1
|
Knoke LR, Muskietorz M, Kühn L, Leichert LI. The ABC transporter Opp imports reduced glutathione, while Gsi imports glutathione disulfide in Escherichia coli. Redox Biol 2025; 79:103453. [PMID: 39689618 PMCID: PMC11719327 DOI: 10.1016/j.redox.2024.103453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024] Open
Abstract
Glutathione is the major thiol-based antioxidant in a wide variety of biological systems, ranging from bacteria to eukaryotes. As a redox couple, consisting of reduced glutathione (GSH) and its oxidized form, glutathione disulfide (GSSG), it is crucial for the maintenance of the cellular redox balance. Glutathione transport out of and into cellular compartments and the extracellular space is a determinant of the thiol-disulfide redox state of the organelles and bodily fluids in question, but is currently not well understood. Here we use the genetically-encoded, glutathione-measuring redox probe Grx1-roGFP2 to comprehensively elucidate the import of extracellular glutathione into the cytoplasm of the model organism Escherichia coli. The elimination of only two ATP-Binding Cassette (ABC) transporter systems, Gsi and Opp, completely abrogates glutathione import into E. coli's cytoplasm, both in its reduced and oxidized form. The lack of only one of them, Gsi, completely prevents import of GSSG, while the lack of the other, Opp, substantially retards the uptake of reduced glutathione (GSH).
Collapse
Affiliation(s)
- Lisa R Knoke
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Bochum, Germany
| | - Maik Muskietorz
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Bochum, Germany
| | - Lena Kühn
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Bochum, Germany.
| |
Collapse
|
2
|
Kadokura H, Harada N, Yamaki S, Hirai N, Tsukuda R, Azuma K, Amagai Y, Nakamura D, Yanagitani K, Taguchi H, Kohno K, Inaba K. Development of luciferase-based highly sensitive reporters that detect ER-associated protein biogenesis abnormalities. iScience 2024; 27:111189. [PMID: 39555403 PMCID: PMC11564982 DOI: 10.1016/j.isci.2024.111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/01/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Localization to the endoplasmic reticulum (ER) and subsequent disulfide bond formation are crucial processes governing the biogenesis of secretory pathway proteins in eukaryotes. Hence, comprehending the mechanisms underlying these processes is important. Here, we have engineered firefly luciferase (FLuc) as a tool to detect deficiencies in these processes within mammalian cells. To achieve this, we introduced multiple cysteine substitutions into FLuc and targeted it to the ER. The reporter exhibited FLuc activity in response to defects in protein localization or disulfide bond formation within the ER. Notably, this system exhibited outstanding sensitivity, reproducibility, and convenience in detecting abnormalities in these processes. We applied this system to observe a protein translocation defect induced by an inhibitor of HIV receptor biogenesis. Moreover, utilizing the system, we showed that modulating LMF1 levels dramatically impacted the ER's redox environment, confirming that LMF1 plays some critical role in the redox control of the ER.
Collapse
Affiliation(s)
- Hiroshi Kadokura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Nanshi Harada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Satoshi Yamaki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Naoya Hirai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Ryusuke Tsukuda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kota Azuma
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yuta Amagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Daisuke Nakamura
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kota Yanagitani
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Kenji Kohno
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Graduate School of Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
3
|
Knoke LR, Herrera SA, Heinrich S, Peeters FML, Lupilov N, Bandow JE, Pomorski TG. HOCl forms lipid N-chloramines in cell membranes of bacteria and immune cells. Free Radic Biol Med 2024; 224:588-599. [PMID: 39270945 DOI: 10.1016/j.freeradbiomed.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Neutrophils orchestrate a coordinated attack on bacteria, combining phagocytosis with a potent cocktail of oxidants, including the highly toxic hypochlorous acid (HOCl), renowned for its deleterious effects on proteins. Here, we examined the occurrence of lipid N-chloramines in vivo, their biological activity, and their neutralization. Using a chemical probe for N-chloramines, we demonstrate their formation in the membranes of bacteria and monocytic cells exposed to physiologically relevant concentrations of HOCl. N-chlorinated model membranes composed of phosphatidylethanolamine, the major membrane lipid in Escherichia coli and an important component of eukaryotic membranes, exhibited oxidative activity towards the redox-sensitive protein roGFP2, suggesting a role for lipid N-chloramines in protein oxidation. Conversely, glutathione a cellular antioxidant neutralized lipid N-chloramines by removing the chlorine moiety. In line with that, N-chloramine stability was drastically decreased in bacterial cells compared to model membranes. We propose that lipid N-chloramines, like protein N-chloramines, are involved in inflammation and accelerate the host immune response.
Collapse
Affiliation(s)
- Lisa R Knoke
- Faculty of Medicine, Department of Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Sara Abad Herrera
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Sascha Heinrich
- Faculty of Biology and Biotechnology, Department of Applied Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Frank M L Peeters
- Faculty of Biology and Biotechnology, Department of Applied Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Natalie Lupilov
- Faculty of Medicine, Department of Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Julia E Bandow
- Faculty of Biology and Biotechnology, Department of Applied Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Alva R, Wiebe JE, Stuart JA. Revisiting reactive oxygen species production in hypoxia. Pflugers Arch 2024; 476:1423-1444. [PMID: 38955833 DOI: 10.1007/s00424-024-02986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Cellular responses to hypoxia are crucial in various physiological and pathophysiological contexts and have thus been extensively studied. This has led to a comprehensive understanding of the transcriptional response to hypoxia, which is regulated by hypoxia-inducible factors (HIFs). However, the detailed molecular mechanisms of HIF regulation in hypoxia remain incompletely understood. In particular, there is controversy surrounding the production of mitochondrial reactive oxygen species (ROS) in hypoxia and how this affects the stabilization and activity of HIFs. This review examines this controversy and attempts to shed light on its origin. We discuss the role of physioxia versus normoxia as baseline conditions that can affect the subsequent cellular response to hypoxia and highlight the paucity of data on pericellular oxygen levels in most experiments, leading to variable levels of hypoxia that might progress to anoxia over time. We analyze the different outcomes reported in isolated mitochondria, versus intact cells or whole organisms, and evaluate the reliability of various ROS-detecting tools. Finally, we examine the cell-type and context specificity of oxygen's various effects. We conclude that while recent evidence suggests that the effect of hypoxia on ROS production is highly dependent on the cell type and the duration of exposure, efforts should be made to conduct experiments under carefully controlled, physiological microenvironmental conditions in order to rule out potential artifacts and improve reproducibility in research.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| | - Jacob E Wiebe
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
5
|
Dehaene N, Boussardon C, Andrey P, Charif D, Brandt D, Gilouppe Taillefer C, Nietzel T, Ricou A, Simon M, Tran J, Vezon D, Camilleri C, Arimura SI, Schwarzländer M, Budar F. The mitochondrial orf117Sha gene desynchronizes pollen development and causes pollen abortion in Arabidopsis Sha cytoplasmic male sterility. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4851-4872. [PMID: 38733289 DOI: 10.1093/jxb/erae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Cytoplasmic male sterility (CMS) is of major agronomical relevance in hybrid breeding. In gametophytic CMS, abortion of pollen is determined by the grain genotype, while in sporophytic CMS, it is determined by the mother plant genotype. While several CMS mechanisms have been dissected at the molecular level, gametophytic CMS has not been straightforwardly accessible. We used the gametophytic Sha-CMS in Arabidopsis to characterize the cause and process of pollen abortion by implementing in vivo biosensing in single pollen and mitoTALEN mutagenesis. We obtained conclusive evidence that orf117Sha is the CMS-causing gene, despite distinct characteristics from other CMS genes. We measured the in vivo cytosolic ATP content in single pollen, followed pollen development, and analyzed pollen mitochondrial volume in two genotypes that differed only by the presence of the orf117Sha locus. Our results showed that the Sha-CMS is not triggered by ATP deficiency. Instead, we observed desynchronization of a pollen developmental program. Pollen death occurred independently in pollen grains at diverse stages and was preceded by mitochondrial swelling. We conclude that pollen death is grain-autonomous in Sha-CMS and propose that mitochondrial permeability transition, which was previously described as a hallmark of developmental and environmental-triggered cell death programs, precedes pollen death in Sha-CMS.
Collapse
Affiliation(s)
- Noémie Dehaene
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Clément Boussardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Delphine Charif
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Dennis Brandt
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Clémence Gilouppe Taillefer
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Thomas Nietzel
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Anthony Ricou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Matthieu Simon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Joseph Tran
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Daniel Vezon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Christine Camilleri
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Françoise Budar
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| |
Collapse
|
6
|
Epel B, Kao JPY, Eaton SS, Eaton GR, Halpern HJ. Direct Measurement and Imaging of Redox Status with Electron Paramagnetic Resonance. Antioxid Redox Signal 2024; 40:850-862. [PMID: 36680741 PMCID: PMC11386996 DOI: 10.1089/ars.2022.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Significance: Fundamental to the application of tissue redox status to human health is the quantification and localization of tissue redox abnormalities and oxidative stress and their correlation with the severity and local extent of disease to inform therapy. The centrality of the low-molecular-weight thiol, glutathione, in physiological redox balance has long been appreciated, but direct measurement of tissue thiol status in vivo has not been possible hitherto. Recent advances in instrumentation and molecular probes suggest the feasibility of real-time redox assessment in humans. Recent Advances: Recent studies have demonstrated the feasibility of using low-frequency electron paramagnetic resonance (EPR) techniques for quantitative imaging of redox status in mammalian tissues in vivo. Rapid-scan (RS) EPR spectroscopy and imaging, new disulfide-dinitroxide spin probes, and novel analytic techniques have led to significant advances in direct, quantitative imaging of thiol redox status. Critical Issues: While novel RS EPR imaging coupled with first-generation molecular probes has demonstrated the feasibility of imaging thiol redox status in vivo, further technical advancements are desirable and ongoing. These include developing spin probes that are tailored for specific tissues with response kinetics tuned to the physiological environment. Equally critical are RS instrumentation with higher signal-to-noise ratio and minimal signal distortion, as well as optimized imaging protocols for image acquisition with sparsity adapted to image information content. Future Directions: Quantitative images of tissue glutathione promise to enable acquisition of a general image of mammalian and potentially human tissue health.
