1
|
Rajeev V, Chai YL, Poh L, Selvaraji S, Fann DY, Jo DG, De Silva TM, Drummond GR, Sobey CG, Arumugam TV, Chen CP, Lai MKP. Chronic cerebral hypoperfusion: a critical feature in unravelling the etiology of vascular cognitive impairment. Acta Neuropathol Commun 2023; 11:93. [PMID: 37309012 PMCID: PMC10259064 DOI: 10.1186/s40478-023-01590-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Vascular cognitive impairment (VCI) describes a wide spectrum of cognitive deficits related to cerebrovascular diseases. Although the loss of blood flow to cortical regions critically involved in cognitive processes must feature as the main driver of VCI, the underlying mechanisms and interactions with related disease processes remain to be fully elucidated. Recent clinical studies of cerebral blood flow measurements have supported the role of chronic cerebral hypoperfusion (CCH) as a major driver of the vascular pathology and clinical manifestations of VCI. Here we review the pathophysiological mechanisms as well as neuropathological changes of CCH. Potential interventional strategies for VCI are also reviewed. A deeper understanding of how CCH can lead to accumulation of VCI-associated pathology could potentially pave the way for early detection and development of disease-modifying therapies, thus allowing preventive interventions instead of symptomatic treatments.
Collapse
Affiliation(s)
- Vismitha Rajeev
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Luting Poh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Sharmelee Selvaraji
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - David Y Fann
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Wang Z, Zhang Y, Feng W, Pang Y, Chen S, Ding S, Chen Y, Sheng C, Marshall C, Shi J, Xiao M. Miconazole Promotes Cooperative Ability of a Mouse Model of Alzheimer Disease. Int J Neuropsychopharmacol 2022; 25:951-967. [PMID: 36112386 PMCID: PMC9670758 DOI: 10.1093/ijnp/pyac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cooperative defect is 1 of the earliest manifestations of disease patients with Alzheimer disease (AD) exhibit, but the underlying mechanism remains unclear. METHODS We evaluated the cooperative function of APP/PS1 transgenic AD model mice at ages 2, 5, and 8 months by using a cooperative drinking task. We examined neuropathologic changes in the medial prefrontal cortex (mPFC). Another experiment was designed to observe whether miconazole, which has a repairing effect on myelin sheath, could promote the cooperative ability of APP/PS1 mice in the early AD-like stage. We also investigated the protective effects of miconazole on cultured mouse cortical oligodendrocytes exposed to human amyloid β peptide (Aβ1-42). RESULTS We observed an age-dependent impairment of cooperative water drinking behavior in APP/PS1 mice. The AD mice with cooperative dysfunction showed decreases in myelin sheath thickness, oligodendrocyte nuclear heterochromatin percentage, and myelin basic protein expression levels in the mPFC. The cooperative ability was significantly improved in APP/PS1 mice treated with miconazole. Miconazole treatment increased oligodendrocyte maturation and myelin sheath thickness without reducing Aβ plaque deposition, reactive gliosis, and inflammatory factor levels in the mPFC. Miconazole also protected cultured oligodendrocytes from the toxicity of Aβ1-42. CONCLUSIONS These results demonstrate that mPFC hypomyelination is involved in the cooperative deficits of APP/PS1 mice. Improving myelination through miconazole therapy may offer a potential therapeutic approach for early intervention in AD.
Collapse
Affiliation(s)
| | | | - Weixi Feng
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China,Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yingting Pang
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China,Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Sijia Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China,Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shixin Ding
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China,Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China,Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chengyu Sheng
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Charles Marshall
- Department of Rehabilitation Sciences, University of Kentucky Center of Excellence in Rural Health, Hazard, USA
| | - Jingping Shi
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China,Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Xiao
- Correspondence: Ming Xiao, MD, PhD, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, No. 101 Longmian Ave, Nanjing 211166, China ()
| |
Collapse
|
3
|
Li C, Liu M, Xia J, Mei L, Yang Q, Shi F, Zhang H, Shen D. Predicting Brain Amyloid-β PET Grades with Graph Convolutional Networks Based on Functional MRI and Multi-Level Functional Connectivity. J Alzheimers Dis 2022; 86:1679-1693. [PMID: 35213377 DOI: 10.3233/jad-215497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The detection of amyloid-β (Aβ) deposition in the brain provides crucial evidence in the clinical diagnosis of Alzheimer's disease (AD). However, the current positron emission tomography (PET)-based brain Aβ examination suffers from the problems of coarse visual inspection (in many cases, with 2-class stratification) and high scanning cost. OBJECTIVE 1) To characterize the non-binary Aβ deposition levels in the AD continuum based on clustering of PET data, and 2) to explore the feasibility of predicting individual Aβ deposition grades with non-invasive functional magnetic resonance imaging (fMRI). METHODS 1) Individual whole-brain Aβ-PET images from the OASIS-3 dataset (N = 258) were grouped into three clusters (grades) with t-SNE and k-means. The demographical data as well as global and regional standard uptake value ratios (SUVRs) were compared among the three clusters with Chi-square tests or ANOVA tests. 2) From resting-state fMRI, both conventional functional connectivity (FC) and high-order FC networks were constructed and the topological architectures of the two networks were jointly learned with graph convolutional networks (GCNs) to predict the Aβ-PET grades for each individual. RESULTS We found three clearly separated clusters, indicating three Aβ-PET grades. There were significant differences in gender, age, cognitive ability, APOE type, as well as global and regional SUVRs among the three grades we found. The prediction of Aβ-PET grades with GCNs on FC for the 258 participants in the AD continuum reached a satisfactory averaged accuracy (78.8%) in the two-class classification tasks. CONCLUSION The results demonstrated the feasibility of using deep learning on a non-invasive brain functional imaging technique to approximate PET-based Aβ deposition grading.
