1
|
Tejeda‐Chavez HR, Montero S, Saavedra‐Molina A, Lemus M, Tejeda‐Luna JB, Roces de Alvarez‐Buylla E. Reductive stress in mitochondria isolated from the carotid body of type 1 diabetic male Wistar rats. Physiol Rep 2024; 12:e70016. [PMID: 39294856 PMCID: PMC11410552 DOI: 10.14814/phy2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024] Open
Abstract
The carotid body (CB) senses changes in arterial O2 partial pressure (pO2) and glucose levels; therefore, it is key for the detection of hypoxia and hypoglycemia. The CB has been suggested to detect pO2 through an increase in reactive oxygen species (ROS) in the mitochondria. However, the mechanism protecting the chemoreceptor cells and their mitochondria from ROS and hyperglycemia is poorly understood. Here we measured glutathione levels in CB mitochondria of control and in streptozotocin (STZ)-induced type 1 diabetic male Wistar rats. We found a dramatic reduction in total glutathione from 11.45 ± 1.30 μmol/mg protein in control rats to 1.45 ± 0.31 μmol/mg protein in diabetic rats. However, the ratio of reduced to oxidized glutathione, a measure of the redox index, was increased in diabetic rats compared to controls. We conclude that the mitochondria of CB chemoreceptor cells in type 1 diabetic male Wistar rats were likely under glutathione-reducing stress.
Collapse
Affiliation(s)
| | - Sergio Montero
- Faculty of MedicineColima of UniversityColimaMexico
- Department of Neuroendocrinology, University Center of Biomedical ResearchColima UniversityColimaMexico
| | | | - Monica Lemus
- Department of Neuroendocrinology, University Center of Biomedical ResearchColima UniversityColimaMexico
| | | | | |
Collapse
|
2
|
Smyth SP, Nixon B, Skerrett-Byrne DA, Burke ND, Bromfield EG. Building an Understanding of Proteostasis in Reproductive Cells: The Impact of Reactive Carbonyl Species on Protein Fate. Antioxid Redox Signal 2024; 41:296-321. [PMID: 38115641 DOI: 10.1089/ars.2023.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Significance: Stringent regulation of protein homeostasis pathways, under both physiological and pathological conditions, is necessary for the maintenance of proteome fidelity and optimal cell functioning. However, when challenged by endogenous or exogenous stressors, these proteostasis pathways can become dysregulated with detrimental consequences for protein fate, cell survival, and overall organism health. Most notably, there are numerous somatic pathologies associated with a loss of proteostatic regulation, including neurodegenerative disorders, type 2 diabetes, and some cancers. Recent Advances: Lipid oxidation-derived reactive carbonyl species (RCS), such as 4-hydroxynonenal (4HNE) and malondialdehyde, are relatively underappreciated purveyors of proteostatic dysregulation, which elicit their effects via the nonenzymatic post-translational modification of proteins. Emerging evidence suggests that a subset of germline proteins can serve as substrates for 4HNE modification. Among these, prevalent targets include succinate dehydrogenase, heat shock protein A2 and A-kinase anchor protein 4, all of which are intrinsically associated with fertility. Critical Issues: Despite growing knowledge in this field, the RCS adductomes of spermatozoa and oocytes are yet to be comprehensively investigated. Furthermore, the manner by which RCS-mediated adduction impacts protein fate and drives cellular responses, such as protein aggregation, requires further examination in the germline. Given that RCS-protein adduction has been attributed a role in infertility, there has been sparked research investment into strategies to prevent lipid peroxidation in germ cells. Future Directions: An increased depth of knowledge regarding the mechanisms and substrates of RCS-mediated protein modification in reproductive cells may reveal important targets for the development of novel therapies to improve fertility and pregnancy outcomes for future generations.
Collapse
Affiliation(s)
- Shannon P Smyth
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Bio21 Institute, School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Brett Nixon
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
| | - David A Skerrett-Byrne
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Nathan D Burke
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Bio21 Institute, School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth G Bromfield
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Bio21 Institute, School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Funk JL, Schneider C. Perspective on Improving the Relevance, Rigor, and Reproducibility of Botanical Clinical Trials: Lessons Learned From Turmeric Trials. Front Nutr 2021; 8:782912. [PMID: 34926556 PMCID: PMC8678600 DOI: 10.3389/fnut.2021.782912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Plant-derived compounds, without doubt, can have significant medicinal effects since many notable drugs in use today, such as morphine or taxol, were first isolated from botanical sources. When an isolated and purified phytochemical is developed as a pharmaceutical, the uniformity and appropriate use of the product are well defined. Less clear are the benefits and best use of plant-based dietary supplements or other formulations since these products, unlike traditional drugs, are chemically complex and variable in composition, even if derived from a single plant source. This perspective will summarize key points-including the premise of ethnobotanical and preclinical evidence, pharmacokinetics, metabolism, and safety-inherent and unique to the study of botanical dietary supplements to be considered when planning or evaluating botanical clinical trials. Market forces and regulatory frameworks also affect clinical trial design since in the United States, for example, botanical dietary supplements cannot be marketed for disease treatment and submission of information on safety or efficacy is not required. Specific challenges are thus readily apparent both for consumers comparing available products for purchase, as well as for commercially sponsored vs. independent researchers planning clinical trials to evaluate medicinal effects of botanicals. Turmeric dietary supplements, a top selling botanical in the United States and focus of over 400 clinical trials to date, will be used throughout to illustrate both the promise and pitfalls associated with the clinical evaluation of botanicals.
