1
|
Mao J, Wang M, Wang C, Gu H, Meng X, Jiang Y, Yang X, Zhang J, Xiong Y, Zhao X, Liu L, Wang Y, Wang Y, Li Z, Zhu B. Glycated albumin levels are associated with adverse stroke outcomes in patients with acute ischemic stroke in China. J Diabetes 2024; 16:e13600. [PMID: 39264001 PMCID: PMC11391381 DOI: 10.1111/1753-0407.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND AND AIM Glycated albumin (GA) is a biomarker monitoring glycemia 2-4 weeks before stroke onset. This study was designed to explore the association between GA levels with poststroke outcomes in patients with acute ischemic stroke or transient ischemic attack (TIA). METHOD Participants with ischemic stroke or TIA who had a baseline GA measurement were included in the Third China National Stroke Registry study. The effect of GA on stroke recurrence, poor functional outcomes, and combined vascular events was examined during the 1-year follow-up period. Multivariate Cox and logistic regression models were performed to evaluate the association. Discrimination tests were used to examine the incremental predictive value of GA when incorporating it into the conventional model. RESULTS A total of 3861 participants were enrolled. At the 3-month follow-up, the elevated GA level was associated with an increased risk of poor functional outcomes (adjusted odds ratio [OR], 1.45; 95% confidence interval [CI], 1.01-2.09). A similar increase was observed for stroke recurrence (adjusted hazard ratio [HR], 1.56; 95% CI, 1.09-2.24), poor functional outcomes (adjusted OR, 1.62; 95% CI, 1.07-2.45), and combined vascular events (adjusted HR, 1.55; 95% CI, 1.09-2.20) at the 1-year follow-up. In nondiabetic patients, the association between GA and poor functional outcomes was more pronounced (adjusted OR, 1.62; 95% CI, 1.05-2.50). Adding GA into the conventional model resulted in slight improvements in predicting poor functional outcomes (net reclassification improvement [NRI]: 12.30% at 1 year). CONCLUSION This study demonstrated that elevated GA levels in serum were associated with stroke adverse outcomes, including stroke recurrence, poor functional outcomes, and combined vascular events, in patients with ischemic stroke or TIA.
Collapse
Affiliation(s)
- Jiawen Mao
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Meng Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalBeijingChina
- National Center for Healthcare Quality Management in Neurological DiseasesBeijing Tiantan HospitalBeijingChina
| | - Chunjuan Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalBeijingChina
- National Center for Healthcare Quality Management in Neurological DiseasesBeijing Tiantan HospitalBeijingChina
| | - Hongqiu Gu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalBeijingChina
- National Center for Healthcare Quality Management in Neurological DiseasesBeijing Tiantan HospitalBeijingChina
| | - Xia Meng
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalBeijingChina
- National Center for Healthcare Quality Management in Neurological DiseasesBeijing Tiantan HospitalBeijingChina
| | - Yong Jiang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalBeijingChina
- National Center for Healthcare Quality Management in Neurological DiseasesBeijing Tiantan HospitalBeijingChina
| | - Xin Yang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalBeijingChina
- National Center for Healthcare Quality Management in Neurological DiseasesBeijing Tiantan HospitalBeijingChina
| | - Jing Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalBeijingChina
- National Center for Healthcare Quality Management in Neurological DiseasesBeijing Tiantan HospitalBeijingChina
| | - Yunyun Xiong
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalBeijingChina
- National Center for Healthcare Quality Management in Neurological DiseasesBeijing Tiantan HospitalBeijingChina
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalBeijingChina
| | - Liping Liu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalBeijingChina
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalBeijingChina
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalBeijingChina
- National Center for Healthcare Quality Management in Neurological DiseasesBeijing Tiantan HospitalBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalBeijingChina
- National Center for Healthcare Quality Management in Neurological DiseasesBeijing Tiantan HospitalBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
| | - Bihong Zhu
- Department of NeurologyHuangyan Hospital of Wenzhou Medical UniversityZhejiangChina
| |
Collapse
|
2
|
Uceda AB, Mariño L, Casasnovas R, Adrover M. An overview on glycation: molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophys Rev 2024; 16:189-218. [PMID: 38737201 PMCID: PMC11078917 DOI: 10.1007/s12551-024-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/14/2024] Open
Abstract
The formation of a heterogeneous set of advanced glycation end products (AGEs) is the final outcome of a non-enzymatic process that occurs in vivo on long-life biomolecules. This process, known as glycation, starts with the reaction between reducing sugars, or their autoxidation products, with the amino groups of proteins, DNA, or lipids, thus gaining relevance under hyperglycemic conditions. Once AGEs are formed, they might affect the biological function of the biomacromolecule and, therefore, induce the development of pathophysiological events. In fact, the accumulation of AGEs has been pointed as a triggering factor of obesity, diabetes-related diseases, coronary artery disease, neurological disorders, or chronic renal failure, among others. Given the deleterious consequences of glycation, evolution has designed endogenous mechanisms to undo glycation or to prevent it. In addition, many exogenous molecules have also emerged as powerful glycation inhibitors. This review aims to provide an overview on what glycation is. It starts by explaining the similarities and differences between glycation and glycosylation. Then, it describes in detail the molecular mechanism underlying glycation reactions, and the bio-molecular targets with higher propensity to be glycated. Next, it discusses the precise effects of glycation on protein structure, function, and aggregation, and how computational chemistry has provided insights on these aspects. Finally, it reports the most prevalent diseases induced by glycation, and the endogenous mechanisms and the current therapeutic interventions against it.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Laura Mariño
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Rodrigo Casasnovas
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Miquel Adrover
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| |
Collapse
|
3
|
Costa M, Páez A. Emerging insights into the role of albumin with plasma exchange in Alzheimer's disease management. Transfus Apher Sci 2021; 60:103164. [PMID: 34083161 DOI: 10.1016/j.transci.2021.103164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative process that inexorably leads to progressive deterioration of cognition function and, ultimately, death. Central pathophysiologic features of AD include the accumulation of extracellular plaques comprised of amyloid-β peptide (Aβ) and the presence of intraneuronal neurofibrillary tangles. However, a large body of evidence suggests that oxidative stress and inflammation are major contributors to the pathogenesis and progression of AD. To date, available pharmacologic treatments are only symptomatic. Clinical trials focused on amyloid and non-amyloid-targeted treatments with small molecule pharmacotherapy and immunotherapies have accumulated a long list of failures. Considering that around 90 % of the circulating Aβ is bound to albumin, and that a dynamic equilibrium exists between peripheral and central Aβ, plasma exchange with albumin replacement has emerged as a new approach in a multitargeted AD therapeutic strategy (AMBAR Program). In plasma exchange, a patient's plasma is removed by plasmapheresis to eliminate toxic endogenous substances, including Aβ and functionally impaired albumin. The fluid replacement used is therapeutic albumin, which acts not only as a plasma volume expander but also has numerous pleiotropic functions (e.g., circulating Aβ- binding capacity, transporter, detoxifier, antioxidant) that are clinically relevant for the treatment of AD. Positive results from the AMBAR Program (phase 1, 2, an 2b/3 trials), i.e., slower decline or stabilization of disease symptoms in the most relevant clinical efficacy and safety endpoints, offer a glimmer of hope to both AD patients and caregivers.