Collapse
Affiliation(s)
- Boris Epel
- Department of Radiation and Cellular Oncology, Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, Illinois, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Howard J Halpern
- Department of Radiation and Cellular Oncology, Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
8
|
Barroso M, Monaghan MG, Niesner R, Dmitriev RI. Probing organoid metabolism using fluorescence lifetime imaging microscopy (FLIM): The next frontier of drug discovery and disease understanding. Adv Drug Deliv Rev 2023; 201:115081. [PMID: 37647987 PMCID: PMC10543546 DOI: 10.1016/j.addr.2023.115081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Organoid models have been used to address important questions in developmental and cancer biology, tissue repair, advanced modelling of disease and therapies, among other bioengineering applications. Such 3D microenvironmental models can investigate the regulation of cell metabolism, and provide key insights into the mechanisms at the basis of cell growth, differentiation, communication, interactions with the environment and cell death. Their accessibility and complexity, based on 3D spatial and temporal heterogeneity, make organoids suitable for the application of novel, dynamic imaging microscopy methods, such as fluorescence lifetime imaging microscopy (FLIM) and related decay time-assessing readouts. Several biomarkers and assays have been proposed to study cell metabolism by FLIM in various organoid models. Herein, we present an expert-opinion discussion on the principles of FLIM and PLIM, instrumentation and data collection and analysis protocols, and general and emerging biosensor-based approaches, to highlight the pioneering work being performed in this field.
Collapse
Affiliation(s)
- Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 02, Ireland
| | - Raluca Niesner
- Dynamic and Functional In Vivo Imaging, Freie Universität Berlin and Biophysical Analytics, German Rheumatism Research Center, Berlin, Germany
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; Ghent Light Microscopy Core, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
Knoke LR, Zimmermann J, Lupilov N, Schneider JF, Celebi B, Morgan B, Leichert LI. The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli. Redox Biol 2023; 64:102800. [PMID: 37413765 DOI: 10.1016/j.redox.2023.102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
The thiol redox balance in the periplasm of E. coli depends on the DsbA/B pair for oxidative power and the DsbC/D system as its complement for isomerization of non-native disulfides. While the standard redox potentials of those systems are known, the in vivo "steady state" redox potential imposed onto protein thiol disulfide pairs in the periplasm remains unknown. Here, we used genetically encoded redox probes (roGFP2 and roGFP-iL), targeted to the periplasm, to directly probe the thiol redox homeostasis in this compartment. These probes contain two cysteine residues that are virtually completely reduced in the cytoplasm, but once exported into the periplasm, can form a disulfide bond, a process that can be monitored by fluorescence spectroscopy. Even in the absence of DsbA, roGFP2, exported to the periplasm, was almost fully oxidized, suggesting the presence of an alternative system for the introduction of disulfide bonds into exported proteins. However, the absence of DsbA shifted the steady state periplasmic thiol-redox potential from -228 mV to a more reducing -243 mV and the capacity to re-oxidize periplasmic roGFP2 after a reductive pulse was significantly decreased. Re-oxidation in a DsbA strain could be fully restored by exogenous oxidized glutathione (GSSG), while reduced GSH accelerated re-oxidation of roGFP2 in the WT. In line, a strain devoid of endogenous glutathione showed a more reducing periplasm, and was significantly worse in oxidatively folding PhoA, a native periplasmic protein and substrate of the oxidative folding machinery. PhoA oxidative folding could be enhanced by the addition of exogenous GSSG in the WT and fully restored in a ΔdsbA mutant. Taken together this suggests the presence of an auxiliary, glutathione-dependent thiol-oxidation system in the bacterial periplasm.
Collapse
Affiliation(s)
- Lisa R Knoke
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Jannik Zimmermann
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Natalie Lupilov
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Jannis F Schneider
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Beyzanur Celebi
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany.
| |
Collapse
|
10
|
Montali C, Abbruzzetti S, Franzen A, Casini G, Bruno S, Delcanale P, Burgstaller S, Ramadani-Muja J, Malli R, Gensch T, Viappiani C. Nitric Oxide Sensing by a Blue Fluorescent Protein. Antioxidants (Basel) 2022; 11:2229. [PMID: 36421416 PMCID: PMC9686608 DOI: 10.3390/antiox11112229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 09/19/2023] Open
Abstract
S-Nitrosylation of cysteine residues is an important molecular mechanism for dynamic, post-translational regulation of several proteins, providing a ubiquitous redox regulation. Cys residues are present in several fluorescent proteins (FP), including members of the family of Aequorea victoria Green Fluorescent Protein (GFP)-derived FPs, where two highly conserved cysteine residues contribute to a favorable environment for the autocatalytic chromophore formation reaction. The effect of nitric oxide on the fluorescence properties of FPs has not been investigated thus far, despite the tremendous role FPs have played for 25 years as tools in cell biology. We have examined the response to nitric oxide of fluorescence emission by the blue-emitting fluorescent protein mTagBFP2. To our surprise, upon exposure to micromolar concentrations of nitric oxide, we observed a roughly 30% reduction in fluorescence quantum yield and lifetime. Recovery of fluorescence emission is observed after treatment with Na-dithionite. Experiments on related fluorescent proteins from different families show similar nitric oxide sensitivity of their fluorescence. We correlate the effect with S-nitrosylation of Cys residues. Mutation of Cys residues in mTagBFP2 removes its nitric oxide sensitivity. Similarly, fluorescent proteins devoid of Cys residues are insensitive to nitric oxide. We finally show that mTagBFP2 can sense exogenously generated nitric oxide when expressed in a living mammalian cell. We propose mTagBFP2 as the starting point for a new class of genetically encoded nitric oxide sensors based on fluorescence lifetime imaging.
Collapse
Affiliation(s)
- Chiara Montali
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Arne Franzen
- Institute of Biological Information Processing (IBI-1: Molecular and Cellular Physiology), Forschungszentrum Jülich, Leo-Brandt-Straße, D-52428 Jülich, Germany
| | - Giorgia Casini
- Institute of Biological Information Processing (IBI-1: Molecular and Cellular Physiology), Forschungszentrum Jülich, Leo-Brandt-Straße, D-52428 Jülich, Germany
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Sandra Burgstaller
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Jeta Ramadani-Muja
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Thomas Gensch
- Institute of Biological Information Processing (IBI-1: Molecular and Cellular Physiology), Forschungszentrum Jülich, Leo-Brandt-Straße, D-52428 Jülich, Germany
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
11
|
Simonyan TR, Protasova EA, Mamontova AV, Shakhov AM, Lukyanov KA, Maksimov EG, Bogdanov AM. A Single Fluorescent Protein-Based Indicator with a Time-Resolved Fluorescence Readout for Precise pH Measurements in the Alkaline Range. Int J Mol Sci 2022; 23:12907. [PMID: 36361706 PMCID: PMC9658282 DOI: 10.3390/ijms232112907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 09/19/2023] Open
Abstract
The real-time monitoring of the intracellular pH in live cells with high precision represents an important methodological challenge. Although genetically encoded fluorescent indicators can be considered as a probe of choice for such measurements, they are hindered mostly by the inability to determine an absolute pH value and/or a narrow dynamic range of the signal, making them inefficient for recording the small pH changes that typically occur within cellular organelles. Here, we study the pH sensitivity of a green-fluorescence-protein (GFP)-based emitter (EGFP-Y145L/S205V) with the alkaline-shifted chromophore's pKa and demonstrate that, in the pH range of 7.5-9.0, its fluorescence lifetime changes by a factor of ~3.5 in a quasi-linear manner in mammalian cells. Considering the relatively strong lifetime response in a narrow pH range, we proposed the mitochondria, which are known to have a weakly alkaline milieu, as a target for live-cell pH measurements. Using fluorescence lifetime imaging microscopy (FLIM) to visualize the HEK293T cells expressing mitochondrially targeted EGFP-Y145L/S205V, we succeeded in determining the absolute pH value of the mitochondria and recorded the ETC-uncoupler-stimulated pH shift with a precision of 0.1 unit. We thus show that a single GFP with alkaline-shifted pKa can act as a high-precision indicator that can be used in a specific pH range.