Collapse
Affiliation(s)
- Chaolin Li
- School of Education, Guangzhou University, Guangzhou, China.,School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Mianxin Liu
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Jing Xia
- Institute of Brain-Intelligence Technology, Zhangjiang Lab, Shanghai, China
| | - Lang Mei
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Qing Yang
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Feng Shi
- Department of Research and Development, United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Han Zhang
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Dinggang Shen
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China.,Department of Research and Development, United Imaging Intelligence Co., Ltd., Shanghai, China
| |
Collapse
|
4
|
Sotolongo K, Ghiso J, Rostagno A. Nrf2 activation through the PI3K/GSK-3 axis protects neuronal cells from Aβ-mediated oxidative and metabolic damage. ALZHEIMERS RESEARCH & THERAPY 2020; 12:13. [PMID: 31931869 PMCID: PMC6958642 DOI: 10.1186/s13195-019-0578-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/30/2019] [Indexed: 01/08/2023]
Abstract
Background Mounting evidence points to a crucial role of amyloid-β (Aβ) in the pathophysiology of Alzheimer’s disease (AD), a disorder in which brain glucose hypometabolism, downregulation of central elements of phosphorylation pathways, reduced ATP levels, and enhanced oxidative damage coexist, and sometimes precede, synaptic alterations and clinical manifestations. Since the brain has limited energy storage capacity, mitochondria play essential roles in maintaining the high levels of energy demand, but, as major consumers of oxygen, these organelles are also the most important generators of reactive oxygen species (ROS). Thus, it is not surprising that mitochondrial dysfunction is tightly linked to synaptic loss and AD pathophysiology. In spite of their relevance, the mechanistic links among ROS homeostasis, metabolic alterations, and cell bioenergetics, particularly in relation to Aβ, still remain elusive. Methods We have used classic biochemical and immunocytochemical approaches together with the evaluation of real-time changes in global energy metabolism in a Seahorse Metabolic Analyzer to provide insights into the detrimental role of oligAβ in SH-SY5Y and primary neurons testing their pharmacologic protection by small molecules. Results Our findings indicate that oligomeric Aβ induces a dramatic increase in ROS production and severely affects neuronal metabolism and bioenergetics. Assessment of global energy metabolism in real time demonstrated Aβ-mediated reduction in oxygen consumption affecting basal and maximal respiration and causing decreased ATP production. Pharmacologic targeting of Aβ-challenged neurons with a set of small molecules of known antioxidant and cytoprotective activity prevented the metabolic/bioenergetic changes induced by the peptide, fully restoring mitochondrial function while inducing an antioxidant response that counterbalanced the ROS production. Search for a mechanistic link among the protective small molecules tested identified the transcription factor Nrf2—compromised by age and downregulated in AD and transgenic models—as their main target and the PI3K/GSK-3 axis as the central pathway through which the compounds elicit their Aβ protective action. Conclusions Our study provides insights into the complex molecular mechanisms triggered by oligAβ which profoundly affect mitochondrial performance and argues for the inclusion of small molecules targeting the PI3K/GSK-3 axis and Nrf2-mediated pathways as part of the current or future combinatorial therapies.
Collapse
Affiliation(s)
- Krystal Sotolongo
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA. .,Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
5
|
Malishev R, Nandi S, Śmiłowicz D, Bakavayev S, Engel S, Bujanover N, Gazit R, Metzler-Nolte N, Jelinek R. Interactions between BIM Protein and Beta-Amyloid May Reveal a Crucial Missing Link between Alzheimer's Disease and Neuronal Cell Death. ACS Chem Neurosci 2019; 10:3555-3564. [PMID: 31141342 DOI: 10.1021/acschemneuro.9b00177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extensive neuronal cell death is among the pathological hallmarks of Alzheimer's disease. While neuron death is coincident with formation of plaques comprising the beta-amyloid (Aβ) peptide, a direct causative link between Aβ (or other Alzheimer's-associated proteins) and cell toxicity is yet to be found. Here we show that BIM-BH3, the primary proapoptotic domain of BIM, a key protein in varied apoptotic cascades of which elevated levels have been found in brain cells of patients afflicted with Alzheimer's disease, interacts with the 42-residue amyloid isoform Aβ42. Remarkably, BIM-BH3 modulated the structure, fibrillation pathway, aggregate morphology, and membrane interactions of Aβ42. In particular, BIM-BH3 inhibited Aβ42 fibril-formation, while it simultaneously enhanced protofibril assembly. Furthermore, we discovered that BIM-BH3/Aβ42 interactions induced cell death in a human neuroblastoma cell model. Overall, our data provide a crucial mechanistic link accounting for neuronal cell death in Alzheimer's disease patients and the participation of both BIM and Aβ42 in the neurotoxicity process.