Collapse
Affiliation(s)
- Janet L Funk
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Claus Schneider
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
4
|
Parkinson E, Aleksic M, Kukic P, Bailey A, Cubberley R, Skipp P. Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology 2020; 445:152603. [DOI: 10.1016/j.tox.2020.152603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/09/2023]
|
5
|
Fuloria S, Subramaniyan V, Karupiah S, Kumari U, Sathasivam K, Meenakshi DU, Wu YS, Guad RM, Udupa K, Fuloria NK. A Comprehensive Review on Source, Types, Effects, Nanotechnology, Detection, and Therapeutic Management of Reactive Carbonyl Species Associated with Various Chronic Diseases. Antioxidants (Basel) 2020; 9:E1075. [PMID: 33147856 PMCID: PMC7692604 DOI: 10.3390/antiox9111075] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Continuous oxidation of carbohydrates, lipids, and amino acids generate extremely reactive carbonyl species (RCS). Human body comprises some important RCS namely hexanal, acrolein, 4-hydroxy-2-nonenal, methylglyoxal, malondialdehyde, isolevuglandins, and 4-oxo-2- nonenal etc. These RCS damage important cellular components including proteins, nucleic acids, and lipids, which manifests cytotoxicity, mutagenicity, multitude of adducts and crosslinks that are connected to ageing and various chronic diseases like inflammatory disease, atherosclerosis, cerebral ischemia, diabetes, cancer, neurodegenerative diseases and cardiovascular disease. The constant prevalence of RCS in living cells suggests their importance in signal transduction and gene expression. Extensive knowledge of RCS properties, metabolism and relation with metabolic diseases would assist in development of effective approach to prevent numerous chronic diseases. Treatment approaches for RCS associated diseases involve endogenous RCS metabolizers, carbonyl metabolizing enzyme inducers, and RCS scavengers. Limited bioavailability and bio efficacy of RCS sequesters suggest importance of nanoparticles and nanocarriers. Identification of RCS and screening of compounds ability to sequester RCS employ several bioassays and analytical techniques. Present review describes in-depth study of RCS sources, types, properties, identification techniques, therapeutic approaches, nanocarriers, and their role in various diseases. This study will give an idea for therapeutic development to combat the RCS associated chronic diseases.
Collapse
Affiliation(s)
- Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Kedah, Bedong 08100, Malaysia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Sundram Karupiah
- Faculty of Pharmacy, AIMST University, Kedah, Bedong 08100, Malaysia;
| | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah, Bedong 08100, Malaysia;
| | | | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Rhanye Mac Guad
- Faculty of Medicine and Health Science, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Kaviraja Udupa
- Department of Neurophysiology, NIMHANS, Bangalore 560029, India;
| | | |
Collapse
|
6
|
Dustin CM, Hristova M, Schiffers C, van der Vliet A. Proteomic Methods to Evaluate NOX-Mediated Redox Signaling. Methods Mol Biol 2019; 1982:497-515. [PMID: 31172492 DOI: 10.1007/978-1-4939-9424-3_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The NADPH oxidase (NOX) family of proteins is involved in regulating many diverse cellular processes, which is largely mediated by NOX-mediated reversible oxidation of target proteins in a process known as redox signaling. Protein cysteine residues are the most prominent targets in redox signaling, and to understand the mechanisms by which NOX affect cellular pathways, specific methodology is required to detect specific oxidative cysteine modifications and to identify targeted proteins. Among the many potential redox modifications involving cysteine residues, reversible modifications most relevant to NOX are sulfenylation (P-SOH) and S-glutathionylation (P-SSG), as both can induce structural or functional alterations. Various experimental approaches have been developed to detect these specific modifications, and this chapter will detail state-of-the-art methodology to selectively evaluate these modifications in specific target proteins in relation to NOX activation. We also discuss some of the limitations of these procedures and potential complementary approaches.
Collapse
Affiliation(s)
- Christopher M Dustin
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Caspar Schiffers
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
7
|
Afonso CB, Spickett CM. Lipoproteins as targets and markers of lipoxidation. Redox Biol 2018; 23:101066. [PMID: 30579928 PMCID: PMC6859580 DOI: 10.1016/j.redox.2018.101066] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 12/24/2022] Open
Abstract
Lipoproteins are essential systemic lipid transport particles, composed of apolipoproteins embedded in a phospholipid and cholesterol monolayer surrounding a cargo of diverse lipid species. Many of the lipids present are susceptible to oxidative damage by lipid peroxidation, giving rise to the formation of reactive lipid peroxidation products (rLPPs). In view of the close proximity of the protein and lipid moieties within lipoproteins, the probability of adduct formation between rLPPs and amino acid residues of the proteins, a process called lipoxidation, is high. There has been interest for many years in the biological effects of such modifications, but the field has been limited to some extent by the availability of methods to determine the sites and exact nature of such modification. More recently, the availability of a wide range of antibodies to lipoxidation products, as well as advances in analytical techniques such as liquid chromatography tandem mass spectrometry (LC-MSMS), have increased our knowledge substantially. While most work has focused on LDL, oxidation of which has long been associated with pro-inflammatory responses and atherosclerosis, some studies on HDL, VLDL and Lipoprotein(a) have also been reported. As the broader topic of LDL oxidation has been reviewed previously, this review focuses on lipoxidative modifications of lipoproteins, from the historical background through to recent advances in the field. We consider the main methods of analysis for detecting rLPP adducts on apolipoproteins, including their advantages and disadvantages, as well as the biological effects of lipoxidized lipoproteins and their potential roles in diseases. Lipoproteins can be modified by reactive Lipid Peroxidation Products (rLPPs). Lipoprotein lipoxidation is known to occur in several inflammatory diseases. Biochemical, immunochemical and mass spectrometry methods can detect rLPP adducts. Due to higher information output, MS can facilitate localization of modifications. Antibodies against some rLPPs have been used to identify lipoxidation in vivo.
