1
|
Hopp MT, Ugurlar D, Pezeshkpoor B, Biswas A, Ramoji A, Neugebauer U, Oldenburg J, Imhof D. In-depth structure-function profiling of the complex formation between clotting factor VIII and heme. Thromb Res 2024; 237:184-195. [PMID: 38631156 DOI: 10.1016/j.thromres.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND AND AIMS Blood disorders, such as sickle cell disease, and other clinical conditions are often accompanied by intravascular hemolytic events along with the development of severe coagulopathies. Hemolysis, in turn, leads to the accumulation of Fe(II/III)-protoporphyrin IX (heme) in the intravascular compartment, which can trigger a variety of proinflammatory and prothrombotic reactions. As such, heme binding to the blood coagulation proteins factor VIII (FVIII), fibrinogen, and activated protein C with functional consequences has been demonstrated earlier. METHODS We herein present an in-depth characterization of the FVIII-heme interaction at the molecular level and its (patho-)physiological relevance through the application of biochemical, biophysical, structural biology, bioinformatic, and diagnostic tools. RESULTS FVIII has a great heme-binding capacity with seven heme molecules associating with the protein. The respective binding sites were identified by investigating heme binding to FVIII-derived peptides in combination with molecular docking and dynamic simulation studies of the complex as well as cryo-electron microscopy, revealing three high-affinity and four moderate heme-binding motifs (HBMs). Furthermore, the relevance of the FVIII-heme complex formation was characterized in physiologically relevant assay systems, revealing a ~ 50 % inhibition of the FVIII cofactor activity even in the protein-rich environment of blood plasma. CONCLUSION Our study provides not only novel molecular insights into the FVIII-heme interaction and its physiological relevance, but also strongly suggests the reduction of the intrinsic pathway and the accentuation of the final clotting step (by, for example, fibrinogen crosslinking) in hemolytic conditions as well as a future perspective in the context of FVIII substitution therapy of hemorrhagic events in hemophilia A patients.
Collapse
Affiliation(s)
- Marie-T Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany; Department of Chemistry, Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany.
| | - Deniz Ugurlar
- Center for Electron Microscopy, Thermo Fisher Scientific, Eindhoven, the Netherlands
| | - Behnaz Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Anuradha Ramoji
- Leibniz Institute of Photonic Technology, Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology, Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Zemtsovski JD, Tumpara S, Schmidt S, Vijayan V, Klos A, Laudeley R, Held J, Immenschuh S, Wurm FM, Welte T, Haller H, Janciauskiene S, Shushakova N. Alpha1-antitrypsin improves survival in murine abdominal sepsis model by decreasing inflammation and sequestration of free heme. Front Immunol 2024; 15:1368040. [PMID: 38562925 PMCID: PMC10982482 DOI: 10.3389/fimmu.2024.1368040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Background Excessive inflammation, hemolysis, and accumulation of labile heme play an essential role in the pathophysiology of multi-organ dysfunction syndrome (MODS) in sepsis. Alpha1-antitrypsin (AAT), an acute phase protein with heme binding capacity, is one of the essential modulators of host responses to inflammation. In this study, we evaluate the putative protective effect of AAT against MODS and mortality in a mouse model of polymicrobial abdominal sepsis. Methods Polymicrobial abdominal sepsis was induced in C57BL/6N mice by cecal ligation and puncture (CLP). Immediately after CLP surgery, mice were treated intraperitoneally with three different forms of human AAT-plasma-derived native (nAAT), oxidized nAAT (oxAAT), or recombinant AAT (recAAT)-or were injected with vehicle. Sham-operated mice served as controls. Mouse survival, bacterial load, kidney and liver function, immune cell profiles, cytokines/chemokines, and free (labile) heme levels were assessed. In parallel, in vitro experiments were carried out with resident peritoneal macrophages (MPMΦ) and mouse peritoneal mesothelial cells (MPMC). Results All AAT preparations used reduced mortality in septic mice. Treatment with AAT significantly reduced plasma lactate dehydrogenase and s-creatinine levels, vascular leakage, and systemic inflammation. Specifically, AAT reduced intraperitoneal accumulation of free heme, production of cytokines/chemokines, and neutrophil infiltration into the peritoneal cavity compared to septic mice not treated with AAT. In vitro experiments performed using MPMC and primary MPMΦ confirmed that AAT not only significantly decreases lipopolysaccharide (LPS)-induced pro-inflammatory cell activation but also prevents the enhancement of cellular responses to LPS by free heme. In addition, AAT inhibits cell death caused by free heme in vitro. Conclusion Data from the septic CLP mouse model suggest that intraperitoneal AAT treatment alone is sufficient to improve sepsis-associated organ dysfunctions, preserve endothelial barrier function, and reduce mortality, likely by preventing hyper-inflammatory responses and by neutralizing free heme.
