Health Care Systems, Richmond, Virginia, USA
| | - A R McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - K Honke
- Department of Biochemistry, Kochi University Medical School, Kochi, Japan
| | - J P Palavicini
- Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - X Han
- Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - J L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
- Research Service, Central Virginia Veterans Affairs Health Care Systems, Richmond, Virginia, USA
| |
Collapse
|
2
|
Fatty Acid 2-Hydroxylase and 2-Hydroxylated Sphingolipids: Metabolism and Function in Health and Diseases. Int J Mol Sci 2023; 24:ijms24054908. [PMID: 36902339 PMCID: PMC10002949 DOI: 10.3390/ijms24054908] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Sphingolipids containing acyl residues that are hydroxylated at C-2 are found in most, if not all, eukaryotes and certain bacteria. 2-hydroxylated sphingolipids are present in many organs and cell types, though they are especially abundant in myelin and skin. The enzyme fatty acid 2-hydroxylase (FA2H) is involved in the synthesis of many but not all 2-hydroxylated sphingolipids. Deficiency in FA2H causes a neurodegenerative disease known as hereditary spastic paraplegia 35 (HSP35/SPG35) or fatty acid hydroxylase-associated neurodegeneration (FAHN). FA2H likely also plays a role in other diseases. A low expression level of FA2H correlates with a poor prognosis in many cancers. This review presents an updated overview of the metabolism and function of 2-hydroxylated sphingolipids and the FA2H enzyme under physiological conditions and in diseases.
Collapse
|
3
|
de Andrade L, Duarte EL, Lamy MT, Rozenfeld JHK. Thermotropic Behavior and Structural Organization of C24:1 Sulfatide Dispersions and Its Mixtures with Cationic Bilayers. ACS OMEGA 2023; 8:5306-5315. [PMID: 36816677 PMCID: PMC9933474 DOI: 10.1021/acsomega.2c06189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
C24:1 sulfatide (SF) is an endogenous activator of type II NKT cells. The thermotropic behavior and structure of SF dispersions and its mixtures (4.8-16.6 mol %) with cationic dioctadecyldimethylammonium bromide (DODAB) bilayers were investigated by differential scanning calorimetry and electron paramagnetic resonance spectroscopy. The non-interdigitated lamellar structures formed by pure SF display broad thermal events around 27.5 °C when heated and cooled. These events disappear upon mixing with DODAB, showing complete lipid miscibility. SF decreases the DODAB gel-phase packing, with a consequent decrease in phase-transition temperatures and cooperativity upon heating. In contrast, SF increases the rigidity of the DODAB fluid phase, resulting in a smaller decrease in transition temperatures upon cooling. The hysteresis between heating and cooling decreased as the SF molar fraction increased. These effects on DODAB are similar to the ones described for other glycolipids, such as αGalCer and βGlcCer. This might be due to the orientation of the rigid and planar amide bond that connects their sphingoid bases and acyl chains, which result in a V-shaped conformation of the glycolipid molecules. The current results may be important to plan and develop new immunotherapeutic tools based on SF.
Collapse
Affiliation(s)
- Lucas de Andrade
- Departamento
de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, 04023-062São Paulo, São Paulo, Brazil
| | - Evandro L. Duarte
- Instituto
de Física, Universidade de São
Paulo, Rua do Matão
1371, 05508090São
Paulo, São Paulo, Brazil
| | - M. Teresa Lamy
- Instituto
de Física, Universidade de São
Paulo, Rua do Matão
1371, 05508090São
Paulo, São Paulo, Brazil
| | - Julio H. K. Rozenfeld
- Departamento
de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, 04023-062São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Hogestyn JM, Salois G, Xie L, Apa C, Youngyunpipatkul J, Pröschel C, Mayer-Pröschel M. Expression of the human herpesvirus 6A latency-associated transcript U94A impairs cytoskeletal functions in human neural cells. Mol Cell Neurosci 2022; 123:103770. [PMID: 36055520 PMCID: PMC10124163 DOI: 10.1016/j.mcn.2022.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 12/30/2022] Open
Abstract
Many neurodegenerative diseases have a multifactorial etiology and variable course of progression that cannot be explained by current models. Neurotropic viruses have long been suggested to play a role in these diseases, although their exact contributions remain unclear. Human herpesvirus 6A (HHV-6A) is one of the most common viruses detected in the adult brain, and has been clinically associated with multiple sclerosis (MS), and, more recently, Alzheimer's disease (AD). HHV-6A is a ubiquitous viral pathogen capable of infecting glia and neurons. Primary infection in childhood is followed by the induction of latency, characterized by expression of the U94A viral transcript in the absence of viral replication. Here we examine the effects of U94A on cells of the central nervous system. We found that U94A expression inhibits the migration and impairs cytoplasmic maturation of human oligodendrocyte precursor cells (OPCs) without affecting their viability, a phenotype that may contribute to the failure of remyelination seen in many patients with MS. A subsequent proteomics analysis of U94A expression OPCs revealed altered expression of genes involved in tubulin associated cytoskeletal regulation. As HHV-6A seems to significantly be associated with early AD pathology, we extended our initially analysis of the impact of U94A on human derived neurons. We found that U94A expression inhibits neurite outgrowth of primary human cortical neurons and impairs synapse maturation. Based on these data we suggest that U94A expression by latent HHV-6A in glial cells and neurons renders them susceptible to dysfunction and degeneration. Therefore, latent viral infections of the brain represent a unique pathological risk factor that may contribute to disease processes.
Collapse
Affiliation(s)
- Jessica M Hogestyn
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Garrick Salois
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Li Xie
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Connor Apa
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Stem cell and Regenerative Medicine Institute, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Justin Youngyunpipatkul
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Stem cell and Regenerative Medicine Institute, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA,.
| |
Collapse
|
5
|
Dysmyelination and glycolipid interference caused by phenylalanine in phenylketonuria. Int J Biol Macromol 2022; 221:784-795. [PMID: 36099998 DOI: 10.1016/j.ijbiomac.2022.09.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022]
Abstract
Phenylketonuria (PKU) is a metabolic disorder connected to an excess of phenylalanine (Phe) in the blood and tissues, with neurological consequences. The disease's molecular bases seem to be related to the accumulation of Phe at the cell membrane surface. Radiological outcomes in the brain demonstrate decreased water diffusivity in white matter, involving axon dysmyelination of not yet understood origin. We used a biophysical approach and model membranes to extend our knowledge of Phe-membrane interaction by clarifying Phe's propensity to affect membrane structure and dynamics based on lipid composition, with emphasis on modulating cholesterol and glycolipid components to mimic raft domains and myelin sheath membranes. Phe showed affinity for the investigated membrane mimics, mainly affecting the Phe-facing membrane leaflet. The surfaces of our neuronal membrane raft mimics were strong anchoring sites for Phe, showing rigidifying effects. From a therapeutic perspective, we further investigated the role of doxycycline, known to disturb Phe packing, unveiling its action as a competitor in Phe interactions with the membrane, suggesting its potential for treatment in the early stages of PKU. Our results suggest how Phe accumulation in extracellular fluids can impede normal growth of myelin sheaths by interfering with membrane slipping and by remodulating free water and myelin-associated water contents.