Collapse
Affiliation(s)
- Ravit Malishev
- Department of Chemistry and Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sukhendu Nandi
- Inorganic Chemistry I – Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Dariusz Śmiłowicz
- Inorganic Chemistry I – Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nir Bujanover
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Roi Gazit
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nils Metzler-Nolte
- Inorganic Chemistry I – Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Raz Jelinek
- Department of Chemistry and Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
6
|
Lanza G, Cantone M, Musso S, Borgione E, Scuderi C, Ferri R. Early-onset subcortical ischemic vascular dementia in an adult with mtDNA mutation 3316G>A. J Neurol 2018; 265:968-969. [PMID: 29464373 DOI: 10.1007/s00415-018-8795-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Giuseppe Lanza
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, 94018, Troina, Italy.
| | | | - Sabrina Musso
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, 94018, Troina, Italy
| | - Eugenia Borgione
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, 94018, Troina, Italy
| | - Carmela Scuderi
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, 94018, Troina, Italy
| | - Raffaele Ferri
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, 94018, Troina, Italy
| |
Collapse
|
7
|
Early-onset subcortical ischemic vascular dementia in an adult with mtDNA mutation 3316G>A. J Neurol 2018. [PMID: 29464373 DOI: 10.1007/s00415-018-8795-x.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Cheng B, Li Y, Ma L, Wang Z, Petersen RB, Zheng L, Chen Y, Huang K. Interaction between amyloidogenic proteins and biomembranes in protein misfolding diseases: Mechanisms, contributors, and therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1876-1888. [PMID: 29466701 DOI: 10.1016/j.bbamem.2018.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
The toxic deposition of misfolded amyloidogenic proteins is associated with more than fifty protein misfolding diseases (PMDs), including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. Protein deposition is a multi-step process modulated by a variety of factors, in particular by membrane-protein interaction. The interaction results in permeabilization of biomembranes contributing to the cytotoxicity that leads to PMDs. Different biological and physiochemical factors, such as protein sequence, lipid composition, and chaperones, are known to affect the membrane-protein interaction. Here, we provide a comprehensive review of the mechanisms and contributing factors of the interaction between biomembranes and amyloidogenic proteins, and a summary of the therapeutic approaches to PMDs that target this interaction. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Biao Cheng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Yang Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Ma
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoyi Wang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI 48858, USA
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan 430072, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
de Oliveira MR, Peres A, Gama CS, Bosco SMD. Pinocembrin Provides Mitochondrial Protection by the Activation of the Erk1/2-Nrf2 Signaling Pathway in SH-SY5Y Neuroblastoma Cells Exposed to Paraquat. Mol Neurobiol 2016; 54:6018-6031. [PMID: 27696114 DOI: 10.1007/s12035-016-0135-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022]
Abstract
Pinocembrin (PB; 5,7-dihydroxyflavanone; C15H12O4) is a flavonoid found in propolis and exerts antioxidant, anti-inflammatory, and antimicrobial effects. Furthermore, PB has been studied as a neuroprotective agent. However, it remains to be understood whether and how PB would induce mitochondrial protection in mammalian cells. Therefore, we investigated here the mechanism involved in the protective effects elicited by PB in paraquat (PQ; 100 μM)-treated SH-SY5Y neuroblastoma cells. PB (25 μM) pretreatment (for 4 h) downregulated the levels of Bcl-2-associated X protein (Bax), blocked the release of cytochrome c to the cytosol, and inhibited the PQ-induced activation of caspase-9 and caspase-3. Besides, PB prevented mitochondrial dysfunction by suppressing the PQ-elicited inhibition of complexes I and V. Moreover, PB abrogated the loss of mitochondrial membrane potential (MMP) and the decline in ATP levels in the cells exposed to PQ. PB exerted antioxidant effects on mitochondria by decreasing the levels of redox impairment markers in mitochondrial membranes. Importantly, PB enhanced the levels of mitochondrial reduced glutathione (GSH). Upregulation of enzymes involved in the synthesis of GSH was seen in the cells exposed to PB. PB afforded mitochondrial protection by activating the extracellular signal-regulated kinase/nuclear factor erythroid 2-related factor 2 (Erk1/2-Nrf2) axis, since inhibition of Erk1/2 or silencing of Nrf2 abrogated these effects. Therefore, PB exerted mitochondrial and cellular protection by an Erk1/2-Nrf2-dependent mechanism.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil.
| | - Alessandra Peres
- Health Basic Sciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil.,Centro de Pesquisa da Pós-Graduação, Centro Universitário Metodista IPA, Porto Alegre, Brazil
| | - Clarissa Severino Gama
- Laboratório de Psiquiatria Molecular, Instituto Nacional de Ciência e Tecnologia-Medicina Translacional (INCT-TM), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Medicina: Psiquiatria, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | |
Collapse
|
10
|
Douiri S, Bahdoudi S, Hamdi Y, Cubì R, Basille M, Fournier A, Vaudry H, Tonon MC, Amri M, Vaudry D, Masmoudi-Kouki O. Involvement of endogenous antioxidant systems in the protective activity of pituitary adenylate cyclase-activating polypeptide against hydrogen peroxide-induced oxidative damages in cultured rat astrocytes. J Neurochem 2016; 137:913-30. [DOI: 10.1111/jnc.13614] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/09/2016] [Accepted: 02/24/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Salma Douiri
- Laboratory of Functional Neurophysiology and Pathology; Research Unit UR/11ES09; Department of Biological Sciences; Faculty of Science of Tunis; University Tunis El Manar; Tunis Tunisia
| | - Seyma Bahdoudi
- Laboratory of Functional Neurophysiology and Pathology; Research Unit UR/11ES09; Department of Biological Sciences; Faculty of Science of Tunis; University Tunis El Manar; Tunis Tunisia
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
| | - Yosra Hamdi