Collapse
Affiliation(s)
- Jan D. Zemtsovski
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Srinu Tumpara
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, Hannover, Germany
| | | | - Vijith Vijayan
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Andreas Klos
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Robert Laudeley
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Julia Held
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Florian M. Wurm
- Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tobias Welte
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, Hannover, Germany
| | - Nelli Shushakova
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Zeng L, Zhang X, Xia M, Ye H, Li H, Gao Z. Heme and Cu 2+-induced vasoactive intestinal peptide (VIP) tyrosine nitration: A possible molecular mechanism for the attenuated anti-inflammatory effect of VIP in inflammatory diseases. Biochimie 2023; 214:176-187. [PMID: 37481062 DOI: 10.1016/j.biochi.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Vasoactive intestinal peptide (VIP) is a neuropeptide that play an important role in immunoregulation and anti-inflammation. Numerous inflammatory/autoimmune disorders are associated with decreased VIP binding ability to receptors and diminished VIP activation of cAMP generation in immune cells. However, the mechanisms linking oxidative/nitrative stress to VIP immune dysfunction remain unknown. It has been reported that the elevated heme or Cu2+ in inflammatory diseases can cause oxidative and nitrative damage to nearby biological targets under high oxidative stress conditions, which affects the structure and activity of linked peptides or proteins. Thus, the VIP down-regulated immune response may be interfered by redox metal catalyzed VIP tyrosine nitration. To explore this, we systematically investigated the possibility of heme or Cu2+ to catalyze VIP tyrosine nitration. The results showed that Tyr10 and Tyr22 of VIP can both be nitrated in heme/H2O2/NO2- system as well as in Cu2+/H2O2/NO2- system. Then, we used synthetic mutant VIPs with tyrosine residues substituted by 3-nitrotyrosine to study the impact of tyrosine nitration on VIP activity in SHSY-5Y cells. Our findings demonstrated that VIP nitration dramatically decreased the content of its α-helix and random coil, suggesting that VIP nitration might reduce its affinity to the receptor. This was further confirmed in the cAMP assay. The results showed that 10 nM of these tyrosine nitrated VIPs could significantly (p < 0.01) decrease cAMP secretion compared to the wild type VIP. Our data reveal that the attenuation of the neuroprotective effect of VIP in inflammation-related diseases might be attributed to metal-catalyzed VIP tyrosine nitration.
Collapse
Affiliation(s)
- Lizhen Zeng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Xuan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Mengyang Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Huixian Ye
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China; School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi, 343009, PR China.
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China.
| |
Collapse
|
4
|
Pejchinovski I, Turkkan S, Pejchinovski M. Recent Advances of Proteomics in Management of Acute Kidney Injury. Diagnostics (Basel) 2023; 13:2648. [PMID: 37627907 PMCID: PMC10453063 DOI: 10.3390/diagnostics13162648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Kidney Injury (AKI) is currently recognized as a life-threatening disease, leading to an exponential increase in morbidity and mortality worldwide. At present, AKI is characterized by a significant increase in serum creatinine (SCr) levels, typically followed by a sudden drop in glomerulus filtration rate (GFR). Changes in urine output are usually associated with the renal inability to excrete urea and other nitrogenous waste products, causing extracellular volume and electrolyte imbalances. Several molecular mechanisms were proposed to be affiliated with AKI development and progression, ultimately involving renal epithelium tubular cell-cycle arrest, inflammation, mitochondrial dysfunction, the inability to recover and regenerate proximal tubules, and impaired endothelial function. Diagnosis and prognosis using state-of-the-art clinical markers are often late and provide poor outcomes at disease onset. Inappropriate clinical assessment is a strong disease contributor, actively driving progression towards end stage renal disease (ESRD). Proteins, as the main functional and structural unit of the cell, provide the opportunity to monitor the disease on a molecular level. Changes in the proteomic profiles are pivotal for the expression of molecular pathways and disease pathogenesis. Introduction of highly-sensitive and innovative technology enabled the discovery of novel biomarkers for improved risk stratification, better and more cost-effective medical care for the ill patients and advanced personalized medicine. In line with those strategies, this review provides and discusses the latest findings of proteomic-based biomarkers and their prospective clinical application for AKI management.
Collapse
Affiliation(s)
- Ilinka Pejchinovski
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Sibel Turkkan
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Martin Pejchinovski
- Department of Analytical Instruments Group, Thermo Fisher Scientific, 82110 Germering, Germany
| |
Collapse
|
5
|