Collapse
Affiliation(s)
- Tatiana R. Simonyan
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Elena A. Protasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anastasia V. Mamontova
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Aleksander M. Shakhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Semenov Federal Research Center for Chemical Physics, 119991 Moscow, Russia
| | | | - Eugene G. Maksimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alexey M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| |
Collapse
|
12
|
Wendt S, Johnson S, Weilinger NL, Groten C, Sorrentino S, Frew J, Yang L, Choi HB, Nygaard HB, MacVicar BA. Simultaneous imaging of redox states in dystrophic neurites and microglia at Aβ plaques indicate lysosome accumulation not microglia correlate with increased oxidative stress. Redox Biol 2022; 56:102448. [PMID: 36037587 PMCID: PMC9440309 DOI: 10.1016/j.redox.2022.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The inter-relationship between microglia dynamics and oxidative stress (Ox-stress) in dystrophic neurites (DNs) at Alzheimer's Disease (AD) plaques may contribute to the pathological changes in neurons. We developed new in vivo imaging strategies to combine EGFP expression in microglia with neuronal expression of genetically encoded ratiometric redox sensors (rogRFP2 or roGFP1), and immunohistochemistry to investigate how microglia influence Ox-stress at amyloid plaques in 5xFAD AD mice. By simultaneously imaging microglia morphology and neuronal Ox-stress over time in vivo and in fixed brains we found that microglia preferentially enwrapped DNs exhibiting the greatest degree of Ox-stress. After microglia were partially depleted with the CSF1 receptor antagonist PLX3397, Ox-stress in DNs increased in a manner that was inversely correlated to the extent of coverage of the adjacent Aβ plaques by the remaining microglia. These data suggest that microglia do not create Ox-stress at Aβ plaques but instead create protective barriers around Aβ plaques possibly reducing the spread of Aβ. Intracranial injection of Aβ was sufficient to induce neuronal Ox-stress suggesting it to be the initial trigger of Ox-stress generation. Although Ox-stress is increased in DNs, neuronal survival is enhanced following microglia depletion indicating complex and multifactorial roles of microglia with both neurotoxic and neuroprotective components. Increased Ox-stress of DNs was correlated with higher LAMP1 and ubiquitin immunoreactivity supporting proposed mechanistic links between lysosomal accumulation in DNs and their intrinsic generation of Ox-stress. Our results suggest protective as well as neurotoxic roles for microglia at plaques and that the generation of Ox-stress of DNs could intrinsically be generated via lysosomal disruption rather than by microglia. In Brief: Simultaneous imaging of microglia and neuronal Ox-stress revealed a double-edged role for microglia in 5xFAD mice. Plaque associated microglia were attracted to and enwrapped Aβ plaques as well as the most highly oxidized DNs. After partial depletion of microglia, DNs were larger with greater levels of Ox-stress. Despite increased Ox-stress after microglia removal neuronal survival improved. Greater Ox-stress was correlated with increased levels of LAMP1 and ubiquitin thereby linking lysosome accumulation and Ox-stress in DNs.
Collapse
Affiliation(s)
- Stefan Wendt
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada.
| | - Sora Johnson
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Nicholas L Weilinger
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Christopher Groten
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Stefano Sorrentino
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Jonathan Frew
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Lucy Yang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Hyun B Choi
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Haakon B Nygaard
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Brian A MacVicar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
13
|
Koju N, Qin ZH, Sheng R. Reduced nicotinamide adenine dinucleotide phosphate in redox balance and diseases: a friend or foe? Acta Pharmacol Sin 2022; 43:1889-1904. [PMID: 35017669 PMCID: PMC9343382 DOI: 10.1038/s41401-021-00838-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
The nicotinamide adenine dinucleotide (NAD+/NADH) and nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) redox couples function as cofactors or/and substrates for numerous enzymes to retain cellular redox balance and energy metabolism. Thus, maintaining cellular NADH and NADPH balance is critical for sustaining cellular homeostasis. The sources of NADPH generation might determine its biological effects. Newly-recognized biosynthetic enzymes and genetically encoded biosensors help us better understand how cells maintain biosynthesis and distribution of compartmentalized NAD(H) and NADP(H) pools. It is essential but challenging to distinguish how cells sustain redox couple pools to perform their integral functions and escape redox stress. However, it is still obscure whether NADPH is detrimental or beneficial as either deficiency or excess in cellular NADPH levels disturbs cellular redox state and metabolic homeostasis leading to redox stress, energy stress, and eventually, to the disease state. Additional study of the pathways and regulatory mechanisms of NADPH generation in different compartments, and the means by which NADPH plays a role in various diseases, will provide innovative insights into its roles in human health and may find a value of NADPH for the treatment of certain diseases including aging, Alzheimer's disease, Parkinson's disease, cardiovascular diseases, ischemic stroke, diabetes, obesity, cancer, etc.
Collapse
Affiliation(s)
- Nirmala Koju
- grid.263761.70000 0001 0198 0694Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123 China
| | - Zheng-hong Qin
- grid.263761.70000 0001 0198 0694Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123 China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
14
|
Zeisel L, Felber JG, Scholzen KC, Poczka L, Cheff D, Maier MS, Cheng Q, Shen M, Hall MD, Arnér ES, Thorn-Seshold J, Thorn-Seshold O. Selective cellular probes for mammalian thioredoxin reductase TrxR1: Rational design of RX1, a modular 1,2-thiaselenane redox probe. Chem 2022; 8:1493-1517. [PMID: 35936029 PMCID: PMC9351623 DOI: 10.1016/j.chempr.2022.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Quantifying the activity of key cellular redox players is crucial for understanding physiological homeostasis, and for targeting their perturbed states in pathologies including cancer and inflammatory diseases. However, cellularly-selective probes for oxidoreductase turnover are sorely lacking. We rationally developed the first probes that selectively target the mammalian selenoprotein thioredoxin reductase (TrxR), using a cyclic selenenylsulfide oriented to harness TrxR's unique selenolthiol chemistry while resisting the cellular monothiol background. Lead probe RX1 had excellent TrxR1-selective performance in cells, cross-validated by knockout, selenium starvation, knock-in, and chemical inhibitors. Its background-free fluorogenicity enabled us to perform the first quantitative high-throughput live cell screen for TrxR1 inhibitors, which indicated that tempered SNAr electrophiles may be more selective TrxR drugs than the classical electrophiles used hitherto. The RX1 design thus sets the stage for in vivo imaging of the activity of this key oxidoreductase in health and disease, and can also drive TrxR1-inhibitor drug design.
Collapse
|
15
|
Pang Y, Zhang H, Ai HW. Improved Red Fluorescent Redox Indicators for Monitoring Cytosolic and Mitochondrial Thioredoxin Redox Dynamics. Biochemistry 2022; 61:377-384. [PMID: 35133140 PMCID: PMC8906223 DOI: 10.1021/acs.biochem.1c00634] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thioredoxin (Trx) is one of the major thiol-dependent antioxidants in living systems. The study of Trx functions in redox biology was impeded by the lack of practical tools to track Trx redox dynamics in live cells. Our previous work developed TrxRFP1, the first genetically encoded fluorescent indicator for Trx redox. In this work, we report an improved fluorescent indicator, TrxRFP2, for tracking the redox of Trx1, which is primarily cytosolic and nuclear. Furthermore, because mitochondria specifically express Trx2, we have created a new genetically encoded fluorescent indicator, MtrxRFP2, for the redox of mitochondrial Trx. We characterized MtrxRFP2 as a purified protein and used subcellularly localized MtrxRFP2 to image mitochondrial redox changes in live cells.
Collapse
Affiliation(s)
- Yu Pang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Hao Zhang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Hui-wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
- The UVA Cancer Center, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
16
|
Mogensen DJ, Etzerodt M, Ogilby PR. Photoinduced Bleaching in an Efficient Singlet Oxygen Photosensitizing Protein: Identifying a Culprit in the Flavin-Binding LOV-Based Protein SOPP3. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Bleaching physiology: who's the 'weakest link' - host vs. symbiont? Emerg Top Life Sci 2022; 6:17-32. [PMID: 35179208 DOI: 10.1042/etls20210228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022]
Abstract
Environmental stress, such as an increase in the sea surface temperature, triggers coral bleaching, a profound dysfunction of the mutualist symbiosis between the host cnidarians and their photosynthetic dinoflagellates of the Family Symbiodiniaceae. Because of climate change, mass coral bleaching events will increase in frequency and severity in the future, threatening the persistence of this iconic marine ecosystem at global scale. Strategies adapted to coral reefs preservation and restoration may stem from the identification of the succession of events and of the different molecular and cellular contributors to the bleaching phenomenon. To date, studies aiming to decipher the cellular cascade leading to temperature-related bleaching, emphasized the involvement of reactive species originating from compromised bioenergetic pathways (e.g. cellular respiration and photosynthesis). These molecules are responsible for damage to various cellular components causing the dysregulation of cellular homeostasis and the breakdown of symbiosis. In this review, we synthesize the current knowledge available in the literature on the cellular mechanisms caused by thermal stress, which can initiate or participate in the cell cascade leading to the loss of symbionts, with a particular emphasis on the role of each partner in the initiating processes.
Collapse
|
18
|
Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med 2022; 179:339-362. [PMID: 34775001 DOI: 10.1016/j.freeradbiomed.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Insulin resistance is one of the earliest pathological features of a suite of diseases including type 2 diabetes collectively referred to as metabolic syndrome. There is a growing body of evidence from both pre-clinical studies and human cohorts indicating that reactive oxygen species, such as the superoxide radical anion and hydrogen peroxide are key players in the development of insulin resistance. Here we review the evidence linking mitochondrial reactive oxygen species generated within mitochondria with insulin resistance in adipose tissue and skeletal muscle, two major insulin sensitive tissues. We outline the relevant mitochondria-derived reactive species, how the mitochondrial redox state is regulated, and methodologies available to measure mitochondrial reactive oxygen species. Importantly, we highlight key experimental issues to be considered when studying the role of mitochondrial reactive oxygen species in insulin resistance. Evaluating the available literature on both mitochondrial reactive oxygen species/redox state and insulin resistance in a variety of biological systems, we conclude that the weight of evidence suggests a likely role for mitochondrial reactive oxygen species in the etiology of insulin resistance in adipose tissue and skeletal muscle. However, major limitations in the methods used to study reactive oxygen species in insulin resistance as well as the lack of data linking mitochondrial reactive oxygen species and cytosolic insulin signaling pathways are significant obstacles in proving the mechanistic link between these two processes. We provide a framework to guide future studies to provide stronger mechanistic information on the link between mitochondrial reactive oxygen species and insulin resistance as understanding the source, localization, nature, and quantity of mitochondrial reactive oxygen species, their targets and downstream signaling pathways may pave the way for important new therapeutic strategies.