Collapse
Affiliation(s)
- Catarina B Afonso
- School of Life and Health Sciences, Aston University, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Aston University, Birmingham B4 7ET, UK.
| |
Collapse
|
8
|
Sakanyan V. Reactive Chemicals and Electrophilic Stress in Cancer: A Minireview. High Throughput 2018; 7:ht7020012. [PMID: 29702613 PMCID: PMC6023294 DOI: 10.3390/ht7020012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/19/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Exogenous reactive chemicals can impair cellular homeostasis and are often associated with the development of cancer. Significant progress has been achieved by studying the macromolecular interactions of chemicals that possess various electron-withdrawing groups and the elucidation of the protective responses of cells to chemical interventions. However, the formation of electrophilic species inside the cell and the relationship between oxydative and electrophilic stress remain largely unclear. Derivatives of nitro-benzoxadiazole (also referred as nitro-benzofurazan) are potent producers of hydrogen peroxide and have been used as a model to study the generation of reactive species in cancer cells. This survey highlights the pivotal role of Cu/Zn superoxide dismutase 1 (SOD1) in the production of reactive oxygen and electrophilic species in cells exposed to cell-permeable chemicals. Lipophilic electrophiles rapidly bind to SOD1 and induce stable and functionally active dimers, which produce excess hydrogen peroxide leading to aberrant cell signalling. Moreover, reactive oxygen species and reactive electrophilic species, simultaneously generated by redox reactions, behave as independent entities that attack a variety of proteins. It is postulated that the binding of the electrophilic moiety to multiple proteins leading to impairing different cellular functions may explain unpredictable side effects in patients undergoing chemotherapy with reactive oxygen species (ROS)-inducing drugs. The identification of proteins susceptible to electrophiles at early steps of oxidative and electrophilic stress is a promising way to offer rational strategies for dealing with stress-related malignant tumors.
Collapse
Affiliation(s)
- Vehary Sakanyan
- Faculté de Pharmacie, Faculté des Sciences et des Techniques, IICiMed, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France.
| |
Collapse
|
9
|
Nrf2 as regulator of innate immunity: A molecular Swiss army knife! Biotechnol Adv 2018; 36:358-370. [DOI: 10.1016/j.biotechadv.2017.12.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
|
10
|
Lazarska KE, Dekker SJ, Vermeulen NPE, Commandeur JNM. Effect of UGT2B7*2 and CYP2C8*4 polymorphisms on diclofenac metabolism. Toxicol Lett 2017; 284:70-78. [PMID: 29203276 DOI: 10.1016/j.toxlet.2017.11.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
Abstract
The use of diclofenac is associated with rare but severe drug-induced liver injury (DILI) in a very small number of patients. The factors which predispose susceptible patients to hepatotoxicity of diclofenac are still incompletely understood. Formation of protein-reactive metabolites by UDP-glucuronosyl transferases and cytochromes P450 is commonly considered to play an important role, as indicated by the detection of covalent protein adducts and antibodies in the serum of patients suffering from diclofenac-induced liver injury. Since no associations have been found with HLA-alleles, polymorphisms of genes encoding for proteins involved in the disposition of diclofenac may be important. Previous association studies showed that possession of the UGT2B7*2 and CYP2C8*4 alleles is more common in cases of diclofenac-induced DILI. In the present study, the metabolism of diclofenac by UGT2B7*2 and CYP2C8*4 was compared with their corresponding wild-type enzymes. Enzyme kinetic analysis revealed that recombinant UGT2B7*2 showed an almost 6-fold lower intrinsic clearance of diclofenac glucuronidation compared to UGT2B7*1. The mutant CYP2C8*4 showed approximately 35% reduced activity in the 4'-hydroxylation of diclofenac acyl glucuronide. Therefore, a decreased hepatic exposure to diclofenac acyl glucuronide is expected in patients with the UGT2B7*2 genotype. The increased risk for hepatotoxicity, therefore, might be the result from a shift to oxidative bioactivation to cytotoxic quinoneimines.