Collapse
|
6
|
Beger AW, Hauther KA, Dudzik B, Woltjer RL, Wood PL. Human Brain Lipidomics: Investigation of Formalin Fixed Brains. Front Mol Neurosci 2022; 15:835628. [PMID: 35782380 PMCID: PMC9245516 DOI: 10.3389/fnmol.2022.835628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Human brain lipidomics have elucidated structural lipids and lipid signal transduction pathways in neurologic diseases. Such studies have traditionally sourced tissue exclusively from brain bank biorepositories, however, limited inventories signal that these facilities may not be able to keep pace with this growing research domain. Formalin fixed, whole body donors willed to academic institutions offer a potential supplemental tissue source, the lipid profiles of which have yet to be described. To determine the potential of these subjects in lipid analysis, the lipid levels of fresh and fixed frontal cortical gray matter of human donors were compared using high resolution electrospray ionization mass spectrometry. Results revealed commensurate levels of specific triacylglycerols, diacylglycerols, hexosyl ceramides, and hydroxy hexosyl ceramides. Baseline levels of these lipid families in human fixed tissue were identified via a broader survey study covering six brain regions: cerebellar gray matter, superior cerebellar peduncle, gray and subcortical white matter of the precentral gyrus, periventricular white matter, and internal capsule. Whole body donors may therefore serve as supplemental tissue sources for lipid analysis in a variety of clinical contexts, including Parkinson's disease, Alzheimer's disease, Lewy body dementia, multiple sclerosis, and Gaucher's disease.
Collapse
Affiliation(s)
- Aaron W. Beger
- Department of Anatomy, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Kathleen A. Hauther
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Beatrix Dudzik
- Department of Anatomy, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Randall L. Woltjer
- Department of Neurology, Oregon Health Science University, Portland, OR, United States
- Portland VA Medical Center, Portland, OR, United States
| | - Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| |
Collapse
|
7
|
Feltri ML, Weinstock NI, Favret J, Dhimal N, Wrabetz L, Shin D. Mechanisms of demyelination and neurodegeneration in globoid cell leukodystrophy. Glia 2021; 69:2309-2331. [PMID: 33851745 PMCID: PMC8502241 DOI: 10.1002/glia.24008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Globoid cell leukodystrophy (GLD), also known as Krabbe disease, is a lysosomal storage disorder causing extensive demyelination in the central and peripheral nervous systems. GLD is caused by loss-of-function mutations in the lysosomal hydrolase, galactosylceramidase (GALC), which catabolizes the myelin sphingolipid galactosylceramide. The pathophysiology of GLD is complex and reflects the expression of GALC in a number of glial and neural cell types in both the central and peripheral nervous systems (CNS and PNS), as well as leukocytes and kidney in the periphery. Over the years, GLD has garnered a wide range of scientific and medical interests, especially as a model system to study gene therapy and novel preclinical therapeutic approaches to treat the spontaneous murine model for GLD. Here, we review recent findings in the field of Krabbe disease, with particular emphasis on novel aspects of GALC physiology, GLD pathophysiology, and therapeutic strategies.
Collapse
Affiliation(s)
- M. Laura Feltri
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Nadav I. Weinstock
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Jacob Favret
- Hunter James Kelly Research Institute, Buffalo, New York
- Biotechnical and Clinical Lab Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Narayan Dhimal
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Daesung Shin
- Hunter James Kelly Research Institute, Buffalo, New York
- Biotechnical and Clinical Lab Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
8
|
Validation of MALDI-MS imaging data of selected membrane lipids in murine brain with and without laser postionization by quantitative nano-HPLC-MS using laser microdissection. Anal Bioanal Chem 2020; 412:6875-6886. [PMID: 32712813 PMCID: PMC7496020 DOI: 10.1007/s00216-020-02818-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/08/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022]
Abstract
MALDI mass spectrometry imaging (MALDI-MSI) is a widely used technique to map the spatial distribution of molecules in sectioned tissue. The technique is based on the systematic generation and analysis of ions from small sample volumes, each representing a single pixel of the investigated sample surface. Subsequently, mass spectrometric images for any recorded ion species can be generated by displaying the signal intensity at the coordinate of origin for each of these pixels. Although easily equalized, these recorded signal intensities, however, are not necessarily a good measure for the underlying amount of analyte and care has to be taken in the interpretation of MALDI-MSI data. Physical and chemical properties that define the analyte molecules’ adjacencies in the tissue largely influence the local extraction and ionization efficiencies, possibly leading to strong variations in signal intensity response. Here, we inspect the validity of signal intensity distributions recorded from murine cerebellum as a measure for the underlying molar distributions. Based on segmentation derived from MALDI-MSI measurements, laser microdissection (LMD) was used to cut out regions of interest with a homogenous signal intensity. The molar concentration of six exemplary selected membrane lipids from different lipid classes in these tissue regions was determined using quantitative nano-HPLC-ESI-MS. Comparison of molar concentrations and signal intensity revealed strong deviations between underlying concentration and the distribution suggested by MSI data. Determined signal intensity response factors strongly depend on tissue type and lipid species. Graphical abstract ![]()
Collapse
|
9
|
Grassi S, Giussani P, Mauri L, Prioni S, Sonnino S, Prinetti A. Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. J Lipid Res 2020; 61:636-654. [PMID: 31871065 PMCID: PMC7193971 DOI: 10.1194/jlr.tr119000427] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson's, Huntington's, and Alzheimer's diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.jlr;61/5/636/F1F1f1.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy. mailto:
| |
Collapse
|
10
|
Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat Methods 2019; 16:925-931. [DOI: 10.1038/s41592-019-0536-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022]
|
11
|
Shmueli K, Dodd SJ, van Gelderen P, Duyn JH. Investigating lipids as a source of chemical exchange-induced MRI frequency shifts. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3525. [PMID: 27076394 PMCID: PMC5063672 DOI: 10.1002/nbm.3525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 05/15/2023]
Abstract
While magnetic susceptibility is a major contributor to NMR resonance frequency variations in the human brain, a substantial contribution may come from the chemical exchange of protons between water and other molecules. Exchange-induced frequency shifts fe have been measured in tissue and protein solutions, but relatively lipid-rich white matter (WM) has a larger fe than gray matter, suggesting that lipids could contribute. Galactocerebrosides (GC) are a prime candidate as they are abundant in WM and susceptible to exchange. To investigate this, fe was measured in a model of WM lipid membranes in the form of multilamellar vesicles (MLVs), consisting of a 1:2 molar ratio of GC and phospholipids (POPC), and in MLVs with POPC only. Chemical shift imaging with 15% volume fraction of dioxane, an internal reference whose protons are assumed not to undergo chemical exchange, was used to remove susceptibility-induced frequency shifts in an attempt to measure fe in MLVs at several lipid concentrations. Initial analysis of these measurements indicated a necessity to correct for small unexpected variations in dioxane concentration due to its effect on the water frequency shift. To achieve this, the actual dioxane concentration was inferred from spectral analysis and its additional contribution to fe was removed through separate experiments which showed that the water-dioxane frequency shift depended linearly on the dioxane concentration at low concentrations with a proportionality constant of -0.021 ± 0.002 ppb/mM in agreement with published experiments. Contrary to expectations and uncorrected results, for GC + POPC vesicles, the dependence of the corrected fe on GC concentration was insignificant (0.023 ± 0.037 ppb/mM; r2 = 0.085, p > 0.57), whereas for the POPC-only vesicles a small but significant linear increase with POPC concentration was found: 0.044 ± 0.008 ppb/mM (r2 = 0.877, p < 0.01). These findings suggest that the exchange-induced contribution of lipids to frequency contrast in WM may be small. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- K Shmueli