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David E James
- Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
19
|
Gast V, Siewers V, Molin M. A Hypersensitive Genetically Encoded Fluorescent Indicator (roGFP2-Prx1) Enables Continuous Measurement of Intracellular H2O2 during Cell Micro-cultivation. Bio Protoc 2022; 12:e4317. [DOI: 10.21769/bioprotoc.4317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/02/2022] Open
|
20
|
Genetically Encoded Biosensors to Monitor Intracellular Reactive Oxygen and Nitrogen Species and Glutathione Redox Potential in Skeletal Muscle Cells. Int J Mol Sci 2021; 22:ijms221910876. [PMID: 34639217 PMCID: PMC8509583 DOI: 10.3390/ijms221910876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen and nitrogen species (RONS) play an important role in the pathophysiology of skeletal muscle and are involved in the regulation of intracellular signaling pathways, which drive metabolism, regeneration, and adaptation in skeletal muscle. However, the molecular mechanisms underlying these processes are unknown or partially uncovered. We implemented a combination of methodological approaches that are funded for the use of genetically encoded biosensors associated with quantitative fluorescence microscopy imaging to study redox biology in skeletal muscle. Therefore, it was possible to detect and monitor RONS and glutathione redox potential with high specificity and spatio-temporal resolution in two models, isolated skeletal muscle fibers and C2C12 myoblasts/myotubes. Biosensors HyPer3 and roGFP2-Orp1 were examined for the detection of cytosolic hydrogen peroxide; HyPer-mito and HyPer-nuc for the detection of mitochondrial and nuclear hydrogen peroxide; Mito-Grx1-roGFP2 and cyto-Grx1-roGFP2 were used for registration of the glutathione redox potential in mitochondria and cytosol. G-geNOp was proven to detect cytosolic nitric oxide. The fluorescence emitted by the biosensors is affected by pH, and this might have masked the results; therefore, environmental CO2 must be controlled to avoid pH fluctuations. In conclusion, genetically encoded biosensors and quantitative fluorescence microscopy provide a robust methodology to investigate the pathophysiological processes associated with the redox biology of skeletal muscle.
Collapse
|
21
|
Pang Y, Zhang H, Ai HW. Genetically Encoded Fluorescent Redox Indicators for Unveiling Redox Signaling and Oxidative Toxicity. Chem Res Toxicol 2021; 34:1826-1845. [PMID: 34284580 DOI: 10.1021/acs.chemrestox.1c00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Redox-active molecules play essential roles in cell homeostasis, signaling, and other biological processes. Dysregulation of redox signaling can lead to toxic effects and subsequently cause diseases. Therefore, real-time tracking of specific redox-signaling molecules in live cells would be critical for deciphering their functional roles in pathophysiology. Fluorescent protein (FP)-based genetically encoded redox indicators (GERIs) have emerged as valuable tools for monitoring the redox states of various redox-active molecules from subcellular compartments to live organisms. In the first section of this review, we overview the background, focusing on the sensing mechanisms of various GERIs. Next, we review a list of selected GERIs according to their analytical targets and discuss their key biophysical and biochemical properties. In the third section, we provide several examples which applied GERIs to understanding redox signaling and oxidative toxicology in pathophysiological processes. Lastly, a summary and outlook section is included.
Collapse
Affiliation(s)
- Yu Pang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hao Zhang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States.,The UVA Cancer Center, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
22
|
Felber JG, Zeisel L, Poczka L, Scholzen K, Busker S, Maier MS, Theisen U, Brandstädter C, Becker K, Arnér ESJ, Thorn-Seshold J, Thorn-Seshold O. Selective, Modular Probes for Thioredoxins Enabled by Rational Tuning of a Unique Disulfide Structure Motif. J Am Chem Soc 2021; 143:8791-8803. [PMID: 34061528 DOI: 10.1021/jacs.1c03234] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Specialized cellular networks of oxidoreductases coordinate the dithiol/disulfide-exchange reactions that control metabolism, protein regulation, and redox homeostasis. For probes to be selective for redox enzymes and effector proteins (nM to μM concentrations), they must also be able to resist non-specific triggering by the ca. 50 mM background of non-catalytic cellular monothiols. However, no such selective reduction-sensing systems have yet been established. Here, we used rational structural design to independently vary thermodynamic and kinetic aspects of disulfide stability, creating a series of unusual disulfide reduction trigger units designed for stability to monothiols. We integrated the motifs into modular series of fluorogenic probes that release and activate an arbitrary chemical cargo upon reduction, and compared their performance to that of the literature-known disulfides. The probes were comprehensively screened for biological stability and selectivity against a range of redox effector proteins and enzymes. This design process delivered the first disulfide probes with excellent stability to monothiols yet high selectivity for the key redox-active protein effector, thioredoxin. We anticipate that further applications of these novel disulfide triggers will deliver unique probes targeting cellular thioredoxins. We also anticipate that further tuning following this design paradigm will enable redox probes for other important dithiol-manifold redox proteins, that will be useful in revealing the hitherto hidden dynamics of endogenous cellular redox systems.
Collapse
Affiliation(s)
- Jan G Felber
- Department of Pharmacy, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Lukas Zeisel
- Department of Pharmacy, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Lena Poczka
- Department of Pharmacy, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Karoline Scholzen
- Department of Medical Biochemistry, Karolinska Institutet, Solnavägen 9, 17177 Stockholm, Sweden
| | - Sander Busker
- Department of Medical Biochemistry, Karolinska Institutet, Solnavägen 9, 17177 Stockholm, Sweden
| | - Martin S Maier
- Department of Pharmacy, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Ulrike Theisen
- Institute of Pharmacology and Toxicology, Medical Center, University of Rostock, Schillingallee 70, 18057 Rostock, Germany
| | - Christina Brandstädter
- Interdisciplinary Research Centre (IFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Katja Becker
- Interdisciplinary Research Centre (IFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Elias S J Arnér
- Department of Medical Biochemistry, Karolinska Institutet, Solnavägen 9, 17177 Stockholm, Sweden.,Department of Selenoprotein Research, National Institute of Oncology, 1122 Budapest, Hungary
| | - Julia Thorn-Seshold
- Department of Pharmacy, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
23
|
Fuloria S, Subramaniyan V, Karupiah S, Kumari U, Sathasivam K, Meenakshi DU, Wu YS, Sekar M, Chitranshi N, Malviya R, Sudhakar K, Bajaj S, Fuloria NK. Comprehensive Review of Methodology to Detect Reactive Oxygen Species (ROS) in Mammalian Species and Establish Its Relationship with Antioxidants and Cancer. Antioxidants (Basel) 2021; 10:128. [PMID: 33477494 PMCID: PMC7831054 DOI: 10.3390/antiox10010128] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Evidence suggests that reactive oxygen species (ROS) mediate tissue homeostasis, cellular signaling, differentiation, and survival. ROS and antioxidants exert both beneficial and harmful effects on cancer. ROS at different concentrations exhibit different functions. This creates necessity to understand the relation between ROS, antioxidants, and cancer, and methods for detection of ROS. This review highlights various sources and types of ROS, their tumorigenic and tumor prevention effects; types of antioxidants, their tumorigenic and tumor prevention effects; and abnormal ROS detoxification in cancer; and methods to measure ROS. We conclude that improving genetic screening methods and bringing higher clarity in determination of enzymatic pathways and scale-up in cancer models profiling, using omics technology, would support in-depth understanding of antioxidant pathways and ROS complexities. Although numerous methods for ROS detection are developing very rapidly, yet further modifications are required to minimize the limitations associated with currently available methods.
Collapse
Affiliation(s)
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | | | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah 08100, Malaysia;
| | | | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Malaysia;
| | - Nitin Chitranshi
- Faculty of Medicine and Human Sciences, Maquarie University, North Ryde, NSW 2109, Australia;
| | - Rishabha Malviya
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida 203201, India;
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences (LIT-Pharmacy), Lovely Professional University, Jalandhar 144411, India;
| | - Sakshi Bajaj
- Delhi Institute of Pharmaceutical Science and Research, Pushp Vihar, New Delhi 110017, India;
| | | |
Collapse
|
24
|
Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020; 120:12357-12489. [PMID: 33147405 PMCID: PMC7705895 DOI: 10.1021/acs.chemrev.0c00451] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
Collapse
Affiliation(s)
- Andreas Steinegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
25
|
Lorenzen I, Eble JA, Hanschmann EM. Thiol switches in membrane proteins - Extracellular redox regulation in cell biology. Biol Chem 2020; 402:253-269. [PMID: 33108336 DOI: 10.1515/hsz-2020-0266] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
Redox-mediated signal transduction depends on the enzymatic production of second messengers such as hydrogen peroxide, nitric oxide and hydrogen sulfite, as well as specific, reversible redox modifications of cysteine-residues in proteins. So-called thiol switches induce for instance conformational changes in specific proteins that regulate cellular pathways e.g., cell metabolism, proliferation, migration, gene expression and inflammation. Reduction, oxidation and disulfide isomerization are controlled by oxidoreductases of the thioredoxin family, including thioredoxins, glutaredoxins, peroxiredoxins and protein dsisulfide isomerases. These proteins are located in different cellular compartments, interact with substrates and catalyze specific reactions. Interestingly, some of these proteins are released by cells. Their extracellular functions and generally extracellular redox control have been widely underestimated. Here, we give an insight into extracellular redox signaling, extracellular thiol switches and their regulation by secreted oxidoreductases and thiol-isomerases, a topic whose importance has been scarcely studied so far, likely due to methodological limitations. We focus on the secreted redox proteins and characterized thiol switches in the ectodomains of membrane proteins, such as integrins and the metalloprotease ADAM17, which are among the best-characterized proteins and discuss their underlying mechanisms and biological implications.
