1
|
Wei W, Wang L, Pan S, Wang H, Xia Z, Liu L, Xiao Y, Bravo A, Soberón M, Yang Y, Liu K. Helicoverpa armigera GATAe transcriptional factor regulates the expression of Bacillus thuringiensis Cry1Ac receptor gene ABCC2 by its interplay with additional transcription factors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105516. [PMID: 37532331 DOI: 10.1016/j.pestbp.2023.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Helicoverpa armigera is a worldwide pest that has been efficiently controlled by transgenic plants expressing Bt Cry toxins. To exert toxicity, Cry toxins bind to different receptors located in larval midgut cells. Previously, we reported that GATA transcription factor GATAe activates the expression of multiple H. armigera Cry1Ac receptors in different insect cell lines. Here, the mechanism involved in GATAe regulation of HaABCC2 gene expression, a key receptor of Cry1Ac, was analyzed. HaGATAe gene silencing by RNAi in H. armigera larvae confirmed the activation role of HaGATAe on the expression of HaABCC2 in the midgut. The contribution of all potential GATAe-binding sites was analyzed by site-directed mutagenesis using Hi5 cells expressing a reporter gene under regulation of different modified HaABCC2 promoters. DNA pull-down assays revealed that GATAe bound to different predicted GATA-binding sites and mutations of the different GATAe-binding sites identified two binding sites responsible for the promoter activity. The binding site B9, which is located near the transcription initiator site, has a major contribution on HaABCC2 expression. Also, DNA pull-down assays revealed that all other members of GATA TF family in H. armigera, besides GATAe, HaGATAa, HaGATAb, HaGATAc and HaGATAd also bound to the HaABCC2 promoter and decreased the GATAe dependent promoter activity. Finally, the potential participation in the regulation of HaABCC2 promoter of several TFs other than GATA TFs expressed in the midgut cells was analyzed. HaHR3 inhibited the GATAe dependent activity of the HaABCC2 promoter, while two other midgut-related TFs, HaCDX and HaSox21, also bound to the HaABCC2 promoter region and increased the GATAe dependent promoter activity. All these data showed that GATAe induces HaABCC2 expression by binding to HaGATAe binding sites in the promoter region and that additional TFs participate in modulating the HaGATAe-driven expression of HaABCC2.
Collapse
Affiliation(s)
- Wei Wei
- School of Life Sciences, Central China Normal University, Wuhan 430070, China; Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan 430415, China
| | - Ling Wang
- Institute of Hubei Agriculture Academy, Wuhan 430070, China
| | - Shuang Pan
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Haixia Wang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Zhichao Xia
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Leilei Liu
- School of Life Sciences, Central China Normal University, Wuhan 430070, China; Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan 430415, China
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Yongbo Yang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China.
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan 430070, China.
| |
Collapse
|
2
|
Hodge RA, Ghannam M, Edmond E, de la Torre F, D’Alterio C, Kaya NH, Resnik-Docampo M, Reiff T, Jones DL. The septate junction component bark beetle is required for Drosophila intestinal barrier function and homeostasis. iScience 2023; 26:106901. [PMID: 37332603 PMCID: PMC10276166 DOI: 10.1016/j.isci.2023.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Age-related loss of intestinal barrier function has been documented across species, but the causes remain unknown. The intestinal barrier is maintained by tight junctions (TJs) in mammals and septate junctions (SJs) in insects. Specialized TJs/SJs, called tricellular junctions (TCJs), are located at the nexus of three adjacent cells, and we have shown that aging results in changes to TCJs in intestines of adult Drosophila melanogaster. We now demonstrate that localization of the TCJ protein bark beetle (Bark) decreases in aged flies. Depletion of bark from enterocytes in young flies led to hallmarks of intestinal aging and shortened lifespan, whereas depletion of bark in progenitor cells reduced Notch activity, biasing differentiation toward the secretory lineage. Our data implicate Bark in EC maturation and maintenance of intestinal barrier integrity. Understanding the assembly and maintenance of TCJs to ensure barrier integrity may lead to strategies to improve tissue integrity when function is compromised.
