1
|
Conesa-Bakkali R, Morillo-Huesca M, Martínez-Fábregas J. Non-Canonical, Extralysosomal Activities of Lysosomal Peptidases in Physiological and Pathological Conditions: New Clinical Opportunities for Cancer Therapy. Cells 2025; 14:68. [PMID: 39851495 PMCID: PMC11763575 DOI: 10.3390/cells14020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Lysosomes are subcellular compartments characterised by an acidic pH, containing an ample variety of acid hydrolases involved in the recycling of biopolymers. Among these hydrolases, lysosomal proteases have merely been considered as end-destination proteases responsible for the digestion of waste proteins, trafficked to the lysosomal compartment through autophagy and endocytosis. However, recent reports have started to unravel specific roles for these proteases in the regulation of initially unexpected biological processes, both under physiological and pathological conditions. Furthermore, some lysosomal proteases are no longer restricted to the lysosomal compartment, as more novel non-canonical, extralysosomal targets are being identified. Currently, lysosomal proteases are accepted to play key functions in the extracellular milieu, attached to the plasma membrane and even in the cytosolic and nuclear compartments of the cell. Under physiological conditions, lysosomal proteases, through non-canonical, extralysosomal activities, have been linked to cell differentiation, regulation of gene expression, and cell division. Under pathological conditions, these proteases have been linked to cancer, mostly through their extralysosomal activities in the cytosol and nuclei of cells. In this review, we aim to provide a comprehensive summary of our current knowledge about the extralysosomal, non-canonical functions of lysosomal proteases, both under physiological and pathological conditions, with a particular interest in cancer, that could potentially offer new opportunities for clinical intervention.
Collapse
Affiliation(s)
- Ryan Conesa-Bakkali
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain; (R.C.-B.); (M.M.-H.)
| | - Macarena Morillo-Huesca
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain; (R.C.-B.); (M.M.-H.)
| | - Jonathan Martínez-Fábregas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain; (R.C.-B.); (M.M.-H.)
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, 41012 Sevilla, Spain
| |
Collapse
|
2
|
Martínez-López N, Pereiro P, Saco A, Lama R, Figueras A, Novoa B. Characterization of a fish-specific immunoglobulin-like domain-containing protein (Igldcp) in zebrafish (Danio rerio) induced after nodavirus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105285. [PMID: 39515405 DOI: 10.1016/j.dci.2024.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
One of the most highly induced genes in zebrafish (Danio rerio) larvae after infection with the nodavirus red-spotted grouper nervous necrosis virus (RGNNV) was a member of the immunoglobulin superfamily (IgSF), which has remained uncharacterized and erroneously annotated in zebrafish and other fish species as galectin 17 (lgals17). We characterized this gene and named it immunoglobulin (Ig)-like domain-containing protein (igldcp), a new member of the IgSF that does not possess orthologs in mammals. Igldcp expression is induced by viral infection and it belongs to the group of interferon-stimulated genes (ISGs). In vitro overexpression of igldcp decreased RGNNV replication, whereas in vivo knockdown of this gene had the opposite effect, resulting in increased larval mortality. RNA-Seq analyses of larvae overexpressing igldcp in the absence or presence of infection with RGNNV showed that the main processes affected by Igldcp could be directly involved in the regulation of various cellular processes associated with the modulation of the immune system.
Collapse
Affiliation(s)
| | | | - Amaro Saco
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Raquel Lama
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | | | - Beatriz Novoa
- Institute of Marine Research (IIM-CSIC), Vigo, Spain.
| |
Collapse
|
3
|
Zhao K, Sun Y, Zhong S, Luo JL. The multifaceted roles of cathepsins in immune and inflammatory responses: implications for cancer therapy, autoimmune diseases, and infectious diseases. Biomark Res 2024; 12:165. [PMID: 39736788 DOI: 10.1186/s40364-024-00711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025] Open
Abstract
The cathepsin family comprises lysosomal proteases that play essential roles in various physiological processes, including protein degradation, antigen presentation, apoptosis, and tissue remodeling. Dysregulation of cathepsin activity has been linked to a variety of pathological conditions, such as cancer, autoimmune diseases, and neurodegenerative disorders. Understanding the functions of cathepsins is crucial for gaining insights into their roles in both health and disease, as well as for developing targeted therapeutic approaches. Emerging research underscores the significant involvement of cathepsins in immune cells, particularly T cells, macrophages, dendritic cells, and neutrophils, as well as their contribution to immune-related diseases. In this review, we systematically examine the impact of cathepsins on the immune system and their mechanistic roles in cancer, infectious diseases, autoimmune and neurodegenerative disorders, with the goal of identifying novel therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Kexin Zhao
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China
| | - Yangqing Sun
- Department of Oncology, Hunan Provincial People's Hospital, Changsha, Hunan, 410005, China
| | - Shangwei Zhong
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China
| | - Jun-Li Luo
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China.
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China.
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, USC, Hengyang, Hunan, 410008, China.
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Wang Q, Cai S. Exploring the relationship between cathepsin and age-related macular degeneration using Mendelian randomization. Front Med (Lausanne) 2024; 11:1460779. [PMID: 39568745 PMCID: PMC11576310 DOI: 10.3389/fmed.2024.1460779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Purpose Age-related macular degeneration (AMD) is the leading cause of low vision and even blindness in the elderly population worldwide. However, no studies have been conducted to analyze the causal relationship between the cathepsin family and AMD. The present study aimed to explore and analyze this potential association using Mendelian randomization (MR). Methods In this study, AMD was classified into two types: exudative AMD and atrophic AMD. Inverse-variance weighting (IVW) was used as the main analysis method. The association between nine cathepsins and the two classifications of AMD were analyzed using multivariable Mendelian randomization (MVMR). Sensitivity analysis included Cochran's Q-test and the MR-Egger intercept test. Results Two-sample MR analysis showed that higher levels of cathepsin L2 were associated with a delay in the development of atrophic AMD (IVW: p = 0.017; OR = 0.885; 95% CI = 0.799-0.979). Reverse MR analysis indicated that cathepsin E levels were increased in individuals with atrophic (IVW: p = 0.023; OR = 1.058; 95% CI = 1.007-1.111) and exudative AMD (IVW: p = 0.018; OR = 1.061; 95% CI 1 = 1.010-1.115). MVMR analysis indicated a causal relationship between cathepsin G (IVW: p = 0.025; OR = 1.124; 95% CI = 1.014-1.245), cathepsin O (IVW: p = 0.043, OR = 1.158, 95% CI = 1.004-1.336), and exudative AMD after coordinating for other types of cathepsin. Conclusion This study demonstrated a potential link between the cathepsin family and the onset of AMD. Elevated serum concentrations of cathepsin L2 may serve as a protective factor for atrophic AMD, while increased levels of serum cathepsin G and O concentrations may promote the development of exudative AMD. Besides, the development of AMD may be associated with elevated serum concentrations of cathepsin E.
Collapse
Affiliation(s)
- Qiuyuan Wang
- Guizhou Branch of the Affiliated Hospital of Zunyi Medical University, National Clinical Research Center of the Eye Hospital of Guizhou Province, Key Laboratory of Eye Disease Characteristics of Guizhou Province, Zunyi, China
- Department of Clinical Medicine, The First Clinical College, Zunyi Medical University, Zunyi, China
| | - Shanjun Cai
- Guizhou Branch of the Affiliated Hospital of Zunyi Medical University, National Clinical Research Center of the Eye Hospital of Guizhou Province, Key Laboratory of Eye Disease Characteristics of Guizhou Province, Zunyi, China
| |
Collapse
|
5
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
6
|
Zeng R, Zhou Z, Liao W, Guo B. Genetic insights into the role of cathepsins in cardiovascular diseases: a Mendelian randomization study. ESC Heart Fail 2024; 11:2707-2718. [PMID: 38714485 PMCID: PMC11424349 DOI: 10.1002/ehf2.14826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/10/2024] Open
Abstract
AIMS This study aimed to explore the causal relationships between cathepsins and cardiovascular diseases (CVDs) by Mendelian randomization (MR) analysis. METHODS AND RESULTS Single nucleotide polymorphisms (SNPs) associated with nine cathepsin types (cathepsins B, E, F, G, H, O, S, L2, and Z) were obtained from the INTERVAL study (3301 individuals). CVDs data were acquired from the UK Biobank (coronary atherosclerosis: 14 334 cases, 346 860 controls) and a genome-wide association study (GWAS) (myocardial infarction: 20 917 cases, 440 906 controls; myocarditis: 633 cases, 427 278 controls; chronic heart failure: 14 262 cases, 471 898 controls; angina pectoris: 30 025 cases, 440 906 controls; stable angina pectoris: 17 894 cases, 325 132 controls; unstable angina pectoris: 9481 cases, 446 987 controls; pericarditis: 1795 cases, 453 370 controls). Inverse variance weighted (IVW), MR-Egger, weighted median methods were adopted to conduct univariable MR (UVMR), reverse MR, multivariable MR (MVMR) analyses to estimate causality. The UVMR analyses demonstrated significant causal relationships between higher cathepsin E levels and increased risk of coronary atherosclerosis [IVW: P = 0.0051, odds ratio (OR) = 1.0033, 95% confidence interval (CI) = 1.0010-1.0056] and myocardial infarction (IVW: P = 0.0097, OR = 1.0553, 95% CI = 1.0131-1.0993), while elevated cathepsin L2 levels were causally related to reduced risk of myocarditis (IVW: P = 0.0120, OR = 0.6895, 95% CI = 0.5158-0.9216) and chronic heart failure (IVW: P = 0.0134, OR = 0.9316, 95% CI = 0.8807-0.9854). Reverse MR analyses revealed that myocardial infarction increased cathepsin O levels (IVW: P = 0.0400, OR = 1.0708, 95% CI = 1.0031-1.1431). MVMR analyses treating nine cathepsins together revealed that the positive causality between cathepsin E levels and coronary atherosclerosis risk (IVW: P = 0.0390, OR = 1.0030, 95% CI = 1.0000-1.0060), and the protective effect of cathepsin L2 levels on myocarditis (IVW: P = 0.0030, OR = 0.6610, 95% CI = 0.5031-0.8676) and chronic heart failure (IVW: P = 0.0090, OR = 0.9259, 95% CI = 0.8737-0.9812) remained, as higher cathepsin O levels were found to be causally related to increased risks of myocarditis (IVW: P = 0.0030, OR = 1.6145, 95% CI = 1.1829-2.2034) and chronic heart failure (IVW: P = 0.0300, OR = 1.0779, 95% CI = 1.0070-1.1537). CONCLUSIONS The study highlights the causalities of cathepsin E, L2, and O on CVDs, offering insights into their roles in cardiovascular biomarkers and therapeutic targets development. Further research is required to apply these genetic findings clinically.