Collapse
Affiliation(s)
- Inken Lorenzen
- Centre of Biochemistry and Molecular Biology, Structural Biology, Christian-Albrecht University of Kiel, Am Botanischen Garten 1-9, D-24118Kiel, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, D-48149Münster, Germany
| | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Life Science Center, Merowingerplatz 1a, D-40225Düsseldorf, Germany
| |
Collapse
|
26
|
Kumar V, Vogelsang L, Schmidt RR, Sharma SS, Seidel T, Dietz KJ. Remodeling of Root Growth Under Combined Arsenic and Hypoxia Stress Is Linked to Nutrient Deprivation. FRONTIERS IN PLANT SCIENCE 2020; 11:569687. [PMID: 33193499 PMCID: PMC7644957 DOI: 10.3389/fpls.2020.569687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/06/2020] [Indexed: 05/29/2023]
Abstract
Root architecture responds to environmental stress. Stress-induced metabolic and nutritional changes affect the endogenous root development program. Transcriptional and translational changes realize the switch between stem cell proliferation and cell differentiation, lateral root or root hair formation and root functionality for stress acclimation. The current work explores the effects of stress combination of arsenic toxicity (As) and hypoxia (Hpx) on root development in Arabidopsis thaliana. As revealed previously, combined As and Hpx treatment leads to severe nutritional disorder evident from deregulation of root transcriptome and plant mineral contents. Both As and Hpx were identified to pose stress-specific constraints on root development that lead to unique root growth phenotype under their combination. Besides inhibition of root apical meristem (RAM) activity under all stresses, As induced lateral root growth while root hair density and lengths were strongly increased by Hpx and HpxAs-treatments. A dual stimulation of phosphate (Pi)-starvation response was observed for HpxAs-treated plant roots; however, the response under HpxAs aligned more with Hpx than As. Transcriptional evidence along with biochemical data suggests involvement of PHOSPHATE STARVATION RESPONSE 1; PHR1-dependent systemic signaling. Pi metabolism-related transcripts in close association with cellular iron homeostasis modulate root development under HpxAs. Early redox potential changes in meristematic cells, differential ROS accumulation in root hair zone cell layers and strong deregulation of NADPH oxidases, NADPH-dependent oxidoreductases and peroxidases signify a role of redox and ROS signaling in root architecture remodeling under HpxAs. Differential aquaporin expression suggests transmembrane ROS transport to regulate root hair induction and growth. Reorganization of energy metabolism through NO-dependent alternate oxidase, lactate fermentation, and phosphofructokinase seems crucial under HpxAs. TOR and SnRK-signaling network components were potentially involved in control of sustainable utilization of available energy reserves for root hair growth under combined stress as well as recovery on reaeration. Findings are discussed in context of combined stress-induced signaling in regulation of root development in contrast to As and Hpx alone.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
- Department of Biosciences, Himachal Pradesh University, Shimla, India
| | - Lara Vogelsang
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Romy R. Schmidt
- Department of Plant Biotechnology, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Shanti S. Sharma
- Department of Botany, School of Life Sciences, Sikkim University, Gangtok, India
| | - Thorsten Seidel
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
27
|
Lévy E, Jaffrézic F, Laloë D, Rezaei H, Huang ME, Béringue V, Martin D, Vernis L. PiQSARS: A pipeline for quantitative and statistical analyses of ratiometric fluorescent biosensors. MethodsX 2020; 7:101034. [PMID: 32953466 PMCID: PMC7486618 DOI: 10.1016/j.mex.2020.101034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/12/2020] [Indexed: 11/27/2022] Open
Abstract
Genetically encoded ratiometric fluorescent probes are cutting-edge tools in biology. They allow precise and dynamic measurement of various physiological parameters within cell compartments. Because data extraction and analysis are time consuming and may lead to inconsistencies between results, we describe here a standardized pipeline for•Semi-automated treatment of time-lapse fluorescence microscopy images.•Quantification of individual cell signal.•Statistical analysis of the data.First, a dedicated macro was developed using the FIJI software to reproducibly quantify the fluorescence ratio as a function of time. Raw data are then exported and analyzed using R and MATLAB softwares. Calculation and statistical analysis of selected graphic parameters are performed. In addition, a functional principal component analysis allows summarizing the dataset. Finally, a principal component analysis is performed to check consistency and final analysis is presented as a visual diagram. The method is adapted to any ratiometric fluorescent probe. As an example, the analysis of the cytoplasmic HyPer probe in response to an acute cell treatment with increasing amounts of hydrogen peroxide is shown. In conclusion, the pipeline allows to save time and analyze a larger amount of samples while reducing manual interventions and consequently increasing the robustness of the analysis.
Collapse
Affiliation(s)
- Elise Lévy
- Université Paris-Saclay, UVSQ, INRAE, VIM, 78350 Jouy-en-Josas, France.,Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Florence Jaffrézic
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350 Jouy-en-Josas, France
| | - Denis Laloë
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350 Jouy-en-Josas, France
| | - Human Rezaei
- Université Paris-Saclay, UVSQ, INRAE, VIM, 78350 Jouy-en-Josas, France
| | - Meng-Er Huang
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Vincent Béringue
- Université Paris-Saclay, UVSQ, INRAE, VIM, 78350 Jouy-en-Josas, France
| | - Davy Martin
- Université Paris-Saclay, UVSQ, INRAE, VIM, 78350 Jouy-en-Josas, France
| | - Laurence Vernis
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
28
|
Anjum NA, Amreen, Tantray AY, Khan NA, Ahmad A. Reactive oxygen species detection-approaches in plants: Insights into genetically encoded FRET-based sensors. J Biotechnol 2019; 308:108-117. [PMID: 31836526 DOI: 10.1016/j.jbiotec.2019.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
Abstract
The generation of reactive oxygen species (ROS) (and their reaction products) in abiotic stressed plants can be simultaneous. Hence, it is very difficult to establish individual roles of ROS (and their reaction products) in plants particularly under abiotic stress conditions. It is highly imperative to detect ROS (and their reaction products) and ascertain their role in vivo and also to point their optimal level in order to unveil exact relation of ROS (and their reaction products) with the major components of ROS-controlling systems. Förster Resonance Energy Transfer (FRET) technology enables us with high potential for monitoring and quantification of ROS and redox variations, avoiding some of the obstacles presented by small-molecule fluorescent dyes. This paper aims to: (i) introduce ROS and overview ROS-chemistry and ROS-accrued major damages to major biomolecules; (ii) highlight invasive and non-invasive approaches for the detection of ROS (and their reaction products); (iii) appraise literature available on genetically encoded ROS (and their reaction products)-sensors based on FRET technology, and (iv) enlighten so far unexplored aspects in the current context. The studies integrating the outcomes of the FRET-based ROS-detection approaches with OMICS sciences (genetics, genomics, proteomics, and metabolomics) would enlighten major insights into real-time ROS and redox dynamics, and their signaling at cellular and subcellular levels in living cells.
Collapse
Affiliation(s)
- Naser A Anjum
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, U.P., India.
| | - Amreen
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, U.P., India
| | - Aadil Y Tantray
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, U.P., India
| | - Nafees A Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, U.P., India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, U.P., India.
| |
Collapse
|
29
|
Carmona M, de Cubas L, Bautista E, Moral-Blanch M, Medraño-Fernández I, Sitia R, Boronat S, Ayté J, Hidalgo E. Monitoring cytosolic H 2O 2 fluctuations arising from altered plasma membrane gradients or from mitochondrial activity. Nat Commun 2019; 10:4526. [PMID: 31586057 PMCID: PMC6778086 DOI: 10.1038/s41467-019-12475-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
Genetically encoded probes monitoring H2O2 fluctuations in living organisms are key to decipher redox signaling events. Here we use a new probe, roGFP2-Tpx1.C169S, to monitor pre-toxic fluctuations of peroxides in fission yeast, where the concentrations linked to signaling or to toxicity have been established. This probe is able to detect nanomolar fluctuations of intracellular H2O2 caused by extracellular peroxides; expression of human aquaporin 8 channels H2O2 entry into fission yeast decreasing membrane gradients. The probe also detects H2O2 bursts from mitochondria after addition of electron transport chain inhibitors, the extent of probe oxidation being proportional to the mitochondrial activity. The oxidation of this probe is an indicator of steady-state levels of H2O2 in different genetic backgrounds. Metabolic reprogramming during growth in low-glucose media causes probe reduction due to the activation of antioxidant cascades. We demonstrate how peroxiredoxin-based probes can be used to monitor physiological H2O2 fluctuations. Reliable methods of measuring intracellular H2O2 fluctuations are necessary to advance redox biology. Here the authors design a H2O2 sensor based on the fission yeast peroxiredoxin Tpx1 to sense nanomolar fluctuations of intracellular H2O2 in response to genetic and environmental perturbations.
Collapse
Affiliation(s)
- Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Eric Bautista
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Marta Moral-Blanch
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Iria Medraño-Fernández
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Roberto Sitia
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
30
|
Westberg M, Etzerodt M, Ogilby PR. Rational design of genetically encoded singlet oxygen photosensitizing proteins. Curr Opin Struct Biol 2019; 57:56-62. [DOI: 10.1016/j.sbi.2019.01.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 01/29/2023]
|
31
|
Bai X, Ng KKH, Hu JJ, Ye S, Yang D. Small-Molecule-Based Fluorescent Sensors for Selective Detection of Reactive Oxygen Species in Biological Systems. Annu Rev Biochem 2019; 88:605-633. [DOI: 10.1146/annurev-biochem-013118-111754] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) encompass a collection of intricately linked chemical entities characterized by individually distinct physicochemical properties and biological reactivities. Although excessive ROS generation is well known to underpin disease development, it has become increasingly evident that ROS also play central roles in redox regulation and normal physiology. A major challenge in uncovering the relevant biological mechanisms and deconvoluting the apparently paradoxical roles of distinct ROS in human health and disease lies in the selective and sensitive detection of these transient species in the complex biological milieu. Small-molecule-based fluorescent sensors enable molecular imaging of ROS with great spatial and temporal resolution and have thus been appreciated as excellent tools for aiding discoveries in modern redox biology. We review a selection of state-of-the-art sensors with demonstrated utility in biological systems. By providing a systematic overview based on underlying chemical sensing mechanisms, we wish to highlight the strengths and weaknesses in prior sensor works and propose some guiding principles for the development of future probes.