Collapse
Affiliation(s)
- Katarzyna E Lazarska
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Stefan J Dekker
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Jan N M Commandeur
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 989] [Impact Index Per Article: 123.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
12
|
Slawik C, Rickmeyer C, Brehm M, Böhme A, Schüürmann G. Glutathione Adduct Patterns of Michael-Acceptor Carbonyls. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4018-4026. [PMID: 28225253 DOI: 10.1021/acs.est.6b04981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glutathione (GSH) has so far been considered to facilitate detoxification of soft organic electrophiles through covalent binding at its cysteine (Cys) thiol group, followed by stepwise catalyzed degradation and eventual elimination along the mercapturic acid pathway. Here we show that in contrast to expectation from HSAB theory, Michael-acceptor ketones, aldehydes and esters may form also single, double and triple adducts with GSH involving β-carbon attack at the much harder N-terminus of the γ-glutamyl (Glu) unit of GSH. In particular, formation of the GSH-N single adduct contradicts the traditional view that S alkylation always forms the initial reaction of GSH with Michael-acceptor carbonyls. To this end, chemoassay analyses of the adduct formation of GSH with nine α,β-unsaturated carbonyls employing high performance liquid chromatography and tandem mass spectrometry have been performed. Besides enriching the GSH adductome and potential biomarker applications, electrophilic N-terminus functionalization is likely to impair GSH homeostasis substantially through blocking the γ-glutamyl transferase catalysis of the first breakdown step of modified GSH, and thus its timely reconstitution. The discussion includes a comparison with cyclic adducts of GSH and furan metabolites as reported in literature, and quantum chemically calculated thermodynamics of hard-hard, hard-soft, and soft-soft adducts.
Collapse
Affiliation(s)
- Christian Slawik
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
- Institute for Organic Chemistry, Technical University Bergakademie Freiberg , Leipziger Straße 29, 09596 Freiberg, Germany
| | - Christiane Rickmeyer
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin Brehm
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
| | - Alexander Böhme
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
- Institute for Organic Chemistry, Technical University Bergakademie Freiberg , Leipziger Straße 29, 09596 Freiberg, Germany
| |
Collapse
|
13
|
Chacko BK, Wall SB, Kramer PA, Ravi S, Mitchell T, Johnson MS, Wilson L, Barnes S, Landar A, Darley-Usmar VM. Pleiotropic effects of 4-hydroxynonenal on oxidative burst and phagocytosis in neutrophils. Redox Biol 2016; 9:57-66. [PMID: 27393890 PMCID: PMC4939321 DOI: 10.1016/j.redox.2016.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/09/2023] Open
Abstract
Metabolic control of cellular function is significant in the context of inflammation-induced metabolic dysregulation in immune cells. Generation of reactive oxygen species (ROS) such as hydrogen peroxide and superoxide are one of the critical events that modulate the immune response in neutrophils. When activated, neutrophil NADPH oxidases consume large quantities of oxygen to rapidly generate ROS, a process that is referred to as the oxidative burst. These ROS are required for the efficient removal of phagocytized cellular debris and pathogens. In chronic inflammatory diseases, neutrophils are exposed to increased levels of oxidants and pro-inflammatory cytokines that can further prime oxidative burst responses and generate lipid oxidation products such as 4-hydroxynonenal (4-HNE). In this study we hypothesized that since 4-HNE can target glycolysis then this could modify the oxidative burst. To address this the oxidative burst was determined in freshly isolated healthy subject neutrophils using 13-phorbol myristate acetate (PMA) and the extracellular flux analyzer. Neutrophils pretreated with 4-HNE exhibited a significant decrease in the oxidative burst response and phagocytosis. Mass spectrometric analysis of alkyne-HNE treated neutrophils followed by click chemistry detected modification of a number of cytoskeletal, metabolic, redox and signaling proteins that are critical for the NADPH oxidase mediated oxidative burst. These modifications were confirmed using a candidate immunoblot approach for critical proteins of the active NADPH oxidase enzyme complex (Nox2 gp91phox subunit and Rac1 of the NADPH oxidase) and glyceraldehyde phosphate dehydrogenase, a critical enzyme in the metabolic regulation of oxidative burst. Taken together, these data suggest that 4-HNE-induces a pleiotropic mechanism to inhibit neutrophil function. These mechanisms may contribute to the immune dysregulation associated with chronic pathological conditions where 4-HNE is generated. Phagocytosis and glycolysis are inhibited in neutrophils by 4-hydroxynonenal. Click chemistry with alkyne-HNE identifies over 100 potential protein targets. Rac1, NOX2 and GAPDH are modified by 4-HNE. The 4-HNE-dependent inhibition of neutrophil function is mediated by a pleiotropic mechanism.