Janciauskiene S, Tumpara S, Schebb NH, Buettner FFR, Mainka M, Sivaraman K, Immenschuh S, Grau V, Welte T, Olejnicka B. Indirect effect of alpha-1-antitrypsin on endotoxin-induced IL-1β secretion from human PBMCs. Front Pharmacol 2022; 13:995869. [PMID: 36249781 PMCID: PMC9564231 DOI: 10.3389/fphar.2022.995869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Human alpha-1-antitrypsin (AAT) encoded by the SERPINA1 gene, is an acute phase glycoprotein that regulates inflammatory responses via both protease inhibitory and non-inhibitory activities. We previously reported that AAT controls ATP-induced IL-1β release from human mononuclear cells by stimulating the release of small bioactive molecules. In the current study, we aimed to elucidate the identity of these putative effectors released from human PBMCs in response to AAT, which may inhibit the LPS-induced release of IL-1β. We pre-incubated human PBMCs alone or with different preparations of AAT (4 mg/ml) for 30 min at 37°C, 5% CO2, and collected cell supernatants filtered through centrifugal filters (cutoff 3 kDa) to eliminate AAT and other high molecular weight substances. Supernatants passed through the filters were used to culture PBMCs isolated from the autologous or a heterologous donors with or without adding LPS (1 μg/ml) for 6 h. Unexpectedly, supernatants from PBMCs pre-incubated with AAT (Zemaira®), but not with other AAT preparations tested or with oxidized AAT (Zemaira®), lowered the LPS-induced release of IL-1β by about 25%–60% without affecting IL1B mRNA. The reversed-phase liquid chromatography coupled with mass spectrometry did not confirm the hypothesis that small pro-resolving lipid mediators released from PBMCs after exposure to AAT (Zemaira®) are responsible for lowering the LPS-induced IL-1β release. Distinctively from other AAT preparations, AAT (Zemaira®) and supernatants from PBMCs pre-treated with this protein contained high levels of total thiols. In line, mass spectrometry analysis revealed that AAT (Zemaira®) protein contains freer Cys232 than AAT (Prolastin®). Our data show that a free Cys232 in AAT is required for controlling LPS-induced IL-1β release from human PBMCs. Further studies characterizing AAT preparations used to treat patients with inherited AAT deficiency remains of clinical importance.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Experimental Medicine, Lund University, Lund, Sweden
- *Correspondence: Sabina Janciauskiene,
| | - Srinu Tumpara
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Falk F. R. Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Kokilavani Sivaraman
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, German Center for Lung Research, Giessen, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Beata Olejnicka
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Experimental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Hopp MT, Rathod DC, Winn KH, Ambast S, Imhof D. Novel insights into heme binding to hemoglobin. Biol Chem 2022; 403:1055-1066. [PMID: 36043538 DOI: 10.1515/hsz-2022-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
Under hemolytic conditions, hemoglobin and subsequently heme are rapidly released, leading to the toxic effects characterizing diseases such as β-thalassemia and sickle cell disease. Herein, we provide evidence that human hemoglobin can bind heme in a transient fashion via surface-exposed sequence motifs. Following the synthesis of potential heme-binding motifs (HBMs) as peptides, their heme-binding capacity was investigated by UV-vis spectroscopy and ranked according to their binding affinity. Heme binding to human hemoglobin was subsequently studied by UV-vis and surface plasmon resonance (SPR) spectroscopy, revealing a heme-binding affinity in the sub- to micromolar range and a stoichiometry that clearly exceeds a 1:1 ratio. In silico molecular docking and simulation studies confirmed heme binding to the respective motifs in the β-chain of hemoglobin. Finally, the peroxidase-like activity of hemoglobin and the hemoglobin-heme complex was monitored, which indicated a much higher activity (>1800%) than other heme-peptide/protein complexes reported so far. The present study provides novel insights into the nature of intact hemoglobin concerning its transient interaction with heme, which suggests for the first time potential heme-scavenging properties of the protein at concomitant disassembly and, consequently, a potentiation of hemolysis and related processes.
Collapse
Affiliation(s)
- Marie-Therese Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Dhruv Chetanbhai Rathod
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Kristina Helena Winn
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Shubhi Ambast
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
7
|
Mahamar A, Gonzales Hurtado PA, Morrison R, Boone R, Attaher O, Diarra BS, Gaoussou S, Issiaka D, Dicko A, Duffy PE, Fried M. Plasma biomarkers of hemoglobin loss in Plasmodium falciparum-infected children identified by quantitative proteomics. Blood 2022; 139:2361-2376. [PMID: 34871370 PMCID: PMC9012130 DOI: 10.1182/blood.2021014045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022] Open
Abstract
Anemia is common among young children infected with Plasmodium falciparum and severe malarial anemia (SMA) is a major cause of their mortality. Two major mechanisms cause malarial anemia: hemolysis of uninfected as well as infected erythrocytes and insufficient erythropoiesis. In a longitudinal birth cohort in Mali, we commonly observed marked hemoglobin reductions during P falciparum infections with a small proportion that progressed to SMA. We sought biomarkers of these processes using quantitative proteomic analysis on plasma samples from 9 P falciparum-infected children, comparing those with reduced hemoglobin (with or without SMA) vs those with stable hemoglobin. We identified higher plasma levels of circulating 20S proteasome and lower insulin-like growth factor-1 (IGF-1) levels in children with reduced hemoglobin. We confirmed these findings in independent enzyme-linked immunosorbent assay-based validation studies of subsets of children from the same cohort (20S proteasome, N = 71; IGF-1, N = 78). We speculate that circulating 20S proteasome plays a role in digesting erythrocyte membrane proteins modified by oxidative stress, resulting in hemolysis, whereas decreased IGF-1, a critical factor for erythroid maturation, might contribute to insufficient erythropoiesis. Quantitative plasma proteomics identified soluble mediators that may contribute to the major mechanisms underlying malarial anemia. This study was registered at www.clinicaltrials.gov as #NCT01168271.