Collapse
Affiliation(s)
- Rachel A. Hodge
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mirna Ghannam
- Institute of Genetics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Emma Edmond
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fernando de la Torre
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cecilia D’Alterio
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nida Hatice Kaya
- Institute of Genetics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martin Resnik-Docampo
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tobias Reiff
- Institute of Genetics, Heinrich-Heine-University, Düsseldorf, Germany
| | - D. Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94143, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Li Y, Wang W, Lim HY. Drosophila transmembrane protein 214 (dTMEM214) regulates midgut glucose uptake and systemic glucose homeostasis. Dev Biol 2023; 495:92-103. [PMID: 36657508 PMCID: PMC9905329 DOI: 10.1016/j.ydbio.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
The availability of glucose transporter in the small intestine critically determines the capacity for glucose uptake and consequently systemic glucose homeostasis. Hence a better understanding of the physiological regulation of intestinal glucose transporter is pertinent. However, the molecular mechanisms that regulate sodium-glucose linked transporter 1 (SGLT1), the primary glucose transporter in the small intestine, remain incompletely understood. Recently, the Drosophila SLC5A5 (dSLC5A5) has been found to exhibit properties consistent with a dietary glucose transporter in the Drosophila midgut, the equivalence of the mammalian small intestine. Hence, the fly midgut could serve as a suitable model system for the study of the in vivo molecular underpinnings of SGLT1 function. Here, we report the identification, through a genetic screen, of Drosophila transmembrane protein 214 (dTMEM214) that acts in the midgut enterocytes to regulate systemic glucose homeostasis and glucose uptake. We show that dTMEM214 resides in the apical membrane and cytoplasm of the midgut enterocytes, and that the proper subcellular distribution of dTMEM214 in the enterocytes is regulated by the Rab4 GTPase. As a corollary, Rab4 loss-of-function phenocopies dTMEM214 loss-of-function in the midgut as shown by a decrease in enterocyte glucose uptake and an alteration in systemic glucose homeostasis. We further show that dTMEM214 regulates the apical membrane localization of dSLC5A5 in the enterocytes, thereby revealing dTMEM214 as a molecular regulator of glucose transporter in the midgut.
Collapse
Affiliation(s)
- Yue Li
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Weidong Wang
- Department of Medicine, Section of Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hui-Ying Lim
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Drosophila Solute Carrier 5A5 Regulates Systemic Glucose Homeostasis by Mediating Glucose Absorption in the Midgut. Int J Mol Sci 2021; 22:ijms222212424. [PMID: 34830305 PMCID: PMC8617630 DOI: 10.3390/ijms222212424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
The small intestine is the initial site of glucose absorption and thus represents the first of a continuum of events that modulate normal systemic glucose homeostasis. A better understanding of the regulation of intestinal glucose transporters is therefore pertinent to our efforts in curbing metabolic disorders. Using molecular genetic approaches, we investigated the role of Drosophila Solute Carrier 5A5 (dSLC5A5) in regulating glucose homeostasis by mediating glucose uptake in the fly midgut. By genetically knocking down dSLC5A5 in flies, we found that systemic and circulating glucose and trehalose levels are significantly decreased, which correlates with an attenuation in glucose uptake in the enterocytes. Reciprocally, overexpression of dSLC5A5 significantly increases systemic and circulating glucose and trehalose levels and promotes glucose uptake in the enterocytes. We showed that dSLC5A5 undergoes apical endocytosis in a dynamin-dependent manner, which is essential for glucose uptake in the enterocytes. Furthermore, we showed that the dSLC5A5 level in the midgut is upregulated by glucose and that dSLC5A5 critically directs systemic glucose homeostasis on a high-sugar diet. Together, our studies have uncovered the first Drosophila glucose transporter in the midgut and revealed new mechanisms that regulate glucose transporter levels and activity in the enterocyte apical membrane.
Collapse
|
5
|
Wu K, Tang Y, Zhang Q, Zhuo Z, Sheng X, Huang J, Ye J, Li X, Liu Z, Chen H. Aging-related upregulation of the homeobox gene caudal represses intestinal stem cell differentiation in Drosophila. PLoS Genet 2021; 17:e1009649. [PMID: 34228720 PMCID: PMC8284806 DOI: 10.1371/journal.pgen.1009649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/16/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
The differentiation efficiency of adult stem cells undergoes a significant decline in aged animals, which is closely related to the decline in organ function and age-associated diseases. However, the underlying mechanisms that ultimately lead to this observed decline of the differentiation efficiency of stem cells remain largely unclear. This study investigated Drosophila midguts and identified an obvious upregulation of caudal (cad), which encodes a homeobox transcription factor. This factor is traditionally known as a central regulator of embryonic anterior-posterior body axis patterning. This study reports that depletion of cad in intestinal stem/progenitor cells promotes quiescent intestinal stem cells (ISCs) to become activate and produce enterocytes in the midgut under normal gut homeostasis conditions. However, overexpression of cad results in the failure of ISC differentiation and intestinal epithelial regeneration after injury. Moreover, this study suggests that cad prevents intestinal stem/progenitor cell differentiation by modulating the Janus kinase/signal transducers and activators of the transcription pathway and Sox21a-GATAe signaling cascade. Importantly, the reduction of cad expression in intestinal stem/progenitor cells restrained age-associated gut hyperplasia in Drosophila. This study identified a function of the homeobox gene cad in the modulation of adult stem cell differentiation and suggested a potential gene target for the treatment of age-related diseases induced by age-related stem cell dysfunction. Adult stem cells undergo an aging-related decline of differentiation efficiency in aged animals. However, the underlying mechanisms that ultimately lead to this observed decline of differentiation efficiency in stem cells still remain largely unclear. By using the Drosophila midgut as a model system, this study identified the homeobox family transcription factor gene caudal (cad), the expression of which is significantly upregulated in intestinal stem cells (ISCs) and progenitor cells of aged Drosophila. Depletion of cad promoted quiescent ISCs to become activate and produce enterocytes (ECs) in midguts under normal gut homeostasis conditions; However, overexpression of cad resulted in the failure of ISC differentiation and intestinal epithelial regeneration after injury. Moreover, cad prevents ISC-to-EC differentiation by inhibiting JAK/STAT signaling, and the expressions of Sox21a and GATAe. Reduction of cad expression in intestinal stem/progenitor cells restrained age-associated gut hyperplasia in Drosophila. These findings enable a detailed understanding of the roles of homeobox genes in the modulation of adult stem cell aging in humans. This will be beneficial for the treatment of age-associated diseases that are caused by a functional decline of stem cells.