Collapse
Affiliation(s)
- Balu K Chacko
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, United States; Department of Pathology, University of Alabama at Birmingham, United States
| | - Stephanie B Wall
- Department of Pathology, University of Alabama at Birmingham, United States
| | - Philip A Kramer
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, United States; Department of Pathology, University of Alabama at Birmingham, United States
| | - Saranya Ravi
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, United States; Department of Pathology, University of Alabama at Birmingham, United States
| | - Tanecia Mitchell
- Department of Urology, University of Alabama at Birmingham, United States
| | - Michelle S Johnson
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, United States; Department of Pathology, University of Alabama at Birmingham, United States
| | - Landon Wilson
- Department of Pharmacology and Toxicology, The Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, United States
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, The Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, United States
| | - Aimee Landar
- Department of Pathology, University of Alabama at Birmingham, United States
| | - Victor M Darley-Usmar
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, United States; Department of Pathology, University of Alabama at Birmingham, United States.
| |
Collapse
|
14
|
Wages PA, Cheng WY, Gibbs-Flournoy E, Samet JM. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress. Biochim Biophys Acta Gen Subj 2016; 1860:2802-15. [PMID: 27208426 DOI: 10.1016/j.bbagen.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular techniques. However, there is increasing evidence that low-level exposure to a variety of toxicants dysregulates cellular physiology by interfering with redox-dependent processes. SCOPE OF REVIEW The study of events involved in redox toxicology requires methodology capable of detecting transient modifications at relatively low signal strength. This article reviews the advantages of live-cell imaging for redox toxicology studies. MAJOR CONCLUSIONS Toxicological studies with xenobiotics of supra-physiological reactivity require careful consideration when using fluorogenic sensors in order to avoid potential artifacts and false negatives. Fortunately, experiments conducted for the purpose of validating the use of these sensors in toxicological applications often yield unexpected insights into the mechanisms through which xenobiotic exposure induces oxidant stress. GENERAL SIGNIFICANCE Live-cell imaging using a new generation of small molecule and genetically encoded fluorophores with excellent sensitivity and specificity affords unprecedented spatiotemporal resolution that is optimal for redox toxicology studies. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Phillip A Wages
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, NC, USA
| | - Wan-Yun Cheng
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - Eugene Gibbs-Flournoy
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA.
| |
Collapse
|
15
|
Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Aspects Med 2016; 49:49-77. [PMID: 27012748 DOI: 10.1016/j.mam.2016.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/23/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
Abstract
Nutrient sensing mechanisms of carbohydrates, amino acids and lipids operate distinct pathways that are essential for the adaptation to varying metabolic conditions. The role of nutrient-induced biosynthesis of hormones is paramount for attaining metabolic homeostasis in the organism. Nutrient overload attenuate key metabolic cellular functions and interfere with hormonal-regulated inter- and intra-organ communication, which may ultimately lead to metabolic derangements. Hyperglycemia and high levels of saturated free fatty acids induce excessive production of oxygen free radicals in tissues and cells. This phenomenon, which is accentuated in both type-1 and type-2 diabetic patients, has been associated with the development of impaired glucose tolerance and the etiology of peripheral complications. However, low levels of the same free radicals also induce hormetic responses that protect cells against deleterious effects of the same radicals. Of interest is the role of hydroxyl radicals in initiating peroxidation of polyunsaturated fatty acids (PUFA) and generation of α,β-unsaturated reactive 4-hydroxyalkenals that avidly form covalent adducts with nucleophilic moieties in proteins, phospholipids and nucleic acids. Numerous studies have linked the lipid peroxidation product 4-hydroxy-2E-nonenal (4-HNE) to different pathological and cytotoxic processes. Similarly, two other members of the family, 4-hydroxyl-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), have also been identified as potential cytotoxic agents. It has been suggested that 4-HNE-induced modifications in macromolecules in cells may alter their cellular functions and modify signaling properties. Yet, it has also been acknowledged that these bioactive aldehydes also function as signaling molecules that directly modify cell functions in a hormetic fashion to enable cells adapt to various stressful stimuli. Recent studies have shown that 4-HNE and 4-HDDE, which activate peroxisome proliferator-activated receptor δ (PPARδ) in vascular endothelial cells and insulin secreting beta cells, promote such adaptive responses to ameliorate detrimental effects of high glucose and diabetes-like conditions. In addition, due to the electrophilic nature of these reactive aldehydes they form covalent adducts with electronegative moieties in proteins, phosphatidylethanolamine and nucleotides. Normally these non-enzymatic modifications are maintained below the cytotoxic range due to efficient cellular neutralization processes of 4-hydroxyalkenals. The major neutralizing enzymes include fatty aldehyde dehydrogenase (FALDH), aldose reductase (AR) and alcohol dehydrogenase (ADH), which transform the aldehyde to the corresponding carboxylic acid or alcohols, respectively, or by biding to the thiol group in glutathione (GSH) by the action of glutathione-S-transferase (GST). This review describes the hormetic and cytotoxic roles of oxygen free radicals and 4-hydroxyalkenals in beta cells exposed to nutritional challenges and the cellular mechanisms they employ to maintain their level at functional range below the cytotoxic threshold.