- Department of Medical Physics & Biomedical Engineering, University College London, UK
- Advanced MRI Section, Laboratory of Functional & Molecular Imaging, National Institute of Neurological Disorders & Stroke, National Institutes of Health, USA
| | - S J Dodd
- Laboratory of Functional & Molecular Imaging, National Institute of Neurological Disorders & Stroke, National Institutes of Health, USA
| | - P van Gelderen
- Advanced MRI Section, Laboratory of Functional & Molecular Imaging, National Institute of Neurological Disorders & Stroke, National Institutes of Health, USA
| | - J H Duyn
- Advanced MRI Section, Laboratory of Functional & Molecular Imaging, National Institute of Neurological Disorders & Stroke, National Institutes of Health, USA
| |
Collapse
|
12
|
Hirahara Y, Wakabayashi T, Mori T, Koike T, Yao I, Tsuda M, Honke K, Gotoh H, Ono K, Yamada H. Sulfatide species with various fatty acid chains in oligodendrocytes at different developmental stages determined by imaging mass spectrometry. J Neurochem 2016; 140:435-450. [PMID: 27861899 DOI: 10.1111/jnc.13897] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/27/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022]
Abstract
HSO3-3-galactosylceramide (Sulfatide) species comprise the major glycosphingolipid components of oligodendrocytes and myelin and play functional roles in the regulation of oligodendrocyte maturation and myelin formation. Although various sulfatide species contain different fatty acids, it is unclear how these sulfatide species affect oligodendrogenesis and myelination. The O4 monoclonal antibody reaction with sulfatide has been widely used as a useful marker for oligodendrocytes and myelin. However, sulfatide synthesis during the pro-oligodendroblast stage, where differentiation into the oligodendrocyte lineage has already occurred, has not been examined. Notably, this stage comprises O4-positive cells. In this study, we identified a sulfatide species from the pro-oligodendroblast-to-myelination stage by imaging mass spectrometry. The results demonstrated that short-chain sulfatides with 16 carbon non-hydroxylated fatty acids (C16) and 18 carbon non-hydroxylated fatty acids (C18) or 18 carbon hydroxylated fatty acids (C18-OH) existed in restricted regions of the early embryonic spinal cord, where pro-oligodendroblasts initially appear, and co-localized with Olig2-positive pro-oligodendroblasts. C18 and C18-OH sulfatides also existed in isolated pro-oligodendroblasts. C22-OH sulfatide became predominant later in oligodendrocyte development and the longer C24 sulfatide was predominant in the adult brain. Additionally, the presence of each sulfatide species in a different area of the adult brain was demonstrated by imaging mass spectrometry at an increased lateral resolution. These findings indicated that O4 recognized sulfatides with short-chain fatty acids in pro-oligodendroblasts. Moreover, the fatty acid chain of the sulfatide became longer as the oligodendrocyte matured. Therefore, individual sulfatide species may have unique roles in oligodendrocyte maturation and myelination. Read the Editorial Highlight for this article on page 356.
Collapse
Affiliation(s)
- Yukie Hirahara
- Department of Anatomy and Cell Science, Kansai Medical University, Osaka, Japan
| | | | - Tetsuji Mori
- Department of Anatomy and Cell Science, Kansai Medical University, Osaka, Japan.,School of Health Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Taro Koike
- Department of Anatomy and Cell Science, Kansai Medical University, Osaka, Japan
| | - Ikuko Yao
- Department of Optical Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masayuki Tsuda
- The Division of Laboratory Animal Science, Science Research Center, Kochi University Medical School, Kochi, Japan
| | - Koichi Honke
- Department of Biochemistry, Kochi University Medical School, Kochi, Japan
| | - Hitoshi Gotoh
- Department of Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsuhiko Ono
- Department of Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hisao Yamada
- Department of Anatomy and Cell Science, Kansai Medical University, Osaka, Japan
| |
Collapse
|
13
|
Ozgen H, Baron W, Hoekstra D, Kahya N. Oligodendroglial membrane dynamics in relation to myelin biogenesis. Cell Mol Life Sci 2016; 73:3291-310. [PMID: 27141942 PMCID: PMC4967101 DOI: 10.1007/s00018-016-2228-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
In the central nervous system, oligodendrocytes synthesize a specialized membrane, the myelin membrane, which enwraps the axons in a multilamellar fashion to provide fast action potential conduction and to ensure axonal integrity. When compared to other membranes, the composition of myelin membranes is unique with its relatively high lipid to protein ratio. Their biogenesis is quite complex and requires a tight regulation of sequential events, which are deregulated in demyelinating diseases such as multiple sclerosis. To devise strategies for remedying such defects, it is crucial to understand molecular mechanisms that underlie myelin assembly and dynamics, including the ability of specific lipids to organize proteins and/or mediate protein-protein interactions in healthy versus diseased myelin membranes. The tight regulation of myelin membrane formation has been widely investigated with classical biochemical and cell biological techniques, both in vitro and in vivo. However, our knowledge about myelin membrane dynamics, such as membrane fluidity in conjunction with the movement/diffusion of proteins and lipids in the membrane and the specificity and role of distinct lipid-protein and protein-protein interactions, is limited. Here, we provide an overview of recent findings about the myelin structure in terms of myelin lipids, proteins and membrane microdomains. To give insight into myelin membrane dynamics, we will particularly highlight the application of model membranes and advanced biophysical techniques, i.e., approaches which clearly provide an added value to insight obtained by classical biochemical techniques.
Collapse
Affiliation(s)
- Hande Ozgen
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Wia Baron
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Dick Hoekstra
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Nicoletta Kahya
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
14
|
Handa K, Hakomori SI. Changes of glycoconjugate expression profiles during early development. Glycoconj J 2016; 34:693-699. [PMID: 27318475 DOI: 10.1007/s10719-016-9684-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 11/30/2022]
Abstract
A variety of glycoconjugates, including glycosphingolipids (GSLs), expressed in mammalian tissues and cells were isolated and characterized in early biochemical studies. Later studies of virus-transformed fibroblasts demonstrated the association of GSL expression profiles with cell phenotypes. Changes of GSL expression profile were observed during mammalian embryogenesis. Cell surface molecules expressed on embryos in a stage-specific manner appeared to play key roles in regulation of cell-cell interaction and cell sorting during early development. Many mAbs showing stage-specific reactivity with mouse embryos were shown to recognize carbohydrate epitopes. Among various stage-specific embryonic antigens (SSEAs), SSEA-1 was found to react with neolacto-series GSL Lex, while SSEA-3 and SSEA-4 reacted with globo-series Gb5 and monosialyl-Gb5, respectively. GSL expression during mouse early development was shown to shift rapidly from globo-series to neolacto/lacto-series, and then to ganglio-series. We found that multivalent Lex caused decompaction of mouse embryos, indicating a functional role of Lex epitope in the compaction process. Autoaggregation of mouse embryonal carcinoma (EC) F9 cells provided a useful model of the compaction process. We showed that Lex-Lex interaction, a novel type of molecular interavction termed carbohydrate-carbohydrate interaction (CCI), was involved in cell aggregation. Similar shifting of GSL expression profiles from globo-series and neolacto/lacto-series to ganglio-series was observed during differentiation of human EC cells and embryonic stem (ES) cells, reflecting the essential role of cell surface glycoconjugates in early development.
Collapse
Affiliation(s)
- Kazuko Handa
- Division of Biomembrane Research, Pacific Northwest Research Institute, 720 Broadway, Seattle, WA, 98112, USA
| | - Sen-Itiroh Hakomori
- Division of Biomembrane Research, Pacific Northwest Research Institute, 720 Broadway, Seattle, WA, 98112, USA.