Collapse
Affiliation(s)
- Kun Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiming Tang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiaoqiao Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhangpeng Zhuo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Sheng
- Laboratory for Aging and Stem Cell Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingping Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie’er Ye
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaorong Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiming Liu
- Laboratory for Aging and Stem Cell Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- Laboratory for Aging and Stem Cell Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
6
|
Ewe CK, Alok G, Rothman JH. Stressful development: integrating endoderm development, stress, and longevity. Dev Biol 2020; 471:34-48. [PMID: 33307045 DOI: 10.1016/j.ydbio.2020.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
In addition to performing digestion and nutrient absorption, the intestine serves as one of the first barriers to the external environment, crucial for protecting the host from environmental toxins, pathogenic invaders, and other stress inducers. The gene regulatory network (GRN) governing embryonic development of the endoderm and subsequent differentiation and maintenance of the intestine has been well-documented in C. elegans. A key regulatory input that initiates activation of the embryonic GRN for endoderm and mesoderm in this animal is the maternally provided SKN-1 transcription factor, an ortholog of the vertebrate Nrf1 and 2, which, like C. elegans SKN-1, perform conserved regulatory roles in mediating a variety of stress responses across metazoan phylogeny. Other key regulatory factors in early gut development also participate in stress response as well as in innate immunity and aging and longevity. In this review, we discuss the intersection between genetic nodes that mediate endoderm/intestine differentiation and regulation of stress and homeostasis. We also consider how direct signaling from the intestine to the germline, in some cases involving SKN-1, facilitates heritable epigenetic changes, allowing transmission of adaptive stress responses across multiple generations. These connections between regulation of endoderm/intestine development and stress response mechanisms suggest that varying selective pressure exerted on the stress response pathways may influence the architecture of the endoderm GRN, thereby leading to genetic and epigenetic variation in early embryonic GRN regulatory events.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Geneva Alok
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
7
|
Hung RJ, Hu Y, Kirchner R, Liu Y, Xu C, Comjean A, Tattikota SG, Li F, Song W, Ho Sui S, Perrimon N. A cell atlas of the adult Drosophila midgut. Proc Natl Acad Sci U S A 2020; 117:1514-1523. [PMID: 31915294 PMCID: PMC6983450 DOI: 10.1073/pnas.1916820117] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studies of the adult Drosophila midgut have led to many insights in our understanding of cell-type diversity, stem cell regeneration, tissue homeostasis, and cell fate decision. Advances in single-cell RNA sequencing provide opportunities to identify new cell types and molecular features. We used single-cell RNA sequencing to characterize the transcriptome of midgut epithelial cells and identified 22 distinct clusters representing intestinal stem cells, enteroblasts, enteroendocrine cells (EEs), and enterocytes. This unbiased approach recovered most of the known intestinal stem cells/enteroblast and EE markers, highlighting the high quality of the dataset, and led to insights on intestinal stem cell biology, cell type-specific organelle features, the roles of new transcription factors in progenitors and regional variation along the gut, 5 additional EE gut hormones, EE hormonal expression diversity, and paracrine function of EEs. To facilitate mining of this rich dataset, we provide a web-based resource for visualization of gene expression in single cells. Altogether, our study provides a comprehensive resource for addressing functions of genes in the midgut epithelium.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
| | - Yanhui Hu
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Rory Kirchner
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Yifang Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Chiwei Xu
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Aram Comjean
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | | - Fangge Li
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Wei Song
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Shannan Ho Sui
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
8
|
Resnik-Docampo M, Sauer V, Schinaman JM, Clark RI, Walker DW, Jones DL. Keeping it tight: The relationship between bacterial dysbiosis, septate junctions, and the intestinal barrier in Drosophila. Fly (Austin) 2018; 12:34-40. [PMID: 29455581 PMCID: PMC5927685 DOI: 10.1080/19336934.2018.1441651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023] Open
Abstract
Maladaptive changes in the intestinal flora, typically referred to as bacterial dysbiosis, have been linked to intestinal aging phenotypes, including an increase in intestinal stem cell (ISC) proliferation, activation of inflammatory pathways, and increased intestinal permeability1,2. However, the causal relationships between these phenotypes are only beginning to be unravelled. We recently characterized the age-related changes that occur to septate junctions (SJ) between adjacent, absorptive enterocytes (EC) in the fly intestine. Changes could be observed in the overall level of SJ proteins, as well as the localization of a subset of SJ proteins. Such age-related changes were particularly noticeable at tricellular junctions (TCJ)3. Acute loss of the Drosophila TCJ protein Gliotactin (Gli) in ECs led to rapid activation of stress signalling in stem cells and an increase in ISC proliferation, even under axenic conditions; a gradual disruption of the intestinal barrier was also observed. The uncoupling of changes in bacteria from alterations in ISC behaviour and loss of barrier integrity has allowed us to begin to explore the interrelationship of these intestinal aging phenotypes in more detail and has shed light on the importance of the proteins that contribute to maintenance of the intestinal barrier.