- Laboratory of Functional Neurophysiology and Pathology; Research Unit UR/11ES09; Department of Biological Sciences; Faculty of Science of Tunis; University Tunis El Manar; Tunis Tunisia
| | - Roger Cubì
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
| | - Magali Basille
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
- Regional Platform for Cell Imaging of Normandie (PRIMACEN); Institute for Biomedical Research and Innovation; University of Rouen; Mont-Saint-Aignan France
| | - Alain Fournier
- INRS - Institut Armand-Frappier; Laval Quebec Canada
- Laboratoire International Associé Samuel de Champlain; Institut Armand-Frappier; Laval Quebec Canada
- International Associated Laboratory Samuel de Champlain; University of Rouen; Mont-Saint-Aignan France
| | - Hubert Vaudry
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
- Regional Platform for Cell Imaging of Normandie (PRIMACEN); Institute for Biomedical Research and Innovation; University of Rouen; Mont-Saint-Aignan France
- International Associated Laboratory Samuel de Champlain; University of Rouen; Mont-Saint-Aignan France
| | - Marie-Christine Tonon
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
- Regional Platform for Cell Imaging of Normandie (PRIMACEN); Institute for Biomedical Research and Innovation; University of Rouen; Mont-Saint-Aignan France
| | - Mohamed Amri
- Laboratory of Functional Neurophysiology and Pathology; Research Unit UR/11ES09; Department of Biological Sciences; Faculty of Science of Tunis; University Tunis El Manar; Tunis Tunisia
| | - David Vaudry
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
- Regional Platform for Cell Imaging of Normandie (PRIMACEN); Institute for Biomedical Research and Innovation; University of Rouen; Mont-Saint-Aignan France
- International Associated Laboratory Samuel de Champlain; University of Rouen; Mont-Saint-Aignan France
| | - Olfa Masmoudi-Kouki
- Laboratory of Functional Neurophysiology and Pathology; Research Unit UR/11ES09; Department of Biological Sciences; Faculty of Science of Tunis; University Tunis El Manar; Tunis Tunisia
| |
Collapse
|
11
|
Plasma L5 levels are elevated in ischemic stroke patients and enhance platelet aggregation. Blood 2015; 127:1336-45. [PMID: 26679863 DOI: 10.1182/blood-2015-05-646117] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 12/02/2015] [Indexed: 12/30/2022] Open
Abstract
L5, the most electronegative and atherogenic subfraction of low-density lipoprotein (LDL), induces platelet activation. We hypothesized that plasma L5 levels are increased in acute ischemic stroke patients and examined whether lectin-like oxidized LDL receptor-1 (LOX-1), the receptor for L5 on endothelial cells and platelets, plays a critical role in stroke. Because amyloid β (Aβ) stimulates platelet aggregation, we studied whether L5 and Aβ function synergistically to induce prothrombotic pathways leading to stroke. Levels of plasma L5, serum Aβ, and platelet LOX-1 expression were significantly higher in acute ischemic stroke patients than in controls without metabolic syndrome (P < .01). In mice subjected to focal cerebral ischemia, L5 treatment resulted in larger infarction volumes than did phosphate-buffered saline treatment. Deficiency or neutralizing of LOX-1 reduced infarct volume up to threefold after focal cerebral ischemia in mice, illustrating the importance of LOX-1 in stroke injury. In human platelets, L5 but not L1 (the least electronegative LDL subfraction) induced Aβ release via IκB kinase 2 (IKK2). Furthermore, L5+Aβ synergistically induced glycoprotein IIb/IIIa receptor activation; phosphorylation of IKK2, IκBα, p65, and c-Jun N-terminal kinase 1; and platelet aggregation. These effects were blocked by inhibiting IKK2, LOX-1, or nuclear factor-κB (NF-κB). Injecting L5+Aβ shortened tail-bleeding time by 50% (n = 12; P < .05 vs L1-injected mice), which was prevented by the IKK2 inhibitor. Our findings suggest that, through LOX-1, atherogenic L5 potentiates Aβ-mediated platelet activation, platelet aggregation, and hemostasis via IKK2/NF-κB signaling. L5 elevation may be a risk factor for cerebral atherothrombosis, and downregulating LOX-1 and inhibiting IKK2 may be novel antithrombotic strategies.
Collapse
|
12
|
Ong WY, Herr DR, Farooqui T, Ling EA, Farooqui AA. Role of sphingomyelinases in neurological disorders. Expert Opin Ther Targets 2015; 19:1725-42. [DOI: 10.1517/14728222.2015.1071794] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Plácido AI, Oliveira CR, Moreira PI, Pereira CMF. Enhanced Amyloidogenic Processing of Amyloid Precursor Protein and Cell Death Under Prolonged Endoplasmic Reticulum Stress in Brain Endothelial Cells. Mol Neurobiol 2014; 51:571-90. [DOI: 10.1007/s12035-014-8819-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/15/2014] [Indexed: 01/22/2023]
|
14
|
Pinocembrin protects human brain microvascular endothelial cells against fibrillar amyloid-β(1-40) injury by suppressing the MAPK/NF-κB inflammatory pathways. BIOMED RESEARCH INTERNATIONAL 2014; 2014:470393. [PMID: 25157358 PMCID: PMC4135138 DOI: 10.1155/2014/470393] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/02/2014] [Accepted: 06/15/2014] [Indexed: 11/28/2022]
Abstract
Cerebrovascular accumulation of amyloid-β (Aβ) peptides in Alzheimer's disease (AD) may contribute to disease progression through Aβ-induced microvascular endothelial pathogenesis. Pinocembrin has been shown to have therapeutic effects in AD models. These effects correlate with preservation of microvascular function, but the effect on endothelial cells under Aβ-damaged conditions is unclear. The present study focuses on the in vitro protective effect of pinocembrin on fibrillar Aβ1−40 (fAβ1−40) injured human brain microvascular endothelial cells (hBMECs) and explores potential mechanisms. The results demonstrate that fAβ1−40-induced cytotoxicity in hBMECs can be rescued by pinocembrin treatment. Pinocembrin increases cell viability, reduces the release of LDH, and relieves nuclear condensation. The mechanisms of this reversal from Aβ may be associated with the inhibition of inflammatory response, involving inhibition of MAPK activation, downregulation of phosphor-IKK level, relief of IκBα degradation, blockage of NF-κB p65 nuclear translocation, and reduction of the release of proinflammatory cytokines. Pinocembrin does not show obvious effects on regulating the redox imbalance after exposure to fAβ1−40. Together, the suppression of MAPK and the NF-κB signaling pathways play a significant role in the anti-inflammation of pinocembrin in hBMECs subjected to fAβ1−40. This may serve as a therapeutic agent for BMEC protection in Alzheimer's-related deficits.