Collapse
Affiliation(s)
- Ruiqi Zeng
- Guangzhou Medical UniversityGuangzhou511436China
- Department of Clinical Medicine, Nanshan CollegeGuangzhou Medical UniversityGuangzhouChina
| | - Zhiyi Zhou
- Guangzhou Medical UniversityGuangzhou511436China
- Department of Clinical Medicine, Third Clinical SchoolGuangzhou Medical UniversityGuangzhouChina
| | - Wanzhe Liao
- Guangzhou Medical UniversityGuangzhou511436China
- Department of Clinical Medicine, Nanshan CollegeGuangzhou Medical UniversityGuangzhouChina
| | - Beian Guo
- Guangzhou Medical UniversityGuangzhou511436China
- Department of Clinical Medicine, Nanshan CollegeGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
7
|
Zhou H, Wang J, Cui X. Causal effect of immune cells, metabolites, cathepsins, and vitamin therapy in diabetic retinopathy: a Mendelian randomization and cross-sectional study. Front Immunol 2024; 15:1443236. [PMID: 39430744 PMCID: PMC11487118 DOI: 10.3389/fimmu.2024.1443236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
Background Diabetic retinopathy (DR) is a major microvascular complication of diabetes and a leading cause of blindness worldwide. The pathogenesis of DR involves complex interactions between metabolic disturbances, immune cells, and proteolytic enzymes such as cathepsins (CATs). Despite various studies, the precise roles of different CATs, metabolites, and vitamins in DR remain unclear. Method In this study, we employed Mendelian Randomization (MR) to assess causal relationships using genetic instruments selected based on genome-wide association studies (GWAS). We employed two-sample and mediation MR to explore the causal effects between nine CATs, immune cells, metabolites, vitamins, and DR. Additionally, the study also incorporated data from the NHANES survey to explore the associated relationship between vitamins and DR. We utilized cross-sectional data from the NHANES to analyze the association between vitamin intake and diabetic retinopathy (DR), adjusting for potential confounders to strengthen the validity of our findings. Results The MR analysis identified CAT H as a significant risk factor for both NPDR and PDR, with no evidence of reverse causality. Additionally, 62 immune cell traits were found to have causal relationships with NPDR and 49 with PDR. Enrichment analysis revealed that metabolic pathways such as sphingolipid metabolism are crucial in DR progression. Vitamins B6 and E were significantly associated with a reduced risk of PDR. Cross-sectional data indicated that vitamins B1, B2, B6, B12, and E progressively decreased with DR severity. Conclusion This study is the first to identify CAT H as a key risk factor for DR, while vitamins B6 and E showed significant protective effects, particularly against PDR. These findings suggest that CAT H, along with vitamins B6 and E, could serve as therapeutic targets for DR. Further validation through larger, multi-center studies is recommended to enhance the accuracy and applicability of these findings.
Collapse
Affiliation(s)
- Huijun Zhou
- Department of Endocrinology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Jingzhi Wang
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People’s Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Xuehao Cui
- John Van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| |
Collapse
|
8
|
Liu T, Ren Y, Zhang J, Yin H, Zheng Z, Zhang M, Liao Y, Yang L, Liu C, Liu X, Yan P. Association between various cathepsins and uterine leiomyoma: A Mendelian randomization analysis. PLoS One 2024; 19:e0310292. [PMID: 39264885 PMCID: PMC11392342 DOI: 10.1371/journal.pone.0310292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024] Open
Abstract
Emerging evidence suggests a tentative association between cathepsins and uterine leiomyoma (UL). Previous investigations have predominantly focused on the role of cathepsins in the metastasis and colonization of gynecological malignancies. Still, observational studies may lead to confounding and biases. We employed a bidirectional Mendelian randomization (MR) analysis to elucidate the causative links between various cathepsins and UL. Instrumental variables (IVs) of cathepsins and UL within the European cohort were from extant genome-wide association study datasets. Sensitivity assessments was executed, and the heterogeneity of the findings was meticulously dissected to affirm the solidity of the outcomes. Our findings reveal the association between cathepsin B (CTSB) and an elevated risk of developing UL (all cancers excluded) [Inverse Variance Weighted (IVW) method]: OR = 1.06, 95%CI [1.02, 1.11], P = 0.008895711. Although the association does not persist after multiple testing or Steiger filtering, this finding adds to our understanding of the causal relationship between CTSB of various cathepsins and UL (all cancers excluded) and may herald new therapeutic avenues for individuals affected by this condition.
Collapse
Affiliation(s)
- Tingxiu Liu
- Department of Gynecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yuehan Ren
- Department of Gynecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Junning Zhang
- Beijing University of Chinese Medicine, Beijing, China
- Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Hechun Yin
- Qi-Huang Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Zheng
- Department of Gynecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingyue Zhang
- Department of Gynecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Liao
- Department of Gynecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Liangliang Yang
- Department of Gynecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Chang Liu
- Department of Gynecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xinmin Liu
- Department of Gynecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peiyu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao, SAR, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Macao, Macao, SAR, China
| |
Collapse
|
9
|
Fosséprez J, Roels T, Manicourt D, Behets C. Craniofacial dysmorphism of osteogenesis imperfecta mouse and effect of cathepsin K knockout: Preliminary craniometry observations. Morphologie 2024; 108:100785. [PMID: 38788496 DOI: 10.1016/j.morpho.2024.100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVES In addition to bone fragility, patients with osteogenesis imperfecta (OI) type III have typical craniofacial abnormalities, such as a triangular face and maxillary micrognathism. However, in the osteogenesis imperfecta mouse (oim), a validated model of OI type III, few descriptions exist of craniofacial phenotype. Treatment of OI mostly consists of bisphosphonate administration. Cathepsin K inhibition has been tested as a promising therapeutic approach for osteoporosis and positive results were observed in long bones of cathepsin K knocked out oim (oim/CatK-/-). This craniometry study aimed to highlight the craniofacial characteristics of oim and Cathepsin K KO mouse. MATERIALS AND METHODS We analyzed the craniofacial skeleton of 51 mice distributed in 4 genotype groups: Wt (control), oim, CatK-/-, oim/CatK-/-. The mice were euthanized at 13 weeks and their heads were analyzed using densitometric (pQCT), X-ray cephalometric, and histomorphometric methods. RESULTS The craniofacial skeleton of the oim mouse is frailer than the Wt one, with a reduced thickness and mineral density of the cranial vault and mandibular ramus. Different cephalometric data attest a dysmorphism similar to the one observed in humans with OI type III. Those abnormalities were not improved in the oim/CatK-/- group. CONCLUSION These results suggest that oim mouse could serve as a complete model of the human OI type III, including the craniofacial skeleton. They also suggest that invalidation of cathepsin K has no impact on the craniofacial abnormalities of the oim model.
Collapse
Affiliation(s)
- J Fosséprez
- Pole of Morphology, institut de recherche expérimentale et clinique (IREC), université catholique de Louvain (UCLouvain), Brussels, Belgium.
| | - T Roels
- Pole of Morphology, institut de recherche expérimentale et clinique (IREC), université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - D Manicourt
- Pole of Rheumatic Diseases, IREC, UCLouvain, Brussels, Belgium
| | - C Behets
- Pole of Morphology, institut de recherche expérimentale et clinique (IREC), université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
10
|
Bojarski KK, David A, Lecaille F, Samsonov SA. In silico approaches for better understanding cysteine cathepsin-glycosaminoglycan interactions. Carbohydr Res 2024; 543:109201. [PMID: 39013335 DOI: 10.1016/j.carres.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
Cysteine cathepsins constitute the largest cathepsin family, with 11 proteases in human that are present primarily within acidic endosomal and lysosomal compartments. They are involved in the turnover of intracellular and extracellular proteins. They are synthesized as inactive procathepsins that are converted to mature active forms. Cathepsins play important roles in physiological and pathological processes and, therefore, receive increasing attention as potential therapeutic targets. Their maturation and activity can be regulated by glycosaminoglycans (GAGs), long linear negatively charged polysaccharides composed of recurring dimeric units. In this review, we summarize recent computational progress in the field of (pro)cathepsin-GAG complexes analyses.
Collapse
Affiliation(s)
- Krzysztof K Bojarski
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, Gdansk, 80-233, Poland.
| | - Alexis David
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| |
Collapse
|
11
|
Petruzzella A, Bruand M, Santamaria-Martínez A, Katanayeva N, Reymond L, Wehrle S, Georgeon S, Inel D, van Dalen FJ, Viertl D, Lau K, Pojer F, Schottelius M, Zoete V, Verdoes M, Arber C, Correia BE, Oricchio E. Antibody-peptide conjugates deliver covalent inhibitors blocking oncogenic cathepsins. Nat Chem Biol 2024; 20:1188-1198. [PMID: 38811854 DOI: 10.1038/s41589-024-01627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Cysteine cathepsins are a family of proteases that are relevant therapeutic targets for the treatment of different cancers and other diseases. However, no clinically approved drugs for these proteins exist, as their systemic inhibition can induce deleterious side effects. To address this problem, we developed a modular antibody-based platform for targeted drug delivery by conjugating non-natural peptide inhibitors (NNPIs) to antibodies. NNPIs were functionalized with reactive warheads for covalent inhibition, optimized with deep saturation mutagenesis and conjugated to antibodies to enable cell-type-specific delivery. Our antibody-peptide inhibitor conjugates specifically blocked the activity of cathepsins in different cancer cells, as well as osteoclasts, and showed therapeutic efficacy in vitro and in vivo. Overall, our approach allows for the rapid design of selective cathepsin inhibitors and can be generalized to inhibit a broad class of proteases in cancer and other diseases.