Collapse
Affiliation(s)
- Martin Resnik-Docampo
- Department of Molecular, Cell, and Developmental Biology and University of California, Los Angeles, California, USA
| | - Vivien Sauer
- Department of Molecular, Cell, and Developmental Biology and University of California, Los Angeles, California, USA
| | - Joseph M. Schinaman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Rebecca I. Clark
- School of Biological and Biomedical Sciences, Durham University, Durham , UK
| | - David W. Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - D. Leanne Jones
- Department of Molecular, Cell, and Developmental Biology and University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, USA
| |
Collapse
|
9
|
Amitosis of Polyploid Cells Regenerates Functional Stem Cells in the Drosophila Intestine. Cell Stem Cell 2017; 20:609-620.e6. [PMID: 28343984 DOI: 10.1016/j.stem.2017.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/06/2016] [Accepted: 02/16/2017] [Indexed: 01/06/2023]
Abstract
Organ fitness depends on appropriate maintenance of stem cell populations, and aberrations in functional stem cell numbers are associated with malignancies and aging. Symmetrical division is the best characterized mechanism of stem cell replacement, but other mechanisms could also be deployed, particularly in situations of high stress. Here, we show that after severe depletion, intestinal stem cells (ISCs) in the Drosophila midgut are replaced by spindle-independent ploidy reduction of cells in the enterocyte lineage through a process known as amitosis. Amitosis is also induced by the functional loss of ISCs coupled with tissue demand and in aging flies, underscoring the generality of this mechanism. However, we also found that random homologous chromosome segregation during ploidy reduction can expose deleterious mutations through loss of heterozygosity. Together, our results highlight amitosis as an unappreciated mechanism for restoring stem cell homeostasis, but one with some associated risk in animals carrying mutations.
Collapse
|
10
|
Resnik-Docampo M, Koehler CL, Clark RI, Schinaman JM, Sauer V, Wong DM, Lewis S, D’Alterio C, Walker DW, Jones DL. Tricellular junctions regulate intestinal stem cell behaviour to maintain homeostasis. Nat Cell Biol 2017; 19:52-59. [PMID: 27992405 PMCID: PMC6336109 DOI: 10.1038/ncb3454] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/16/2016] [Indexed: 12/15/2022]
Abstract
Ageing results in loss of tissue homeostasis across taxa. In the intestine of Drosophila melanogaster, ageing is correlated with an increase in intestinal stem cell (ISC) proliferation, a block in terminal differentiation of progenitor cells, activation of inflammatory pathways, and increased intestinal permeability. However, causal relationships between these phenotypes remain unclear. Here, we demonstrate that ageing results in altered localization and expression of septate junction proteins in the posterior midgut, which is quite pronounced in differentiated enterocytes (ECs) at tricellular junctions (TCJs). Acute loss of the TCJ protein Gliotactin (Gli) in ECs results in increased ISC proliferation and a block in differentiation in intestines from young flies, demonstrating that compromised TCJ function is sufficient to alter ISC behaviour in a non-autonomous manner. Blocking the Jun N-terminal kinase signalling pathway is sufficient to suppress changes in ISC behaviour, but has no effect on loss of intestinal barrier function, as a consequence of Gli depletion. Our work demonstrates a pivotal link between TCJs, stem cell behaviour, and intestinal homeostasis and provides insights into causes of age-onset and gastrointestinal diseases.