Collapse
|
15
|
Fonseca ACRG, Moreira PI, Oliveira CR, Cardoso SM, Pinton P, Pereira CF. Amyloid-beta disrupts calcium and redox homeostasis in brain endothelial cells. Mol Neurobiol 2014; 51:610-22. [PMID: 24833600 DOI: 10.1007/s12035-014-8740-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/05/2014] [Indexed: 11/25/2022]
Abstract
In Alzheimer's disease, the accumulation of amyloid-beta (Aβ) in the brain occurs in the parenchyma and cerebrovasculature. Several evidences support that the neuronal demise is potentiated by vascular alterations in the early stages of the disease, but the mechanisms responsible for the dysfunction of brain endothelial cells that underlie these cerebrovascular changes are unknown. Using rat brain microvascular endothelial cells, we found that short-term treatment with a toxic dose of Aβ1-40 inhibits the Ca(2+) refill and retention ability of the endoplasmic reticulum and enhances the mitochondrial and cytosolic response to adenosine triphosphate (ATP)-stimulated endoplasmic reticulum Ca(2+) release. Upon prolonged Aβ1-40 exposure, Ca(2+) homeostasis was restored concomitantly with a decrease in the levels of proteins involved in its regulation operating at the plasma membrane, endoplasmic reticulum, and mitochondria. Along with perturbations in Ca(2+) regulation, an early increase in the levels of oxidants and a decrease in the ratio between reduced and oxidized glutathione were observed in Aβ1-40-treated endothelial cells. Under these conditions, the nuclear levels of oxidative stress-related transcription factors, namely, hypoxia-inducible factor 1α and nuclear factor (erythroid-derived 2)-related factor 2, were enhanced as well as the protein levels of target genes. In conclusion, Aβ1-40 affects several mechanisms involved in Ca(2+) homeostasis and impairs the redox homeostasis simultaneously with stimulation of protective stress responses in brain endothelial cells. However, the imbalance between cell death and survival pathways leads to endothelial dysfunction that in turn contributes to cerebrovascular impairment in Alzheimer's disease.
Collapse
Affiliation(s)
- Ana Catarina R G Fonseca
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
16
|
Nakazato T, Sagawa M, Kizaki M. Triptolide induces apoptotic cell death of multiple myeloma cells via transcriptional repression of Mcl-1. Int J Oncol 2014; 44:1131-8. [PMID: 24481531 DOI: 10.3892/ijo.2014.2280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 12/27/2013] [Indexed: 11/06/2022] Open
Abstract
Triptolide, a diterpenoid trioxide purified from the Chinese herb Tripterygium wilfordii Hook F, has been used as a natural medicine in China for hundreds of years. Several reports have demonstrated that triptolide inhibits the proliferation of cancer cells in vitro and reduces the growth of several types of tumors in vivo. To address the potential of triptolide as a novel therapeutic agent for patients with multiple myeloma, we investigated the effects of triptolide on the induction of apoptosis in human multiple myeloma cells in vitro. Triptolide rapidly induces apoptotic cell death in various myeloma cell lines. Triptolide-induced apoptosis in myeloma cells is associated with the loss of mitochondrial transmembrane potential (∆ψm), the release of cytochrome c and Smac/DIABLO from mitochondria into the cytosol, and the activation of caspase-3 and caspase-9. Furthermore, triptolide induces a rapid decline in the levels of Mcl-1 protein that correlates with caspase activation and induction of apoptosis. Inhibition of Mcl-1 synthesis by triptolide occurs at the level of mRNA transcription and is associated with an inhibition of phosphorylation of RNA polymerase II CTD. These results indicate that Mcl-1 is an important target for triptolide-induced apoptosis in myeloma cells that occurs via inhibition of Mcl-1 mRNA transcription coupled with rapid protein degradation through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Tomonori Nakazato
- Department of Hematology, Yokohama Municipal Citizen's Hospital, Kanagawa 240-8550, Japan
| | - Morihiko Sagawa
- Division of Hematology, Keio University School of Medicine, Tokyo 160-0001, Japan
| | - Masahiro Kizaki
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan
| |
Collapse
|
17
|
Santucci R, Sinibaldi F, Patriarca A, Santucci D, Fiorucci L. Misfolded proteins and neurodegeneration: role of non-native cytochrome c in cell death. Expert Rev Proteomics 2014; 7:507-17. [DOI: 10.1586/epr.10.50] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Fonseca ACRG, Ferreiro E, Oliveira CR, Cardoso SM, Pereira CF. Activation of the endoplasmic reticulum stress response by the amyloid-beta 1-40 peptide in brain endothelial cells. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2191-203. [PMID: 23994613 DOI: 10.1016/j.bbadis.2013.08.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/28/2013] [Accepted: 08/20/2013] [Indexed: 01/09/2023]
Abstract
Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aβ) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice. Incubation of rat brain endothelial cells (RBE4 cell line) with Aβ1-40 increased the levels of several markers of ER stress-induced unfolded protein response (UPR), in a time-dependent manner, and affected the Ca(2+) homeostasis due to the release of Ca(2+) from this intracellular store. Finally, Aβ1-40 was shown to activate both mitochondria-dependent and -independent apoptotic cell death pathways. Enhanced release of cytochrome c from mitochondria and activation of the downstream caspase-9 were observed in cells treated with Aβ1-40 concomitantly with caspase-12 activation. Furthermore, Aβ1-40 activated the apoptosis effectors' caspase-3 and promoted the translocation of apoptosis-inducing factor (AIF) to the nucleus demonstrating the involvement of caspase-dependent and -independent mechanisms during Aβ-induced endothelial cell death. In conclusion, our data demonstrate that ER stress plays a significant role in Aβ1-40-induced apoptotic cell death in brain endothelial cells suggesting that ER stress-targeted therapeutic strategies might be useful in AD to counteract vascular defects and ultimately neurodegeneration.