- Departments of Pathobiology and Global Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
15
|
Lai CH, Hütter J, Hsu CW, Tanaka H, Varela-Aramburu S, De Cola L, Lepenies B, Seeberger PH. Analysis of Carbohydrate-Carbohydrate Interactions Using Sugar-Functionalized Silicon Nanoparticles for Cell Imaging. NANO LETTERS 2016; 16:807-811. [PMID: 26652315 DOI: 10.1021/acs.nanolett.5b04984] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protein-carbohydrate binding depends on multivalent ligand display that is even more important for low affinity carbohydrate-carbohydrate interactions. Detection and analysis of these low affinity multivalent binding events are technically challenging. We describe the synthesis of dual-fluorescent sugar-capped silicon nanoparticles that proved to be an attractive tool for the analysis of low affinity interactions. These ultrasmall NPs with sizes of around 4 nm can be used for NMR quantification of coupled sugars. The silicon nanoparticles are employed to measure the interaction between the cancer-associated glycosphingolipids GM3 and Gg3 and the associated kD value by surface plasmon resonance experiments. Cell binding studies, to investigate the biological relevance of these carbohydrate-carbohydrate interactions, also benefit from these fluorescent sugar-capped nanoparticles.
Collapse
Affiliation(s)
- Chian-Hui Lai
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
| | - Julia Hütter
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , 14195 Berlin, Germany
| | - Chien-Wei Hsu
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université Strasbourg , 8 allée Gaspard Monge, 67083 Strasbourg, France
| | - Hidenori Tanaka
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
| | - Silvia Varela-Aramburu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , 14195 Berlin, Germany
| | - Luisa De Cola
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université Strasbourg , 8 allée Gaspard Monge, 67083 Strasbourg, France
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , 14195 Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , 14195 Berlin, Germany
| |
Collapse
|
16
|
Kojima H, Suzuki Y, Ito M, Kabayama K. Structural Characterization of Neutral Glycosphingolipids from 3T3-L1 Adipocytes. Lipids 2015; 50:913-7. [PMID: 26017029 PMCID: PMC4541715 DOI: 10.1007/s11745-015-4035-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 05/05/2015] [Indexed: 11/24/2022]
Abstract
In recent years, obesity has been considered a pathological stage of early lifestyle-related diseases, and adipose tissue and adipocyte research has been active. Glycosphingolipids are involved in the pathogenesis of type 2 diabetes induced by insulin resistance, but the details of the glycosphingolipid molecular species composition of adipocytes have yet to be elucidated. We used 3T3-L1 adipocytes and the 1,2-dichloroethane-wash method to remove triacylglycerols, which are abundant in adipocytes, and analyzed the structures of glycosphingolipids, particularly neutral glycosphingolipids, using liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Hisao Kojima
- />College of Life Science, Ritsumeikan University, Shiga, Japan
| | - Yusuke Suzuki
- />College of Science and Technology, Nihon University, Tokyo, Japan
| | - Masahiro Ito
- />College of Life Science, Ritsumeikan University, Shiga, Japan
| | - Kazuya Kabayama
- />Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 Japan
| |
Collapse
|
17
|
Aureli M, Grassi S, Prioni S, Sonnino S, Prinetti A. Lipid membrane domains in the brain. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1006-16. [PMID: 25677824 DOI: 10.1016/j.bbalip.2015.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/28/2022]
Abstract
The brain is characterized by the presence of cell types with very different functional specialization, but with the common trait of a very high complexity of structures originated by their plasma membranes. Brain cells bear evident membrane polarization with the creation of different morphological and functional subcompartments, whose formation, stabilization and function require a very high level of lateral order within the membrane. In other words, the membrane specialization of brain cells implies the presence of distinct membrane domains. The brain is the organ with the highest enrichment in lipids like cholesterol, glycosphingolipids, and the most recently discovered brain membrane lipid, phosphatidylglucoside, whose collective behavior strongly favors segregation within the membrane leading to the formation of lipid-driven membrane domains. Lipid-driven membrane domains function as dynamic platforms for signal transduction, protein processing, and membrane turnover. Essential events involved in the development and in the maintenance of the functional integrity of the brain depend on the organization of lipid-driven membrane domains, and alterations in lipid homeostasis, leading to deranged lipid-driven membrane organization, are common in several major brain diseases. In this review, we summarize the forces behind the formation of lipid membrane domains and their biological roles in different brain cells. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy.
| |
Collapse
|
18
|
Rožman M, Fabris D, Mrla T, Vukelić Ž. Database and data analysis application for structural characterization of gangliosides and sulfated glycosphingolipids by negative ion mass spectrometry. Carbohydr Res 2014; 400:1-8. [PMID: 25299937 DOI: 10.1016/j.carres.2014.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/20/2014] [Accepted: 06/27/2014] [Indexed: 01/12/2023]
Abstract
Gangliosides and sulfated glycosphingolipids, as building and functional components of animal cell membranes, participate in cell-to-cell interactions and signaling, but also in changes of cell architecture due to different pathophysiological events. In order to enable higher throughput and to facilitate structural characterization of gangliosides/sulfo-glycosphingolipids (GSL) and their neutral GSL counterparts by negative ion mass spectrometry (MS) and tandem MS techniques, a database and data analysis application have been developed. In silico developed glycosphingolipid database considers a high diversity of ceramide compositions, several sialic acid types (N-acetylneuraminic acid, N-glycolylneuraminic acid and 2-keto-3-deoxynononic acid) as well as possible additional substitutions/modifications of glycosphingolipids, such as O-acetylation, de-N-acetylation, fucosylation, glucuronosylation, sulfation, attachment of repeating terminal hexose-N-acetylhexosamine- (Hex-HexNAc-)1-6 extension, and possible lactone forms. Data analysis application, named GSL-finder, enables correlation of negative ion MS and/or low-energy tandem MS spectra with the database structures. The GSL-database construction and the GSL-finder application searching rules are explained. Validation conducted on GD1a fraction as well as on complex mixtures of native gangliosides isolated from different mammalian brain tissues (human fetal and adult brain, and calf brain tissue) demonstrated agreement with previous studies. Plain, fast, and automated routine for structural characterization of gangliosides/sulfated glycosphingolipids and their neutral GSL counterparts described here could facilitate and improve mass spectrometric analysis of complex glycosphingolipid mixtures originating from variety of normal and pathological biomaterial, where it is known that distinctive changes in glycosphingolipid composition occur.
Collapse
Affiliation(s)
- Marko Rožman
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Dragana Fabris
- Department for Chemistry and Biochemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia.
| | - Tomislav Mrla
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Željka Vukelić
- Department for Chemistry and Biochemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia.
| |
Collapse
|
19
|
Ozgen H, Schrimpf W, Hendrix J, de Jonge JC, Lamb DC, Hoekstra D, Kahya N, Baron W. The lateral membrane organization and dynamics of myelin proteins PLP and MBP are dictated by distinct galactolipids and the extracellular matrix. PLoS One 2014; 9:e101834. [PMID: 25003183 PMCID: PMC4086962 DOI: 10.1371/journal.pone.0101834] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/12/2014] [Indexed: 01/03/2023] Open
Abstract
In the central nervous system, lipid-protein interactions are pivotal for myelin maintenance, as these interactions regulate protein transport to the myelin membrane as well as the molecular organization within the sheath. To improve our understanding of the fundamental properties of myelin, we focused here on the lateral membrane organization and dynamics of peripheral membrane protein 18.5-kDa myelin basic protein (MBP) and transmembrane protein proteolipid protein (PLP) as a function of the typical myelin lipids galactosylceramide (GalC), and sulfatide, and exogenous factors such as the extracellular matrix proteins laminin-2 and fibronectin, employing an oligodendrocyte cell line, selectively expressing the desired galactolipids. The dynamics of MBP were monitored by z-scan point fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS), while PLP dynamics in living cells were investigated by circular scanning FCS. The data revealed that on an inert substrate the diffusion rate of 18.5-kDa MBP increased in GalC-expressing cells, while the diffusion coefficient of PLP was decreased in sulfatide-containing cells. Similarly, when cells were grown on myelination-promoting laminin-2, the lateral diffusion coefficient of PLP was decreased in sulfatide-containing cells. In contrast, PLP's diffusion rate increased substantially when these cells were grown on myelination-inhibiting fibronectin. Additional biochemical analyses revealed that the observed differences in lateral diffusion coefficients of both proteins can be explained by differences in their biophysical, i.e., galactolipid environment, specifically with regard to their association with lipid rafts. Given the persistence of pathological fibronectin aggregates in multiple sclerosis lesions, this fundamental insight into the nature and dynamics of lipid-protein interactions will be instrumental in developing myelin regenerative strategies.