Collapse
Affiliation(s)
- Martin Resnik-Docampo
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Christopher L. Koehler
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Rebecca I. Clark
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
| | - Joseph M. Schinaman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
| | - Vivien Sauer
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Daniel M. Wong
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Sophia Lewis
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Cecilia D’Alterio
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - David W. Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | - D. Leanne Jones
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
11
|
Gonen O, Toledano H. Why adult stem cell functionality declines with age? Studies from the fruit fly Drosophila melanogaster model organism. Curr Genomics 2014; 15:231-6. [PMID: 24955030 PMCID: PMC4064562 DOI: 10.2174/1389202915666140421213243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/12/2014] [Accepted: 04/19/2014] [Indexed: 02/08/2023] Open
Abstract
Highly regenerative adult tissues are supported by rare populations of stem cells that continuously divide to self-renew and generate differentiated progeny. This process is tightly regulated by signals emanating from surrounding cells to fulfill the dynamic demands of the tissue. One of the hallmarks of aging is slow and aberrant tissue regeneration due to deteriorated function of stem and supporting cells. Several Drosophila regenerative tissues are unique in that they provide exact identification of stem and neighboring cells in whole-tissue anatomy. This allows for precise tracking of age-related changes as well as their targeted manipulation within the tissue. In this review we present the stem cell niche of Drosophila testis, ovary and intestine and describe the major changes and phenotypes that occur in the course of aging. Specifically we discuss changes in both intrinsic properties of stem cells and their microenvironment that contribute to the decline in tissue functionality. Understanding these mechanisms in adult Drosophila tissues will likely provide new paradigms in the field of aging.
Collapse
Affiliation(s)
- Oren Gonen
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Hila Toledano
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel
| |
Collapse
|
12
|
Abstract
The digestive tract plays a central role in the digestion and absorption of nutrients. Far from being a passive tube, it provides the first line of defense against pathogens and maintains energy homeostasis by exchanging neuronal and endocrine signals with other organs. Historically neglected, the gut of the fruit fly Drosophila melanogaster has recently come to the forefront of Drosophila research. Areas as diverse as stem cell biology, neurobiology, metabolism, and immunity are benefitting from the ability to study the genetics of development, growth regulation, and physiology in the same organ. In this review, we summarize our knowledge of the Drosophila digestive tract, with an emphasis on the adult midgut and its functional underpinnings.
Collapse
Affiliation(s)
- Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland;
| | | |
Collapse
|
13
|
Myant KB, Scopelliti A, Haque S, Vidal M, Sansom OJ, Cordero JB. Rac1 drives intestinal stem cell proliferation and regeneration. Cell Cycle 2013; 12:2973-7. [PMID: 23974108 PMCID: PMC3875672 DOI: 10.4161/cc.26031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/02/2013] [Indexed: 12/22/2022] Open
Abstract
Adult stem cells are responsible for maintaining the balance between cell proliferation and differentiation within self-renewing tissues. The molecular and cellular mechanisms mediating such balance are poorly understood. The production of reactive oxygen species (ROS) has emerged as an important mediator of stem cell homeostasis in various systems. Our recent work demonstrates that Rac1-dependent ROS production mediates intestinal stem cell (ISC) proliferation in mouse models of colorectal cancer (CRC). Here, we use the adult Drosophila midgut and the mouse small intestine to directly address the role of Rac1 in ISC proliferation and tissue regeneration in response to damage. Our results demonstrate that Rac1 is necessary and sufficient to drive ISC proliferation and regeneration in an ROS-dependent manner. Our data point to an evolutionarily conserved role of Rac1 in intestinal homeostasis and highlight the value of combining work in the mammalian and Drosophila intestine as paradigms to study stem cell biology.
Collapse
Affiliation(s)
- Kevin B Myant
- The Beatson Institute for Cancer Research; Glasgow, UK
| | | | - Sara Haque
- The Beatson Institute for Cancer Research; Glasgow, UK
| | - Marcos Vidal
- The Beatson Institute for Cancer Research; Glasgow, UK
| | - Owen J Sansom
- The Beatson Institute for Cancer Research; Glasgow, UK
| | | |
Collapse
|
14
|
Clayton AM, Cirimotich CM, Dong Y, Dimopoulos G. Caudal is a negative regulator of the Anopheles IMD pathway that controls resistance to Plasmodium falciparum infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:323-332. [PMID: 23178401 PMCID: PMC3892953 DOI: 10.1016/j.dci.2012.10.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 06/02/2023]
Abstract
Malaria parasite transmission depends upon the successful development of Plasmodium in its Anopheles mosquito vector. The mosquito's innate immune system constitutes a major bottleneck for parasite population growth. We show here that in Anopheles gambiae, the midgut-specific transcription factor Caudal acts as a negative regulator in the Imd pathway-mediated immune response against the human malaria parasite Plasmodium falciparum. Caudal also modulates the mosquito midgut bacterial flora. RNAi-mediated silencing of Caudal enhanced the mosquito's resistance to bacterial infections and increased the transcriptional abundance of key immune effector genes. Interestingly, Caudal's silencing resulted in an increased lifespan of the mosquito, while it impaired reproductive fitness with respect to egg laying and hatching.