Collapse
|
16
|
Xie MZ, Shoulkamy MI, Salem AMH, Oba S, Goda M, Nakano T, Ide H. Aldehydes with high and low toxicities inactivate cells by damaging distinct cellular targets. Mutat Res 2016; 786:41-51. [PMID: 26917342 DOI: 10.1016/j.mrfmmm.2016.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
Abstract
Aldehydes are genotoxic and cytotoxic molecules and have received considerable attention for their associations with the pathogenesis of various human diseases. In addition, exposure to anthropogenic aldehydes increases human health risks. The general mechanism of aldehyde toxicity involves adduct formation with biomolecules such as DNA and proteins. Although the genotoxic effects of aldehydes such as mutations and chromosomal aberrations are directly related to DNA damage, the role of DNA damage in the cytotoxic effects of aldehydes is poorly understood because concurrent protein damage by aldehydes has similar effects. In this study, we have analysed how saturated and α,β-unsaturated aldehydes exert cytotoxic effects through DNA and protein damage. Interestingly, DNA repair is essential for alleviating the cytotoxic effect of weakly toxic aldehydes such as saturated aldehydes but not highly toxic aldehydes such as long α,β-unsaturated aldehydes. Thus, highly toxic aldehydes inactivate cells exclusively by protein damage. Our data suggest that DNA interstrand crosslinks, but not DNA-protein crosslinks and DNA double-strand breaks, are the critical cytotoxic DNA damage induced by aldehydes. Further, we show that the depletion of intracellular glutathione and the oxidation of thioredoxin 1 partially account for the DNA damage-independent cytotoxicity of aldehydes. On the basis of these findings, we have proposed a mechanistic model of aldehyde cytotoxicity mediated by DNA and protein damage.
Collapse
Affiliation(s)
- Ming-Zhang Xie
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Mahmoud I Shoulkamy
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; Department of Zoology, Biological Science Building, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Amir M H Salem
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; Department of Pathology, Medical Research Division, National Research Centre, El-Bohouth St., Dokki, Giza 12311, Egypt
| | - Shunya Oba
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Mizuki Goda
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| |
Collapse
|
17
|
Yoshida S, Hori E, Ura S, Haratake M, Fuchigami T, Nakayama M. A Comprehensive Analysis of Selenium-Binding Proteins in the Brain Using Its Reactive Metabolite. Chem Pharm Bull (Tokyo) 2016; 64:52-8. [DOI: 10.1248/cpb.c15-00689] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sakura Yoshida
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Eriko Hori
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Sakiko Ura
- Graduate School of Biomedical Sciences, Nagasaki University
| | | | | | - Morio Nakayama
- Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
18
|
Characterization of quinone derived protein adducts and their selective identification using redox cycling based chemiluminescence assay. J Chromatogr A 2015; 1403:96-103. [PMID: 26044383 DOI: 10.1016/j.chroma.2015.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022]
Abstract
The cytotoxic mechanism of many quinones has been correlated to covalent modification of cellular proteins. However, the identification of relevant proteins targets is essential but challenging goals. To better understand the quinones cytotoxic mechanism, human serum albumin (HSA) was incubated in vitro with different concentration of menadione (MQ). In this respect, the initial nucleophilic addition of proteins to quinone converts the conjugates to redox-cycling quinoproteins with altered conformation and secondary structure and extended life span than the short lived, free quinones. The conjugation of MQ with nucleophilic sites likewise, free cysteine as well as ɛ-amino group of lysine residue of HSA has been found to be in concentration dependent manner. The conventional methods for modified proteins identification in complex mixtures are complicated and time consuming. Herein, we describe a highly selective, sensitive, simple, and fast strategy for quinoproteins identification. The suggested strategy exploited the unique redox-cycling capability of quinoproteins in presence of a reductant, dithiothreitol (DTT), to generate reactive oxygen species (ROS) that gave sufficient chemiluminescence (CL) when mixed with luminol. The CL approach is highly selective and sensitive to detect the quinoproteins in ten-fold molar excess of native proteins without adduct enrichment. The approach was also coupled with gel filtration chromatography (GFC) and used to identify adducts in complex mixture of proteins in vitro as well as in rat plasma after MQ administration. Albumin was identified as the main protein in human and rat plasma forming adduct with MQ. Overall, the identification of quinoproteins will encourage further studies of toxicological impact of quinones on human health.
Collapse
|
19
|
Luebke JL, Giedroc DP. Cysteine sulfur chemistry in transcriptional regulators at the host-bacterial pathogen interface. Biochemistry 2015; 54:3235-49. [PMID: 25946648 DOI: 10.1021/acs.biochem.5b00085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hosts employ myriad weapons to combat invading microorganisms as an integral feature of the host-bacterial pathogen interface. This interface is dominated by highly reactive small molecules that collectively induce oxidative stress. Successful pathogens employ transcriptional regulatory proteins that sense these small molecules directly or indirectly via a change in the ratio of reduced to oxidized low-molecular weight (LMW) thiols that collectively comprise the redox buffer in the cytoplasm. These transcriptional regulators employ either a prosthetic group or reactive cysteine residue(s) to effect changes in the transcription of genes that encode detoxification and repair systems that is driven by regulator conformational switching between high-affinity and low-affinity DNA-binding states. Cysteine harbors a highly polarizable sulfur atom that readily undergoes changes in oxidation state in response to oxidative stress to produce a range of regulatory post-translational modifications (PTMs), including sulfenylation (S-hydroxylation), mixed disulfide bond formation with LMW thiols (S-thiolation), di- and trisulfide bond formation, S-nitrosation, and S-alkylation. Here we discuss several examples of structurally characterized cysteine thiol-specific transcriptional regulators that sense changes in cellular redox balance, focusing on the nature of the cysteine PTM itself and the interplay of small molecule oxidative stressors in mediating a specific transcriptional response.