Collapse
Affiliation(s)
- Almahamoudou Mahamar
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali; and
| | | | - Robert Morrison
- Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Rachel Boone
- Molecular Pathogenesis and Biomarkers Section and
| | - Oumar Attaher
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali; and
| | - Bacary S Diarra
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali; and
| | - Santara Gaoussou
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali; and
| | - Djibrilla Issiaka
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali; and
| | - Alassane Dicko
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali; and
| | - Patrick E Duffy
- Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Michal Fried
- Molecular Pathogenesis and Biomarkers Section and
| |
Collapse
|
8
|
A Review of Alpha-1 Antitrypsin Binding Partners for Immune Regulation and Potential Therapeutic Application. Int J Mol Sci 2022; 23:ijms23052441. [PMID: 35269582 PMCID: PMC8910375 DOI: 10.3390/ijms23052441] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Alpha-1 antitrypsin (AAT) is the canonical serine protease inhibitor of neutrophil-derived proteases and can modulate innate immune mechanisms through its anti-inflammatory activities mediated by a broad spectrum of protein, cytokine, and cell surface interactions. AAT contains a reactive methionine residue that is critical for its protease-specific binding capacity, whereby AAT entraps the protease on cleavage of its reactive centre loop, neutralises its activity by key changes in its tertiary structure, and permits removal of the AAT-protease complex from the circulation. Recently, however, the immunomodulatory role of AAT has come increasingly to the fore with several prominent studies focused on lipid or protein-protein interactions that are predominantly mediated through electrostatic, glycan, or hydrophobic potential binding sites. The aim of this review was to investigate the spectrum of AAT molecular interactions, with newer studies supporting a potential therapeutic paradigm for AAT augmentation therapy in disorders in which a chronic immune response is strongly linked.
Collapse
|
9
|
Silva RCMC, Tan L, Rodrigues DA, Prestes EB, Gomes CP, Gama AM, Oliveira PLD, Paiva CN, Manoury B, Bozza MT. Chloroquine inhibits pro-inflammatory effects of heme on macrophages and invivo. Free Radic Biol Med 2021; 173:104-116. [PMID: 34303829 DOI: 10.1016/j.freeradbiomed.2021.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Chloroquine has been used successfully to treat Malaria, including by chloroquine-resistant Plasmodium sp., indicating that it has effects on disease itself. Since heme has inflammatory effects and contributes to the pathogenesis of hemolytic diseases, we hypothesize that the anti-inflammatory effect of chloroquine is partially due to its inhibitory effect on heme-induced macrophage activation and on inflammatory tissue damage. METHODS Bone marrow derived macrophages (BMDMs) were incubated with chloroquine before stimulation with heme, in different conditions, to evaluate cytokines secretion, ROS production, mitogen activated protein kinases (MAPK) or spleen tyrosine kinase (Syk) activation, alone or combined with LPS. The effects of chloroquine upon heme inflammation were also evaluated in vivo, through simultaneous i.p. injection of LPS and heme, intratracheal instillation of Poly-IC followed by heme injection, and in a rhabdomyolysis model. RESULTS Chloroquine inhibited TNF secretion, mitochondrial ROS production, MAPK, and Syk activation induced by heme. Inhibition of TNF production could be mimicked by zinc ionophore quercetin, but not by primaquine, a chloroquine analog with low affinity for heme. IL-6 and IL-1β secretions induced by heme in the presence of PRRs agonists were inhibited by chloroquine, but not by calcium chelator BAPTA or inhibitor of endosomal acidification concamycin B. Chloroquine also protected mice from heme inflammatory effects in vivo, inhibiting lethal synergism with PRR agonists, lung pathology caused by heme injection after intratracheal instillation of Poly-IC, and delaying death after rhabdomyolisis. CONCLUSION Our data indicate that chloroquine might be used as a supportive therapy to control heme-induced deleterious inflammation in different hemolytic diseases.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia. Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; Institut Necker Enfants Malades. INSERM U1151-CNRS UMR8253, Paris, France; Laboratório Intermediário de Imunoreceptores e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Luis Tan
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia. Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Danielle Aparecida Rodrigues
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia. Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Elisa Beatriz Prestes
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia. Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; Institut Necker Enfants Malades. INSERM U1151-CNRS UMR8253, Paris, France
| | - Caroline Pereira Gomes
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia. Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Andreza Moreira Gama
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia. Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Pedro Lagerblad de Oliveira
- Laboratório de Bioquímica de Insetos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Claudia Neto Paiva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia. Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Benedicte Manoury
- Institut Necker Enfants Malades. INSERM U1151-CNRS UMR8253, Paris, France
| | - Marcelo Torres Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia. Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Madyaningrana K, Vijayan V, Nikolin C, Aljabri A, Tumpara S, Korenbaum E, Shah H, Stankov M, Fuchs H, Janciauskiene S, Immenschuh S. Alpha1-antitrypsin counteracts heme-induced endothelial cell inflammatory activation, autophagy dysfunction and death. Redox Biol 2021; 46:102060. [PMID: 34246063 PMCID: PMC8274343 DOI: 10.1016/j.redox.2021.102060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/27/2021] [Indexed: 11/04/2022] Open
Abstract
Free heme toxicity in the vascular endothelium is critical for the pathogenesis of hemolytic disorders including sickle cell disease. In the current study, it is demonstrated that human alpha1-antitrypsin (A1AT), a serine protease inhibitor with high binding-affinity for heme, rescues endothelial cell (EC) injury caused by free heme. A1AT provided endothelial protection against free heme toxicity via a pathway that differs from human serum albumin and hemopexin, two prototypical heme-binding proteins. A1AT inhibited heme-mediated pro-inflammatory activation and death of ECs, but did not affect the increase in intracellular heme levels and up-regulation of the heme-inducible enzyme heme oxygenase-1. Moreover, A1AT reduced heme-mediated generation of mitochondrial reactive oxygen species. Extracellular free heme led to an increased up-take of A1AT by ECs, which was detected in lysosomes and was found to reduce heme-dependent alkalization of these organelles. Finally, A1AT was able to restore heme-dependent dysfunctional autophagy in ECs. Taken together, our findings show that A1AT rescues ECs from free heme-mediated pro-inflammatory activation, cell death and dysfunctional autophagy. Hence, A1AT therapy may be useful in the treatment of hemolytic disorders such as sickle cell disease.