Collapse
Affiliation(s)
- Ana Catarina R G Fonseca
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal
| | | | | | | | | |
Collapse
|
19
|
Inhibiting toxic aggregation of amyloidogenic proteins: a therapeutic strategy for protein misfolding diseases. Biochim Biophys Acta Gen Subj 2013; 1830:4860-71. [PMID: 23820032 DOI: 10.1016/j.bbagen.2013.06.029] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND The deposition of self-assembled amyloidogenic proteins is associated with multiple diseases, including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. The toxic misfolding and self-assembling of amyloidogenic proteins are believed to underlie protein misfolding diseases. Novel drug candidates targeting self-assembled amyloidogenic proteins represent a potential therapeutic approach for protein misfolding diseases. SCOPE OF REVIEW In this perspective review, we provide an overview of the recent progress in identifying inhibitors that block the aggregation of amyloidogenic proteins and the clinical applications thereof. MAJOR CONCLUSIONS Compounds such as polyphenols, certain short peptides, and monomer- or oligomer-specific antibodies, can interfere with the self-assembly of amyloidogenic proteins, prevent the formation of oligomers, amyloid fibrils and the consequent cytotoxicity. GENERAL SIGNIFICANCE Some inhibitors have been tested in clinical trials for treating protein misfolding diseases. Inhibitors that target the aggregation of amyloidogenic proteins bring new hope to therapy for protein misfolding diseases.
Collapse
|
20
|
Chen SD, Yin JH, Hwang CS, Tang CM, Yang DI. Anti-apoptotic and anti-oxidative mechanisms of minocycline against sphingomyelinase/ceramide neurotoxicity: implication in Alzheimer's disease and cerebral ischemia. Free Radic Res 2012; 46:940-50. [PMID: 22583533 DOI: 10.3109/10715762.2012.674640] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sphingolipids represent a major class of lipids in which selected family members act as bioactive molecules that control diverse cellular processes, such as proliferation, differentiation, growth, senescence, migration and apoptosis. Emerging evidence reveals that sphingomyelinase/ceramide pathway plays a pivotal role in neurodegenerative diseases that involve mitochondrial dysfunction, oxidative stress and apoptosis. Minocycline, a semi-synthetic second-generation tetracycline derivative in clinical use for infection control, is also considered an effective protective agent in various neurodegenerative diseases in pre-clinical studies. Acting via multiple mechanisms, including anti-inflammatory, anti-oxidative and anti-apoptotic effects, minocycline is a desirable candidate for clinical trials in both acute brain injury as well as chronic neurodegenerative disorders. This review is focused on the anti-apoptotic and anti-oxidative mechanisms of minocycline against neurotoxicity induced by sphingomyelinase/ceramide in relation to neurodegeneration, particularly Alzheimer's disease and cerebral ischemia.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
21
|
Accumulation of exogenous amyloid-beta peptide in hippocampal mitochondria causes their dysfunction: a protective role for melatonin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:843649. [PMID: 22666521 PMCID: PMC3359765 DOI: 10.1155/2012/843649] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/12/2012] [Indexed: 01/05/2023]
Abstract
Amyloid-beta (Aβ) pathology is related to mitochondrial dysfunction accompanied by energy reduction and an elevated production of reactive oxygen species (ROS). Monomers and oligomers of Aβ have been found inside mitochondria where they accumulate in a time-dependent manner as demonstrated in transgenic mice and in Alzheimer's disease (AD) brain. We hypothesize that the internalization of extracellular Aβ aggregates is the major cause of mitochondrial damage and here we report that following the injection of fibrillar Aβ into the hippocampus, there is severe axonal damage which is accompanied by the entrance of Aβ into the cell. Thereafter, Aβ appears in mitochondria where it is linked to alterations in the ionic gradient across the inner mitochondrial membrane. This effect is accompanied by disruption of subcellular structure, oxidative stress, and a significant reduction in both the respiratory control ratio and in the hydrolytic activity of ATPase. Orally administrated melatonin reduced oxidative stress, improved the mitochondrial respiratory control ratio, and ameliorated the energy imbalance.