Collapse
Affiliation(s)
| | | | - Jun Jacob Hu
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| | - Sen Ye
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| |
Collapse
|
32
|
Kellokumpu S. Golgi pH, Ion and Redox Homeostasis: How Much Do They Really Matter? Front Cell Dev Biol 2019; 7:93. [PMID: 31263697 PMCID: PMC6584808 DOI: 10.3389/fcell.2019.00093] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Exocytic and endocytic compartments each have their own unique luminal ion and pH environment that is important for their normal functioning. A failure to maintain this environment - the loss of homeostasis - is not uncommon. In the worst case, all the main Golgi functions, including glycosylation, membrane trafficking and protein sorting, can be perturbed. Several factors contribute to Golgi homeostasis. These include not only ions such as H+, Ca2+, Mg2+, Mn2+, but also Golgi redox state and nitric oxide (NO) levels, both of which are dependent on the oxygen levels in the cells. Changes to any one of these factors have consequences on Golgi functions, the nature of which can be dissimilar or similar depending upon the defects themselves. For example, altered Golgi pH homeostasis gives rise to Cutis laxa disease, in which glycosylation and membrane trafficking are both affected, while altered Ca2+ homeostasis due to the mutated SCPA1 gene in Hailey-Hailey disease, perturbs various protein sorting, proteolytic cleavage and membrane trafficking events in the Golgi. This review gives an overview of the molecular machineries involved in the maintenance of Golgi ion, pH and redox homeostasis, followed by a discussion of the organelle dysfunction and disease that frequently result from their breakdown. Congenital disorders of glycosylation (CDGs) are discussed only when they contribute directly to Golgi pH, ion or redox homeostasis. Current evidence emphasizes that, rather than being mere supporting factors, Golgi pH, ion and redox homeostasis are in fact key players that orchestrate and maintain all Golgi functions.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
33
|
Paracrine Mechanisms of Redox Signalling for Postmitotic Cell and Tissue Regeneration. Trends Cell Biol 2019; 29:514-530. [DOI: 10.1016/j.tcb.2019.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 01/08/2023]
|
34
|
Abstract
The availability of electrons to biological systems underpins the mitochondrial electron transport chain (ETC) that powers living cells. It is little wonder, therefore, that the sufficiency of electron supply is critical to cellular health. Considering mitochondrial redox activity alone, a lack of oxygen (hypoxia) leads to impaired production of adenosine triphosphate (ATP), the major energy currency of the cell, whereas excess oxygen (hyperoxia) is associated with elevated production of reactive oxygen species (ROS) from the interaction of oxygen with electrons that have leaked from the ETC. Furthermore, the redox proteome, which describes the reversible and irreversible redox modifications of proteins, controls many aspects of biological structure and function. Indeed, many major diseases, including cancer and diabetes, are now termed "redox diseases", spurring much interest in the measurement and monitoring of redox states and redox-active species within biological systems. In this Account, we describe recent efforts to develop magnetic resonance (MR) and fluorescence imaging probes for studying redox biology. These two classes of molecular imaging tools have proved to be invaluable in supplementing the structural information that is traditionally provided by MRI and fluorescence microscopy, respectively, with highly sensitive chemical information. Importantly, the study of biological redox processes requires sensors that operate at biologically relevant reduction potentials, which can be achieved by the use of bioinspired redox-sensitive groups. Since oxidation-reduction reactions are so crucial to modulating cellular function and yet also have the potential to damage cellular structures, biological systems have developed highly sophisticated ways to regulate and sense redox changes. There is therefore a plethora of diverse chemical structures in cells with biologically relevant reduction potentials, from transition metals to organic molecules to proteins. These chemical groups can be harnessed in the development of exogenous molecular imaging agents that are well-tuned to biological redox events. To date, small-molecule redox-sensitive tools for oxidative stress and hypoxia have been inspired from four classes of cellular regulators. The redox-sensitive groups found in redox cofactors, such as flavins and nicotinamides, can be used as reversible switches in both fluorescent and MR probes. Enzyme substrates that undergo redox processing within the cell can be modified to provide fluorescence or MR readout while maintaining their selectivity. Redox-active first-row transition metals are central to biological homeostasis, and their marked electronic and magnetic changes upon oxidation/reduction have been used to develop MR sensors. Finally, redox-sensitive amino acids, particularly cysteine, can be utilized in both fluorescent and MR sensors.
Collapse
Affiliation(s)
- Amandeep Kaur
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
35
|
Abstract
SIGNIFICANCE NAD+ and NADP+ are important cosubstrates in redox reactions and participate in regulatory networks operating in adjustment of metabolic pathways. Moreover, NAD+ is a cosubstrate in post-translational modification of proteins and is involved in DNA repair. NADPH is indispensable for reductive syntheses and the redox chemistry involved in attaining and maintaining correct protein conformation. Recent Advances: Within a couple of decades, a wealth of information has been gathered on NAD(H)+/NADP(H) redox imaging, regulatory role of redox potential in assembly of spatial protein structures, and the role of ADP-ribosylation of regulatory proteins affecting both gene expression and metabolism. All these have a bearing also on disease, healthy aging, and longevity. CRITICAL ISSUES Knowledge of the signal propagation pathways of NAD+-dependent post-translational modifications is still fragmentary for explaining the mechanism of cellular stress effects and nutritional state on these actions. Evaluation of the cosubstrate and regulator roles of NAD(H) and NADP(H) still suffers from some controversies in experimental data. FUTURE DIRECTIONS Activating or inhibiting interventions in NAD+-dependent protein modifications for medical purposes has shown promise, but restraining tumor growth by inhibiting DNA repair in tumors by means of interference in sirtuins is still in the early stage. The same is true for the use of this technology in improving health and healthy aging. New genetically encoded specific NAD and NADP probes are expected to modernize the research on redox biology.
Collapse
Affiliation(s)
- Ilmo E Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
36
|
New Thiol-Sensitive Dye Application for Measuring Oxidative Stress in Cell Cultures. Sci Rep 2019; 9:1659. [PMID: 30733499 PMCID: PMC6367440 DOI: 10.1038/s41598-018-38132-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/12/2018] [Indexed: 11/13/2022] Open
Abstract
A xanthene derivative, Granada Green dinitrobenzene sulfonate (GGDNBS), has been synthesized to assay cellular oxidative stress based on changes in the concentration of biothiols. The dye is able to react with biological thiols by a thiolysis reaction that promotes a change in fluorescence intensity. To demonstrate the usefulness of GGDNBS for in vivo oxidative stress measurements, 661 W photoreceptor-derived cells were exposed to light to induce ROS generation, and changes in GGDNBS fluorescence were measured. In these cells, GGDNBS fluorescence was correlated with the biothiol levels measured by an enzymatic method. Therefore, GGDNBS allows us to monitor changes in the levels of biothiols associated with ROS generation via single-cell bioimaging.
Collapse
|
37
|
Eroglu E, Bischof H, Charoensin S, Waldeck-Weiermaier M, Graier WF, Malli R. Real-Time Imaging of Nitric Oxide Signals in Individual Cells Using geNOps. Methods Mol Biol 2019; 1747:23-34. [PMID: 29600448 DOI: 10.1007/978-1-4939-7695-9_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nitric oxide (NO•) is a versatile signaling molecule which regulates fundamental cellular processes in all domains of life. However, due to the radical nature of NO• it has a very short half-life that makes it challenging to trace its formation, diffusion, and degradation on the level of individual cells. Very recently, we expanded the family of genetically encoded sensors by introducing a novel class of single fluorescent protein-based NO• probes-the geNOps. Once expressed in cells of interest, geNOps selectively respond to NO• by fluorescence quench, which enables real-time monitoring of cellular NO• signals. Here, we describe detailed methods suitable for imaging of NO• signals in mammalian cells. This novel approach may facilitate a broad range of studies to (re)investigate the complex NO• biochemistry in living cells.