Collapse
Affiliation(s)
- Aaron Petruzzella
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Marine Bruand
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Albert Santamaria-Martínez
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Natalya Katanayeva
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Luc Reymond
- Institute of Chemical Sciences and Engineering (ISIC), Institute of Bioengineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Sarah Wehrle
- Laboratory of Protein Design and Immunoengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Sandrine Georgeon
- Laboratory of Protein Design and Immunoengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Damla Inel
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Floris J van Dalen
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Chemical Immunology, Nijmegen, The Netherlands
| | - David Viertl
- Translational Radiopharmaceutical Sciences, Departments of Nuclear Medicine and Molecular Imaging and of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- In Vivo Imaging Facility, Department of Research and Training, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Kelvin Lau
- Protein Production and Structure Core Facility, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Departments of Nuclear Medicine and Molecular Imaging and of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- AGORA Pôle de Recherche sur le Cancer, Lausanne, Switzerland
| | - Vincent Zoete
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Martijn Verdoes
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Chemical Immunology, Nijmegen, The Netherlands
| | - Caroline Arber
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| | - Elisa Oricchio
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
12
|
Deng D, Liu X, Huang W, Yuan S, Liu G, Ai S, Fu Y, Xu H, Zhang X, Li S, Xu S, Bai X, Zhang Y. Osteoclasts control endochondral ossification via regulating acetyl-CoA availability. Bone Res 2024; 12:49. [PMID: 39198395 PMCID: PMC11358419 DOI: 10.1038/s41413-024-00360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoclast is critical in skeletal development and fracture healing, yet the impact and underlying mechanisms of their metabolic state on these processes remain unclear. Here, by using osteoclast-specific small GTPase Rheb1-knockout mice, we reveal that mitochondrial respiration, rather than glycolysis, is essential for cathepsin K (CTSK) production in osteoclasts and is regulated by Rheb1 in a mechanistic target of rapamycin complex 1 (mTORC1)-independent manner. Mechanistically, we find that Rheb1 coordinates with mitochondrial acetyl-CoA generation to fuel CTSK, and acetyl-CoA availability in osteoclasts is the central to elevating CTSK. Importantly, our findings demonstrate that the regulation of CTSK by acetyl-CoA availability is critical and may confer a risk for abnormal endochondral ossification, which may be the main cause of poor fracture healing on alcohol consumption, targeting Rheb1 could successfully against the process. These findings uncover a pivotal role of mitochondria in osteoclasts and provide a potent therapeutic opportunity in bone disorders.
Collapse
Affiliation(s)
- Daizhao Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xianming Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wenlan Huang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Sirui Yuan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Genming Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shanshan Ai
- Department of Physiology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yijie Fu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haokun Xu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xinyi Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shihai Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Song Xu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Yue Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
13
|
Shao Z, Gao H, Han Q, Ning E, Sheng L, Hao Y, Che H, Hu D, Wang C. Genetic insights into serum cathepsins as diagnostic and therapeutic targets in knee and hip osteoarthritis. Sci Rep 2024; 14:17553. [PMID: 39080459 PMCID: PMC11289477 DOI: 10.1038/s41598-024-68718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Osteoarthritis (OA) is a chronic disease due to the deterioration of cartilage structure and function, involving the progressive degradation of the cartilage extracellular matrix. Cathepsins, lysosomal cysteine proteases, play pivotal roles in various biological and pathological processes, particularly in protein degradation. Excess cathepsins levels are reported to contribute to the development of OA. However, the causal relationship between the cathepsin family and knee and hip OA remains uncertain. Therefore, this study utilized bidirectional Mendelian Randomization (MR) analyses to explore this causal association. Our results indicated that elevated serum levels of cathepsin O increase the overall risk of knee OA, while increased serum levels of cathepsin H enhance the risk of hip OA. Conversely, the reverse MR analyses did not reveal a reverse causal relationship between them. In summary, OA in different anatomical locations may genetically result from pathological elevations in different serum cathepsin isoforms, which could be utilized as diagnostic and therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Zhiqiang Shao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hua Gao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Qinyi Han
- Department of Hand and Foot, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Eryu Ning
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Liting Sheng
- Phase I Clinical Trial Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hui Che
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Dan Hu
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Chengqiang Wang
- G.E.R.N. Research Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg in Breisgau, Germany.
| |
Collapse
|
14
|
Jinda H, Nakashima K, Watanabe H, Ono M. Synthesis and Evaluation of a Cathepsin B-Recognizing Trifunctional Chelating Agent to Improve Tumor Retention of Radioimmunoconjugates. J Labelled Comp Radiopharm 2024; 67:295-304. [PMID: 38837480 DOI: 10.1002/jlcr.4112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
Cathepsin B (CTSB) is a lysosomal protease that is overexpressed in tumor cells. Radioimmunoconjugates (RICs) composed of CTSB-recognizing chelating agents are expected to increase the molecular weights of their radiometabolites by forming conjugates with CTSB in cells, resulting in their improved retention in tumor cells. We designed a novel CTSB-recognizing trifunctional chelating agent, azide-[111In]In-DOTA-CTSB-substrate ([111In]In-ADCS), to synthesize a RIC, trastuzumab-[111In]In-ADCS ([111In]In-TADCS), and evaluated its utility to improve tumor retention of the RIC. [111In]In-ADCS and [111In]In-TADCS were synthesized with satisfactory yield and purity. [111In]In-ADCS was markedly stable in murine plasma until 96 h postincubation. [111In]In-ADCS showed binding to CTSB in vitro, and the conjugation was blocked by the addition of CTSB inhibitor. In the internalization assay, [111In]In-TADCS exhibited high-level retention in SK-OV-3 cells, indicating the in vitro utility of the CTSB-recognizing unit. In the biodistribution assay, [111In]In-TADCS showed high-level tumor accumulation, but the retention was hardly improved. In the first attempt to combine a CTSB-recognizing unit and RIC, these findings show the fundamental properties of the CTSB-recognizing trifunctional chelating agent to improve tumor retention of RICs.
Collapse
Affiliation(s)
- Hiroki Jinda
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuma Nakashima
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Yusufujiang A, Zeng S, Li H. Cathepsins and Parkinson's disease: insights from Mendelian randomization analyses. Front Aging Neurosci 2024; 16:1380483. [PMID: 38903897 PMCID: PMC11188310 DOI: 10.3389/fnagi.2024.1380483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Background Parkinson's disease (PD), the second most prevalent neurodegenerative condition, has a multifaceted etiology. Cathepsin-cysteine proteases situated within lysosomes participate in a range of physiological and pathological processes, including the degradation of harmful proteins. Prior research has pointed towards a potential link between cathepsins and PD; however, the precise causal relationship between the cathepsin family and PD remains unclear. Methods This study employed univariate and multivariate Mendelian randomization (MR) analyses to explore the causal relationship between the nine cathepsins and Parkinson's disease (PD) risk. For the primary analysis, genome-wide association study (GWAS) summary statistics for the plasma levels of the nine cathepsins and PD was obtained from the INTERVAL study and the International Parkinson's Disease Genomics Consortium. GWAS for PD replication analysis were obtained from the FinnGen consortium, and a meta-analysis was performed for the primary and replication analyses to evaluate the association between genetically predicted cathepsin plasma levels and PD risk. After identifying significant MR estimates, genetic co-localization analyses were conducted to determine whether shared or distinct causal variants influenced both cathepsins and PD. Results Elevated cathepsin B levels were associated with a decreased risk of PD in univariate MR analysis (odds ratio [OR] = 0.890, 95% confidence interval [CI]: 0.831-0.954, pFDR = 0.009). However, there was no indication that PD affected cathepsin B levels (OR = 0.965, 95% CI: 0.858-1.087, p = 0.852). In addition, after adjusting for the remaining cathepsins, cathepsin B levels independently and significantly contributed to the reduced risk of PD in multivariate MR analysis (OR = 0.887, 95% CI: 0.823-0.957, p = 0.002). The results of the replication MR analysis with the FinnGen GWAS for PD (OR = 0.921, 95% CI: 0.860-0.987, p = 0.020) and meta-analysis (OR = 0.905, 95% CI: 0.862-0.951, p < 0.001) were consistent with those of the primary analysis. Colocalization analysis did not provide any evidence of a shared causal variant between cathepsins and PD (PP.H4.abf = 0.005). Conclusion This genetic investigation supports the hypothesis that cathepsin B exerts a protective effect against PD. The quantification of cathepsin B levels could potentially serve as a predictive biomarker for susceptibility to PD, providing new insights into the pathomechanisms of the disease and possible interventions.
Collapse
Affiliation(s)
| | - Shan Zeng
- Department of Graduate School, Xinjiang Medical University, Ürümqi, China
- Department of Neurology, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Ürümqi, China
| | - Hongyan Li
- Department of Neurology, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Ürümqi, China
| |
Collapse
|
16
|
Mai Z, Lin Y, Lin P, Zhao X, Cui L. Modulating extracellular matrix stiffness: a strategic approach to boost cancer immunotherapy. Cell Death Dis 2024; 15:307. [PMID: 38693104 PMCID: PMC11063215 DOI: 10.1038/s41419-024-06697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
The interplay between extracellular matrix (ECM) stiffness and the tumor microenvironment is increasingly recognized as a critical factor in cancer progression and the efficacy of immunotherapy. This review comprehensively discusses the key factors regulating ECM remodeling, including the activation of cancer-associated fibroblasts and the accumulation and crosslinking of ECM proteins. Furthermore, it provides a detailed exploration of how ECM stiffness influences the behaviors of both tumor and immune cells. Significantly, the impact of ECM stiffness on the response to various immunotherapy strategies, such as immune checkpoint blockade, adoptive cell therapy, oncolytic virus therapy, and therapeutic cancer vaccines, is thoroughly examined. The review also addresses the challenges in translating research findings into clinical practice, highlighting the need for more precise biomaterials that accurately mimic the ECM and the development of novel therapeutic strategies. The insights offered aim to guide future research, with the potential to enhance the effectiveness of cancer immunotherapy modalities.
Collapse
Affiliation(s)
- Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
17
|
Denison M, Garcia SP, Ullrich A, Podgorski I, Gibson H, Turro C, Kodanko JJ. Ruthenium-Cathepsin Inhibitor Conjugates for Green Light-Activated Photodynamic Therapy and Photochemotherapy. Inorg Chem 2024; 63:7973-7983. [PMID: 38616353 PMCID: PMC11066580 DOI: 10.1021/acs.inorgchem.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Dysregulated cathepsin activity is linked to various human diseases including metabolic disorders, autoimmune conditions, and cancer. Given the overexpression of cathepsin in the tumor microenvironment, cathepsin inhibitors are promising pharmacological agents and drug delivery vehicles for cancer treatment. In this study, we describe the synthesis and photochemical and biological assessment of a dual-action agent based on ruthenium that is conjugated with a cathepsin inhibitor, designed for both photodynamic therapy (PDT) and photochemotherapy (PCT). The ruthenium-cathepsin inhibitor conjugate was synthesized through an oxime click reaction, combining a pan-cathepsin inhibitor based on E64d with the Ru(II) PCT/PDT fragment [Ru(dqpy)(dppn)], where dqpy = 2,6-di(quinoline-2-yl)pyridine and dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine. Photochemical investigations validated the conjugate's ability to release a triazole-containing cathepsin inhibitor for PCT and to generate singlet oxygen for PDT upon exposure to green light. Inhibition studies demonstrated the conjugate's potent and irreversible inactivation of purified and intracellular cysteine cathepsins. Two Ru(II) PCT/PDT agents based on the [Ru(dqpy)(dppn)] moiety were evaluated for photoinduced cytotoxicity in 4T1 murine triple-negative breast cancer cells, L929 fibroblasts, and M0, M1, and M2 macrophages. The cathepsin inhibitor conjugate displayed notable selectivity for inducing cell death under irradiation compared to dark conditions, mitigating toxicity in the dark observed with the triazole control complex [Ru(dqpy)(dppn)(MeTz)]2+ (MeTz = 1-methyl-1H-1,2,4-triazole). Notably, our lead complex is among a limited number of dual PCT/PDT agents activated with green light.