Collapse
Affiliation(s)
- Kukuh Madyaningrana
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany; Faculty of Biotechnology, Universitas Kristen Duta Wacana, Yogyakarta, Indonesia
| | - Vijith Vijayan
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Christoph Nikolin
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Abid Aljabri
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Srinu Tumpara
- Department of Pulmonology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Elena Korenbaum
- Institute for Biophysical Chemistry Hannover Medical School, Hannover, Germany
| | - Harshit Shah
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Metodi Stankov
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Heiko Fuchs
- Institute of Experimental Ophthalmology, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Pulmonology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
11
|
Janciauskiene S, Vijayan V, Immenschuh S. TLR4 Signaling by Heme and the Role of Heme-Binding Blood Proteins. Front Immunol 2020; 11:1964. [PMID: 32983129 PMCID: PMC7481328 DOI: 10.3389/fimmu.2020.01964] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs), also known as pattern recognition receptors, respond to exogenous pathogens and to intrinsic danger signals released from damaged cells and tissues. The tetrapyrrole heme has been suggested to be an agonist for TLR4, the receptor for the pro-inflammatory bacterial component lipopolysaccharide (LPS), synonymous with endotoxin. Heme is a double-edged sword with contradictory functions. On the one hand, it has vital cellular functions as the prosthetic group of hemoproteins including hemoglobin, myoglobin, and cytochromes. On the other hand, if released from destabilized hemoproteins, non-protein bound or “free” heme can have pro-oxidant and pro-inflammatory effects, the mechanisms of which are not fully understood. In this review, the complex interactions between heme and TLR4 are discussed with a particular focus on the role of heme-binding serum proteins in handling extracellular heme and its impact on TLR4 signaling. Moreover, the role of heme as a direct and indirect trigger of TLR4 activation and species-specific differences in the regulation of heme-dependent TLR4 signaling are highlighted.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Pulmonology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hanover, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hanover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hanover, Germany
| |
Collapse
|
12
|
Pires IS, Palmer AF. Tangential flow filtration of haptoglobin. Biotechnol Prog 2020; 36:e3010. [PMID: 32348635 DOI: 10.1002/btpr.3010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Haptoglobin (Hp) is a plasma glycoprotein that scavenges cell-free hemoglobin (Hb). Hp has various potential therapeutic applications, but it has been mainly studied for treatment of acute hemolytic conditions that can arise from situations such as massive blood transfusion, infusion of stored red blood cells, severe burns, trauma, sepsis, radiation injury, and others. Therefore, Hp may also be beneficial during chronic hemolytic disease states such as hereditary spherocytosis, nocturnal hemoglobinuria, sickle-cell anemia, and malaria. Various methods have been developed to purify Hp from plasma or plasma fractions. However, none of these methods have exploited the large molecular weight (MW) range distribution of Hp polymers to easily isolate Hp from other plasma proteins. The present study used tangential flow filtration (TFF) to isolate polymeric Hp from plasma proteins using human Fraction IV (FIV) as the starting material. After removal of insoluble material from a suspension of FIV paste, the protein mixture was clarified on a 0.2 μm hollow fiber (HF) TFF filter. The clarified protein solution was then bracketed based on protein MW using HF filters with MW cut-offs (MWCOs) of 750, 500, and 100 kDa. Using untreated FIV, the Hp purity of the main bracket was ~75% with a total Hb binding capacity (HbBC) yield of 1.2 g starting from 500 g of FIV paste. However, pretreatment of FIV with fumed silica to remove lipoproteins increased Hp purity to >95% with a HbBC yield of 1.7 g per 500 g of FIV. Taken together this study provides a novel and scalable method to purify Hp from plasma or plasma fractions.
Collapse
Affiliation(s)
- Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Interplay of Heme with Macrophages in Homeostasis and Inflammation. Int J Mol Sci 2020; 21:ijms21030740. [PMID: 31979309 PMCID: PMC7036926 DOI: 10.3390/ijms21030740] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Macrophages are an integral part of the mononuclear phagocyte system that is critical for maintaining immune homeostasis. They play a key role for initiation and modulation of immunological responses in inflammation and infection. Moreover, macrophages exhibit a wide spectrum of tissue-specific phenotypes in steady-state and pathophysiological conditions. Recent clinical and experimental evidence indicates that the ubiquitous compound heme is a crucial regulator of these cells, e.g., in the differentiation of monocytes to tissue-resident macrophages and/ or in activation by inflammatory stimuli. Notably, heme, an iron containing tetrapyrrole, is essential as a prosthetic group of hemoproteins (e.g., hemoglobin and cytochromes), whereas non-protein bound free or labile heme can be harmful via pro-oxidant, pro-inflammatory, and cytotoxic effects. In this review, it will be discussed how the complex interplay of heme with macrophages regulates homeostasis and inflammation via modulating macrophage inflammatory characteristics and/ or hematopoiesis. A particular focus will be the distinct roles of intra- and extracellular labile heme and the regulation of its availability by heme-binding proteins. Finally, it will be addressed how heme modulates macrophage functions via specific transcriptional factors, in particular the nuclear repressor BTB and CNC homologue (BACH)1 and Spi-C.