Collapse
|
22
|
Verri M, Pastoris O, Dossena M, Aquilani R, Guerriero F, Cuzzoni G, Venturini L, Ricevuti G, Bongiorno A. Mitochondrial Alterations, Oxidative Stress and Neuroinflammation in Alzheimer's Disease. Int J Immunopathol Pharmacol 2012; 25:345-53. [DOI: 10.1177/039463201202500204] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- M. Verri
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università degli Studi di Pavia, Pavia, Italy
| | - O. Pastoris
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università degli Studi di Pavia, Pavia, Italy
| | - M. Dossena
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università degli Studi di Pavia, Pavia, Italy
| | - R. Aquilani
- Servizio di Fisiopatologia Metabolico-Nutrizionale e Nutrizione Clinica, Fondazione S. Maugeri, IRCCS, Istituto Scientifico di Montescano, Montescano (PV), Italy
| | - F. Guerriero
- Dipartimento di Medicina Interna e Terapia Medica, Università degli Studi di Pavia, Divisione di Geriatria, IDR S. Margherita, ASP Pavia, Italy
| | - G. Cuzzoni
- Dipartimento di Medicina Interna e Terapia Medica, Università degli Studi di Pavia, Divisione di Geriatria, IDR S. Margherita, ASP Pavia, Italy
| | - L. Venturini
- Dipartimento di Medicina Interna e Terapia Medica, Università degli Studi di Pavia, Divisione di Geriatria, IDR S. Margherita, ASP Pavia, Italy
- Laboratorio di Fisiopatologia Cellulare ed Immunologia Clinica, Università degli Studi di Pavia e Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - G. Ricevuti
- Dipartimento di Medicina Interna e Terapia Medica, Università degli Studi di Pavia, Divisione di Geriatria, IDR S. Margherita, ASP Pavia, Italy
- Laboratorio di Fisiopatologia Cellulare ed Immunologia Clinica, Università degli Studi di Pavia e Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - A.I. Bongiorno
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
23
|
Rosales-Corral SA, Acuña-Castroviejo D, Coto-Montes A, Boga JA, Manchester LC, Fuentes-Broto L, Korkmaz A, Ma S, Tan DX, Reiter RJ. Alzheimer's disease: pathological mechanisms and the beneficial role of melatonin. J Pineal Res 2012; 52:167-202. [PMID: 22107053 DOI: 10.1111/j.1600-079x.2011.00937.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a highly complex neurodegenerative disorder of the aged that has multiple factors which contribute to its etiology in terms of initiation and progression. This review summarizes these diverse aspects of this form of dementia. Several hypotheses, often with overlapping features, have been formulated to explain this debilitating condition. Perhaps the best-known hypothesis to explain AD is that which involves the role of the accumulation of amyloid-β peptide in the brain. Other theories that have been invoked to explain AD and summarized in this review include the cholinergic hypothesis, the role of neuroinflammation, the calcium hypothesis, the insulin resistance hypothesis, and the association of AD with peroxidation of brain lipids. In addition to summarizing each of the theories that have been used to explain the structural neural changes and the pathophysiology of AD, the potential role of melatonin in influencing each of the theoretical processes involved is discussed. Melatonin is an endogenously produced and multifunctioning molecule that could theoretically intervene at any of a number of sites to abate the changes associated with the development of AD. Production of this indoleamine diminishes with increasing age, coincident with the onset of AD. In addition to its potent antioxidant and anti-inflammatory activities, melatonin has a multitude of other functions that could assist in explaining each of the hypotheses summarized above. The intent of this review is to stimulate interest in melatonin as a potentially useful agent in attenuating and/or delaying AD.
Collapse
Affiliation(s)
- Sergio A Rosales-Corral
- Centro de Investigación Biomédica de Occidente del Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zeng KW, Wang XM, Ko H, Kwon HC, Cha JW, Yang HO. Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid β-protein via the PI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway. Eur J Pharmacol 2011; 672:45-55. [PMID: 21978835 DOI: 10.1016/j.ejphar.2011.09.177] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/14/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
Amyloid β-protein (Aβ), which is deposited in neurons as neurofibrillary tangles, is known to exert cytotoxic effects by inducing mitochondrial dysfunction. Additionally, the PI3K/Akt-mediated interaction between Bad and Bcl(XL) plays an important role in maintaining mitochondrial integrity. However, the application of therapeutic drugs, especially natural products in Alzheimer's disease therapy via PI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway has not aroused extensive attention. In the present study, we investigated the neuroprotective effects of hyperoside, a bioactive flavonoid compound from Hypericum perforatum, on Aβ(25-35)-induced primary cultured cortical neurons, and also examined the potential cellular signaling mechanism for Aβ detoxication. Our results showed that treatment with hyperoside significantly inhibited Aβ(25-35)-induced cytotoxicity and apoptosis by reversing Aβ-induced mitochondrial dysfunction, including mitochondrial membrane potential decrease, reactive oxygen species production, and mitochondrial release of cytochrome c. Further study indicated that hyperoside can activate the PI3K/Akt signaling pathway, resulting in inhibition of the interaction between Bad and Bcl(XL), without effects on the interaction between Bad and Bcl-2. Furthermore, hyperoside inhibited mitochondria-dependent downstream caspase-mediated apoptotic pathway, such as that involving caspase-9, caspase-3, and poly ADP-ribose polymerase (PARP). These results demonstrate that hyperoside can protect Aβ-induced primary cultured cortical neurons via PI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway, and they raise the possibility that hyperoside could be developed into a clinically valuable treatment for Alzheimer's disease and other neuronal degenerative diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ke-Wu Zeng
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 210-340, Republic of Korea
| | | | | | | | | | | |
Collapse
|
25
|
Carrano A, Hoozemans JJM, van der Vies SM, Rozemuller AJM, van Horssen J, de Vries HE. Amyloid Beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy. Antioxid Redox Signal 2011; 15:1167-78. [PMID: 21294650 DOI: 10.1089/ars.2011.3895] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is frequently observed in Alzheimer's disease (AD) and is characterized by deposition of amyloid beta (Aβ) in leptomeningeal and cortical brain vasculature. In 40% of AD cases, Aβ mainly accumulates in cortical capillaries, a phenomenon referred to as capillary CAA (capCAA). The aim of this study was to investigate blood-brain barrier (BBB) alterations in CAA-affected capillaries with the emphasis on tight junction (TJ) changes. First, capCAA brain tissue was analyzed for the distribution of TJs. Here, we show for the first time a dramatic loss of occludin, claudin-5, and ZO-1 in Aβ-laden capillaries surrounded by NADPH oxidase-2 (NOX-2)-positive activated microglia. Importantly, we observed abundant vascular expression of the Aβ transporter receptor for advanced glycation endproducts (RAGE). To unravel the underlying mechanism, a human brain endothelial cell line was stimulated with Aβ1-42 to analyze the effects of Aβ. We observed a dose-dependent cytotoxicity and increased ROS generation, which interestingly was reversed by administration of exogenous antioxidants, NOX-2 inhibitors, and by blocking RAGE. Taken together, our data evidently show that Aβ is toxic to brain endothelial cells via binding to RAGE and induction of ROS production, which ultimately leads to disruption of TJs and loss of BBB integrity.