Collapse
Affiliation(s)
- Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Santana P Garcia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Ullrich
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Heather Gibson
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
18
|
Jansen I, Cahalane R, Hengst R, Akyildiz A, Farrell E, Gijsen F, Aikawa E, van der Heiden K, Wissing T. The interplay of collagen, macrophages, and microcalcification in atherosclerotic plaque cap rupture mechanics. Basic Res Cardiol 2024; 119:193-213. [PMID: 38329498 PMCID: PMC11008085 DOI: 10.1007/s00395-024-01033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
The rupture of an atherosclerotic plaque cap overlying a lipid pool and/or necrotic core can lead to thrombotic cardiovascular events. In essence, the rupture of the plaque cap is a mechanical event, which occurs when the local stress exceeds the local tissue strength. However, due to inter- and intra-cap heterogeneity, the resulting ultimate cap strength varies, causing proper assessment of the plaque at risk of rupture to be lacking. Important players involved in tissue strength include the load-bearing collagenous matrix, macrophages, as major promoters of extracellular matrix degradation, and microcalcifications, deposits that can exacerbate local stress, increasing tissue propensity for rupture. This review summarizes the role of these components individually in tissue mechanics, along with the interplay between them. We argue that to be able to improve risk assessment, a better understanding of the effect of these individual components, as well as their reciprocal relationships on cap mechanics, is required. Finally, we discuss potential future steps, including a holistic multidisciplinary approach, multifactorial 3D in vitro model systems, and advancements in imaging techniques. The obtained knowledge will ultimately serve as input to help diagnose, prevent, and treat atherosclerotic cap rupture.
Collapse
Affiliation(s)
- Imke Jansen
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rachel Cahalane
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ranmadusha Hengst
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ali Akyildiz
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Biomechanical Engineering, Technical University Delft, Delft, The Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Frank Gijsen
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Biomechanical Engineering, Technical University Delft, Delft, The Netherlands
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kim van der Heiden
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tamar Wissing
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
19
|
Shi H, Yuan M, Cai J, Lan L, Wang Y, Wang W, Zhou J, Wang B, Yu W, Dong Z, Deng D, Qian Q, Li Y, Zhou X, Liu J. HTRA1-driven detachment of type I collagen from endoplasmic reticulum contributes to myocardial fibrosis in dilated cardiomyopathy. J Transl Med 2024; 22:297. [PMID: 38515161 PMCID: PMC10958933 DOI: 10.1186/s12967-024-05098-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND The aberrant secretion and excessive deposition of type I collagen (Col1) are important factors in the pathogenesis of myocardial fibrosis in dilated cardiomyopathy (DCM). However, the precise molecular mechanisms underlying the synthesis and secretion of Col1 remain unclear. METHODS AND RESULTS RNA-sequencing analysis revealed an increased HtrA serine peptidase 1 (HTRA1) expression in patients with DCM, which is strongly correlated with myocardial fibrosis. Consistent findings were observed in both human and mouse tissues by immunoblotting, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry, and immunofluorescence analyses. Pearson's analysis showed a markedly positive correlation between HTRA1 level and myocardial fibrosis indicators, including extracellular volume fraction (ECV), native T1, and late gadolinium enhancement (LGE), in patients with DCM. In vitro experiments showed that the suppression of HTRA1 inhibited the conversion of cardiac fibroblasts into myofibroblasts and decreased Col1 secretion. Further investigations identified the role of HTRA1 in promoting the formation of endoplasmic reticulum (ER) exit sites, which facilitated the transportation of Col1 from the ER to the Golgi apparatus, thereby increasing its secretion. Conversely, HTRA1 knockdown impeded the retention of Col1 in the ER, triggering ER stress and subsequent induction of ER autophagy to degrade misfolded Col1 and maintain ER homeostasis. In vivo experiments using adeno-associated virus-serotype 9-shHTRA1-green fluorescent protein (AAV9-shHTRA1-GFP) showed that HTRA1 knockdown effectively suppressed myocardial fibrosis and improved left ventricular function in mice with DCM. CONCLUSIONS The findings of this study provide valuable insights regarding the treatment of DCM-associated myocardial fibrosis and highlight the therapeutic potential of targeting HTRA1-mediated collagen secretion.
Collapse
Affiliation(s)
- Hongjie Shi
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Ming Yuan
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Jie Cai
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Lan Lan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yumou Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Wei Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Bin Wang
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wenjun Yu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Zhe Dong
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Dawei Deng
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Qiaofeng Qian
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China
| | - Xianwu Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China.
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China.
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, China.
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, China.
| |
Collapse
|
20
|
Dillemans L, Yu K, De Zutter A, Noppen S, Gouwy M, Berghmans N, Verhallen L, De Bondt M, Vanbrabant L, Brusselmans S, Martens E, Schols D, Verschueren P, Rosenkilde MM, Marques PE, Struyf S, Proost P. Natural carboxyterminal truncation of human CXCL10 attenuates glycosaminoglycan binding, CXCR3A signaling and lymphocyte chemotaxis, while retaining angiostatic activity. Cell Commun Signal 2024; 22:94. [PMID: 38308278 PMCID: PMC10835923 DOI: 10.1186/s12964-023-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/21/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Interferon-γ-inducible protein of 10 kDa (IP-10/CXCL10) is a dual-function CXC chemokine that coordinates chemotaxis of activated T cells and natural killer (NK) cells via interaction with its G protein-coupled receptor (GPCR), CXC chemokine receptor 3 (CXCR3). As a consequence of natural posttranslational modifications, human CXCL10 exhibits a high degree of structural and functional heterogeneity. However, the biological effect of natural posttranslational processing of CXCL10 at the carboxy (C)-terminus has remained partially elusive. We studied CXCL10(1-73), lacking the four endmost C-terminal amino acids, which was previously identified in supernatant of cultured human fibroblasts and keratinocytes. METHODS Relative levels of CXCL10(1-73) and intact CXCL10(1-77) were determined in synovial fluids of patients with rheumatoid arthritis (RA) through tandem mass spectrometry. The production of CXCL10(1-73) was optimized through Fmoc-based solid phase peptide synthesis (SPPS) and a strategy to efficiently generate human CXCL10 proteoforms was introduced. CXCL10(1-73) was compared to intact CXCL10(1-77) using surface plasmon resonance for glycosaminoglycan (GAG) binding affinity, assays for cell migration, second messenger signaling downstream of CXCR3, and flow cytometry of CHO cells and primary human T lymphocytes and endothelial cells. Leukocyte recruitment in vivo upon intraperitoneal injection of CXCL10(1-73) was also evaluated. RESULTS Natural CXCL10(1-73) was more abundantly present compared to intact CXCL10(1-77) in synovial fluids of patients with RA. CXCL10(1-73) had diminished affinity for GAG including heparin, heparan sulfate and chondroitin sulfate A. Moreover, CXCL10(1-73) exhibited an attenuated capacity to induce CXCR3A-mediated signaling, as evidenced in calcium mobilization assays and through quantification of phosphorylated extracellular signal-regulated kinase-1/2 (ERK1/2) and protein kinase B/Akt. Furthermore, CXCL10(1-73) incited significantly less primary human T lymphocyte chemotaxis in vitro and peritoneal ingress of CXCR3+ T lymphocytes in mice. In contrast, loss of the four endmost C-terminal residues did not affect the inhibitory properties of CXCL10 on migration, proliferation, wound closure, phosphorylation of ERK1/2, and sprouting of human microvascular endothelial cells. CONCLUSION Our study shows that the C-terminal residues Lys74-Pro77 of CXCL10 are important for GAG binding, signaling through CXCR3A, T lymphocyte chemotaxis, but dispensable for angiostasis.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Karen Yu
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Alexandra De Zutter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49 Box 1042, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lisa Verhallen
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Mirre De Bondt
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Stef Brusselmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49 Box 1042, Leuven, Belgium
| | - Patrick Verschueren
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Mette M Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Chen H, Li Z, Yang H, Zhang J, Farhadi A, Li E. Identifying genes involved in the secretory physiological response to feeding in Pacific White Shrimp (Litopenaeus vannamei) using transcriptomics. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111555. [PMID: 38007175 DOI: 10.1016/j.cbpa.2023.111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/28/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The physiological response to feeding is important for production aspects that include feed utilization and growth, and the responses require the action of numerous secretory factors. However, as an important aquaculture animal, the secretory response of Pacific White Shrimp (Litopenaeus vannamei) after feeding has not been comprehensively characterized. In this study, transcriptome analysis showed that 3172 differentially expressed genes were involved in the post-feeding response, including 289 new genes not annotated in the L. vannamei reference genome. Subsequently, 715 differentially expressed secretory reference genes and 18 new differentially expressed secretory genes were obtained through the identification of signal peptides in secreted proteins. Functional classification revealed that differentially expressed secretory genes were enriched in pathways pertaining to lipid metabolism (20 genes), carbohydrate metabolism (21 genes), glycan biosynthesis and metabolism (27 genes), digestive system (40 genes), and transport and metabolism (43 genes). The 14 pathways most enriched by differentially expressed secretory genes involved 83 genes, 71 of which encoded enzymes involved in food digestion and metabolism. Specific enzymes such as lipase 3-like and NPC intracellular cholesterol transporter 1-like in lipid metabolism, alpha-amylase-like and glucosylceramidase-like in carbohydrate metabolism, and cysteine proteinase 4-like and trypsin-1-like in the digestive system were found to be differentially expressed. Furthermore, we discovered a new gene, MSTRG.2504, that participates in the digestive system and carbohydrate metabolism. The study provides valuable insights into the secretory response (especially metabolism-related enzymes) to feeding in L. vannamei, uncovering the significant roles of both known and new genes. Furthermore, this study will improve our understanding of the feeding physiology of L. vannamei and provide a reference basis for further feeding endocrine research in the future.