Collapse
Affiliation(s)
| | - Antonio Páez
- Alzheimer's Research Group, Grifols, Barcelona, Spain.
| |
Collapse
|
4
|
Bergman M, Abdul-Ghani M, DeFronzo RA, Manco M, Sesti G, Fiorentino TV, Ceriello A, Rhee M, Phillips LS, Chung S, Cravalho C, Jagannathan R, Monnier L, Colette C, Owens D, Bianchi C, Del Prato S, Monteiro MP, Neves JS, Medina JL, Macedo MP, Ribeiro RT, Filipe Raposo J, Dorcely B, Ibrahim N, Buysschaert M. Review of methods for detecting glycemic disorders. Diabetes Res Clin Pract 2020; 165:108233. [PMID: 32497744 PMCID: PMC7977482 DOI: 10.1016/j.diabres.2020.108233] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
Prediabetes (intermediate hyperglycemia) consists of two abnormalities, impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) detected by a standardized 75-gram oral glucose tolerance test (OGTT). Individuals with isolated IGT or combined IFG and IGT have increased risk for developing type 2 diabetes (T2D) and cardiovascular disease (CVD). Diagnosing prediabetes early and accurately is critical in order to refer high-risk individuals for intensive lifestyle modification. However, there is currently no international consensus for diagnosing prediabetes with HbA1c or glucose measurements based upon American Diabetes Association (ADA) and the World Health Organization (WHO) criteria that identify different populations at risk for progressing to diabetes. Various caveats affecting the accuracy of interpreting the HbA1c including genetics complicate this further. This review describes established methods for detecting glucose disorders based upon glucose and HbA1c parameters as well as novel approaches including the 1-hour plasma glucose (1-h PG), glucose challenge test (GCT), shape of the glucose curve, genetics, continuous glucose monitoring (CGM), measures of insulin secretion and sensitivity, metabolomics, and ancillary tools such as fructosamine, glycated albumin (GA), 1,5- anhydroglucitol (1,5-AG). Of the approaches considered, the 1-h PG has considerable potential as a biomarker for detecting glucose disorders if confirmed by additional data including health economic analysis. Whether the 1-h OGTT is superior to genetics and omics in providing greater precision for individualized treatment requires further investigation. These methods will need to demonstrate substantially superiority to simpler tools for detecting glucose disorders to justify their cost and complexity.
Collapse
Affiliation(s)
- Michael Bergman
- NYU School of Medicine, NYU Diabetes Prevention Program, Endocrinology, Diabetes, Metabolism, VA New York Harbor Healthcare System, Manhattan Campus, 423 East 23rd Street, Room 16049C, NY, NY 10010, USA.
| | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Ralph A DeFronzo
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Melania Manco
- Research Area for Multifactorial Diseases, Bambino Gesù Children Hospital, Rome, Italy.
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome Sapienza, Rome 00161, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy.
| | - Antonio Ceriello
- Department of Cardiovascular and Metabolic Diseases, Istituto Ricerca Cura Carattere Scientifico Multimedica, Sesto, San Giovanni (MI), Italy.
| | - Mary Rhee
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta VA Health Care System, Atlanta, GA 30322, USA.
| | - Lawrence S Phillips
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta VA Health Care System, Atlanta, GA 30322, USA.
| | - Stephanie Chung
- Diabetes Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Celeste Cravalho
- Diabetes Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ram Jagannathan
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta VA Health Care System, Atlanta, GA 30322, USA.
| | - Louis Monnier
- Institute of Clinical Research, University of Montpellier, Montpellier, France.
| | - Claude Colette
- Institute of Clinical Research, University of Montpellier, Montpellier, France.
| | - David Owens
- Diabetes Research Group, Institute of Life Science, Swansea University, Wales, UK.
| | - Cristina Bianchi
- University Hospital of Pisa, Section of Metabolic Diseases and Diabetes, University Hospital, University of Pisa, Pisa, Italy.
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Mariana P Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| | - João Sérgio Neves
- Department of Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Endocrinology, Diabetes and Metabolism, São João University Hospital Center, Porto, Portugal.
| | | | - Maria Paula Macedo
- CEDOC-Centro de Estudos de Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; APDP-Diabetes Portugal, Education and Research Center (APDP-ERC), Lisboa, Portugal.
| | - Rogério Tavares Ribeiro
- Institute for Biomedicine, Department of Medical Sciences, University of Aveiro, APDP Diabetes Portugal, Education and Research Center (APDP-ERC), Aveiro, Portugal.
| | - João Filipe Raposo
- CEDOC-Centro de Estudos de Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; APDP-Diabetes Portugal, Education and Research Center (APDP-ERC), Lisboa, Portugal.
| | - Brenda Dorcely
- NYU School of Medicine, Division of Endocrinology, Diabetes, Metabolism, NY, NY 10016, USA.
| | - Nouran Ibrahim
- NYU School of Medicine, Division of Endocrinology, Diabetes, Metabolism, NY, NY 10016, USA.
| | - Martin Buysschaert
- Department of Endocrinology and Diabetology, Université Catholique de Louvain, University Clinic Saint-Luc, Brussels, Belgium.