Collapse
Affiliation(s)
| | | | | | - George Dimopoulos
- Corresponding author. Address: W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA. Tel.: 1-443-287-0128. Fax: 1-410-955-0105.
| |
Collapse
|
15
|
Andriatsilavo M, Gervais L, Fons C, Bardin AJ. [The Drosophila midgut as a model to study adult stem cells]. Med Sci (Paris) 2013; 29:75-81. [PMID: 23351697 DOI: 10.1051/medsci/2013291016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Constant renewal of cells occurs in most tissues throughout the adult lifetime and is insured by the activity of resident stem cells. Recent work has demonstrated the presence of adult stem cells in the Drosophila intestine and consequently, the Drosophila intestine has become a powerful model to understand adult stem cells in vivo. In this review, we summarize our current understanding of the mechanisms controlling cell fate decisions of the intestinal stem cells with a particular focus on the role of the Notch pathway in this process. We also summarize what is known about proliferation control of the intestinal stem cells, which is crucial to maintain tissue homeostasis during normal and environmentally stressful conditions.
Collapse
Affiliation(s)
- Mahéva Andriatsilavo
- Génétique et biologie du développement, Institut Curie, UMR 3215 CNRS, Inserm U934, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | |
Collapse
|
16
|
Barrier immune effectors are maintained during transition from nurse to forager in the honey bee. PLoS One 2013; 8:e54097. [PMID: 23320121 PMCID: PMC3540063 DOI: 10.1371/journal.pone.0054097] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 12/10/2012] [Indexed: 12/03/2022] Open
Abstract
Foragers facilitate horizontal pathogen transmission in honey bee colonies, yet their systemic immune function wanes during transition to this life stage. In general, the insect immune system can be categorized into mechanisms operating at both the barrier epithelial surfaces and at the systemic level. As proposed by the intergenerational transfer theory of aging, such immunosenescence may result from changes in group resource allocation. Yet, the relative influence of pathogen transmission and resource allocation on immune function in bees from different stages has not been examined in the context of barrier immunity. We find that expression levels of antimicrobial peptides (AMPs) in honey bee barrier epithelia of the digestive tract do not follow a life stage-dependent decrease. In addition, correlation of AMP transcript abundance with microbe levels reveals a number of microbe-associated changes in AMPs levels that are equivalent between nurses and foragers. These results favor a model in which barrier effectors are maintained in foragers as a first line of defense, while systemic immune effectors are dismantled to optimize hive-level resources. These findings have important implications for our understanding of immunosenescence in honey bees and other social insects.
Collapse
|
17
|
Abstract
There is growing interest in using Drosophila melanogaster to elucidate mechanisms that underlie the complex relationships between a host and its microbiota. In addition to the many genetic resources and tools Drosophila provides, its associated microbiota is relatively simple (1-30 taxa), in contrast to the complex diversity associated with vertebrates (> 500 taxa). These attributes highlight the potential of this system to dissect the complex cellular and molecular interactions that occur between a host and its microbiota. In this review, we summarize what is known regarding the composition of gut-associated microbes of Drosophila and their impact on host physiology. We also discuss these interactions in the context of their natural history and ecology and describe some recent insights into mechanisms by which Drosophila and its gut microbiota interact.
Collapse
Affiliation(s)
- Nichole Broderick
- Global Health Institute; School of Life Science; EPFL; Station 19; Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute; School of Life Science; EPFL; Station 19; Lausanne, Switzerland
| |
Collapse
|
18
|
Sahai-Hernandez P, Castanieto A, Nystul TG. Drosophila models of epithelial stem cells and their niches. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:447-57. [PMID: 23801493 DOI: 10.1002/wdev.36] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epithelial stem cells are regulated through a complex interplay of signals from diffusible ligands, cellular interactions, and attachment to the extracellular matrix. The development of Drosophila models of epithelial stem cells and their associated niche has made it possible to dissect the contribution of each of these factors in vivo, during both basal homeostasis and in response to acute damage such as infection. Studies of Drosophila epithelial stem cells have also provided insight into the mechanisms by which a healthy population of stem cells are maintained throughout adulthood by demonstrating, for example, that stem cells have a finite lifespan and may be displaced by replacement cells competing for niche occupancy. Here, we summarize the literature on each of the known Drosophila epithelial stem cells, with a focus on the two most well-characterized types, the follicle stem cells (FSCs) in the ovary and the intestinal stem cells (ISCs) in the posterior midgut. Several themes have emerged from these studies, which suggest that there may be a common set of features among niches in a variety of epithelia. For example, unlike the simpler Drosophila germline stem cell niches, both the FSC and ISC niches produce multiple, partially redundant, niche signals, some of which activate pathways such as Wnt/Wingless, Hedgehog, and epidermal growth factor (EGF) that also regulate mammalian epithelial tissue renewal. Further study into these relatively new stem cell models will be of use in understanding both the specifics of epithelial regeneration and the diversity of mechanisms that regulate adult stem cells in general.