Collapse
Affiliation(s)
- Hu Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou, Hainan 570228, China
| | - Zecheng Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou, Hainan 570228, China
| | - Haoli Yang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou, Hainan 570228, China
| | - Jiangyuan Zhang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou, Hainan 570228, China
| | - Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou, Hainan 570228, China.
| | - Erchao Li
- School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
22
|
Yeo HJ, Ha M, Shin DH, Lee HR, Kim YH, Cho WH. Development of a Novel Biomarker for the Progression of Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2024; 25:599. [PMID: 38203769 PMCID: PMC10779374 DOI: 10.3390/ijms25010599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The progression of idiopathic pulmonary fibrosis (IPF) is diverse and unpredictable. We identified and validated a new biomarker for IPF progression. To identify a candidate gene to predict progression, we assessed differentially expressed genes in patients with advanced IPF compared with early IPF and controls in three lung sample cohorts. Candidate gene expression was confirmed using immunohistochemistry and Western blotting of lung tissue samples from an independent IPF clinical cohort. Biomarker potential was assessed using an enzyme-linked immunosorbent assay of serum samples from the retrospective validation cohort. We verified that the final candidate gene reflected the progression of IPF in a prospective validation cohort. In the RNA-seq comparative analysis of lung tissues, CD276, COL7A1, CTSB, GLI2, PIK3R2, PRAF2, IGF2BP3, and NUPR1 were up-regulated, and ADAMTS8 was down-regulated in the samples of advanced IPF. Only CTSB showed significant differences in expression based on Western blotting (n = 12; p < 0.001) and immunohistochemistry between the three groups of the independent IPF cohort. In the retrospective validation cohort (n = 78), serum CTSB levels were higher in the progressive group (n = 25) than in the control (n = 29, mean 7.37 ng/mL vs. 2.70 ng/mL, p < 0.001) and nonprogressive groups (n = 24, mean 7.37 ng/mL vs. 2.56 ng/mL, p < 0.001). In the prospective validation cohort (n = 129), serum CTSB levels were higher in the progressive group than in the nonprogressive group (mean 8.30 ng/mL vs. 3.00 ng/mL, p < 0.001). After adjusting for baseline FVC, we found that CTSB was independently associated with IPF progression (adjusted OR = 2.61, p < 0.001). Serum CTSB levels significantly predicted IPF progression (AUC = 0.944, p < 0.001). Serum CTSB level significantly distinguished the progression of IPF from the non-progression of IPF or healthy control.
Collapse
Affiliation(s)
- Hye Ju Yeo
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (D.H.S.); (H.R.L.)
| | - Mihyang Ha
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Busan 46241, Republic of Korea;
- Department of Nuclear Medicine, Pusan National University Medical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Dong Hoon Shin
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (D.H.S.); (H.R.L.)
- Department of Pathology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hye Rin Lee
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (D.H.S.); (H.R.L.)
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woo Hyun Cho
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (D.H.S.); (H.R.L.)
| |
Collapse
|
23
|
Yan SW, Cheng YK, Lu QQ, Zhang R, Dan Liu R, Long SR, Wang ZQ, Cui J. Characterization of a novel dipeptidyl peptidase 1 of Trichinella spiralis and its participation in larval invasion. Acta Trop 2024; 249:107076. [PMID: 37977254 DOI: 10.1016/j.actatropica.2023.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
The research aimed to describe a new Trichinella spiralis dipeptidyl peptidase 1 (TsDPP1) and investigate its functions in the larval invasion of intestinal epithelial cells (IECs). The gene TsDPP1 was successfully replicated and produced in Escherichia coli BL21 (DE3), showing a strong immune response. TsDPP1 was detected in diverse stages of T. spiralis and showed significant expression in the intestine infective larvae (IIL) and adult worms at 6 days post infection, as confirmed by qPCR and Western blot analysis. The primary localization of TsDPP1 in this parasite was observed in cuticles, stichosomes, and embryos by using the indirect immunofluorescence assay (IIFA). rTsDPP1 exhibited the enzymatic function of natural dipeptidyl peptidase and showed specific binding to IECs, and the binding site was found to be localized on cell membrane. Following transfection with dsRNA-TsDPP1, the expression of TsDPP1 mRNA and protein in muscle larvae (ML) were decreased by approximately 63.52 % and 58.68 %, correspondingly. The activity of TsDPP1 in the ML and IIL treated with dsRNA-TsDPP1 was reduced by 42.98 % and 45.07 %, respectively. The acceleration of larval invasion of IECs was observed with rTsDPP1, while the invasion was suppressed by anti-rTsDPP1 serum. The ability of the larvae treated with dsRNA-TsDPP1 to invade IECs was hindered by 31.23 %. In mice infected with dsRNA-treated ML, the intestinal IIL, and adults experienced a significant decrease in worm burdens and a noticeable reduction in adult female length and fecundity compared to the PBS group. These findings indicated that TsDPP1 significantly impedes the invasion, growth, and reproductive capacity of T. spiralis in intestines, suggesting its potential as a target for anti-Trichinella vaccines.
Collapse
Affiliation(s)
- Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yong Kang Cheng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Qi Qi Lu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
24
|
Almalki AA, Shafie A, Hazazi A, Banjer HJ, Bakhuraysah MM, Almaghrabi SA, Alsaiari AA, Alsaeedi FA, Ashour AA, Alharthi A, Alharthi NS, Anjum F. Targeting Cathepsin L in Cancer Management: Leveraging Machine Learning, Structure-Based Virtual Screening, and Molecular Dynamics Studies. Int J Mol Sci 2023; 24:17208. [PMID: 38139037 PMCID: PMC10743089 DOI: 10.3390/ijms242417208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Cathepsin L (CTSL) expression is dysregulated in a variety of cancers. Extensive empirical evidence indicates their direct participation in cancer growth, angiogenic processes, metastatic dissemination, and the development of treatment resistance. Currently, no natural CTSL inhibitors are approved for clinical use. Consequently, the development of novel CTSL inhibition strategies is an urgent necessity. In this study, a combined machine learning (ML) and structure-based virtual screening strategy was employed to identify potential natural CTSL inhibitors. The random forest ML model was trained on IC50 values. The accuracy of the trained model was over 90%. Furthermore, we used this ML model to screen the Biopurify and Targetmol natural compound libraries, yielding 149 hits with prediction scores >0.6. These hits were subsequently selected for virtual screening using a structure-based approach, yielding 13 hits with higher binding affinity compared to the positive control (AZ12878478). Two of these hits, ZINC4097985 and ZINC4098355, have been shown to strongly bind CTSL proteins. In addition to drug-like properties, both compounds demonstrated high affinity, ligand efficiency, and specificity for the CTSL binding pocket. Furthermore, in molecular dynamics simulations spanning 200 ns, these compounds formed stable protein-ligand complexes. ZINC4097985 and ZINC4098355 can be considered promising candidates for CTSL inhibition after experimental validation, with the potential to provide therapeutic benefits in cancer management.
Collapse
Affiliation(s)
- Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.S.); (H.J.B.); (M.M.B.); (A.A.A.); (F.A.A.); (A.A.)
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.S.); (H.J.B.); (M.M.B.); (A.A.A.); (F.A.A.); (A.A.)
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia;
| | - Hamsa Jameel Banjer
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.S.); (H.J.B.); (M.M.B.); (A.A.A.); (F.A.A.); (A.A.)
| | - Maha M. Bakhuraysah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.S.); (H.J.B.); (M.M.B.); (A.A.A.); (F.A.A.); (A.A.)
| | - Sarah Abdullah Almaghrabi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.S.); (H.J.B.); (M.M.B.); (A.A.A.); (F.A.A.); (A.A.)
| | - Fouzeyyah Ali Alsaeedi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.S.); (H.J.B.); (M.M.B.); (A.A.A.); (F.A.A.); (A.A.)
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif 21944, Saudi Arabia;
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.S.); (H.J.B.); (M.M.B.); (A.A.A.); (F.A.A.); (A.A.)
| | - Nahed S. Alharthi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.S.); (H.J.B.); (M.M.B.); (A.A.A.); (F.A.A.); (A.A.)
| |
Collapse
|
25
|
Zhang Z, Zhan F. Type 2 Cystatins and Their Roles in the Regulation of Human Immune Response and Cancer Progression. Cancers (Basel) 2023; 15:5363. [PMID: 38001623 PMCID: PMC10670837 DOI: 10.3390/cancers15225363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cystatins are a family of intracellular and extracellular protease inhibitors that inhibit cysteine cathepsins-a group of lysosomal cysteine proteases that participate in multiple biological processes, including protein degradation and post-translational cleavage. Cysteine cathepsins are associated with the development of autoimmune diseases, tumor progression, and metastasis. Cystatins are categorized into three subfamilies: type 1, type 2, and type 3. The type 2 cystatin subfamily is the largest, containing 10 members, and consists entirely of small secreted proteins. Although type 2 cystatins have many shared biological roles, each member differs in structure, post-translational modifications (e.g., glycosylation), and expression in different cell types. These distinctions allow the type 2 cystatins to have unique biological functions and properties. This review provides an overview of type 2 cystatins, including their biological similarities and differences, their regulatory effect on human immune responses, and their roles in tumor progression, immune evasion, and metastasis.
Collapse
Affiliation(s)
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
26
|
Saroha B, Kumar G, Arya P, Raghav N, Kumar S. Some morpholine tethered novel aurones: Design, synthesis, biological, kinetic and molecular docking studies. Bioorg Chem 2023; 140:106805. [PMID: 37634269 DOI: 10.1016/j.bioorg.2023.106805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
Enzymes are the biological macromolecules that have emerged as an important drug target as their upregulation/imbalance leads to various pathological conditions, such as inflammation, parasitic infection, Alzheimer's, cancer, and many others. Here, we designed and synthesized some morpholine tethered novel aurones and evaluated them as potential inhibitors for CTSB, α-amylase, lipase and activator for trypsin. All the newly synthesized compounds were fully characterized by various spectroscopic techniques (1H NMR, 13C NMR, HRMS) and the Z-configuration to them was assigned based on single crystal XRD data and 1H NMR chemical shift values. Further, the hybrids were evaluated for their intracellular (cathepsin B) and extracellular (trypsin, lipase, amylase) enzyme inhibition potencies. The in-vitro inhibition screening against cathepsin B revealed that most of the synthesized compounds are good competitive inhibitors (% inhibition = 22.91-75.04), with 6q (% inhibition = 75.04) and 6r (% inhibition = 71.13) as the eminent inhibitors of the series. At the same time, they exhibited weak to moderate inhibition towards amylase (% inhibition = 7.22-22.48) and lipase (% inhibition = 16.29-54.83). A significant trypsin activation (% activation = 107.42-196.47) was observed even at the micromolar concentration of the compounds. Furthermore, the drug-modeling studies showed a good correlation between the in-vitro experimental results and the calculated binding affinity of the screened compounds with all the tested enzymes. These findings are expected to provide a new lead in drug development for different pathological disorders wherever these enzymes are involved.