| |
Collapse
|
5
|
Abidar S, Yildiz O, Degirmenci A, Amakran A, El Maadoudi M, Nhiri M. Glucose-mediated protein glycation: Contribution of methanolic extract of Ceratonia siliqua L. in protection and in vitro potential inhibition of acetylcholinesterase. J Food Biochem 2019; 43:e13009. [PMID: 31393019 DOI: 10.1111/jfbc.13009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 01/11/2023]
Abstract
Chronic hyperglycemia presents the major etiology of diabetes mellitus and related complications mainly Alzheimer's disease, via the protein glycation and toxic products generated. In the current study, we investigated the eventual protective effect of the methanolic extract of Ceratonia siliqua L. (CsME) against glucose-mediated glycation in serum bovine albumin. The multi-stage glycation markers, namely fructosamines and advanced glycation end products (AGEs) levels were monitored along with measurement of thiol groups; moreover, the in vitro acetylcholinesterase (AChE) inhibition potential was carried out. HPLC was also assessed. Rutin was the main phenolic compound found in CsME. CsME showed a good capacity to inhibit AGEs, fructosamines and protected thiol groups against glycation. CsME exhibited a great AChE inhibition activity. In the present study, CsME prevented glucose-induced protein glycation, it also exhibited a good inhibition of AChE, suggesting its DM complications such as memory troubles related to AD. PRACTICAL APPLICATIONS: Neurodegenerative disorders ranging from memory troubles to Alzheimer's disease present the most diabetes mellitus complications and mainly attributed to protein glycation process. Currently, there is a strong trend to search for efficient natural sources of glycation and acetylcholinesterase inhibitors to replace the synthetic ones, whose secondary effects were shown. The present article tries to justify scientifically the wide use of Ceratonia siliqua L. in Moroccan folk medicine, demonstrating that the methanolic extract of leaves from this species presents a promising source of new natural compounds inhibiting acetylcholinesterase and acting in vitro against glycation generated compounds. Furthermore, for the first time, Rutin was the main phenolic compound found in this extract, these encouraging results should be coupled with further studies to integrate it in pharmaceutical formulations. As such, this paper should be of interest to a broad readership, including those interested in Biochemistry, Phytochemistry, pharmacology, and neurosciences.
Collapse
Affiliation(s)
- Sara Abidar
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaâdi, Tanger Principal, Morocco
| | - Oktay Yildiz
- Maçka VHS, Department of Food Processing, Karadeniz Technical University, Trabzon, Turkey
| | - Atiye Degirmenci
- Maçka VHS, Department of Food Processing, Karadeniz Technical University, Trabzon, Turkey
| | - Amina Amakran
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaâdi, Tanger Principal, Morocco
| | - Mohammed El Maadoudi
- Laboratoire Régional d'Analyses et de Recherches de l'ONSSA (office national de sécurité sanitaire des produits alimentaires), Tanger, Maroc
| | - Mohamed Nhiri
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaâdi, Tanger Principal, Morocco
| |
Collapse
|
6
|
Advanced Glycation End Products of Bovine Serum Albumin Suppressed Th1/Th2 Cytokine but Enhanced Monocyte IL-6 Gene Expression via MAPK-ERK and MyD88 Transduced NF-κB p50 Signaling Pathways. Molecules 2019; 24:molecules24132461. [PMID: 31277476 PMCID: PMC6652144 DOI: 10.3390/molecules24132461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end products (AGE), the most known aging biomarker, may cause “inflamm-aging” (i.e., chronic low-grade inflammation that develops with aging) in both aged and diabetes groups. However, the molecular bases of inflamm-aging remain obscure. We prepared AGE by incubating BSA (0.0746 mmol/L) + glucose (0.5 mol/L) at 37 °C in 5% CO2–95% air for 1–180 days. The lysine glycation in BSA–AGE reached 77% on day 30 and 100% after day 130, whereas the glycation of arginine and cysteine was minimal. The Nε-(carboxymethyl)-lysine content in BSA–AGE was also increased with increasing number of incubation days. The lectin-binding assay revealed that the glycation of BSA not only altered the conformational structure, but lost binding capacity with various lectins. An immunological functional assay showed that BSA–AGE > 8 μg/mL significantly suppressed normal human Th1 (IL-2 and IFN-γ) and Th2 (IL-10) mRNA expression, whereas AGE > 0.5 μg/mL enhanced monocyte IL-6 production irrelevant to cell apoptosis. The AGE-enhanced monocyte IL-6 production was via MAPK–ERK and MyD88-transduced NF-κBp50 signaling pathways. To elucidate the structure–function relationship of BSA–AGE-enhanced IL-6 production, we pre-preincubated BSA–AGE with different carbohydrate-degrading, protein-degrading, and glycoprotein-degrading enzymes. We found that trypsin and carboxypeptidase Y suppressed whereas β-galactosidase enhanced monocyte IL-6 production. In conclusion, BSA–AGE exerted both immunosuppressive and pro-inflammatory effects that are the molecular basis of inflamm-aging in aged and diabetes groups.
Collapse
|
7
|
Dobi A, Bravo SB, Veeren B, Paradela-Dobarro B, Álvarez E, Meilhac O, Viranaicken W, Baret P, Devin A, Rondeau P. Advanced glycation end-products disrupt human endothelial cells redox homeostasis: new insights into reactive oxygen species production. Free Radic Res 2019; 53:150-169. [PMID: 30821539 DOI: 10.1080/10715762.2018.1529866] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Advanced glycation end-products (AGEs) trigger multiple metabolic disorders in the vessel wall that may in turn lead to endothelial dysfunction. The molecular mechanisms by which AGEs generate these effects are not completely understood. Oxidative stress plays a key role in the development of deleterious effects that occur in endothelium during diabetes. Our main objectives were to further understand how AGEs contribute to reactive oxygen species (ROS) overproduction in endothelial cells and to evaluate the protective effect of an antioxidant plant extract. The human endothelial cell line EA.hy926 was treated with native or modified bovine serum albumin (respectively BSA and BSA-AGEs). To monitor free radicals formation, we used H2DCF-DA, dihydroethidium (DHE), DAF-FM-DA and MitoSOX Red dyes. To investigate potential sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial inhibitors were used. The regulation of different types of ROS by the polyphenol-rich extract from the medicinal plant Doratoxylon apetalum was also studied for a therapeutic perspective. BSA-AGEs exhibited not only less antioxidant properties than BSA, but also pro-oxidant effects. The degree of albumin glycoxidation directly influenced oxidative stress through a possible communication between NADPH oxidase and mitochondria. D. apetalum significantly decreased intracellular hydrogen peroxide and superoxide anions mainly detected by H2DCF-DA and DHE respectively. Our results suggest that BSA-AGEs promote a marked oxidative stress mediated at least by NADPH oxidase and mitochondria. D. apetalum plant extract appeared to be an effective antioxidant compound to protect endothelial cells.