Collapse
|
14
|
Janciauskiene S. The Beneficial Effects of Antioxidants in Health And Diseases. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:182-202. [PMID: 32558487 DOI: 10.15326/jcopdf.7.3.2019.0152] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive oxygen and nitrogen species can be generated endogenously (by mitochondria, peroxisomes, and phagocytic cells) and exogenously (by pollutions, UV exposure, xenobiotic compounds, and cigarette smoke). The negative effects of free radicals are neutralized by antioxidant molecules synthesized in our body, like glutathione, uric acid, or ubiquinone, and those obtained from the diet, such as vitamins C, E, and A, and flavonoids. Different microelements like selenium and zinc have no antioxidant action themselves but are required for the activity of many antioxidant enzymes. Furthermore, circulating blood proteins are suggested to account for more than 50% of the combined antioxidant effects of urate, ascorbate, and vitamin E. Antioxidants together constitute a mutually supportive defense against reactive oxygen and nitrogen species to maintain the oxidant/antioxidant balance. This article outlines the oxidative and anti-oxidative molecules involved in the pathogenesis of chronic obstructive lung disease. The role of albumin and alpha-1 antitrypsin in antioxidant defense is also discussed.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Member of German Centre for Lung Research (DZL), Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
15
|
Du S, Tian J, Xiao Z, Luo Z, Lin T, Zheng S, Ai J. Serum alpha 1-antitrypsin predicts severe acute kidney injury after cardiac surgery. J Thorac Dis 2019; 11:5053-5062. [PMID: 32030221 DOI: 10.21037/jtd.2019.12.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Human alpha 1-antitrypsin (A1AT) is involved in the pathophysiological process underlying ischemic acute kidney injury (AKI). To test the hypothesis that serum A1AT (sA1AT) is a predictor for severe AKI after cardiopulmonary bypass (CPB), we conducted a prospective cohort study in 201 patients undergoing cardiac surgery. Methods We collected blood and urine samples, and analyzed the sA1AT and other injury biomarkers during the perioperative period. Severe AKI is defined as Kidney Disease Improving Global Outcomes (KDIGO) stage 2 or 3, and overall AKI is defined as KDIGO stage 1, 2, or 3. Results Ninety-one (45.3%) patients developed overall AKI, and 22 (10.9%) among them developed severe AKI after operation. sA1AT level spiked 2 hours after surgery in patients who subsequently developed severe AKI, while serum creatinine peaked 12 hours after operation. Higher postoperative sA1AT independently correlated to the development of severe AKI [OR, 1.54 (1.17-2.03); P=0.002]. The highest quartile of postoperative sA1AT level was associated with 6-fold higher hazards of severe AKI compared to the lowest quartile. Higher sA1AT levels were correlated with longer stays in the intensive care unit and the hospital. For predicting severe AKI, the AUC of sA1AT 2 hours after CPB reached 0.814. After combining with urine T cell immunoglobulin mucin-1 and clinical model, the AUC improved to 0.923. Conclusions In summary, sA1AT is a valuable predictor of severe AKI development and prolonged ICU and hospital stays in patients after cardiac surgery.
Collapse
Affiliation(s)
- Songlin Du
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianwei Tian
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhiwen Xiao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhiwen Luo
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tong Lin
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jun Ai
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
16
|
Structure effect of water-soluble iron porphyrins on catalyzing protein tyrosine nitration in the presence of nitrite and hydrogen peroxide. Nitric Oxide 2019; 91:42-51. [PMID: 31351146 DOI: 10.1016/j.niox.2019.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
Water-soluble iron porphyrins, such as FeTPPS (5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron (III)), FeTMPyP (5,10,15,20-tetrakis (N-methyl-4'-pyridyl) porphyrinato iron (III) chloride) and FeTBAP (5,10,15,20-tetrakis (4-benzoic acid) porphyrinato iron (III)), are highly active catalysts for peroxynitrite decomposition and thereby have been suggested as therapeutic agent for inflammatory diseases that implicate the involvement of nitrotyrosine formation. Here, we systemically investigated catalytic properties of FeTPPS, FeTMPyP and FeTBAP on protein nitration in the presence of hydrogen peroxide and nitrite. We showed that FeTPPS, FeTBAP and FeTMPyP all exhibited higher peroxidase activity in compared with hemin. As to protein nitration, the catalytic effect of FeTPPS and FeTBAP are effective in the presence of hydrogen peroxide and nitrite, while negligible BSA nitration was observed in the case of FeTMPyP. Moreover, the underlying mechanism of the oxidation of FeTPPS, FeTBAP and FeTMPyP was further studied. Collectively, our results suggest that, compound I and II species are involved in as the key intermediates in FeTMPyP/H2O2 system as similar as those in FeTPPS/H2O2 and FeTBAP/H2O2 system. As compared to weak antioxidants, TPPS and TBAP, however, TMPyP scavenges oxo-Fe (IV) intermediates of FeTMPyP at a faster rate by significant self-degradation; results in the shortest lifetimes of OFeIV-TMPyP and the lowest catalytic activity on oxidizing tyrosine and nitrite; and therefore, attributes to inactivation of FeTMPyP in protein nitration. In addition, association of FeTMPyP to BSA was found weak, while strong binding of FeTPPS and FeTBAP were observed. The weak binding keeps away of target residue of BSA from the center of FeTMPyP where the RNS is generated, which might be attributed as additional factors to the inactivation of FeTMPyP in protein nitration.