Collapse
|
19
|
Abstract
Stem cell-mediated tissue repair is a promising approach in regenerative medicine. Intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. Recently, using lineage tracing and molecular marker labeling, intestinal stem cells (ISCs) have been identified in Drosophila adult midgut. ISCs reside at the basement membrane and are multipotent as they produce both enterocytes and enteroendocrine cells. The adult Drosophila midgut provides an excellent in vivo model organ to study ISC behavior during aging, stress, regeneration, and infection. It has been demonstrated that Notch, Janus kinase/signal transducer and activator of transcription, epidermal growth factor receptor/mitogen-activated protein kinase, Hippo, and wingless signaling pathways regulate ISCs proliferation and differentiation. There are plenty of genetic tools and markers developed in recent years in Drosophila stem cell studies. These tools and markers are essential in the precise identification of stem cells as well as manipulation of genes in stem cell regulation. Here, we describe the details of genetic tools, markers, and immunolabeling techniques used in identification and characterization of adult midgut stem cells in Drosophila.
Collapse
|
20
|
Seisenbacher G, Hafen E, Stocker H. MK2-dependent p38b signalling protects Drosophila hindgut enterocytes against JNK-induced apoptosis under chronic stress. PLoS Genet 2011; 7:e1002168. [PMID: 21829386 PMCID: PMC3150449 DOI: 10.1371/journal.pgen.1002168] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 05/19/2011] [Indexed: 02/04/2023] Open
Abstract
The integrity of the intestinal epithelium is crucial for the barrier function of the gut. Replenishment of the gut epithelium by intestinal stem cells contributes to gut homeostasis, but how the differentiated enterocytes are protected against stressors is less well understood. Here we use the Drosophila larval hindgut as a model system in which damaged enterocytes are not replaced by stem cell descendants. By performing a thorough genetic analysis, we demonstrate that a signalling complex consisting of p38b and MK2 forms a branch of SAPK signalling that is required in the larval hindgut to prevent stress-dependent damage to the enterocytes. Impaired p38b/MK2 signalling leads to apoptosis of the enterocytes and a subsequent loss of hindgut epithelial integrity, as manifested by the deterioration of the overlaying muscle layer. Damaged hindguts show increased JNK activity, and removing upstream activators of JNK suppresses the loss of hindgut homeostasis. Thus, the p38/MK2 complex ensures homeostasis of the hindgut epithelium by counteracting JNK-mediated apoptosis of the enterocytes upon chronic stress. The gut epithelium forms the first barrier against pathogens and stressors in the gut lumen, and a loss of this defence function can result in intestinal diseases. Damage in the gut epithelium triggers the proliferation of intestinal stem cells to replenish the epithelium. However, little is known about how the enterocytes are protecting themselves against stressors. We addressed the function of stress-activated protein kinase (SAPK) signal transduction pathways in the larval gut of Drosophila. Our study revealed that a particular module of the p38 SAPK signal cascade is required to protect the larval hindgut epithelium against chronic salt stress. We identified the two kinases, p38b and MK2, as key components of this protective signal. In the absence of p38b or MK2, the stress-inducible JNK cascade is locally upregulated and eventually induces apoptosis. Although the function of the p38b/MK2 module is only required in the enterocytes, the elimination of the affected cells results in atrophy of the overlaying muscle layer and subsequent systemic defects in the larvae (e.g., induction of antimicrobial peptides). We hope that our findings will contribute to a better understanding of early (i.e., pre-inflammatory) events in the development of human intestinal diseases.
Collapse
Affiliation(s)
- Gerhard Seisenbacher
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases (CC-SPMD), ETH Zurich, Zurich, Switzerland
| | - Ernst Hafen
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases (CC-SPMD), ETH Zurich, Zurich, Switzerland
| | - Hugo Stocker
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases (CC-SPMD), ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Abstract
Ageing is accompanied by a progressive decline in stem cell function, resulting in less effective tissue homeostasis and repair. Here we discuss emerging invertebrate models that provide insights into molecular pathways of age-related stem cell dysfunction in mammals, and we present various paradigms of how stem cell functionality changes with age, including impaired self-renewal and aberrant differentiation potential.
Collapse
|
22
|
Kuwamura M, Maeda K, Adachi-Yamada T. Mathematical modelling and experiments for the proliferation and differentiation of Drosophila intestinal stem cells II. JOURNAL OF BIOLOGICAL DYNAMICS 2011; 6:267-276. [PMID: 22873590 DOI: 10.1080/17513758.2011.560290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The Drosophila posterior midgut epithelium mainly consists of intestinal stem cells (ISCs); semi-differentiated cells, i.e. enteroblasts (EBs); and two types of fully differentiated cells, i.e. enteroendocrine cells (EEs) and enterocytes (ECs), which are controlled by signalling pathways. In [M. Kuwamura, K. Maeda, and T. Adachi-Yamada, Mathematical modeling and experiments for the proliferation and differentiation of Drosophila intestinal stem cells I, J. Biol. Dyn. 4 (2009), pp. 248-257], on the basis of the functions of the Wnt and Notch signalling pathways, we studied the regulatory mechanism for the proliferation and differentiation of ISCs under the assumption that the Wnt proteins are supplied from outside the cellular system of ISCs. In this paper, we experimentally show that the Wnt proteins are specifically expressed in ISCs, EBs, and EEs, and theoretically show that the cellular system of ISCs can be self-maintained under the assumption that the Wnt proteins are produced in the cellular system of ISCs. These results provide a useful basis for determining whether an environmental niche is required for maintaining the cellular system of tissue stem cells.