Collapse
Affiliation(s)
- Anthony Dobi
- a Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) , Saint-Denis de La Réunion , France
| | - Susana B Bravo
- b Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago , Santiago de Compostela , Spain
| | - Bryan Veeren
- a Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) , Saint-Denis de La Réunion , France
| | - Beatriz Paradela-Dobarro
- b Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago , Santiago de Compostela , Spain.,c CIBERCV , Madrid , Spain
| | - Ezequiel Álvarez
- b Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago , Santiago de Compostela , Spain.,c CIBERCV , Madrid , Spain
| | - Olivier Meilhac
- a Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) , Saint-Denis de La Réunion , France.,d Centre d'Investigation Clinique, Centre hospitalier universitaire de La Réunion , Saint-Denis , France
| | - Wildriss Viranaicken
- e Université de La Réunion, CNRS UMR 9192, INSERM U1187, IRD UMR 249, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT) , Saint-Denis de La Réunion , France
| | - Pascal Baret
- a Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) , Saint-Denis de La Réunion , France
| | - Anne Devin
- f CNRS, Institut de Biochimie et Génétique Cellulaires, UMR5095, Université de Bordeaux , Bordeaux , France
| | - Philippe Rondeau
- a Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) , Saint-Denis de La Réunion , France
| |
Collapse
|
8
|
Huh JH, Lee M, Park SY, Kim JH, Lee BW. Glycated Albumin Is a More Useful Glycation Index than HbA1c for Reflecting Renal Tubulopathy in Subjects with Early Diabetic Kidney Disease. Diabetes Metab J 2018; 42:215-223. [PMID: 29885104 PMCID: PMC6015965 DOI: 10.4093/dmj.2017.0091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate which glycemic parameters better reflect urinary N-acetyl-β-D-glucosaminidase (uNAG) abnormality, a marker for renal tubulopathy, in subjects with type 2 diabetes mellitus (T2DM) subjects with normoalbuminuria and a normal estimated glomerular filtration rate (eGFR). METHODS We classified 1,061 participants with T2DM into two groups according to uNAG level-normal vs. high (>5.8 U/g creatinine)-and measured their biochemical parameters. RESULTS Subjects with high uNAG level had significantly higher levels of fasting and stimulated glucose, glycated albumin (GA), and glycosylated hemoglobin (HbA1c) and lower levels of homeostasis model assessment of β-cell compared with subjects with normal uNAG level. Multiple linear regression analyses showed that uNAG was significantly associated with GA (standardized β coefficient [β]=0.213, P=0.016), but not with HbA1c (β=?0.137, P=0.096) or stimulated glucose (β=0.095, P=0.140) after adjusting confounding factors. In receiver operating characteristic analysis, the value of the area under the curve (AUC) for renal tubular injury of GA was significantly higher (AUC=0.634; 95% confidence interval [CI], 0.646 to 0.899) than those for HbA1c (AUC=0.598; 95% CI, 0.553 to 0.640), stimulated glucose (AUC=0.594; 95% CI, 0.552 to 0.636), or fasting glucose (AUC=0.558; 95% CI, 0.515 to 0.600). The optimal GA cutoff point for renal tubular damage was 17.55% (sensitivity 59%, specificity 62%). CONCLUSION GA is a more useful glycation index than HbA1c for reflecting renal tubulopathy in subjects with T2DM with normoalbuminuria and normal eGFR.
Collapse
Affiliation(s)
- Ji Hye Huh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Minyoung Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - So Young Park
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Byung Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Ramlagan P, Rondeau P, Planesse C, Neergheen-Bhujun VS, Bourdon E, Bahorun T. Comparative suppressing effects of black and green teas on the formation of advanced glycation end products (AGEs) and AGE-induced oxidative stress. Food Funct 2018; 8:4194-4209. [PMID: 29043349 DOI: 10.1039/c7fo01038a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study aimed at investigating and comparing the anti-diabetic potential of black and green teas. Biochemical analyses indicate higher antioxidant potency, significantly correlated with the phytochemicals present, in green teas compared to black teas. Both extracts afforded a similar level of protection to erythrocytes against peroxyl radical-induced lysis. Non-cytotoxic concentration of green and black tea extracts significantly reduced the reactive oxygen species (ROS) production (P < 0.01), lowered the oxidation of proteins (P < 0.05) and decreased the IL-6 secretion (P < 0.01) induced by AGEs or H2O2 in 3T3-L1 preadipocytes. Both teas also inhibited the decline in the enzymatic activities of superoxide dismutase, catalase and glutathione peroxidase induced by the pro-oxidants. The teas further suppressed the glycation of BSA mediated by glucose, ribose and MGO by reducing fluorescent AGE, fructosamine, protein carbonyl and AOPP levels. Black and green teas also inhibited the activities of α-amylase (AA50: 589.86 ± 39.51 and 947.80 ± 18.20 μg mL-1, respectively) and α-glucosidase (AA50: 72.31 ± 4.23 and 100.23 ± 8.10 μg mL-1, respectively). The teas afforded a comparable level of protection at the cellular level and against glycation while black tea exerted the highest carbohydrate hydrolysing enzymes inhibitory activity. Our results clearly show that black and green teas represent an important source of antioxidants with anti-diabetic potential.
Collapse
Affiliation(s)
- P Ramlagan
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | | | | | | | | | | |
Collapse
|
10
|
Ferrer R, Mateu X, Maseda E, Yébenes JC, Aldecoa C, De Haro C, Ruiz-Rodriguez JC, Garnacho-Montero J. Non-oncotic properties of albumin. A multidisciplinary vision about the implications for critically ill patients. Expert Rev Clin Pharmacol 2017; 11:125-137. [PMID: 29219627 DOI: 10.1080/17512433.2018.1412827] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Effective resuscitation with human albumin solutions is achieved with less fluid than with crystalloid solutions. However, the role of albumin in today's critical care unit is also linked to its multiple pharmacological effects. Areas covered: The potential clinical benefits of albumin in select populations of critically ill patients like sepsis seem related to immunomodulatory and anti-inflammatory effects, antibiotic transportation and endothelial stabilization. Albumin transports many drugs used in critically ill patients. Such binding to albumin is frequently lessened in critically ill patients with hypoalbuminemia. These changes could result in sub-optimal treatment. Albumin has immunomodulatory capacity by binding several bacterial products. Albumin also influences vascular integrity, contributing to the maintenance of the normal capillary permeability. Moreover, the albumin molecule encompasses several antioxidant properties, thereby significantly reducing re-oxygenation injury, which is especially important in sepsis. In fact, most studies of albumin administration are a combination of a degree of resuscitation with a degree of maintenance or supplementation of albumin. Expert commentary: The potential clinical benefits of the use of albumin in selected critically ill patients such as sepsis seem related to its immunomodulatory and anti-inflammatory effects, antioxidant properties, antibiotic transportation and endothelial stabilization. Additional studies are warranted to further elucidate the underlying physiologic and molecular rationale.