Collapse
Affiliation(s)
- Justin L Luebke
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
20
|
Vayalil PK, Oh JY, Zhou F, Diers AR, Smith MR, Golzarian H, Oliver PG, Smith RAJ, Murphy MP, Velu SE, Landar A. A novel class of mitochondria-targeted soft electrophiles modifies mitochondrial proteins and inhibits mitochondrial metabolism in breast cancer cells through redox mechanisms. PLoS One 2015; 10:e0120460. [PMID: 25785718 PMCID: PMC4364723 DOI: 10.1371/journal.pone.0120460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/22/2015] [Indexed: 12/31/2022] Open
Abstract
Despite advances in screening and treatment over the past several years, breast cancer remains a leading cause of cancer-related death among women in the United States. A major goal in breast cancer treatment is to develop safe and clinically useful therapeutic agents that will prevent the recurrence of breast cancers after front-line therapeutics have failed. Ideally, these agents would have relatively low toxicity against normal cells, and will specifically inhibit the growth and proliferation of cancer cells. Our group and others have previously demonstrated that breast cancer cells exhibit increased mitochondrial oxygen consumption compared with non-tumorigenic breast epithelial cells. This suggests that it may be possible to deliver redox active compounds to the mitochondria to selectively inhibit cancer cell metabolism. To demonstrate proof-of-principle, a series of mitochondria-targeted soft electrophiles (MTSEs) has been designed which selectively accumulate within the mitochondria of highly energetic breast cancer cells and modify mitochondrial proteins. A prototype MTSE, IBTP, significantly inhibits mitochondrial oxidative phosphorylation, resulting in decreased breast cancer cell proliferation, cell attachment, and migration in vitro. These results suggest MTSEs may represent a novel class of anti-cancer agents that prevent cancer cell growth by modification of specific mitochondrial proteins.
Collapse
Affiliation(s)
- Praveen K Vayalil
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joo-Yeun Oh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Fen Zhou
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Anne R Diers
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - M Ryan Smith
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hafez Golzarian
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Patsy G Oliver
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Robin A J Smith
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Aimee Landar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
21
|
Zhang H, Gan J, Shu YZ, Humphreys WG. High-Resolution Mass Spectrometry-Based Background Subtraction for Identifying Protein Modifications in a Complex Biological System: Detection of Acetaminophen-Bound Microsomal Proteins Including Argininosuccinate Synthetase. Chem Res Toxicol 2015; 28:775-81. [DOI: 10.1021/tx500526s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Haiying Zhang
- Biotransformation, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543, United States
| | - Jinping Gan
- Biotransformation, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543, United States
| | - Yue-Zhong Shu
- Biotransformation, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543, United States
| | - W. Griffith Humphreys
- Biotransformation, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543, United States
| |
Collapse
|
22
|
Parvez S, Fu Y, Li J, Long MJC, Lin HY, Lee D, Hu GS, Aye Y. Substoichiometric hydroxynonenylation of a single protein recapitulates whole-cell-stimulated antioxidant response. J Am Chem Soc 2015; 137:10-3. [PMID: 25544059 PMCID: PMC4304447 DOI: 10.1021/ja5084249] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Indexed: 12/24/2022]
Abstract
Lipid-derived electrophiles (LDEs) that can directly modify proteins have emerged as important small-molecule cues in cellular decision-making. However, because these diffusible LDEs can modify many targets [e.g., >700 cysteines are modified by the well-known LDE 4-hydroxynonenal (HNE)], establishing the functional consequences of LDE modification on individual targets remains devilishly difficult. Whether LDE modifications on a single protein are biologically sufficient to activate discrete redox signaling response downstream also remains untested. Herein, using T-REX (targetable reactive electrophiles and oxidants), an approach aimed at selectively flipping a single redox switch in cells at a precise time, we show that a modest level (∼34%) of HNEylation on a single target is sufficient to elicit the pharmaceutically important antioxidant response element (ARE) activation, and the resultant strength of ARE induction recapitulates that observed from whole-cell electrophilic perturbation. These data provide the first evidence that single-target LDE modifications are important individual events in mammalian physiology.
Collapse
Affiliation(s)
- Saba Parvez
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Yuan Fu
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Jiayang Li
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Marcus J. C. Long
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Hong-Yu Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Dustin
K. Lee
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Gene S. Hu
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Yimon Aye
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
- Department
of Biochemistry, Weill Cornell Medical College, New York, New York 10065, United States
| |
Collapse
|
23
|
Andringa KK, Udoh US, Landar A, Bailey SM. Proteomic analysis of 4-hydroxynonenal (4-HNE) modified proteins in liver mitochondria from chronic ethanol-fed rats. Redox Biol 2014; 2:1038-47. [PMID: 25454745 PMCID: PMC4297939 DOI: 10.1016/j.redox.2014.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 09/26/2014] [Indexed: 12/20/2022] Open
Abstract
Chronic ethanol-mediated oxidative stress and lipid peroxidation increases the levels of various reactive lipid species including 4-hydroxynonenal (4-HNE), which can subsequently modify proteins in the liver. It has been proposed that 4-HNE modification adversely affects the structure and/or function of mitochondrial proteins, thereby impairing mitochondrial metabolism. To determine whether chronic ethanol consumption increases levels of 4-HNE modified proteins in mitochondria, male rats were fed control and ethanol-containing diets for 5 weeks and mitochondrial samples were analyzed using complementary proteomic methods. Five protein bands (approx. 35, 45, 50, 70, and 90kDa) showed strong immunoreactivity for 4-HNE modified proteins in liver mitochondria from control and ethanol-fed rats when proteins were separated by standard 1D SDS-PAGE. Using high-resolution proteomic methods (2D IEF/SDS-PAGE and BN-PAGE) we identified several mitochondrial proteins immunoreactive for 4-HNE, which included mitofilin, dimethylglycine dehydrogenase, choline dehydrogenase, electron transfer flavoprotein α, cytochrome c1, enoyl CoA hydratase, and cytochrome c. The electron transfer flavoprotein α consistently showed increased 4-HNE immunoreactivity in mitochondria from ethanol-fed rats as compared to mitochondria from the control group. Increased 4-HNE reactivity was also detected for dimethylglycine dehydrogenase, enoyl CoA hydratase, and cytochrome c in ethanol samples when mitochondria were analyzed by BN-PAGE. In summary, this work identifies new targets of 4-HNE modification in mitochondria and provides useful information needed to better understand the molecular mechanisms underpinning chronic ethanol-induced mitochondrial dysfunction and liver injury.