Collapse
Affiliation(s)
- Bhavna Saroha
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Gourav Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India; Department of Biomedical Engineering, Oregon Health & Science University (OHSU), 2730 S Moody Ave., Portland, OR 97201
| | - Priyanka Arya
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
27
|
Li J, Tang M, Gao X, Tian S, Liu W. Mendelian randomization analyses explore the relationship between cathepsins and lung cancer. Commun Biol 2023; 6:1019. [PMID: 37805623 PMCID: PMC10560205 DOI: 10.1038/s42003-023-05408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023] Open
Abstract
Lung cancer, a major contributor to cancer-related fatalities worldwide, involves a complex pathogenesis. Cathepsins, lysosomal cysteine proteases, play roles in various physiological and pathological processes, including tumorigenesis. Observational studies have suggested an association between cathepsins and lung cancer. However, the causal link between the cathepsin family and lung cancer remains undetermined. This study employed Mendelian randomization analyses to investigate this causal association. The univariable Mendelian randomization analysis results indicate that elevated cathepsin H levels increase the overall risk of lung cancer, adenocarcinoma, and lung cancer among smokers. Conversely, reverse Mendelian randomization analyses suggest that squamous carcinoma may lead to increased cathepsin B levels. A multivariable analysis using nine cathepsins as covariates reveals that elevated cathepsin H levels lead to an increased overall risk of lung cancer, adenocarcinoma, and lung cancer in smokers. In conclusion, cathepsin H may serve as a marker for lung cancer, potentially inspiring directions in lung cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, PR China
| | - Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, PR China
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, PR China
| | - Suyan Tian
- Division of Clinical Research, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, PR China.
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
28
|
McLean DT, Meudt JJ, Lopez Rivera LD, Schomberg DT, Pavelec DM, Duellman TT, Buehler DG, Schwartz PB, Graham M, Lee LM, Graff KD, Reichert JL, Bon-Durant SS, Konsitzke CM, Ronnekleiv-Kelly SM, Shanmuganayagam D, Rubinstein CD. Single-cell RNA sequencing of neurofibromas reveals a tumor microenvironment favorable for neural regeneration and immune suppression in a neurofibromatosis type 1 porcine model. Front Oncol 2023; 13:1253659. [PMID: 37817770 PMCID: PMC10561395 DOI: 10.3389/fonc.2023.1253659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Neurofibromatosis Type 1 (NF1) is one of the most common genetically inherited disorders that affects 1 in 3000 children annually. Clinical manifestations vary widely but nearly always include the development of cutaneous, plexiform and diffuse neurofibromas that are managed over many years. Recent single-cell transcriptomics profiling efforts of neurofibromas have begun to reveal cell signaling processes. However, the cell signaling networks in mature, non-cutaneous neurofibromas remain unexplored. Here, we present insights into the cellular composition and signaling within mature neurofibromas, contrasting with normal adjacent tissue, in a porcine model of NF1 using single-cell RNA sequencing (scRNA-seq) analysis and histopathological characterization. These neurofibromas exhibited classic diffuse-type histologic morphology and expected patterns of S100, SOX10, GFAP, and CD34 immunohistochemistry. The porcine mature neurofibromas closely resemble human neurofibromas histologically and contain all known cellular components of their human counterparts. The scRNA-seq confirmed the presence of all expected cell types within these neurofibromas and identified novel populations of fibroblasts and immune cells, which may contribute to the tumor microenvironment by suppressing inflammation, promoting M2 macrophage polarization, increasing fibrosis, and driving the proliferation of Schwann cells. Notably, we identified tumor-associated IDO1 +/CD274+ (PD-L1) + dendritic cells, which represent the first such observation in any NF1 animal model and suggest the role of the upregulation of immune checkpoints in mature neurofibromas. Finally, we observed that cell types in the tumor microenvironment are poised to promote immune evasion, extracellular matrix reconstruction, and nerve regeneration.
Collapse
Affiliation(s)
- Dalton T. McLean
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Jennifer J. Meudt
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Loren D. Lopez Rivera
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Dominic T. Schomberg
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Derek M. Pavelec
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Tyler T. Duellman
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Darya G. Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Patrick B. Schwartz
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Melissa Graham
- Research Animal Resources and Compliance (RARC), Office of the Vice Chancellor for Research and Graduate Education, University of Wisconsin–Madison, Madison, WI, United States
| | - Laura M. Lee
- Research Animal Resources and Compliance (RARC), Office of the Vice Chancellor for Research and Graduate Education, University of Wisconsin–Madison, Madison, WI, United States
| | - Keri D. Graff
- Swine Research and Teaching Center, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Jamie L. Reichert
- Swine Research and Teaching Center, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Sandra S. Bon-Durant
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Charles M. Konsitzke
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Sean M. Ronnekleiv-Kelly
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Dhanansayan Shanmuganayagam
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Center for Biomedical Swine Research and Innovation, University of Wisconsin–Madison, Madison, WI, United States
| | - C. Dustin Rubinstein
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
29
|
Tomasoni M, Beyeler MJ, Vela SO, Mounier N, Porcu E, Corre T, Krefl D, Button AL, Abouzeid H, Lazaros K, Bochud M, Schlingemann R, Bergin C, Bergmann S. Genome-wide Association Studies of Retinal Vessel Tortuosity Identify Numerous Novel Loci Revealing Genes and Pathways Associated With Ocular and Cardiometabolic Diseases. OPHTHALMOLOGY SCIENCE 2023; 3:100288. [PMID: 37131961 PMCID: PMC10149284 DOI: 10.1016/j.xops.2023.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Purpose To identify novel susceptibility loci for retinal vascular tortuosity, to better understand the molecular mechanisms modulating this trait, and reveal causal relationships with diseases and their risk factors. Design Genome-wide Association Studies (GWAS) of vascular tortuosity of retinal arteries and veins followed by replication meta-analysis and Mendelian randomization (MR). Participants We analyzed 116 639 fundus images of suitable quality from 63 662 participants from 3 cohorts, namely the UK Biobank (n = 62 751), the Swiss Kidney Project on Genes in Hypertension (n = 397), and OphtalmoLaus (n = 512). Methods Using a fully automated retina image processing pipeline to annotate vessels and a deep learning algorithm to determine the vessel type, we computed the median arterial, venous and combined vessel tortuosity measured by the distance factor (the length of a vessel segment over its chord length), as well as by 6 alternative measures that integrate over vessel curvature. We then performed the largest GWAS of these traits to date and assessed gene set enrichment using the novel high-precision statistical method PascalX. Main Outcome Measure We evaluated the genetic association of retinal tortuosity, measured by the distance factor. Results Higher retinal tortuosity was significantly associated with higher incidence of angina, myocardial infarction, stroke, deep vein thrombosis, and hypertension. We identified 175 significantly associated genetic loci in the UK Biobank; 173 of these were novel and 4 replicated in our second, much smaller, metacohort. We estimated heritability at ∼25% using linkage disequilibrium score regression. Vessel type specific GWAS revealed 116 loci for arteries and 63 for veins. Genes with significant association signals included COL4A2, ACTN4, LGALS4, LGALS7, LGALS7B, TNS1, MAP4K1, EIF3K, CAPN12, ECH1, and SYNPO2. These tortuosity genes were overexpressed in arteries and heart muscle and linked to pathways related to the structural properties of the vasculature. We demonstrated that retinal tortuosity loci served pleiotropic functions as cardiometabolic disease variants and risk factors. Concordantly, MR revealed causal effects between tortuosity, body mass index, and low-density lipoprotein. Conclusions Several alleles associated with retinal vessel tortuosity suggest a common genetic architecture of this trait with ocular diseases (glaucoma, myopia), cardiovascular diseases, and metabolic syndrome. Our results shed new light on the genetics of vascular diseases and their pathomechanisms and highlight how GWASs and heritability can be used to improve phenotype extraction from high-dimensional data, such as images. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Mattia Tomasoni
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Michael Johannes Beyeler
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sofia Ortin Vela
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ninon Mounier
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Eleonora Porcu
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Tanguy Corre
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Daniel Krefl
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alexander Luke Button
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hana Abouzeid
- Division of Ophthalmology, Geneva University Hospitals, Geneva, Switzerland
- Clinical Eye Research Center Memorial Adolphe de Rothschild, Geneva, Switzerland
| | | | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Reinier Schlingemann
- Jules-Gonin Eye Hospital, Lausanne, Switzerland
- Department of Ophthalmology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | | | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
30
|
Vidal CMP, Carrilho MR. Dentin Degradation: From Tissue Breakdown to Possibilities for Therapeutic Intervention. CURRENT ORAL HEALTH REPORTS 2023; 10:99-110. [PMID: 37928132 PMCID: PMC10624336 DOI: 10.1007/s40496-023-00341-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 11/07/2023]
Abstract
Purpose of the Review Presently, dental materials science is driven by the search for new and improved materials that can trigger specific reactions from the affected tissue to stimulate repair or regeneration while interacting with the oral environment to promote or maintain oral health. In parallel, evidence from the past decades has challenged the exclusive role of bacteria in dentin tissue degradation in caries, questioning our understanding of caries etiopathogenesis. The goal of this review is to recapitulate the current evidence on the host and bacterial contributions to degradation, inflammation, and repair of the dentin-pulp complex in caries. Recent Findings Contrasting findings attribute dentin breakdown to the activity of endogenous enzymes, such as matrix metalloproteinases (MMPs) and cathepsins, while the role of bacteria and their by-products in the destruction of dentin organic matrix and pulp inflammation has been for decades supported as an incontestable paradigm. Aiming to better understand the mechanisms involved in collagen degradation by host enzymes in caries, studies have showed that these proteinases are expressed in the mature dentin (i.e., after dentin formation) and become activated by the low pH in the acidic environment resulted by bacterial metabolism in caries. However, different host sources other than dentin-bound proteinases seem to also contribute to caries progression, such as saliva and pulp. Interestingly, studies evaluating pulp responses to bacteria invasion and inflammation in caries report higher levels of MMPs and cathepsins in inflamed tissue, but also showed MMP potential to resolve inflammation and stimulate wound healing. Notably, as reported for other tissues, MMPs exert dual roles in the dentin-pulp complex in caries, participating or regulating both degradative and reparative mechanisms. Summary The specific roles of host and bacteria and their by-products in caries progression have yet to be clarified. The complex interactions between inflammation and repair in caries pose challenges to a clear understanding of the dentin-pulp complex responses and changes to bacteria invasion. However, it opens new venues for the development of novel therapies and dental biomaterials based on the modulation of specific mechanisms to favor tissue repair and healing.