Collapse
Affiliation(s)
- Ricard Ferrer
- a Intensive Care Department , Vall d'Hebron University Hospital; Shock, Organ Dysfunction and Resuscitation Research Group (SODIR), Vall d'Hebron Institut de Recerca , Barcelona , Spain
| | - Xavier Mateu
- b Pharmacy Department , Hospital del Mar , Barcelona , Spain
| | - Emilio Maseda
- c Anesthesiology and Resuscitation Department , La Paz University Hospital , Madrid , Spain
| | | | - César Aldecoa
- e Anesthesiology and Resuscitation Department , Río Hortega Hospital , Valladolid , Spain
| | | | - Juan Carlos Ruiz-Rodriguez
- a Intensive Care Department , Vall d'Hebron University Hospital; Shock, Organ Dysfunction and Resuscitation Research Group (SODIR), Vall d'Hebron Institut de Recerca , Barcelona , Spain
| | - José Garnacho-Montero
- g Unidad Clínica de Cuidados Intensivos , Hospital Universitario Virgen Macarena, Instituto de Biomedicina de Sevilla (IBIS) , Sevilla , Spain
| |
Collapse
|
11
|
Association between Fluorescent Advanced Glycation End-Products and Vascular Complications in Type 2 Diabetic Patients. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7989180. [PMID: 29362717 PMCID: PMC5736945 DOI: 10.1155/2017/7989180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/11/2017] [Accepted: 09/10/2017] [Indexed: 11/18/2022]
Abstract
Objectives Diabetes is a major health problem associated with hyperglycemia and chronically increased oxidative stress and enhanced formation of advanced glycation end-products (AGEs). The aim of this study was to determine whether oxidative plasma biomarkers in diabetic patients could be evidenced and associated with vascular complications. Methods Oxidative stress biomarkers such as thiols, ischemia-modified albumin (IMA), glycated albumin (GA), fructosamine, and AGEs were measured in 75 patients with poorly controlled type 2 diabetes (HbA1c > 7.5%) with (44) or without (31) vascular disease and in 31 nondiabetic controls. Results Most biomarkers of oxidation and glycation were significantly increased in diabetic patients in comparison with nondiabetics. Fructosamines, GA, IMA, and AGEs were positively correlated and levels of fluorescent AGEs were significantly increased in the plasma from patients presenting vascular complication. Conclusions These results bring new evidence for the potential interest of glycated albumin, oxidative stress, and glycoxidation parameters in the monitoring of type 2 diabetic patients. Furthermore, it emphasizes fluorescent AGEs as a putative indicator for vascular event prediction in diabetic patients.
Collapse
|
12
|
Baret P, Le Sage F, Planesse C, Meilhac O, Devin A, Bourdon E, Rondeau P. Glycated human albumin alters mitochondrial respiration in preadipocyte 3T3-L1 cells. Biofactors 2017; 43:577-592. [PMID: 28543688 DOI: 10.1002/biof.1367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/02/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022]
Abstract
Diabetes and obesity are strongly associated with increased levels of circulating advanced glycation end products (AGEs) and reactive oxygen species (ROS). These two molecular phenomena affect the physiology of adipose tissue, a biological driver of the metabolic syndrome, leading to an inflammatory profile and insulin resistance, which could contribute to obesity/diabetes-associated complications, such as cardiovascular diseases. Herein, we investigated the impact of AGEs on mitochondrial bioenergetics in murine preadipocyte cells (3T3-L1) and cellular redox homeostasis. We show that incubation of preadipocytes with AGEs stimulates mitochondrial activity and respiration while inducing oxidative stress. This AGE-induced intracellular ROS production was blocked by diphenylene iodonium, an NAD(P)H oxidase inhibitor. In parallel, antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase) were found to be activated upon AGE treatment. Our results suggest that AGE-induced oxidative stress is generated by NAD(P)H oxidase and leads to a cellular proliferation arrest associated with enhanced mitochondrial metabolism and biogenesis, and with increased levels of ROS-detoxifying enzymes, as well. These new data show how AGEs may be involved in hyperglycemia-induced oxidative damage in preadipocytes and their potential links to diabetes progression. © 2017 BioFactors, 43(4):577-592, 2017.
Collapse
Affiliation(s)
- Pascal Baret
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
| | - Fanny Le Sage
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
| | - Cynthia Planesse
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
- CHU de La Réunion, Centre d'Investigation Clinique, Saint-Denis, France
| | - Anne Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Emmanuel Bourdon
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
| | - Philippe Rondeau
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
| |
Collapse
|
13
|
Naldi M, Baldassarre M, Domenicali M, Bartolini M, Caraceni P. Structural and functional integrity of human serum albumin: Analytical approaches and clinical relevance in patients with liver cirrhosis. J Pharm Biomed Anal 2017; 144:138-153. [PMID: 28465079 DOI: 10.1016/j.jpba.2017.04.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/04/2017] [Accepted: 04/15/2017] [Indexed: 02/08/2023]
Abstract
Human serum albumin (HSA) is the most abundant circulating plasma protein. Besides a significant contribution to the osmotic pressure, it is also involved in the fine regulation of many other physiological processes, including the balance of the redox state, the inflammatory and/or immunological responses, and the pharmacokinetic and pharmacodynamics of many drugs. Growing evidence suggests that HSA undergoes structural and functional damage in diseases characterized by an enhanced systemic inflammatory response and oxidative stress, as it occurs in chronic liver disease. Based on their clinical relevance, this review provides a summary of the most common post-translational modifications affecting HSA structural integrity and functions and their clinical relevance in the field of liver disease. The review also provides a critical description of the analytical approaches employed for the investigation of conformational alterations and the identification/quantitation of specific post-translational modifications affecting HSA. Finally, the analytical methods available for the assessment of two of the most clinically relevant non-oncotic properties of HSA, namely the binding capacity and the antioxidant activity, are critically reviewed. Among the available techniques particular attention is given to those proposed for the in vitro and in vivo investigation of structurally modified albumin.