Collapse
|
17
|
Janciauskiene S, Wrenger S, Immenschuh S, Olejnicka B, Greulich T, Welte T, Chorostowska-Wynimko J. The Multifaceted Effects of Alpha1-Antitrypsin on Neutrophil Functions. Front Pharmacol 2018; 9:341. [PMID: 29719508 PMCID: PMC5914301 DOI: 10.3389/fphar.2018.00341] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/23/2018] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are the predominant immune cells in human blood possessing heterogeneity, plasticity and functional diversity. The activation and recruitment of neutrophils into inflamed tissue in response to stimuli are tightly regulated processes. Alpha1-Antitrypsin (AAT), an acute phase protein, is one of the potent regulators of neutrophil activation via both -protease inhibitory and non-inhibitory functions. This review summarizes our current understanding of the effects of AAT on neutrophils, illustrating the interplay between AAT and the key effector functions of neutrophils.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Sabine Wrenger
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Beata Olejnicka
- Department of Medicine, Trelleborg Hospital, Trelleborg, Sweden
| | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL), University Hospital of Giessen and Marburg, University of Marburg, Marburg, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
18
|
Huang Y, Yang Z, Xu H, Zhang P, Gao Z, Li H. Insulin enhances the peroxidase activity of heme by forming heme-insulin complex: Relevance to type 2 diabetes mellitus. Int J Biol Macromol 2017; 102:1009-1015. [DOI: 10.1016/j.ijbiomac.2017.04.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022]
|
19
|
Immenschuh S, Vijayan V, Janciauskiene S, Gueler F. Heme as a Target for Therapeutic Interventions. Front Pharmacol 2017; 8:146. [PMID: 28420988 PMCID: PMC5378770 DOI: 10.3389/fphar.2017.00146] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/07/2017] [Indexed: 12/30/2022] Open
Abstract
Heme is a complex of iron and the tetrapyrrole protoporphyrin IX with essential functions in aerobic organisms. Heme is the prosthetic group of hemoproteins such as hemoglobin and myoglobin, which are crucial for reversible oxygen binding and transport. By contrast, high levels of free heme, which may occur in various pathophysiological conditions, are toxic via pro-oxidant, pro-inflammatory and cytotoxic effects. The toxicity of heme plays a major role for the pathogenesis of prototypical hemolytic disorders including sickle cell disease and malaria. Moreover, there is increasing appreciation that detrimental effects of heme may also be critically involved in diseases, which usually are not associated with hemolysis such as severe sepsis and atherosclerosis. In mammalians homeostasis of heme and its potential toxicity are primarily controlled by two physiological systems. First, the scavenger protein hemopexin (Hx) non-covalently binds extracellular free heme with high affinity and attenuates toxicity of heme in plasma. Second, heme oxygenases (HOs), in particular the inducible HO isozyme, HO-1, can provide antioxidant cytoprotection via enzymatic degradation of intracellular heme. This review summarizes current knowledge on the pathophysiological role of heme for various diseases as demonstrated in experimental animal models and in humans. The functional significance of Hx and HOs for the regulation of heme homeostasis is highlighted. Finally, the therapeutic potential of pharmacological strategies that apply Hx and HO-1 in various clinical settings is discussed.
Collapse
Affiliation(s)
- Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical SchoolHannover, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical SchoolHannover, Germany
| | | | - Faikah Gueler
- Department of Nephrology, Hannover Medical SchoolHannover, Germany
| |
Collapse
|
20
|
Hu J, Allen R, Rozinek S, Brancaleon L. Experimental and computational characterization of photosensitized conformational effects mediated by protoporphyrin ligands on human serum albumin. Photochem Photobiol Sci 2017; 16:694-710. [DOI: 10.1039/c6pp00096g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-free and Zn-chelated protoporphyrins were bound to human serum albumin. Their binding parameters and locations were characterized and the effect of their irradiation on the conformation of the protein was demonstrated.
Collapse
Affiliation(s)
- Jie Hu
- Department of Physics and Astronomy
- University of Texas at San Antonio
- 78249 San Antonio
- USA
| | - Ryan Allen
- Department of Physics and Astronomy
- University of Texas at San Antonio
- 78249 San Antonio
- USA
| | - Sarah Rozinek
- Department of Physics and Astronomy
- University of Texas at San Antonio
- 78249 San Antonio
- USA
| | - Lorenzo Brancaleon
- Department of Physics and Astronomy
- University of Texas at San Antonio
- 78249 San Antonio
- USA
| |
Collapse
|
21
|
Ye H, Yang Z, Li H, Gao Z. NPY binds with heme to form a NPY–heme complex: enhancing peroxidase activity in free heme and promoting NPY nitration and inactivation. Dalton Trans 2017; 46:10315-10323. [DOI: 10.1039/c7dt01822c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NPY binding with heme enhances the peroxidase activity of free heme, resulting in the important tyrosine nitration, which will attenuate its bioactivity.