Collapse
Affiliation(s)
- Hande Ozgen
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Waldemar Schrimpf
- Physical Chemistry, Department of Chemistry, Munich Center for Integrated Protein Science (CiPSM) and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Jelle Hendrix
- Physical Chemistry, Department of Chemistry, Munich Center for Integrated Protein Science (CiPSM) and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Jenny C. de Jonge
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Don C. Lamb
- Physical Chemistry, Department of Chemistry, Munich Center for Integrated Protein Science (CiPSM) and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Dick Hoekstra
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nicoletta Kahya
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail: (NK) (WB)
| | - Wia Baron
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail: (NK) (WB)
| |
Collapse
|
20
|
Bakhti M, Aggarwal S, Simons M. Myelin architecture: zippering membranes tightly together. Cell Mol Life Sci 2014; 71:1265-77. [PMID: 24165921 PMCID: PMC11113231 DOI: 10.1007/s00018-013-1492-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/11/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022]
Abstract
Rapid nerve conduction requires the coating of axons by a tightly packed multilayered myelin membrane. In the central nervous system, myelin is formed from cellular processes that extend from oligodendrocytes and wrap in a spiral fashion around an axon, resulting in the close apposition of adjacent myelin membrane bilayers. In this review, we discuss the physical principles underlying the zippering of the plasma membrane of oligodendrocytes at the cytoplasmic and extracellular leaflet. We propose that the interaction of the myelin basic protein with the cytoplasmic leaflet of the myelin bilayer triggers its polymerization into a fibrous network that drives membrane zippering and protein extrusion. In contrast, the adhesion of the extracellular surfaces of myelin requires the down-regulation of repulsive components of the glycocalyx, in order to uncover weak and unspecific attractive forces that bring the extracellular surfaces into close contact. Unveiling the mechanisms of myelin membrane assembly at the cytoplasmic and extracelluar sites may help to understand how the myelin bilayers are disrupted and destabilized in the different demyelinating diseases.
Collapse
Affiliation(s)
- Mostafa Bakhti
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany
- Department of Neurology, University of Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
- Present Address: Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Shweta Aggarwal
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany
- Department of Neurology, University of Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
| | - Mikael Simons
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany
- Department of Neurology, University of Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
| |
Collapse
|
21
|
Role of galactosylceramide and sulfatide in oligodendrocytes and CNS myelin: formation of a glycosynapse. ADVANCES IN NEUROBIOLOGY 2014; 9:263-91. [PMID: 25151383 DOI: 10.1007/978-1-4939-1154-7_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two major glycosphingolipids of myelin, galactosylceramide (GalC) and sulfatide (SGC), interact with each other by trans carbohydrate-carbohydrate interactions in vitro. They face each other in the apposed extracellular surfaces of the multilayered myelin sheath produced by oligodendrocytes and could also contact each other between apposed oligodendrocyte processes. Multivalent galactose and sulfated galactose, in the form of GalC/SGC-containing liposomes or silica nanoparticles conjugated to galactose and galactose-3-sulfate, interact with GalC and SGC in the membrane sheets of oligodendrocytes in culture. This interaction causes transmembrane signaling, loss of the cytoskeleton and clustering of membrane domains, similar to the effects of cross-linking by anti-GalC and anti-SGC antibodies. These effects suggest that GalC and SGC could participate in glycosynapses, similar to neural synapses or the immunological synapse, between GSL-enriched membrane domains in apposed oligodendrocyte membranes or extracellular surfaces of mature myelin. Formation of such glycosynapses in vivo would be important for myelination and/or oligodendrocyte/myelin function.
Collapse
|
22
|
Sonnino S, Aureli M, Grassi S, Mauri L, Prioni S, Prinetti A. Lipid Rafts in Neurodegeneration and Neuroprotection. Mol Neurobiol 2013; 50:130-48. [DOI: 10.1007/s12035-013-8614-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/08/2013] [Indexed: 11/28/2022]
|
23
|
Harauz G, Boggs JM. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem 2013; 125:334-61. [PMID: 23398367 DOI: 10.1111/jnc.12195] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP's protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
24
|
Hayashi T, Hayashi E, Fujimoto M, Sprong H, Su TP. The lifetime of UDP-galactose:ceramide galactosyltransferase is controlled by a distinct endoplasmic reticulum-associated degradation (ERAD) regulated by sigma-1 receptor chaperones. J Biol Chem 2012; 287:43156-69. [PMID: 23105111 PMCID: PMC3522309 DOI: 10.1074/jbc.m112.380444] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 10/20/2012] [Indexed: 11/06/2022] Open
Abstract
The glycosphingolipid biosynthesis is initiated by monoglycosylation of ceramides, the action of which is catalyzed either by UDP-glucose:ceramide glucosyltransferase or by UDP-galactose:ceramide galactosyltransferase (CGalT). CGalT is expressed predominantly at the endoplasmic reticulum (ER) of oligodendrocytes and is responsible for synthesizing galactosylceramides (GalCer) that play an important role in regulation of axon conductance. However, despite the importance of ceramide monoglycosylation enzymes in a spectrum of cellular functions, the mechanism that fine tunes activities of those enzymes is largely unknown. In the present study, we demonstrated that the sigma-1 receptor (Sig-1R) chaperone, the mammalian homologue of a yeast C8-C7 sterol isomerase, controls the protein level and activity of the CGalT enzyme via a distinct ER-associated degradation system involving Insig. The Sig-1R forms a complex with Insig via its transmembrane domain partly in a sterol-dependent manner and associates with CGalT at the ER. The knockdown of Sig-1Rs dramatically prolonged the lifetime of CGalT without affecting the trimming of N-linked oligosaccharides at CGalT. The increased lifetime leads to the up-regulation of CGalT protein as well as elevated enzymatic activity in CHO cells stably expressing CGalT. Knockdown of Sig-1Rs also decreased CGalT degradation endogenously expressed in D6P2T-schwannoma cells. Our data suggest that Sig-1Rs negatively regulate the activity of GalCer synthesis under physiological conditions by enhancing the degradation of CGalT through regulation of the dynamics of Insig in the lipid-activated ER-associated degradation system. The GalCer synthesis may thus be influenced by sterols at the ER.
Collapse
Affiliation(s)
| | | | | | - Hein Sprong
- the National Institute of Public Health and Environment, Laboratory for Zoonoses and Environmental Microbiology, Bilthoven, Netherlands
| | - Tsung-Ping Su
- the Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, NIDA, National Institutes of Health, Baltimore, Maryland 21224 and
| |
Collapse
|
25
|
Handa K, Hakomori SI. Carbohydrate to carbohydrate interaction in development process and cancer progression. Glycoconj J 2012; 29:627-37. [PMID: 22610315 DOI: 10.1007/s10719-012-9380-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 12/13/2022]
Abstract
Two types of carbohydrate to carbohydrate interaction (CCI) have been known to be involved in biological processes. One is the CCI between molecules expressed on interfacing cell membranes of different cells to mediate cell to cell adhesion, and subsequently induce cell signaling, and is termed trans-CCI. It has been indicated that the Le(x) to Le(x) interaction at the morula stage in mouse embryos plays an important role in the compaction process in embryonic development. GM3 to Gg3 or GM3 to LacCer interaction has been suggested to be involved in adhesion of tumor cells to endothelial cells, which is considered a crucial step in tumor metastasis. The other is the CCI between molecules expressed within the same microdomain of the cell surface membrane, and is termed cis-CCI. The interaction between ganglioside GM3, and multi (>3) GlcNAc termini of N-linked glycans of epidermal growth factor receptor (EGFR), has been indicated as the molecular mechanism for the inhibitory effect of GM3 on EGFR activation. Also, the complex with GM3 and GM2 has been shown to inhibit the activation of hepatocyte growth factor (HGF) receptor, cMet, through its association with tetraspanin CD82, and results in the inhibition of cell motility. Since CCI research is still limited, more examples of CCI in biological processes in development, and cancer progression will be revealed in the future.