Collapse
Affiliation(s)
- Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126, Italy; Center for Applied Biomedical Research (C.R.B.A.), S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Maurizio Baldassarre
- Center for Applied Biomedical Research (C.R.B.A.), S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Italy
| | - Marco Domenicali
- Center for Applied Biomedical Research (C.R.B.A.), S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126, Italy
| | - Paolo Caraceni
- Center for Applied Biomedical Research (C.R.B.A.), S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Italy.
| |
Collapse
|
14
|
Patche J, Girard D, Catan A, Boyer F, Dobi A, Planesse C, Diotel N, Guerin-Dubourg A, Baret P, Bravo SB, Paradela-Dobarro B, Álvarez E, Essop MF, Meilhac O, Bourdon E, Rondeau P. Diabetes-induced hepatic oxidative stress: a new pathogenic role for glycated albumin. Free Radic Biol Med 2017; 102:133-148. [PMID: 27890722 DOI: 10.1016/j.freeradbiomed.2016.11.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/29/2016] [Accepted: 11/14/2016] [Indexed: 01/21/2023]
Abstract
Increased oxidative stress and advanced glycation end-product (AGE) formation are major contributors to the development of type 2 diabetes. Here plasma proteins e.g. albumin can undergo glycoxidation and play a key role in diabetes onset and related pathologies. However, despite recent progress linking albumin-AGE to increased oxidative stress and downstream effects, its action in metabolic organs such as the liver remains to be elucidated. The current study therefore investigated links between oxidative perturbations and biochemical/structural modifications of plasma albumin, and subsequent downstream effects in transgenic db/db mouse livers and HepG2 cells, respectively. Our data reveal increased oxidative stress biomarkers and lipid accumulation in plasma and livers of diabetic mice, together with albumin glycoxidation. Purified mouse albumin modifications resembled those typically found in diabetic patients, i.e. degree of glycation, carbonylation, AGE levels and in terms of chemical composition. Receptor for AGE expression and reactive oxygen species production were upregulated in db/db mouse livers, together with impaired proteolytic, antioxidant and mitochondrial respiratory activities. In parallel, acute exposure of HepG2 cells to glycated albumin also elicited intracellular free radical formation. Together this study demonstrates that AGE-modified albumin can trigger damaging effects on the liver, i.e. by increasing oxidative stress, attenuating antioxidant capacity, and by impairment of hepatic proteolytic and respiratory chain enzyme activities.
Collapse
Affiliation(s)
- Jessica Patche
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
| | - Dorothée Girard
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
| | - Aurélie Catan
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
| | - Florence Boyer
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
| | - Anthony Dobi
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
| | - Cynthia Planesse
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
| | - Alexis Guerin-Dubourg
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France; Centre Hospitalier Gabriel Martin, Saint-Paul de La Réunion, France
| | - Pascal Baret
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
| | - Susana B Bravo
- Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Beatriz Paradela-Dobarro
- Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Ezequiel Álvarez
- Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - M Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France; CHU de La Réunion, Centre d'Investigation Clinique, Saint-Denis F-97400, France
| | - Emmanuel Bourdon
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France.
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France.
| |
Collapse
|
15
|
Oladipo OO, Ayo JO, Ambali SF, Mohammed B. Evaluation of hepatorenal impairments in Wistar rats coexposed to low-dose lead, cadmium and manganese: insights into oxidative stress mechanism. Toxicol Mech Methods 2016; 26:674-684. [DOI: 10.1080/15376516.2016.1223242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Olusola Olalekan Oladipo
- Biochemistry Division, National Veterinary Research Institute, Vom, Nigeria
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | | | | | - Bisalla Mohammed
- Department of Veterinary Pathology, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
16
|
Awasthi S, Sankaranarayanan K, Saraswathi NT. Advanced glycation end products induce differential structural modifications and fibrillation of albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 163:60-67. [PMID: 27037764 DOI: 10.1016/j.saa.2016.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 03/11/2016] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
Glycation induced amyloid fibrillation is fundamental to the development of many neurodegenerative and cardiovascular complications. Excessive non-enzymatic glycation in conditions such as hyperglycaemia results in the increased accumulation of advanced glycation end products (AGEs). AGEs are highly reactive pro-oxidants, which can lead to the activation of inflammatory pathways and development of oxidative stress. Recently, the effect of non-enzymatic glycation on protein structure has been the major research area, but the role of specific AGEs in such structural alteration and induction of fibrillation remains undefined. In this study, we determined the specific AGEs mediated structural modifications in albumin mainly considering carboxymethyllysine (CML), carboxyethyllysine (CEL), and argpyrimidine (Arg-P) which are the major AGEs formed in the body. We studied the secondary structural changes based on circular dichroism (CD) and spectroscopic analysis. The AGEs induced fibrillation was determined by Congo red binding and examination of scanning and transmission electron micrographs. The amyloidogenic regions in the sequence of BSA were determined using FoldAmyloid. It was observed that CEL modification of BSA leads to the development of fibrillar structures, which was evident from both secondary structure changes and TEM analysis.
Collapse
Affiliation(s)
- Saurabh Awasthi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamilnadu, India
| | - Kamatchi Sankaranarayanan
- DST-INSPIRE Faculty, Department of Energy and Environment, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamilnadu, India.
| |
Collapse
|
17
|
Boyer F, Diotel N, Girard D, Rondeau P, Essop MF, Bourdon E. Enhanced oxidative stress in adipose tissue from diabetic mice, possible contribution of glycated albumin. Biochem Biophys Res Commun 2016; 473:154-160. [DOI: 10.1016/j.bbrc.2016.03.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 12/16/2022]
|
18
|
Raghav A, Ahmad J, Alam K. Impact of glycation on structural and antioxidant function of human serum albumin: Relevance in diabetic complications. Diabetes Metab Syndr 2016; 10:96-101. [PMID: 26725383 DOI: 10.1016/j.dsx.2015.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AIM Non-enzymatic glycation impairs the structural and functional characterstics of human serum albumin (HSA) native conformation. Prolonged hyperglycemia causes cross links formation in proteins that may contribute to progression of diabetic complications. METHODS HSA (20μM) was incubated with different concentration of d-glucose100, 200, 300 and 400mg/dl for a period of 40 days in phosphate buffer saline (20mM pH=7.4) under sterile conditions. Incubated samples were extensively dialyzed and structural changes were analyzed by far and near UV circular dichroism spectra measurement. Fructosamine assay with nitroblue tetrazolonium was performed to confer isomerisation between glucose and protein. Aggregations of the glycated product (AGEs) formed during reduction of nitrobluetetrazolium dye were evaluated by transmission electron microscopy. Crosslinks aggregates were investigated by in-situ Congo red binding assay. Red blood cells hemolysis test was performed to decipher the antioxidant activity of albumin samples. RESULTS Fructosamine content in glycated albumin demonstrates the non-enzymatic addition of glucose to HSA and confers the formation of monoformazone (marker of glycation). Significant changes were found in the glycated samples of HSA compared to native (unmodified) in far and near UV circular dichroism. Transmission electron microscopy, Congo red staining, showed the formation of crosslink's aggregated mass in glycated HSA. Glycation of albumin reduces the antioxidant capacity of native albumin confirmed by red blood cells hemolysis test. CONCLUSION The finding of present study brings new evidences on the detrimental alterations of on albumin vital functions after non-enzymatic glycation with glucose. These results may emphasize the albumin associated diabetic complications under glycemic range of diabetes mellitus.