Collapse
Affiliation(s)
- Huixian Ye
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- People's Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
| | - Zhen Yang
- Department of Chemical and Biomolecular Engineering
- University of Houston
- Houston
- USA
| | - Hailing Li
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- People's Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
| | - Zhonghong Gao
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- People's Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
| |
Collapse
|
22
|
Rutardottir S, Karnaukhova E, Nantasenamat C, Songtawee N, Prachayasittikul V, Rajabi M, Rosenlöf LW, Alayash AI, Åkerström B. Structural and biochemical characterization of two heme binding sites on α1-microglobulin using site directed mutagenesis and molecular simulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:29-41. [PMID: 26497278 DOI: 10.1016/j.bbapap.2015.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/12/2015] [Accepted: 10/07/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND α1-Microglobulin (A1M) is a reductase and radical scavenger involved in physiological protection against oxidative damage. These functions were previously shown to be dependent upon cysteinyl-, C34, and lysyl side-chains, K(92, 118,130). A1M binds heme and the crystal structure suggests that C34 and H123 participate in a heme binding site. We have investigated the involvement of these five residues in the interactions with heme. METHODS Four A1M-variants were expressed: with cysteine to serine substitution in position 34, lysine to threonine substitutions in positions (92, 118, 130), histidine to serine substitution in position 123 and a wt without mutations. Heme binding was investigated by tryptophan fluorescence quenching, UV-Vis spectrophotometry, circular dichroism, SPR, electrophoretic migration shift, gel filtration, catalase-like activity and molecular simulation. RESULTS All A1M-variants bound to heme. Mutations in C34, H123 or K(92, 118, 130) resulted in significant absorbance changes, CD spectral changes, and catalase-like activity, suggesting involvement of these side-groups in coordination of the heme-iron. Molecular simulation support a model with two heme-binding sites in A1M involving the mutated residues. Binding of the first heme induces allosteric stabilization of the structure predisposing for a better fit of the second heme. CONCLUSIONS The results suggest that one heme-binding site is located in the lipocalin pocket and a second binding site between loops 1 and 4. Reactions with the hemes involve the side-groups of C34, K(92, 118, 130) and H123. GENERAL SIGNIFICANCE The model provides a structural basis for the functional activities of A1M: heme binding activity of A1M.
Collapse
Affiliation(s)
| | - Elena Karnaukhova
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, MD, USA
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand; Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Napat Songtawee
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Mohsen Rajabi
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, MD, USA
| | | | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, MD, USA
| | - Bo Åkerström
- Division of Infection Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
O’Dwyer CA, O’Brien ME, Wormald MR, White MM, Banville N, Hurley K, McCarthy C, McElvaney NG, Reeves EP. The BLT1 Inhibitory Function of α-1 Antitrypsin Augmentation Therapy Disrupts Leukotriene B4Neutrophil Signaling. THE JOURNAL OF IMMUNOLOGY 2015; 195:3628-41. [DOI: 10.4049/jimmunol.1500038] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 08/12/2015] [Indexed: 12/15/2022]
|
24
|
Karnaukhova E, Rutardottir S, Rajabi M, Wester Rosenlöf L, Alayash AI, Åkerström B. Characterization of heme binding to recombinant α1-microglobulin. Front Physiol 2014; 5:465. [PMID: 25538624 PMCID: PMC4255499 DOI: 10.3389/fphys.2014.00465] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/13/2014] [Indexed: 11/13/2022] Open
Abstract
Background: Alpha-1-microglobulin (A1M), a small lipocalin protein found in plasma and tissues, has been identified as a heme1 and radical scavenger that may participate in the mitigation of toxicities caused by degradation of hemoglobin. The objective of this work was to investigate heme interactions with A1M in vitro using various analytical techniques and to optimize analytical methodology suitable for rapid evaluation of the ligand binding properties of recombinant A1M versions. Methods: To examine heme binding properties of A1M we utilized UV/Vis absorption spectroscopy, visible circular dichroism (CD), catalase-like activity, migration shift electrophoresis, and surface plasmon resonance (SPR), which was specifically developed for the assessment of His-tagged A1M. Results: The results of this study confirm that A1M is a heme binding protein that can accommodate heme at more than one binding site and/or in coordination with different amino acid residues depending upon heme concentration and ligand-to-protein molar ratio. UV/Vis titration of A1M with heme revealed an unusually large bathochromic shift, up to 38 nm, observed for heme binding to a primary binding site. UV/Vis spectroscopy, visible CD and catalase-like activity suggested that heme is accommodated inside His-tagged (tgA1M) and tagless A1M (ntA1M) in a rather similar fashion although the His-tag is very likely involved into coordination with iron of the heme molecule. SPR data indicated kinetic rate constants and equilibrium binding constants with KD values in a μM range. Conclusions: This study provided experimental evidence of the A1M heme binding properties by aid of different techniques and suggested an analytical methodology for a rapid evaluation of ligand-binding properties of recombinant A1M versions, also suitable for other His-tagged proteins.
Collapse
Affiliation(s)
- Elena Karnaukhova
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration Silver Spring, MD, USA
| | - Sigurbjörg Rutardottir
- Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University Lund, Sweden
| | - Mohsen Rajabi
- Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, Food and Drug Administration Silver Spring, MD, USA
| | - Lena Wester Rosenlöf
- Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University Lund, Sweden
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration Silver Spring, MD, USA
| | - Bo Åkerström
- Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University Lund, Sweden
| |
Collapse
|
25
|
Determination of a deuterohemin–peptide conjugate in rat plasma by liquid chromatography–tandem mass spectrometry and application to a preclinical pharmacokinetic study. J Pharm Biomed Anal 2014; 98:401-6. [DOI: 10.1016/j.jpba.2014.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 11/24/2022]
|