Collapse
Affiliation(s)
- Anna Carrano
- Department of Molecular Cell Biology and Immunology (MCBI), VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
Lefterov I, Fitz NF, Cronican AA, Fogg A, Lefterov P, Kodali R, Wetzel R, Koldamova R. Apolipoprotein A-I deficiency increases cerebral amyloid angiopathy and cognitive deficits in APP/PS1DeltaE9 mice. J Biol Chem 2010; 285:36945-57. [PMID: 20739292 PMCID: PMC2978623 DOI: 10.1074/jbc.m110.127738] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 08/20/2010] [Indexed: 11/06/2022] Open
Abstract
A hallmark of Alzheimer disease (AD) is the deposition of amyloid β (Aβ) in brain parenchyma and cerebral blood vessels, accompanied by cognitive decline. Previously, we showed that human apolipoprotein A-I (apoA-I) decreases Aβ(40) aggregation and toxicity. Here we demonstrate that apoA-I in lipidated or non-lipidated form prevents the formation of high molecular weight aggregates of Aβ(42) and decreases Aβ(42) toxicity in primary brain cells. To determine the effects of apoA-I on AD phenotype in vivo, we crossed APP/PS1ΔE9 to apoA-I(KO) mice. Using a Morris water maze, we demonstrate that the deletion of mouse Apoa-I exacerbates memory deficits in APP/PS1ΔE9 mice. Further characterization of APP/PS1ΔE9/apoA-I(KO) mice showed that apoA-I deficiency did not affect amyloid precursor protein processing, soluble Aβ oligomer levels, Aβ plaque load, or levels of insoluble Aβ in brain parenchyma. To examine the effect of Apoa-I deletion on cerebral amyloid angiopathy, we measured insoluble Aβ isolated from cerebral blood vessels. Our data show that in APP/PS1ΔE9/apoA-I(KO) mice, insoluble Aβ(40) is increased more than 10-fold, and Aβ(42) is increased 1.5-fold. The increased levels of deposited amyloid in the vessels of cortices and hippocampi of APP/PS1ΔE9/apoA-I(KO) mice, measured by X-34 staining, confirmed the results. Finally, we demonstrate that lipidated and non-lipidated apoA-I significantly decreased Aβ toxicity against brain vascular smooth muscle cells. We conclude that lack of apoA-I aggravates the memory deficits in APP/PS1ΔE9 mice in parallel to significantly increased cerebral amyloid angiopathy.
Collapse
MESH Headings
- Amyloid beta-Protein Precursor/physiology
- Animals
- Apolipoprotein A-I/physiology
- Behavior, Animal
- Blotting, Western
- Brain/metabolism
- Brain/pathology
- Cells, Cultured
- Cerebral Amyloid Angiopathy/etiology
- Cerebral Amyloid Angiopathy/pathology
- Cholesterol/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Enzyme-Linked Immunosorbent Assay
- Humans
- Immunoenzyme Techniques
- Maze Learning
- Memory Disorders/etiology
- Memory Disorders/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mutation/genetics
- Myocytes, Smooth Muscle/metabolism
- Presenilin-1/physiology
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Deletion
Collapse
Affiliation(s)
- Iliya Lefterov
- From the Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 and
| | - Nicholas F. Fitz
- From the Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 and
| | - Andrea A. Cronican
- From the Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 and
| | - Allison Fogg
- From the Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 and
| | - Preslav Lefterov
- From the Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 and
| | - Ravindra Kodali
- the Department of Structural Biology and
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Ronald Wetzel
- the Department of Structural Biology and
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Radosveta Koldamova
- From the Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 and
| |
Collapse
|
27
|
Tillement L, Lecanu L, Papadopoulos V. Alzheimer's disease: effects of β-amyloid on mitochondria. Mitochondrion 2010; 11:13-21. [PMID: 20817045 DOI: 10.1016/j.mito.2010.08.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 08/09/2010] [Accepted: 08/25/2010] [Indexed: 11/15/2022]
Abstract
The impairment of the respiratory chain or defects in the detoxification system can decrease electron transfer efficiency, reduce ATP production, and increase reactive oxygen species (ROS) production by mitochondria. Accumulation of ROS results in oxidative stress, a hallmark of neurodegenerative diseases such as Alzheimer's disease (AD). β-amyloid has been implicated in the pathogenesis of AD, and its accumulation may lead to degeneration of neuronal or non-neuronal cells. There is evidence that β-amyloid interacts with mitochondria but little is known concerning the significance of this interaction in the physiopathology of AD. This review explores possible mechanisms of β-amyloid-induced mitochondrial toxicity.
Collapse
Affiliation(s)
- Laurent Tillement
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | |
Collapse
|