Collapse
Affiliation(s)
- Alok Raghav
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Jamal Ahmad
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| | - Khursheed Alam
- Department of Biochemistry, J.N Medical College, Aligarh Muslim University
| |
Collapse
|
19
|
Tupe R, Kulkarni A, Adeshara K, Sankhe N, Shaikh S, Dalal S, Bhosale S, Gaikwad S. Zinc inhibits glycation induced structural, functional modifications in albumin and protects erythrocytes from glycated albumin toxicity. Int J Biol Macromol 2015; 79:601-10. [DOI: 10.1016/j.ijbiomac.2015.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/09/2015] [Accepted: 05/12/2015] [Indexed: 12/27/2022]
|
20
|
Baraka-Vidot J, Planesse C, Meilhac O, Militello V, van den Elsen J, Bourdon E, Rondeau P. Glycation Alters Ligand Binding, Enzymatic, and Pharmacological Properties of Human Albumin. Biochemistry 2015; 54:3051-62. [DOI: 10.1021/acs.biochem.5b00273] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jennifer Baraka-Vidot
- Inserm, UMR 1188 Diabète athérothrombose Thérapies
Réunion Océan Indien (DéTROI), plateforme CYROI, F-97490 Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, F-97490 Sainte-Clotilde, France
| | - Cynthia Planesse
- Inserm, UMR 1188 Diabète athérothrombose Thérapies
Réunion Océan Indien (DéTROI), plateforme CYROI, F-97490 Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, F-97490 Sainte-Clotilde, France
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète athérothrombose Thérapies
Réunion Océan Indien (DéTROI), plateforme CYROI, F-97490 Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, F-97490 Sainte-Clotilde, France
- CHU de La Réunion, Centre d’Investigation
Clinique, F-97400 Saint-Denis, France
| | - Valeria Militello
- Dipartimento
di Fisica-Chimica, Università di Palermo, 90128 Palermo, Italy
| | - Jean van den Elsen
- Department
of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Emmanuel Bourdon
- Inserm, UMR 1188 Diabète athérothrombose Thérapies
Réunion Océan Indien (DéTROI), plateforme CYROI, F-97490 Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, F-97490 Sainte-Clotilde, France
| | - Philippe Rondeau
- Inserm, UMR 1188 Diabète athérothrombose Thérapies
Réunion Océan Indien (DéTROI), plateforme CYROI, F-97490 Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, F-97490 Sainte-Clotilde, France
| |
Collapse
|
21
|
Oxidative stress and adipocyte biology: focus on the role of AGEs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:534873. [PMID: 25878764 PMCID: PMC4386674 DOI: 10.1155/2015/534873] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/06/2015] [Indexed: 12/16/2022]
Abstract
Diabetes is a major health problem that is usually associated with obesity, together with hyperglycemia and increased advanced glycation endproducts (AGEs) formation. Elevated AGEs elicit severe downstream consequences via their binding to receptors of AGEs (RAGE). This includes oxidative stress and oxidative modifications of biological compounds together with heightened inflammation. For example, albumin (major circulating protein) undergoes increased glycoxidation with diabetes and may represent an important biomarker for monitoring diabetic pathophysiology. Despite the central role of adipose tissue in many physiologic/pathologic processes, recognition of the effects of greater AGEs formation in this tissue is quite recent within the obesity/diabetes context. This review provides a brief background of AGEs formation and adipose tissue biology and thereafter discusses the impact of AGEs-adipocyte interactions in pathology progression. Novel data are included showing how AGEs (especially glycated albumin) may be involved in hyperglycemia-induced oxidative damage in adipocytes and its potential links to diabetes progression.
Collapse
|
22
|
Li X, Chen D, Wang G, Lu Y. Probing the interaction of human serum albumin with DPPH in the absence and presence of the eight antioxidants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:1144-1152. [PMID: 25305605 DOI: 10.1016/j.saa.2014.08.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/22/2014] [Accepted: 08/31/2014] [Indexed: 06/04/2023]
Abstract
Albumin represents a very abundant and important circulating antioxidant in plasma. DPPH radical is also called 2,2-diphenyl-1-picrylhydrazyl. It has been widely used for measuring the efficiency of antioxidants. In this paper, the ability of human serum albumin (HSA) to scavenge DPPH radical was investigated using UV-vis absorption spectra. The interaction between HSA and DPPH was investigated in the absence and presence of eight popular antioxidants using fluorescence spectroscopy. These results indicate the antioxidant activity of HSA against DPPH radical is similar to glutathione and the value of IC50 is 5.200×10(-5) mol L(-1). In addition, the fluorescence experiments indicate the quenching mechanism of HSA, by DPPH, is a static process. The quenching process of DPPH with HSA is easily affected by the eight antioxidants, however, they cannot change the quenching mechanism of DPPH with HSA. The binding of DPPH to HSA primarily takes place in subdomain IIA and exists two classes of binding sites with two different interaction behaviors. The decreased binding constants and the number of binding sites of DPPH with HSA by the introduction of the eight antioxidants may result from the competition of the eight antioxidants and DPPH binding to HSA. The binding of DPPH to HSA may induce the micro-environment of the lone Trp-214 from polar to slightly nonpolar.
Collapse
Affiliation(s)
- Xiangrong Li
- Department of Chemistry, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Dejun Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Gongke Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yan Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
23
|
Effects of incretin agonists on endothelial nitric oxide synthase expression and nitric oxide synthesis in human coronary artery endothelial cells exposed to TNFα and glycated albumin. Pharmacol Rep 2015; 67:69-77. [DOI: 10.1016/j.pharep.2014.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/25/2022]
|
24
|
Characterisation of the influences of aspirin-acetylation and glycation on human plasma proteins. J Proteomics 2015; 114:125-35. [DOI: 10.1016/j.jprot.2014.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 12/29/2022]
|
25
|
Saisho Y. Glycemic variability and oxidative stress: a link between diabetes and cardiovascular disease? Int J Mol Sci 2014; 15:18381-406. [PMID: 25314300 PMCID: PMC4227221 DOI: 10.3390/ijms151018381] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/16/2014] [Accepted: 09/28/2014] [Indexed: 02/06/2023] Open
Abstract
Diabetes is associated with a two to three-fold increase in risk of cardiovascular disease. However, intensive glucose-lowering therapy aiming at reducing HbA1c to a near-normal level failed to suppress cardiovascular events in recent randomized controlled trials. HbA1c reflects average glucose level rather than glycemic variability. In in vivo and in vitro studies, glycemic variability has been shown to be associated with greater reactive oxygen species production and vascular damage, compared to chronic hyperglycemia. These findings suggest that management of glycemic variability may reduce cardiovascular disease in patients with diabetes; however, clinical studies have shown conflicting results. This review summarizes the current knowledge on glycemic variability and oxidative stress, and discusses the clinical implications.