Collapse
Affiliation(s)
- Cristina M. P. Vidal
- Department of Operative Dentistry, College of Dentistry, The University of Iowa, 801 Newton Road, DSB S245, Iowa City, IA 52242, USA
| | | |
Collapse
|
31
|
Neves RL, Branquinho J, Arata JG, Bittencourt CA, Gomes CP, Riguetti M, da Mata GF, Fernandes DE, Icimoto MY, Kirsztajn GM, Pesquero JB. ACE2, ACE, DPPIV, PREP and CAT L enzymatic activities in COVID-19: imbalance of ACE2/ACE ratio and potential RAAS dysregulation in severe cases. Inflamm Res 2023; 72:1719-1731. [PMID: 37537367 DOI: 10.1007/s00011-023-01775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVE AND DESIGN Circulating enzymatic activity and RAAS regulation in severe cases of COVID-19 remains unclear, therefore we measured the serum activity of several proteases as potential targets to control the SARS-CoV-2 infection. MATERIAL OR SUBJECTS 152 patients with COVID-19-like symptoms were grouped according to the severity of symptoms (COVID-19 negative, mild, moderate and severe). METHODS Serum samples of COVID-19 patients and controls were subjected to biochemical analysis and enzymatic assays of ACE2, ACE, DPPIV, PREP and CAT L. One-way ANOVA and multivariate logistic regression analysis were used. Statistical significance was accepted at p < 0.05. RESULTS We detected a positive correlation among comorbidities, higher C-reactive protein (CRP) and D-dimer levels with disease severity. Enzymatic assays revealed an increase in serum ACE2 and CAT L activities in severe COVID-19 patients, while ACE, DPPIV and PREP activities were significantly reduced. Notably, analysis of ACE2/ACE activity ratio suggests a possible imbalance of ANG II/ANG(1-7) ratio, in a positive association with the disease severity. CONCLUSION Our findings reveal a correlation between proteases activity and the severity of COVID-19. These enzymes together contribute to the activation of pro-inflammatory pathways, trigger a systemic activation of inflammatory mediators, leading to a RAAS dysregulation and generating a significant damage in several organs, contributing to poor outcomes of severe cases.
Collapse
Affiliation(s)
- Raquel Leão Neves
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Jéssica Branquinho
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Júlia Galanakis Arata
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Clarissa Azevedo Bittencourt
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Caio Perez Gomes
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Michelle Riguetti
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Gustavo Ferreira da Mata
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - João Bosco Pesquero
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
32
|
Dolmatov IY, Nizhnichenko VA. Extracellular Matrix of Echinoderms. Mar Drugs 2023; 21:417. [PMID: 37504948 PMCID: PMC10381214 DOI: 10.3390/md21070417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
This review considers available data on the composition of the extracellular matrix (ECM) in echinoderms. The connective tissue in these animals has a rather complex organization. It includes a wide range of structural ECM proteins, as well as various proteases and their inhibitors. Members of almost all major groups of collagens, various glycoproteins, and proteoglycans have been found in echinoderms. There are enzymes for the synthesis of structural proteins and their modification by polysaccharides. However, the ECM of echinoderms substantially differs from that of vertebrates by the lack of elastin, fibronectins, tenascins, and some other glycoproteins and proteoglycans. Echinoderms have a wide variety of proteinases, with serine, cysteine, aspartic, and metal peptidases identified among them. Their active centers have a typical structure and can break down various ECM molecules. Echinoderms are also distinguished by a wide range of proteinase inhibitors. The complex ECM structure and the variety of intermolecular interactions evidently explain the complexity of the mechanisms responsible for variations in the mechanical properties of connective tissue in echinoderms. These mechanisms probably depend not only on the number of cross-links between the molecules, but also on the composition of ECM and the properties of its proteins.
Collapse
Affiliation(s)
- Igor Yu Dolmatov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia
| | - Vladimir A Nizhnichenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia
| |
Collapse
|
33
|
Waldrep KM, Rodgers JI, Garrett SM, Wolf BJ, Feghali-Bostwick CA. The Role of SOX9 in IGF-II-Mediated Pulmonary Fibrosis. Int J Mol Sci 2023; 24:11234. [PMID: 37510994 PMCID: PMC10378869 DOI: 10.3390/ijms241411234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Pulmonary fibrosis (PF) associated with systemic sclerosis (SSc) results in significant morbidity and mortality. We previously reported that insulin-like growth factor-II (IGF-II) is overexpressed in lung tissues and fibroblasts from SSc patients, and IGF-II fosters fibrosis by upregulating collagen type I, fibronectin, and TGFβ. We now show that IGF-II augments mRNA levels of profibrotic signaling molecules TGFβ2 (p ≤ 0.01) and TGFβ3 (p ≤ 0.05), collagen type III (p ≤ 0.01), and the collagen posttranslational modification enzymes P4HA2 (p ≤ 0.05), P3H2 (p ≤ 0.05), LOX (p = 0.065), LOXL2 (p ≤ 0.05), LOXL4 (p ≤ 0.05) in primary human lung fibroblasts. IGF-II increases protein levels of TGFβ2 (p ≤ 0.01), as well as COL3A1, P4HA2, P4Hβ, and LOXL4 (p ≤ 0.05). In contrast, IGF-II decreases mRNA levels of the collagen degradation enzymes cathepsin (CTS) K, CTSB, and CTSL and protein levels of CTSK (p ≤ 0.05). The SRY-box transcription factor 9 (SOX9) is overexpressed in SSc lung tissues at the mRNA (p ≤ 0.05) and protein (p ≤ 0.01) levels compared to healthy controls. IGF-II induces SOX9 in lung fibroblasts (p ≤ 0.05) via the IGF1R/IR hybrid receptor, and SOX9 regulates TGFβ2 (p ≤ 0.05), TGFβ3 (p ≤ 0.05), COL3A1 (p ≤ 0.01), and P4HA2 (p ≤ 0.001) downstream of IGF-II. Our results identify a novel IGF-II signaling axis and downstream targets that are regulated in a SOX9-dependent and -independent manner. Our findings provide novel insights on the role of IGF-II in promoting pulmonary fibrosis.
Collapse
Affiliation(s)
- Kristy M. Waldrep
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Jessalyn I. Rodgers
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Sara M. Garrett
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Bethany J. Wolf
- Department of Public Health Sciences, Biostatistics and Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| |
Collapse
|
34
|
Tena Pérez V, Apaza Ticona L, H Cabanillas A, Maderuelo Corral S, Rosero Valencia DF, Martel Quintana A, Ortega Domenech M, Rumbero Sánchez Á. Isolation of Nocuolin A and Synthesis of New Oxadiazine Derivatives. Design, Synthesis, Molecular Docking, Apoptotic Evaluation, and Cathepsin B Inhibition. Mar Drugs 2023; 21:md21050284. [PMID: 37233478 DOI: 10.3390/md21050284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Nocuolin A (1), an oxadiazine, was isolated from the cyanobacterium Nostoc sp. Its chemical structure was elucidated using NMR and mass spectroscopic data. From this compound, two new oxadiazines, 3-[(6R)-5,6-dihydro-4,6-dipentyl-2H-1,2,3-oxadiazin-2-yl]-3-oxopropyl acetate (2) and 4-{3-[(6R)-5,6-dihydro-4,6-dipentyl-2H-1,2,3-oxadiazin-2-yl]-3-oxopropoxy}-4-oxobutanoic acid (3), were synthesised. The chemical structures of these two compounds were elucidated by a combination of NMR and MS analysis. Compound 3 showed cytotoxicity against the ACHN (0.73 ± 0.10 μM) and Hepa-1c1c7 (0.91 ± 0.08 μM) tumour cell lines. Similarly, compound 3 significantly decreased cathepsin B activity in ACHN and Hepa-1c1c7 tumour cell lines at concentrations of 1.52 ± 0.13 nM and 1.76 ± 0.24 nM, respectively. In addition, compound 3 showed no in vivo toxicity in a murine model treated with a dose of 4 mg/kg body weight.
Collapse
Affiliation(s)
- Víctor Tena Pérez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Luis Apaza Ticona
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Alfredo H Cabanillas
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | - Antera Martel Quintana
- Spanish Bank of Algas, Institute of Oceanography and Global Change (IOCAG) University of Las Palmas de Gran Canarias, Muelle de Taliarte s/n, 35214 Telde, Canary Islands, Spain
| | | | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
35
|
Yao Z, An W, Tuerdi M, Zhao J. Identification of novel prognostic indicators for oral squamous cell carcinoma based on proteomics and metabolomics. Transl Oncol 2023; 33:101672. [PMID: 37084685 PMCID: PMC10172993 DOI: 10.1016/j.tranon.2023.101672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 04/09/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND The low 5-year survival rate of oral squamous cell carcinoma (OSCC) suggests that new prognostic indicators need to be identified to aid the clinical management of patients. METHODS Saliva samples from OSCC patients and healthy controls were collected for proteomic and metabolomic sequencing. Gene expressed profiling was downloaded from TCGA and GEO databases. After the differential analysis, proteins with a significant impact on the prognosis of OSCC patients were screened. Correlation analysis was performed with metabolites and core proteins were identified. Cox regression analysis was utilized to stratify OSCC samples based on core proteins. The prognostic predictive ability of the core protein was then evaluated. Differences in infiltration of immune cells between the different strata were identified. RESULTS There were 678 differentially expressed proteins (DEPs), 94 intersected DEPs among them by intersecting with differentially expressed genes in TCGA and GSE30784 dataset. Seven core proteins were identified that significantly affected OSCC patient survival and strongly correlated with differential metabolites (R2 > 0.8). The samples were divided into high- and low-risk groups according to median risk score. The risk score and core proteins were well prognostic factor in OSCC patients. Genes in high-risk group were enriched in Notch signaling pathway, epithelial mesenchymal transition (EMT), and angiogenesis. Core proteins were strongly associated with the immune status of OSCC patients. CONCLUSIONS The results established a 7-protein signatures with the hope of early detection and the capacity for risk assessment of OSCC patient prognosis. Further providing more potential targets for the treatment of OSCC.