Collapse
Affiliation(s)
- Kazuko Handa
- Pacific Northwest Research Institude, WA 98122, USA.
| | | |
Collapse
|
26
|
Zhao J, Liu Y, Park HJ, Boggs JM, Basu A. Carbohydrate-Coated Fluorescent Silica Nanoparticles as Probes for the Galactose/3-Sulfogalactose Carbohydrate–Carbohydrate Interaction Using Model Systems and Cellular Binding Studies. Bioconjug Chem 2012; 23:1166-73. [DOI: 10.1021/bc2006169] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jingsha Zhao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United
States
| | - Yuanfang Liu
- Molecular Structure
and Function
Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Hyun-Joo Park
- Molecular Structure
and Function
Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Joan M. Boggs
- Molecular Structure
and Function
Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
- Department of Laboratory Medicine
and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5G 1L5
| | - Amit Basu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United
States
| |
Collapse
|
27
|
Zhang B, Xue C, Hu X, Xu J, Li Z, Wang J, Yanagita T, Xue Y, Wang Y. Dietary sea cucumber cerebroside alleviates orotic acid-induced excess hepatic adipopexis in rats. Lipids Health Dis 2012; 11:48. [PMID: 22569330 PMCID: PMC3477080 DOI: 10.1186/1476-511x-11-48] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/14/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease in industrialized countries. The present study was undertaken to explore the preventive effect of dietary sea cucumber cerebroside (SCC) extracted from Acaudina molpadioides in fatty liver rats. METHODS Male Wistar rats were randomly divided into four groups including normal control group, NAFLD model group, and two SCC-treated groups with SCC at 0.006% and 0.03% respectively. The fatty liver model was established by administration of 1% orotic acid (OA) to the rats. After 10d, serum and hepatic lipid levels were detected. And the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were also determined. Besides, to gain the potential mechanism, the changes of key enzymes and gene expressions related to the hepatic lipid metabolism were measured. RESULTS Dietary SCC at the level of 0.006% and 0.03% ameliorated the hepatic lipid accumulation in fatty liver rats. SCC administration elevated the serum triglyceride (TG) level and the ALT, AST activities in OA-fed rats. The activities of hepatic lipogenic enzymes including fatty acid synthase (FAS), malic enzyme (ME) and glucose-6-phosphatedehydrogenase (G6PDH) were inhibited by SCC treatment. And the gene expressions of FAS, ME, G6PDH and sterol-regulatory element binding protein (SREBP-1c) were also reduced in rats fed SCC. However, dietary SCC didn't affect the activity and mRNA expression of carnitine palmitoyltransferase (CPT) in liver. Besides, suppression of microsomal triglyceride transfer protein (MTP) activity was observed in SCC-feeding rats. CONCLUSIONS These results suggested that dietary SCC could attenuate hepatic steatosis due to its inhibition of hepatic lipogenic gene expression and enzyme activity and the enhancement of TG secretion from liver.
Collapse
Affiliation(s)
- Bei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Boggs JM, Rangaraj G, Dicko A. Effect of phosphorylation of phosphatidylinositol on myelin basic protein-mediated binding of actin filaments to lipid bilayers in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2217-27. [PMID: 22538354 DOI: 10.1016/j.bbamem.2012.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/10/2012] [Indexed: 12/14/2022]
Abstract
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocytes and is believed to be responsible for adhesion of these surfaces in the multilayered myelin sheath. It can also assemble actin filaments and tether them to lipid bilayers through electrostatic interactions. Here we investigate the effect of increased negative charge of the lipid bilayer due to phosphorylation of phosphatidylinositol (PI) on MBP-mediated binding of actin to the lipid bilayer, by substituting phosphatidylinositol 4-phosphate or phosphatidylinositol 4,5-bisphosphate for PI in phosphatidylcholine/phosphatidylglycerol lipid vesicles. Phosphorylation of PI caused dissociation of the MBP/actin complex from the lipid vesicles due to repulsion of the negatively charged complex from the negatively charged membrane surface. An effect of phosphorylation could be detected even if the inositol lipid was only 2mol% of the total lipid. Calcium-calmodulin dissociated actin from the MBP-lipid vesicles and phosphorylation of PI increased the amount dissociated. These results show that changes to the lipid composition of myelin, which could occur during signaling or other physiological events, could regulate the ability of MBP to act as a scaffolding protein and bind actin filaments to the lipid bilayer.
Collapse
Affiliation(s)
- Joan M Boggs
- Hospital for Sick Children, Toronto, ON, Canada.
| | | | | |
Collapse
|
29
|
Sergelius C, Slotte JP. Membrane properties of and cholesterol's interactions with a biologically relevant three-chain sphingomyelin: 3O-palmitoyl-N-palmitoyl-D-erythro-sphingomyelin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2841-8. [DOI: 10.1016/j.bbamem.2011.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/09/2011] [Accepted: 08/22/2011] [Indexed: 12/13/2022]
|
30
|
LeBoeuf AC, Ó Maoiléidigh D, Hudspeth AJ. Divalent counterions tether membrane-bound carbohydrates to promote the cohesion of auditory hair bundles. Biophys J 2011; 101:1316-25. [PMID: 21943412 DOI: 10.1016/j.bpj.2011.07.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/13/2011] [Accepted: 07/28/2011] [Indexed: 11/16/2022] Open
Abstract
The cell membranes in the hair bundle of an auditory hair cell confront a difficult task as the bundle oscillates in response to sound: for efficient mechanotransduction, all the component stereocilia of the hair bundle must move essentially in unison, shearing at their tips yet maintaining contact without membrane fusion. One mechanism by which this cohesion might occur is counterion-mediated attachment between glycan components of apposed stereociliary membranes. Using capillary electrophoresis, we showed that the stereociliary glycocalyx acts as a negatively charged polymer brush. We found by force-sensing photomicrometry that the stereocilia formed elastic connections with one another to various degrees depending on the surrounding ionic environment and the presence of N-linked sugars. Mg(2+) was a more potent mediator of attachment than was Ca(2+). The forces between stereocilia produced chaotic stick-slip behavior. These results indicate that counterion-mediated interactions in the glycocalyx contribute to the stereociliary coherence that is essential for hearing.