Collapse
Affiliation(s)
- Masataka Kuwamura
- Graduate School of Human Development and Environment, Kobe University, Kobe, 657-8501, Japan.
| | | | | |
Collapse
|
23
|
Bolling BW, Court MH, Blumberg JB, Chen CYO. Microsomal quercetin glucuronidation in rat small intestine depends on age and segment. Drug Metab Dispos 2011; 39:1406-14. [PMID: 21543555 DOI: 10.1124/dmd.111.038406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UDP-glucuronosyltransferase (UGT) activity toward the flavonoid quercetin and UGT protein were characterized in three equidistant small intestine (SI) segments from 4-, 12-, 18-, and 28-month-old male Fischer 344 rats (n = 8/age) using villin to control for enterocyte content. SI microsomal intrinsic clearance of quercetin was increased 3- to 9-fold from 4 months in the proximal and distal SI at 12 and 18 months. Likewise, at 30 μM quercetin, SI microsomal glucuronidation activity was increased with age: 4.8- and 3.9-fold greater at 18 months than at 4 months. Quercetin UGT regioselectivity was not changed by age. The distal SI preferentially catalyzed glucuronidation at the 7-position, whereas the proximal SI produced the greatest proportion of 4'- and 3'-conjugates. Enterocyte UGT content in different SI segments was not consistently changed with age. In the proximal SI, UGT1A increased 64 and 150% at 12 and 18 months and UGT1A1, UGT1A7, and UGT1A8 were also increased at 12 and 18 months. However, age-related changes in expression were inconsistent in the medial and distal segments. Microsomal rates of quercetin glucuronidation and UGT expression were positively correlated with UGT1A1 content for all pooled samples (r = 0.467) and at each age (r = 0.538-0.598). UGT1A7 was positively correlated with total, 7-O- and 3-O-quercetin glucuronidation at 18 months. Thus, age-related differences in UGT quercetin glucuronidation depend on intestinal segment, are more pronounced in the proximal and distal segments and may be partially related to UGT1A1 and UGT1A7 content.
Collapse
Affiliation(s)
- Bradley W Bolling
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
24
|
Apidianakis Y, Rahme LG. Drosophila melanogaster as a model for human intestinal infection and pathology. Dis Model Mech 2011; 4:21-30. [PMID: 21183483 PMCID: PMC3014343 DOI: 10.1242/dmm.003970] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recent findings concerning Drosophila melanogaster intestinal pathology suggest that this model is well suited for the study of intestinal stem cell physiology during aging, stress and infection. Despite the physiological divergence between vertebrates and insects, the modeling of human intestinal diseases is possible in Drosophila because of the high degree of conservation between Drosophila and mammals with respect to the signaling pathways that control intestinal development, regeneration and disease. Furthermore, the genetic amenability of Drosophila makes it an advantageous model species. The well-studied intestinal stem cell lineage, as well as the tools available for its manipulation in vivo, provide a promising framework that can be used to elucidate many aspects of human intestinal pathology. In this Perspective, we discuss recent advances in the study of Drosophila intestinal infection and pathology, and briefly review the parallels and differences between human and Drosophila intestinal regeneration and disease.
Collapse
Affiliation(s)
- Yiorgos Apidianakis
- Department of Surgery, Massachusetts General Hospital, 50 Blossom Street, Their 340, Boston, MA 02114, USA
| | | |
Collapse
|
25
|
Buchon N, Broderick NA, Chakrabarti S, Lemaitre B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 2009; 23:2333-44. [PMID: 19797770 DOI: 10.1101/gad.1827009] [Citation(s) in RCA: 550] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gut homeostasis is controlled by both immune and developmental mechanisms, and its disruption can lead to inflammatory disorders or cancerous lesions of the intestine. While the impact of bacteria on the mucosal immune system is beginning to be precisely understood, little is known about the effects of bacteria on gut epithelium renewal. Here, we addressed how both infectious and indigenous bacteria modulate stem cell activity in Drosophila. We show that the increased epithelium renewal observed upon some bacterial infections is a consequence of the oxidative burst, a major defense of the Drosophila gut. Additionally, we provide evidence that the JAK-STAT (Janus kinase-signal transducers and activators of transcription) and JNK (c-Jun NH(2) terminal kinase) pathways are both required for bacteria-induced stem cell proliferation. Similarly, we demonstrate that indigenous gut microbiota activate the same, albeit reduced, program at basal levels. Altered control of gut microbiota in immune-deficient or aged flies correlates with increased epithelium renewal. Finally, we show that epithelium renewal is an essential component of Drosophila defense against oral bacterial infection. Altogether, these results indicate that gut homeostasis is achieved by a complex interregulation of the immune response, gut microbiota, and stem cell activity.
Collapse
Affiliation(s)
- Nicolas Buchon
- Global Health Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|