Collapse
Affiliation(s)
- Emrah Eroglu
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Helmut Bischof
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Suphachai Charoensin
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Markus Waldeck-Weiermaier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
38
|
Cao R, Wallrabe H, Siller K, Rehman Alam S, Periasamy A. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H. Cytometry A 2019; 95:110-121. [PMID: 30604477 DOI: 10.1002/cyto.a.23711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Abstract
Redox changes in live HeLa cervical cancer cells after doxorubicin treatment can either be analyzed by a novel fluorescence lifetime microscopy (FLIM)-based redox ratio NAD(P)H-a2%/FAD-a1%, called fluorescence lifetime redox ratio or one of its components (NAD(P)H-a2%), which is actually driving that ratio and offering a simpler and alternative metric and are both compared. Auto-fluorescent NAD(P)H, FAD lifetime is acquired by 2- photon excitation and Tryptophan by 3-photon, at 4 time points after treatment up to 60 min demonstrating early drug response to doxorubicin. Identical Fields-of-view (FoV) at each interval allows single-cell analysis, showing heterogeneous responses to treatment, largely based on their initial control redox state. Based on a discrete ROI selection method, mitochondrial OXPHOS and cytosolic glycolysis are discriminated. Furthermore, putative FRET interaction and energy transfer between tryptophan residue carrying enzymes and NAD(P)H correlate with NAD(P)H-a2%, as does the NADPH/NADH ratio, highlighting a multi-parametric assay to track metabolic changes in live specimens. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Ruofan Cao
- The W.M. Keck Center for Cellular Imaging, Physical and Life Sciences Building (PLSB), University of Virginia, 90 Geldard Drive, Charlottesville, Virginia, 22904.,Department of Biology, University of Virginia, 409 McCormick Road, Charlottesville, Virginia, 22904
| | - Horst Wallrabe
- The W.M. Keck Center for Cellular Imaging, Physical and Life Sciences Building (PLSB), University of Virginia, 90 Geldard Drive, Charlottesville, Virginia, 22904.,Department of Biology, University of Virginia, 409 McCormick Road, Charlottesville, Virginia, 22904
| | - Karsten Siller
- Advanced Research Computing Services, Division of St-VP Information Technology, University of Virginia, 1023 Millmont Street, Charlottesville, Virginia, 22904
| | - Shagufta Rehman Alam
- The W.M. Keck Center for Cellular Imaging, Physical and Life Sciences Building (PLSB), University of Virginia, 90 Geldard Drive, Charlottesville, Virginia, 22904
| | - Ammasi Periasamy
- The W.M. Keck Center for Cellular Imaging, Physical and Life Sciences Building (PLSB), University of Virginia, 90 Geldard Drive, Charlottesville, Virginia, 22904.,Department of Biology, University of Virginia, 409 McCormick Road, Charlottesville, Virginia, 22904.,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22904
| |
Collapse
|
39
|
Kokkonen N, Khosrowabadi E, Hassinen A, Harrus D, Glumoff T, Kietzmann T, Kellokumpu S. Abnormal Golgi pH Homeostasis in Cancer Cells Impairs Apical Targeting of Carcinoembryonic Antigen by Inhibiting Its Glycosyl-Phosphatidylinositol Anchor-Mediated Association with Lipid Rafts. Antioxid Redox Signal 2019; 30:5-21. [PMID: 29304557 PMCID: PMC6276271 DOI: 10.1089/ars.2017.7389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIMS Carcinoembryonic antigen (CEACAM5, CEA) is a known tumor marker for colorectal cancer that localizes in a polarized manner to the apical surface in normal colon epithelial cells whereas in cancer cells it is present at both the apical and basolateral surfaces of the cells. Since the Golgi apparatus sorts and transports most proteins to these cell surface domains, we set out here to investigate whether any of the factors commonly associated with tumorigenesis, including hypoxia, generation of reactive oxygen species (ROS), altered redox homeostasis, or an altered Golgi pH, are responsible for mistargeting of CEA to the basolateral surface in cancer cells. RESULTS Using polarized nontumorigenic Madin-Darby canine kidney (MDCK) cells and CaCo-2 colorectal cancer cells as targets, we show that apical delivery of CEA is not affected by hypoxia, ROS, nor changes in the Golgi redox state. Instead, we find that an elevated Golgi pH induces basolateral targeting of CEA and increases its TX-100 solubility, indicating impaired association of CEA with lipid rafts. Moreover, disruption of lipid rafts by methyl-β-cyclodextrin induced accumulation of the CEA protein at the basolateral surface in MDCK cells. Experiments with the glycosylphosphatidylinositol (GPI)-anchorless CEA mutant and CEA-specific GPI-anchored enhanced green fluorescent protein (EGFP-GPI) fusion protein revealed that the GPI-anchor was critical for the pH-dependent apical delivery of the CEA in MDCK cells. Innovation and Conclusion: The findings indicate that an abnormal Golgi pH homeostasis in cancer cells is an important factor that causes mistargeting of CEA to the basolateral surface of cancer cells via inhibiting its GPI-anchor-mediated association with lipid rafts.
Collapse
Affiliation(s)
- Nina Kokkonen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Elham Khosrowabadi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Deborah Harrus
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Address correspondence to: Dr. Sakari Kellokumpu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5400, Oulu FI-90014, Finland
| |
Collapse
|
40
|
Kostyuk AI, Panova AS, Bilan DS, Belousov VV. Redox biosensors in a context of multiparameter imaging. Free Radic Biol Med 2018; 128:23-39. [PMID: 29630928 DOI: 10.1016/j.freeradbiomed.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/18/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
A wide variety of genetically encoded fluorescent biosensors are available to date. Some of them have already contributed significantly to our understanding of biological processes occurring at cellular and organismal levels. Using such an approach, outstanding success has been achieved in the field of redox biology. The probes allowed researchers to observe, for the first time, the dynamics of important redox parameters in vivo during embryogenesis, aging, the inflammatory response, the pathogenesis of various diseases, and many other processes. Given the differences in the readout and spectra of the probes, they can be used in multiparameter imaging in which several processes are monitored simultaneously in the cell. Intracellular processes form an extensive network of interactions. For example, redox changes are often accompanied by changes in many other biochemical reactions related to cellular metabolism and signaling. Therefore, multiparameter imaging can provide important information concerning the temporal and spatial relationship of various signaling and metabolic processes. In this review, we will describe the main types of genetically encoded biosensors, the most frequently used readout, and their use in multiplexed imaging mode.
Collapse
Affiliation(s)
- Alexander I Kostyuk
- Faculty of Biology, Moscow State University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anastasiya S Panova
- Faculty of Biology, Moscow State University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Institute for Cardiovascular Physiology, Georg August University Göttingen, Göttingen D-37073, Germany.
| |
Collapse
|
41
|
Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M, Liang X. The role of cellular reactive oxygen species in cancer chemotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:266. [PMID: 30382874 PMCID: PMC6211502 DOI: 10.1186/s13046-018-0909-x] [Citation(s) in RCA: 454] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022]
Abstract
Most chemotherapeutics elevate intracellular levels of reactive oxygen species (ROS), and many can alter redox-homeostasis of cancer cells. It is widely accepted that the anticancer effect of these chemotherapeutics is due to the induction of oxidative stress and ROS-mediated cell injury in cancer. However, various new therapeutic approaches targeting intracellular ROS levels have yielded mixed results. Since it is impossible to quantitatively detect dynamic ROS levels in tumors during and after chemotherapy in clinical settings, it is of increasing interest to apply mathematical modeling techniques to predict ROS levels for understanding complex tumor biology during chemotherapy. This review outlines the current understanding of the role of ROS in cancer cells during carcinogenesis and during chemotherapy, provides a critical analysis of the methods used for quantitative ROS detection and discusses the application of mathematical modeling in predicting treatment responses. Finally, we provide insights on and perspectives for future development of effective therapeutic ROS-inducing anticancer agents or antioxidants for cancer treatment.
Collapse
Affiliation(s)
- Haotian Yang
- Therapeutics Research Group, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Level 5 West, Brisbane, Australia
| | - Rehan M Villani
- Therapeutics Research Group, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Level 5 West, Brisbane, Australia
| | - Haolu Wang
- Therapeutics Research Group, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Level 5 West, Brisbane, Australia
| | - Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Michael S Roberts
- Therapeutics Research Group, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Level 5 West, Brisbane, Australia
| | - Min Tang
- Department of Mathematics and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Liang
- Therapeutics Research Group, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Level 5 West, Brisbane, Australia. .,Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|
42
|
Chandrasekharan A, Varadarajan SN, Lekshmi A, Lupitha SS, Darvin P, Chandrasekhar L, Pillai PR, Santhoshkumar TR, Pillai MR. A high-throughput real-time in vitro assay using mitochondrial targeted roGFP for screening of drugs targeting mitochondria. Redox Biol 2018; 20:379-389. [PMID: 30408753 PMCID: PMC6222140 DOI: 10.1016/j.redox.2018.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Most toxic compounds including cancer drugs target mitochondria culminating in its permeabilization. Cancer drug-screening and toxicological testing of compounds require cost-effective and sensitive high-throughput methods to detect mitochondrial damage. Real-time methods for detection of mitochondrial damage are less toxic, allow kinetic measurements with good spatial resolution and are preferred over end-stage assays. Cancer cell lines stably expressing genetically encoded mitochondrial-targeted redox-GFP2 (mt-roGFP) were developed and validated for its suitability as a mitochondrial damage sensor. Diverse imaging platforms and flow-cytometry were utilized for ratiometric analysis of redox changes with known toxic and cancer drugs. Key events of cell death and mitochondrial damage were studied at single-cell level coupled with mt-roGFP. Cells stably expressing mt-roGFP and H2B-mCherry were developed for high-throughput screening (HTS) application. Most cancer drugs while inducing mitochondrial permeabilization trigger mitochondrial-oxidation that can be detected at single-cell level with mt-roGFP. The image-based assay using mt-roGFP outperformed other quantitative methods of apoptosis in ease of screening. Incorporation of H2B-mCherry ensures accurate and complete automated segmentation with excellent Z value. The results substantiate that most cancer drugs and known plant-derived antioxidants trigger cell-death through mitochondrial redox alterations with pronounced ratio change in the mt-roGFP probe. Real-time analysis of mitochondrial oxidation and mitochondrial permeabilization reveal a biphasic ratio change in dying cells, with an initial redox surge before mitochondrial permeabilization followed by a drastic increase in ratio after complete mitochondrial permeabilization. Overall, the results prove that mitochondrial oxidation is a reliable indicator of mitochondrial damage, which can be readily determined in live cells using mt-roGFP employing diverse imaging techniques. The assay described is highly sensitive, easy to adapt to HTS platforms and is a valuable resource for identifying cytotoxic agents that target mitochondria and also for dissecting cell signaling events relevant to redox biology. Mitochondrial oxidation is an universal marker for mitochondrial damage and mitochondrial permeabilization. Ratiometric imaging of mt-roGFP in high-throughput mode allows rapid screening of compounds that target mitochondria. Real-time ratiometric imaging of mt-roGFP and mitochondrial permeabilization reveals a biphasic redox alteration in cells undergoing mitochondrial permeabilization.