Collapse
Affiliation(s)
- Adria C LeBoeuf
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York, USA
| | | | | |
Collapse
|
31
|
Müthing J, Distler U. Advances on the compositional analysis of glycosphingolipids combining thin-layer chromatography with mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:425-479. [PMID: 19609886 DOI: 10.1002/mas.20253] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glycosphingolipids (GSLs), composed of a hydrophilic carbohydrate chain and a lipophilic ceramide anchor, play pivotal roles in countless biological processes, including infectious diseases and the development of cancer. Knowledge of the number and sequence of monosaccharides and their anomeric configuration and linkage type, which make up the principal items of the glyco code of biologically active carbohydrate chains, is essential for exploring the function of GSLs. As part of the investigation of the vertebrate glycome, GSL analysis is undergoing rapid expansion owing to the application of novel biochemical and biophysical technologies. Mass spectrometry (MS) takes part in the network of collaborations to further unravel structural and functional aspects within the fascinating world of GSLs with the ultimate aim to better define their role in human health and disease. However, a single-method analytical MS technique without supporting tools is limited yielding only partial structural information. Because of its superior resolving power, robustness, and easy handling, high-performance thin-layer chromatography (TLC) is widely used as an invaluable tool in GSL analysis. The intention of this review is to give an insight into current advances obtained by coupling supplementary techniques such as TLC and mass spectrometry. A retrospective view of the development of this concept and the recent improvements by merging (1) TLC separation of GSLs, (2) their detection with oligosaccharide-specific proteins, and (3) in situ MS analysis of protein-detected GSLs directly on the TLC plate, are provided. The procedure works on a nanogram scale and was successfully applied to the identification of cancer-associated GSLs in several types of human tumors. The combination of these two supplementary techniques opens new doors by delivering specific structural information of trace quantities of GSLs with only limited investment in sample preparation.
Collapse
Affiliation(s)
- Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany.
| | | |
Collapse
|
32
|
Piccinini M, Scandroglio F, Prioni S, Buccinnà B, Loberto N, Aureli M, Chigorno V, Lupino E, DeMarco G, Lomartire A, Rinaudo MT, Sonnino S, Prinetti A. Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Mol Neurobiol 2010; 41:314-40. [PMID: 20127207 DOI: 10.1007/s12035-009-8096-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 12/22/2009] [Indexed: 12/13/2022]
Abstract
Sphingolipids are polar membrane lipids present as minor components in eukaryotic cell membranes. Sphingolipids are highly enriched in nervous cells, where they exert important biological functions. They deeply affect the structural and geometrical properties and the lateral order of cellular membranes, modulate the function of several membrane-associated proteins, and give rise to important intra- and extracellular lipid mediators. Sphingolipid metabolism is regulated along the differentiation and development of the nervous system, and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system: sphingolipids in the nervous system participate to several signaling pathways controlling neuronal survival, migration, and differentiation, responsiveness to trophic factors, synaptic stability and synaptic transmission, and neuron-glia interactions, including the formation and stability of central and peripheral myelin. In several neurodegenerative diseases, sphingolipid metabolism is deeply deregulated, leading to the expression of abnormal sphingolipid patterns and altered membrane organization that participate to several events related to the pathogenesis of these diseases. The most impressive consequence of this deregulation is represented by anomalous sphingolipid-protein interactions that are at least, in part, responsible for the misfolding events that cause the fibrillogenic and amyloidogenic processing of disease-specific protein isoforms, such as amyloid beta peptide in Alzheimer's disease, huntingtin in Huntington's disease, alpha-synuclein in Parkinson's disease, and prions in transmissible encephalopathies. Targeting sphingolipid metabolism represents today an underexploited but realistic opportunity to design novel therapeutic strategies for the intervention in these diseases.
Collapse
Affiliation(s)
- Marco Piccinini
- Section of Biochemistry, Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bauer NG, Richter-Landsberg C, Ffrench-Constant C. Role of the oligodendroglial cytoskeleton in differentiation and myelination. Glia 2010; 57:1691-705. [PMID: 19455583 DOI: 10.1002/glia.20885] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oligodendrocytes, the myelin-forming cells of the central nervous system, are in culture characterized by an elaborate process network, terminating in flat membranous sheets that are rich in myelin-specific proteins and lipids, and spirally wrap axons forming a compact insulating layer in vivo. By analogy with other cell types, maintenance and stability of these processes, as well as the formation of the myelin sheath, likely rely on a pronounced cytoskeleton consisting of microtubules and microfilaments. While the specialized process of wrapping and compaction forming the myelin sheath is not well understood, considerably more is known about how cytoskeletal organization is mediated by extracellular and intracellular signals and other interaction partners during oligodendrocyte differentiation and myelination. Here, we review the current state of knowledge on the role of the oligodendrocyte cytoskeleton in differentiation with an emphasis on signal transduction mechanisms and will attempt to draw out implications for its significance in myelination.
Collapse
Affiliation(s)
- Nina G Bauer
- MRC Centre for Regenerative Medicine, Centre for Multiple Sclerosis Research, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom.
| | | | | |
Collapse
|
34
|
Igarashi Y, Kannagi R. Glycosphingolipids as mediators of phenotypic changes associated with development and cancer progression. J Biochem 2010; 147:3-8. [DOI: 10.1093/jb/mvp195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
35
|
Katagihallimath N, Mehanna A, Guseva D, Kleene R, Schachner M. Identification and validation of a Lewis x glycomimetic peptide. Eur J Cell Biol 2009; 89:77-86. [PMID: 19962782 DOI: 10.1016/j.ejcb.2009.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glycans play important roles in regulating cell recognition and interactions to fine tune development, and synaptic plasticity and regeneration in the adult nervous system. The spatial and temporal expression pattern of Lewis(x) (a terminal trisaccharide epitope characterized by alpha1,3-fucosyl-N-acetyl-lactosamine) in the nervous system indicates an important role of this epitope in neurogenesis and brain development. Localization of Lewis(x) in the proliferative subventricular zone of the developing nervous system and also its expression on stem cells of the adult nervous system suggests a role in neurogenesis and hence regeneration. To provide an alternative tool to elucidate the functional roles of Lewis(x), we screened a random peptide phage library against a Lewis(x)-specific antibody to identify a Lewis(x) glycomimetic peptide. We identified a peptide that specifically bound to the Lewis(x)-specific antibody and this binding could be competed by the Lewis(x) glycan. Different aspects of the Lewis(x) glycomimetic peptide were investigated by introducing it in in vitro assays measuring neurite outgrowth and in in vivo assays to determine its efficacy in regeneration of peripheral nerve and spinal cord after injury in adult mice. In vitro, neurite outgrowth triggered by the Lewis(x-)carrying adhesion molecule CD24 was abolished alike by the Lewis(x) glycan and the glycomimetic peptide, while no influence of the glycomimetic peptide was seen in regeneration. Our results validate the use of Lewis(x) glycomimetic peptide as a functionally equivalent structure to the Lewis(x) glycan.
Collapse
Affiliation(s)
- Nainesh Katagihallimath
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
36
|
Jackman N, Ishii A, Bansal R. Oligodendrocyte development and myelin biogenesis: parsing out the roles of glycosphingolipids. Physiology (Bethesda) 2009; 24:290-7. [PMID: 19815855 DOI: 10.1152/physiol.00016.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The myelin sheath is an extension of the oligoddendrocyte (OL) plasma membrane enriched in lipids that ensheaths the axons of the central and peripheral nervous system. Here, we review the involvement of glycosphingolipids in myelin/OL functions, including the regulation of OL differentiation, lipid raft-mediated trafficking and signaling, and neuron-glia interactions.
Collapse
Affiliation(s)
- Nicole Jackman
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA
| | | | | |
Collapse
|
37
|
Participation of galactosylceramide and sulfatide in glycosynapses between oligodendrocyte or myelin membranes. FEBS Lett 2009; 584:1771-8. [DOI: 10.1016/j.febslet.2009.11.074] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 01/05/2023]
|
38
|
Gupta G, Surolia A. Glycosphingolipids in microdomain formation and their spatial organization. FEBS Lett 2009; 584:1634-41. [PMID: 19941856 DOI: 10.1016/j.febslet.2009.11.070] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/17/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
Abstract
Plasma membranes regulate the influx and efflux of molecules across themselves and are also responsible for primary signal transduction between cells or within the same cell. Presence of lateral heterogeneity and the ability of reorganization are essential requirements for effective functioning of biomembranes. Lipid rafts are small, heterogeneous, dynamic domains enriched in glycosphingolipids, sphingomyelin and cholesterol, and profoundly influence membrane organization. Glycosphingolipids are inclined towards formation of liquid-ordered phases in membranes, both with and without cholesterol; they are therefore prime players in domain formation. Here, we discuss the role of glycosphingolipids in microdomain formation and their spatial organization within these rafts.