Collapse
Affiliation(s)
- Yoshifumi Saisho
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
26
|
Girard D, Rondeau P, Catan A, Planesse C, Giraud P, Bourdon E. Oxidative damage in diabetics: insights from a graduate study in La Reunion University. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 42:435-442. [PMID: 25132514 DOI: 10.1002/bmb.20818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/02/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
Due to the growing incidence of diabetes in developed nations, there is a compelling case to be made for teaching graduate students more deeply about mechanisms underlying this disease. Diabetes is associated with enhanced oxidative stress and protein glycation via the covalent binding of glucose molecules. Albumin represents the major plasmatic protein and undergoes enhanced glycoxidative modifications in diabetic condition. La Réunion Island, a French department located in the Indian Ocean exhibit a growing incidence of diabetes. At the University of La Réunion, our research group named GEICO (Groupe d'Etude sur l'Inflammation Chronique et l'Obésité) participated to foster research and training in diabetes context and focuses on the impact of glycated albumin mediated oxidative stress on cell physiopathology. A laboratory course was designed by our group to introduce graduate students to cutting edge techniques in redox biology while providing insights into scientific processes and methods. This two weeks research laboratory training took place at CYROI, a local biotechnology center that provides advanced facilities for research, business, and education. Using histochemistry, molecular biology, biochemical techniques, student investigated oxidative damages in liver from leptin receptor deficient diabetic mice compared to control littermates. In addition, they used an in vitro model by assaying oxidative impact of glycated albumin on hepatoma carcinoma HepG2 cells. This article gives an overview of the organization and protocol used by the students during their two weeks training in the laboratory. Therefore, it may be helpful for teaching graduate students techniques used in research laboratory working on redox biology.
Collapse
Affiliation(s)
- Dorothée Girard
- Groupe d'étude sur l'inflammation chronique et l'obésité (GEICO), Plateforme CYROI, Université de La Réunion, Saint Denis de La Réunion, France
| | | | | | | | | | | |
Collapse
|
27
|
Impact of high glucose concentration on aspirin-induced acetylation of human serum albumin: An in vitro study. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Baraka-Vidot J, Navarra G, Leone M, Bourdon E, Militello V, Rondeau P. Deciphering metal-induced oxidative damages on glycated albumin structure and function. Biochim Biophys Acta Gen Subj 2014; 1840:1712-24. [PMID: 24380878 DOI: 10.1016/j.bbagen.2013.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/25/2013] [Accepted: 12/09/2013] [Indexed: 01/14/2023]
|
29
|
Glycated albumin and diabetes mellitus. Biochim Biophys Acta Gen Subj 2013; 1830:5509-14. [DOI: 10.1016/j.bbagen.2013.05.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/21/2022]
|
30
|
Shen Y, Lu L, Ding FH, Sun Z, Zhang RY, Zhang Q, Yang ZK, Hu J, Chen QJ, Shen WF. Association of increased serum glycated albumin levels with low coronary collateralization in type 2 diabetic patients with stable angina and chronic total occlusion. Cardiovasc Diabetol 2013; 12:165. [PMID: 24209601 PMCID: PMC4225762 DOI: 10.1186/1475-2840-12-165] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 11/05/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND We investigated whether serum glycated albumin (GA) levels are related to coronary collateralization in type 2 diabetic patients with chronic total occlusion. METHODS Blood levels of GA and glycosylated hemoglobin (HbA1c) were determined in 317 diabetic and 117 non-diabetic patients with stable angina and angiographic total occlusion of at least one major coronary artery. The degree of collaterals supplying the distal aspect of a total occlusion from the contra-lateral vessel was graded as low (Rentrop score of 0 or 1) or high collateralization (Rentrop score of 2 or 3). RESULTS For diabetic patients, GA (21.2 ± 6.5% vs. 18.7 ± 5.6%, P < 0.001) but not HbA1c levels (7.0 ± 1.1% vs. 6.8 ± 1.3%, P = 0.27) was significantly elevated in low collateralization than in high collateralization group, and correlated inversely with Rentrop score (Spearmen's r = -0.28, P < 0.001; Spearmen's r = -0.10, P = 0.09, respectively). There was a trend towards a larger area under the curve of GA compared with that of HbA1c for detecting the presence of low collateralization (0.64 vs. 0.58, P = 0.15). In non-diabetic patients, both GA and HbA1c levels did not significantly differ regardless the status of coronary collateralization. In multivariable analysis, female gender, age > 65 years, smoke, non-hypertension, duration of diabetes > 10 years, metabolic syndrome, eGFR < 90 ml/min/1.73 m2, and GA > 18.3% were independently determinants for low collateralization in diabetic patients. CONCLUSIONS Increased GA levels in serum are associated with impaired collateral growth in type 2 diabetic patients with stable angina and chronic total occlusion.
Collapse
Affiliation(s)
- Ying Shen
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Lin Lu
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Feng Hua Ding
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Zhen Sun
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Rui Yan Zhang
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Qi Zhang
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Zheng Kun Yang
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Jian Hu
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Qiu Jing Chen
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Wei Feng Shen
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| |
Collapse
|
31
|
Li X, Chen D, Wang G, Lu Y. Study of interaction between human serum albumin and three antioxidants: ascorbic acid, α-tocopherol, and proanthocyanidins. Eur J Med Chem 2013; 70:22-36. [PMID: 24140914 DOI: 10.1016/j.ejmech.2013.09.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/23/2013] [Accepted: 09/15/2013] [Indexed: 11/18/2022]
Abstract
Ascorbic acid, α-tocopherol and proanthocyanidins are three classic dietary antioxidants. In this study, the interaction between the three antioxidants and human serum albumin (HSA) was investigated by several spectroscopic techniques. Experimental results proved that the three antioxidants quench the fluorescence of HSA through a static (proanthocyanidins) or static-dynamic combined quenching mechanism (ascorbic acid and α-tocopherol). Thermodynamic investigations revealed that the combination between ascorbic acid or proanthocyanidins and HSA was driven mainly by electrostatic interaction, and the hydrophobic interactions play a major role for α-tocopherol-HSA association. Binding site I was found to be the primary binding site for ascorbic acid and proanthocyanidins, and site II for α-tocopherol. Additionally, the three antioxidants may induce conformational and microenvironmental changes of HSA.
Collapse
Affiliation(s)
- Xiangrong Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China; Department of Chemistry, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| | | | | | | |
Collapse
|