Collapse
Affiliation(s)
- Aneesh Chandrasekharan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala 695014, India
| | - Shankara Narayanan Varadarajan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala 695014, India
| | - Asha Lekshmi
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala 695014, India
| | - Santhik Subhasingh Lupitha
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala 695014, India
| | - Pramod Darvin
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala 695014, India
| | - Leena Chandrasekhar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala 695014, India
| | - Prakash Rajappan Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala 695014, India
| | - T R Santhoshkumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala 695014, India.
| | - M Radhakrishna Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
43
|
Liu X, Wang C, Liu Z. Protein-Engineered Biomaterials for Cancer Theranostics. Adv Healthc Mater 2018; 7:e1800913. [PMID: 30260583 DOI: 10.1002/adhm.201800913] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Indexed: 12/18/2022]
Abstract
Proteins are an important class of biomaterials promising a variety of applications such as drug delivery, and imaging or therapy, owing to their biodegradability, biocompatibility, as well as inherent biological activities acting as enzymes, recognizing molecules, or therapeutics by themselves. Over the few past decades, different types of proteins with desired properties have been widely explored for biomedical applications. Many therapeutic proteins have now entered clinical use. This review therefore summarizes various strategies in the engineering of biomaterials for delivery of therapeutic proteins, as well as the recent development of protein-based biomaterials for cancer theranostics.
Collapse
Affiliation(s)
- Xiaowen Liu
- Pharmacology; Department of Basic Medical Sciences; Faculty of Medical Science; Jinan University; Guangzhou Guangdong 510632 China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices; Soochow University; Suzhou Jiangsu 215123 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices; Soochow University; Suzhou Jiangsu 215123 China
| |
Collapse
|
44
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
45
|
Jiang X, Wang L, Carroll SL, Chen J, Wang MC, Wang J. Challenges and Opportunities for Small-Molecule Fluorescent Probes in Redox Biology Applications. Antioxid Redox Signal 2018; 29:518-540. [PMID: 29320869 PMCID: PMC6056262 DOI: 10.1089/ars.2017.7491] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/07/2018] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE The concentrations of reactive oxygen/nitrogen species (ROS/RNS) are critical to various biochemical processes. Small-molecule fluorescent probes have been widely used to detect and/or quantify ROS/RNS in many redox biology studies and serve as an important complementary to protein-based sensors with unique applications. Recent Advances: New sensing reactions have emerged in probe development, allowing more selective and quantitative detection of ROS/RNS, especially in live cells. Improvements have been made in sensing reactions, fluorophores, and bioavailability of probe molecules. CRITICAL ISSUES In this review, we will not only summarize redox-related small-molecule fluorescent probes but also lay out the challenges of designing probes to help redox biologists independently evaluate the quality of reported small-molecule fluorescent probes, especially in the chemistry literature. We specifically highlight the advantages of reversibility in sensing reactions and its applications in ratiometric probe design for quantitative measurements in living cells. In addition, we compare the advantages and disadvantages of small-molecule probes and protein-based probes. FUTURE DIRECTIONS The low physiological relevant concentrations of most ROS/RNS call for new sensing reactions with better selectivity, kinetics, and reversibility; fluorophores with high quantum yield, wide wavelength coverage, and Stokes shifts; and structural design with good aqueous solubility, membrane permeability, low protein interference, and organelle specificity. Antioxid. Redox Signal. 29, 518-540.
Collapse
Affiliation(s)
- Xiqian Jiang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
| | - Lingfei Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
| | - Shaina L. Carroll
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
| | - Jianwei Chen
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
| | - Meng C. Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
46
|
Swain L, Nanadikar MS, Borowik S, Zieseniss A, Katschinski DM. Transgenic Organisms Meet Redox Bioimaging: One Step Closer to Physiology. Antioxid Redox Signal 2018; 29:603-612. [PMID: 29320870 DOI: 10.1089/ars.2017.7469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Redox signaling is a common mechanism in the cellular response toward a variety of stimuli. For analyzing redox-dependent specific alterations in a cell, genetically encoded biosensors were highly instrumental in the past. To advance the knowledge about the importance of this signaling mechanism in vivo, models that are as close as possible to physiology are needed. Recent Advances: The development of transgenic (tg) redox biosensor animal models has enhanced the knowledge of redox signaling under patho(physio)logical conditions. So far, commonly used small animal models, that is, Caenorhabditis elegans, Drosophila melanogaster, and Danio rerio, and genetically modified mice were employed for redox biosensor transgenesis. However, especially the available mouse models are still limited. CRITICAL ISSUES The analysis of redox biosensor responses in vivo at the tissue level, especially for internal organs, is hampered by the detection limit of the available redox biosensors and microscopy techniques. Recent technical developments such as redox histology and the analysis of cell-type-specific biosensor responses need to be further refined and followed up in a systematic manner. FUTURE DIRECTIONS The usage of tg animal models in the field of redox signaling has helped to answer open questions. Application of the already established models and consequent development of more defined tg models will enable this research area to define the role of redox signaling in (patho)physiology in further depth. Antioxid. Redox Signal. 29, 603-612.
Collapse
Affiliation(s)
- Lija Swain
- 1 Vascular Biology Unit, Boston University School of Medicine, Boston University , Boston, Massachusetts
| | - Maithily S Nanadikar
- 2 Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August University of Göttingen , Göttingen, Germany
| | - Sergej Borowik
- 2 Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August University of Göttingen , Göttingen, Germany
| | - Anke Zieseniss
- 2 Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August University of Göttingen , Göttingen, Germany
| | - Dörthe M Katschinski
- 2 Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August University of Göttingen , Göttingen, Germany
| |
Collapse
|
47
|
Bozem M, Knapp P, Mirčeski V, Slowik EJ, Bogeski I, Kappl R, Heinemann C, Hoth M. Electrochemical Quantification of Extracellular Local H 2O 2 Kinetics Originating from Single Cells. Antioxid Redox Signal 2018; 29:501-517. [PMID: 28314376 PMCID: PMC6056260 DOI: 10.1089/ars.2016.6840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIMS H2O2 is produced by all eukaryotic cells under physiological and pathological conditions. Due to its enormous relevance for cell signaling at low concentrations and antipathogenic function at high concentrations, precise quantification of extracellular local hydrogen peroxide concentrations ([H2O2]) originating from single cells is required. RESULTS Using a scanning electrochemical microscope and bare platinum disk ultramicroelectrodes, we established sensitive long-term measurements of extracellular [H2O2] kinetics originating from single primary human monocytes (MCs) ex vivo. For the electrochemical techniques square wave voltammetry, cyclic and linear scan voltammetry, and chronoamperometry, detection limits for [H2O2] were determined to be 5, 50, and 500 nM, respectively. Following phorbol ester stimulation, local [H2O2] 5-8 μm above a single MC increased by 3.4 nM/s within the first 10 min before reaching a plateau. After extracellular addition of H2O2 to an unstimulated MC, the local [H2O2] decreased on average by 4.2 nM/s due to degradation processes of the cell. Using the scanning mode of the setup, we found that H2O2 is evenly distributed around the producing cell and can still be detected up to 30 μm away from the cell. The electrochemical single-cell measurements were validated in MC populations using electron spin resonance spectroscopy and the Amplex® UltraRed assay. Innovation and Conclusion: We demonstrate a highly sensitive, spatially, and temporally resolved electrochemical approach to monitor dynamics of production and degradation processes for H2O2 separately. Local extracellular [H2O2] kinetics originating from single cells is quantified in real time. Antioxid. Redox Signal. 29, 501-517.
Collapse
Affiliation(s)
- Monika Bozem
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | - Phillip Knapp
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | - Valentin Mirčeski
- 2 Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss Kiril i Metodij University , Skopje, Macedonia
| | - Ewa J Slowik
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | - Ivan Bogeski
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany .,3 Cardiovascular Physiology, University Medical Center, University of Göttingen , Göttingen, Germany
| | - Reinhard Kappl
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | | | - Markus Hoth
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| |
Collapse
|
48
|
Radzinski M, Reichmann D. Variety is the spice of life: how to explore a redox-dependent heterogeneity in genomically identical cellular populations. Curr Genet 2018; 65:301-306. [DOI: 10.1007/s00294-018-0878-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/12/2018] [Accepted: 08/12/2018] [Indexed: 11/29/2022]
|
49
|
Bøtker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femminò S, García-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhäuser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schlüter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 2018; 113:39. [PMID: 30120595 PMCID: PMC6105267 DOI: 10.1007/s00395-018-0696-8] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Derek Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- The National Institute of Health Research, University College London Hospitals Biomedial Research Centre, Research and Development, London, UK
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yon Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Antonucci
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Kerstin Boengler
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Soni Deshwal
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Di Lisa
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - David García-Dorado
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), IIS-Fundación Jiménez Díaz, CIBERCV, Madrid, Spain
| | - Efstathios Iliodromitis
- Second Department of Cardiology, Faculty of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nina Kaludercic
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Markus Neuhäuser
- Department of Mathematics and Technology, Koblenz University of Applied Science, Remagen, Germany
- Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Lyon, France
- UMR, 1060 (CarMeN), Université Claude Bernard, Lyon1, Villeurbanne, France
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Michael Rahbek-Schmidt
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Marisol Ruiz-Meana
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Catherine Wilder
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
50
|
Wilson C, Muñoz-Palma E, González-Billault C. From birth to death: A role for reactive oxygen species in neuronal development. Semin Cell Dev Biol 2018; 80:43-49. [DOI: 10.1016/j.semcdb.2017.09.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023]
|