Collapse
Affiliation(s)
- Kelly K Andringa
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Uduak S Udoh
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aimee Landar
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shannon M Bailey
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
24
|
Zhong H, Lu J, Xia L, Zhu M, Yin H. Formation of electrophilic oxidation products from mitochondrial cardiolipin in vitro and in vivo in the context of apoptosis and atherosclerosis. Redox Biol 2014; 2:878-83. [PMID: 25061570 PMCID: PMC4099507 DOI: 10.1016/j.redox.2014.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/04/2022] Open
Abstract
Emerging evidence indicates that mitochondrial cardiolipins (CL) are prone to free radical oxidation and this process appears to be intimately associated with multiple biological functions of mitochondria. Our previous work demonstrated that a significant amount of potent lipid electrophiles including 4-hydroxy-nonenal (4-HNE) was generated from CL oxidation through a novel chemical mechanism. Here we provide further evidence that a characteristic class of CL oxidation products, epoxyalcohol-aldehyde-CL (EAA-CL), is formed through this novel mechanism in isolated mice liver mitochondria when treated with the pro-apoptotic protein t-Bid to induce cyt c release. Generation of these oxidation products are dose-dependently attenuated by a peroxidase inhibitor acetaminophen (ApAP). Using a mouse model of atherosclerosis, we detected significant amount of these CL oxidation products in liver tissue of low density lipoprotein receptor knockout (LDLR −/−) mice after Western diet feeding. Our studies highlight the importance of lipid electrophiles formation from CL oxidation in the settings of apoptosis and atherosclerosis as inhibition of CL oxidation and lipid electrophiles formation may have potential therapeutic value in diseases linked to oxidant stress and mitochondrial dysfunctions. 4-HNE and other electrophilic lipids are formed from mitochondrial cardiolipin. Novel electrophilic oxidation products EAA-CL were identified in vitro and in vivo. Level of EAA-CL in liver tissue of LDLR −/− mice is higher with Western diet feeding. ApAP dose-dependently inhibits EAA-CL formation during t-Bid induced cyt c release. CL electrophilic lipid formation is important in apoptosis and atherosclerosis.
Collapse
Key Words
- 4-HNE, 4-hydroxy-nonena
- 4-ONE, 4-oxo-2-nonenal
- 4-hydroxy-2-nonenal (4-HNE)
- ALDH2, aldehyde dehydrogenase-2
- ApAP, acetaminophen
- Apoptosis
- Atherosclerosis
- BHT, butylate hydroxytoluene
- CL, cardiolipin cyt c cytochrome c
- Cardiolipin
- EAA-CL, epoxyalcohol-aldehyde-CL
- ESI, electrospray
- ETC, electron transport chain
- Epoxyalcohol-aldehyde-CL (EAA-CL)
- H2O2, hydrogen peroxide
- HODE, hydroxyoctadienoic acid
- HpODE, hydroperoxyoctadecadienoic acid
- KODE, keto-octadecadienoic acid
- L3OCL, trilinoleoyl oleoyl cardiolipin
- L4CL, tetralinoleoyl cardiolipin
- LA, linoleic acid
- LC–MS, liquid chromatography–mass spectrometry
- LDLR −/−, low density lipoprotein receptor knockout
- Lipid peroxidation
- Liquid chromatography–mass spectrometry (LC–MS)
- M4CL, tetramyristeoyl cardiolipin
- MRM, multiple reaction monitoring
- Mitochondria
- PHGPX, hospholipid hydroperoxide glutathione peroxidase
- PUFAs, Polyunsaturated fatty acids
- Prdx3/Prx3, peroxiredoxin 3
- ROS, reactive oxygen species
Collapse
Affiliation(s)
- Huiqin Zhong
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
- University of the Chinese Academy of Sciences, CAS, Beijing, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Jianhong Lu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
- University of the Chinese Academy of Sciences, CAS, Beijing, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Lin Xia
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Mingjiang Zhu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
- University of the Chinese Academy of Sciences, CAS, Beijing, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Correspondence to: Room 1826, New Life Science Building, 320 Yueyang Road, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|