Collapse
Affiliation(s)
- Garima Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
39
|
On the biogenesis of myelin membranes: sorting, trafficking and cell polarity. FEBS Lett 2009; 584:1760-70. [PMID: 19896485 DOI: 10.1016/j.febslet.2009.10.085] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 11/22/2022]
Abstract
In the central nervous system, a multilayered membrane layer known as the myelin sheath enwraps axons, and is required for optimal saltatory signal conductance. The sheath develops from membrane processes that extend from the plasma membrane of oligodendrocytes and displays a unique lipid and protein composition. Myelin biogenesis is carefully regulated, and multiple transport pathways involving a variety of endosomal compartments are involved. Here we briefly summarize how the major myelin proteins proteolipid protein and myelin basic protein reach the sheath, and highlight potential mechanisms involved, including the role of myelin specific lipids and cell polarity related transport pathways.
Collapse
|
40
|
Quinn PJ. Long N-acyl fatty acids on sphingolipids are responsible for miscibility with phospholipids to form liquid-ordered phase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2267-76. [DOI: 10.1016/j.bbamem.2009.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/18/2009] [Accepted: 06/25/2009] [Indexed: 01/06/2023]
|
41
|
Harauz G, Ladizhansky V, Boggs JM. Structural Polymorphism and Multifunctionality of Myelin Basic Protein. Biochemistry 2009; 48:8094-104. [DOI: 10.1021/bi901005f] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Joan M. Boggs
- Department of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada
| |
Collapse
|
42
|
Myelin, DIGs, and membrane rafts in the central nervous system. Prostaglandins Other Lipid Mediat 2009; 91:118-29. [PMID: 19379822 DOI: 10.1016/j.prostaglandins.2009.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 11/21/2022]
Abstract
Over the past 40 years our understanding of the organization of cell membranes has changed dramatically. Membranes are no longer viewed as a homogenous sea of phospholipids studded with randomly positioned islands of proteins. Our current view of the membrane involves the formation of small lipid clusters, comprised mainly of cholesterol and sphingolipids, known as membrane rafts. These lipid clusters apparently include and exclude specific proteins leading to the hypothesis that these domains (1) regulate cellular polarity and compartmentalization through trafficking and sorting, (2) provide platforms for cellular signaling and adhesion, and (3) function as cellular gate keepers. Tremendous controversy surrounds the concept of membrane rafts primarily because these small, highly dynamic entities are too small to be observed with traditional microscopic methods and the most utilized approach for raft analysis relies on poorly quantified, inconsistent biochemical extractions. New analytical approaches are being developed and applied to the study of membrane rafts and these techniques provide great promise for furthering our understanding of these enigmatic domains. In this review we will provide a brief summary of the current understanding of membrane rafts, utilizing the CNS myelin literature for illustrative purposes, and present caveats that should be considered when studying these domains.
Collapse
|
43
|
Narayan S, Head SR, Gilmartin TJ, Dean B, Thomas EA. Evidence for disruption of sphingolipid metabolism in schizophrenia. J Neurosci Res 2009; 87:278-88. [PMID: 18683247 DOI: 10.1002/jnr.21822] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As the field of glycobiology grows, important roles for glycolipids and glycoproteins in neurological disorders are being increasingly appreciated. However, few studies have explored the involvement of these molecules in the pathology of psychiatric illnesses. We investigated molecular differences related to glycobiology in subjects with schizophrenia by analyzing gene expression profiles using a focused glycogene chip, a custom-designed oligonucleotide array containing genes encoding proteins related to glycobiology, including glycosyltransferases, carbohydrate-binding proteins, proteoglycans, and adhesion molecules. We measured expression profiles in prefrontal cortical (BA46) samples from schizophrenic subjects and matched controls. We find differential expression of genes particularly related to glycosphingolipid/sphingolipid metabolism and N- and O-linked glycan biosynthesis in subjects with schizophrenia. Expression decreases of seven genes associated with these pathways, UGT8, SGPP1, GALC, B4GALT6, SPTLC2, ASAH1, and GAL3ST1, were validated by quantitative PCR in schizophrenic subjects with short-term illness. Only one of these genes, SPTLC2, showed differential expression in chronic schizophrenic subjects, although an increase in expression was observed. Covariate analysis showed that the expression of five of these genes was significantly positively correlated with age in schizophrenic, but not control, subjects. These changing patterns of expression could represent an adaptive response to pathology with disease progression or a compensatory effect of antipsychotic medication, although no significant correlations between gene expression levels and drug doses were observed. Disruption of sphingolipid metabolism early in illness could result in widespread downstream effects encompassing diverse pathological deficits already described in schizophrenia, especially those involving myelination and oligodendrocyte function; hence, this system may represent an important link in schizophrenia pathology.
Collapse
Affiliation(s)
- Sujatha Narayan
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Westerlund B, Slotte JP. How the molecular features of glycosphingolipids affect domain formation in fluid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:194-201. [DOI: 10.1016/j.bbamem.2008.11.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/28/2008] [Accepted: 11/12/2008] [Indexed: 12/11/2022]
|
46
|
Anupriwan A, Schenk M, Kongmanas K, Vanichviriyakit R, Santos DC, Yaghoubian A, Liu F, Wu A, Berger T, Faull KF, Saitongdee P, Sretarugsa P, Tanphaichitr N. Presence of arylsulfatase A and sulfogalactosylglycerolipid in mouse ovaries: localization to the corpus luteum. Endocrinology 2008; 149:3942-51. [PMID: 18420734 PMCID: PMC2488217 DOI: 10.1210/en.2008-0281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Arylsulfatase A (AS-A) is a lysosomal enzyme, which catalyzes the desulfation of certain sulfogalactolipids, including sulfogalactosylglycerolipid (SGG), a molecule implicated in cell adhesion. In this report, immunocytochemistry revealed the selective presence of AS-A in the corpus luteum of mouse ovaries. Immunoblotting indicated that mouse corpus luteum AS-A had a molecular mass of 66 kDa, similar to AS-A of other tissues. Corpus luteum AS-A was active, capable of desulfating the artificial substrate, p-nitrocatechol sulfate, at the optimum pH of five. To understand further the role of AS-A in female reproduction, levels of AS-A were determined during corpus luteum development in pseudopregnant mice and during luteolysis after cessation of pseudopregnancy. Immunocytochemistry, immunoblotting and desulfation activity showed that AS-A expression was evident at the onset of pseudopregnancy in the newly formed corpora lutea, and its level increased steadily during gland development. The increase in the expression and activity of AS-A continued throughout luteolysis after the decrease in serum progesterone levels. We also observed the selective presence of SGG on the luteal cell surface in developed corpora lutea, as shown by immunofluorescence of mouse ovary sections as well as high-performance thin-layer chromatography of lipids isolated from mouse and pig corpora lutea. The identity of the "SGG" band on the thin layer silica plate was further validated by electrospray ionization mass spectrometry. Significantly, SGG disappeared in regressing corpora lutea. Therefore, lysosomal AS-A may be involved in cell-surface remodeling during luteolysis by desulfating SGG after its endocytosis and targeting to the lysosome.
Collapse
Affiliation(s)
- Araya Anupriwan
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|