Collapse
Affiliation(s)
- Zhitao Yao
- Department of Trauma and Orthopedics, the First Affiliated Hospital of Xinjiang Medical University, No. 137 South Liyushan Road, Urumqi 830054, China; Oral Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi 830054, China
| | - Wei An
- Department of Trauma and Orthopedics, the First Affiliated Hospital of Xinjiang Medical University, No. 137 South Liyushan Road, Urumqi 830054, China; Oral Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi 830054, China
| | - Maimaitituxun Tuerdi
- Department of Trauma and Orthopedics, the First Affiliated Hospital of Xinjiang Medical University, No. 137 South Liyushan Road, Urumqi 830054, China; Oral Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi 830054, China
| | - Jin Zhao
- Department of Trauma and Orthopedics, the First Affiliated Hospital of Xinjiang Medical University, No. 137 South Liyushan Road, Urumqi 830054, China; Oral Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi 830054, China.
| |
Collapse
|
36
|
Dzobo K, Dandara C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics (Basel) 2023; 8:146. [PMID: 37092398 PMCID: PMC10123695 DOI: 10.3390/biomimetics8020146] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of tissue and organ integrity. Initially thought to be a bystander in many cellular processes, the extracellular matrix has been shown to have diverse components that regulate and activate many cellular processes and ultimately influence cell phenotype. Importantly, the ECM's composition, architecture, and stiffness/elasticity influence cellular phenotypes. Under normal conditions and during development, the synthesized ECM constantly undergoes degradation and remodeling processes via the action of matrix proteases that maintain tissue homeostasis. In many pathological conditions including fibrosis and cancer, ECM synthesis, remodeling, and degradation is dysregulated, causing its integrity to be altered. Both physical and chemical cues from the ECM are sensed via receptors including integrins and play key roles in driving cellular proliferation and differentiation and in the progression of various diseases such as cancers. Advances in 'omics' technologies have seen an increase in studies focusing on bidirectional cell-matrix interactions, and here, we highlight the emerging knowledge on the role played by the ECM during normal development and in pathological conditions. This review summarizes current ECM-targeted therapies that can modify ECM tumors to overcome drug resistance and better cancer treatment.
Collapse
Affiliation(s)
- Kevin Dzobo
- Medical Research Council, SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Collet Dandara
- Division of Human Genetics and Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
- The South African Medical Research Council-UCT Platform for Pharmacogenomics Research and Translation, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
37
|
Behring L, Ruiz-Gómez G, Trapp C, Morales M, Wodtke R, Köckerling M, Kopka K, Pisabarro MT, Pietzsch J, Löser R. Dipeptide-Derived Alkynes as Potent and Selective Irreversible Inhibitors of Cysteine Cathepsins. J Med Chem 2023; 66:3818-3851. [PMID: 36867428 PMCID: PMC10041539 DOI: 10.1021/acs.jmedchem.2c01360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The potential of designing irreversible alkyne-based inhibitors of cysteine cathepsins by isoelectronic replacement in reversibly acting potent peptide nitriles was explored. The synthesis of the dipeptide alkynes was developed with special emphasis on stereochemically homogeneous products obtained in the Gilbert-Seyferth homologation for C≡C bond formation. Twenty-three dipeptide alkynes and 12 analogous nitriles were synthesized and investigated for their inhibition of cathepsins B, L, S, and K. Numerous combinations of residues at positions P1 and P2 as well as terminal acyl groups allowed for the derivation of extensive structure-activity relationships, which were rationalized by computational covalent docking for selected examples. The determined inactivation constants of the alkynes at the target enzymes span a range of >3 orders of magnitude (3-10 133 M-1 s-1). Notably, the selectivity profiles of alkynes do not necessarily reflect those of the nitriles. Inhibitory activity at the cellular level was demonstrated for selected compounds.
Collapse
Affiliation(s)
- Lydia Behring
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Mommsenstraße 4, 01069 Dresden, Germany
| | - Gloria Ruiz-Gómez
- BIOTEC, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Christian Trapp
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Maryann Morales
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Köckerling
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Mommsenstraße 4, 01069 Dresden, Germany
| | - M Teresa Pisabarro
- BIOTEC, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Mommsenstraße 4, 01069 Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Mommsenstraße 4, 01069 Dresden, Germany
| |
Collapse
|
38
|
Wang H, Falcoz S, Morales J, Berteau JP. Investigating bone resorption in Atlantic herring fish intermuscular bones with solid-state NMR. Phys Chem Chem Phys 2023; 25:9336-9348. [PMID: 36920434 DOI: 10.1039/d2cp03023c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Bones are connective tissues mainly made of collagen proteins with calcium phosphate deposits. They undergo constant remodeling, including destroying existing bones tissues (known as bone resorption) and rebuilding new ones. Bone remodeling has been well-described in mammals, but it is not the case in fish. Here, we focused on the mobile phase of the bone vascular system by carefully preserving moisture in adult Atlantic herring intermuscular bones. We detected pore water with high ionic strength and soluble degraded peptides whose 1H-transverse relaxation times, T2s, exceed 15 milliseconds. With favorable T2s, we incorporated a solution state spinlock scheme into the INEPT techniques to unequivocally demonstrate collagen degradation. In addition, we detected a substantial amount of inorganic phosphate in solution with 31P-NMR in the considerable background of solid hydroxyapatite calcium phosphate by saturation recovery experiment. It is consistent with the idea that bone resorption degrades bone collagen and releases calcium ions and phosphate ions in the pore water with increased ionic strength. Our report is the first to probe the resorption process in the heterogenous bone microstructure with a rigorous characterization of 1H and 13C relaxation behavior and direct assignments. In addition, we contribute to the fish bones literature by investigating fish bone remodeling using NMR for the first time.
Collapse
Affiliation(s)
- Hsin Wang
- Department of Chemistry and Biochemistry, The City College of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA.
| | - Steve Falcoz
- Department of Physical Therapy, The College of Staten Island, 2800 Victory Blvd, Staten Island, NY 10314, USA
| | - Jorge Morales
- Department of Chemistry and Biochemistry, The City College of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA.
| | - Jean-Philippe Berteau
- Department of Physical Therapy, The College of Staten Island, 2800 Victory Blvd, Staten Island, NY 10314, USA.,New York Centre for Biomedical Engineering, City University of New York - City College of New York, New York 10031, USA.,Nanosciences Initiative, City University of New York - Advanced Science Research Center, New York 10031, USA
| |
Collapse
|
39
|
Naba A. 10 years of extracellular matrix proteomics: Accomplishments, challenges, and future perspectives. Mol Cell Proteomics 2023; 22:100528. [PMID: 36918099 PMCID: PMC10152135 DOI: 10.1016/j.mcpro.2023.100528] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
The extracellular matrix (ECM) is a complex assembly of hundreds of proteins forming the architectural scaffold of multicellular organisms. In addition to its structural role, the ECM conveys signals orchestrating cellular phenotypes. Alterations of ECM composition, abundance, structure, or mechanics, have been linked to diseases and disorders affecting all physiological systems, including fibrosis and cancer. Deciphering the protein composition of the ECM and how it changes in pathophysiological contexts is thus the first step toward understanding the roles of the ECM in health and disease and toward the development of therapeutic strategies to correct disease-causing ECM alterations. Potentially, the ECM also represents a vast, yet untapped reservoir of disease biomarkers. ECM proteins are characterized by unique biochemical properties that have hindered their study: they are large, heavily and uniquely post-translationally modified, and highly insoluble. Overcoming these challenges, we and others have devised mass-spectrometry-based proteomic approaches to define the ECM composition, or "matrisome", of tissues. This review provides a historical overview of ECM proteomics research and presents the latest advances that now allow the profiling of the ECM of healthy and diseased tissues. The second part highlights recent examples illustrating how ECM proteomics has emerged as a powerful discovery pipeline to identify prognostic cancer biomarkers. The third part discusses remaining challenges limiting our ability to translate findings to clinical application and proposes approaches to overcome them. Last, the review introduces readers to resources available to facilitate the interpretation of ECM proteomics datasets. The ECM was once thought to be impenetrable. MS-based proteomics has proven to be a powerful tool to decode the ECM. In light of the progress made over the past decade, there are reasons to believe that the in-depth exploration of the matrisome is within reach and that we may soon witness the first translational application of ECM proteomics.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA.
| |
Collapse
|
40
|
Patil D, Chen S, Fogliano V, Madadlou A. Hydrolysis improves the inhibition efficacy of bovine lactoferrin against infection by SARS-CoV-2 pseudovirus. Int Dairy J 2023; 137:105488. [PMID: 36089931 PMCID: PMC9444154 DOI: 10.1016/j.idairyj.2022.105488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/15/2022]
Abstract
The entry of SARS-CoV-2 into host cells may involve the spike protein cleavage by cathepsin L (CTSL). Certain food proteins such as lactoferrin (Lf) inhibit CTSL. The current study investigated the impact of hydrolysis (0-180 min) by proteinase K on electrophoretic pattern, secondary structure, cathepsin inhibitory and SARS-CoV-2 pseudovirus infectivity inhibitory of bovine Lf. Gel electrophoresis indicated that hydrolysis cut Lf molecules to half lobes (∼40 kDa) and produced peptides ≤18 kDa. Approximation of the secondary structural features through analysis of the second-derivative amide I band collected by infra-red spectroscopy suggested a correlative-causative relationship between cathepsin inhibition and the content of helix-unordered structures in Lf hydrolysate. The half maximal inhibitory concentration (IC50) of Lf hydrolysed for 90 min (H90) against CTSL was about 100 times smaller than that of the Lf hydrolysed for 0 min (H0). H90 had also double activity against SARS-CoV-2 pseudo-types infectivity compared with H0.
Collapse
Affiliation(s)
- Devashree Patil
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Siyu Chen
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Ashkan Madadlou
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
41
|
Phan V, Hathazi D, Preuße C, Czech A, Freier E, Shema G, Zahedi RP, Roos A. Molecular mechanisms in chloroquine-exposed muscle cells elucidated by combined proteomic and microscopic studies. Neuropathol Appl Neurobiol 2023; 49:e12877. [PMID: 36633103 DOI: 10.1111/nan.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Chloroquine (CQ) is an antimalarial drug with a growing number of applications as recently demonstrated in attempts to treat Covid-19. For decades, it has been well known that skeletal and cardiac muscle cells might display vulnerability against CQ exposure resulting in the clinical manifestation of a CQ-induced myopathy. In line with the known effect of CQ on inhibition of the lysosomal function and thus cellular protein clearance, the build-up of autophagic vacuoles along with protein aggregates is a histological hallmark of the disease. Given that protein targets of the perturbed proteostasis are still not fully discovered, we applied different proteomic and immunological-based studies to improve the current understanding of the biochemical nature of CQ-myopathy. METHODS To gain a comprehensive understanding of the molecular pathogenesis of this acquired myopathy and to define proteins targets as well as pathophysiological processes beyond impaired proteolysis, utilising CQ-treated C2C12 cells and muscle biopsies derived from CQ-myopathy patients, we performed different proteomic approaches and Coherent Anti-Stokes Raman Scattering (CARS) microscopy, in addition to immunohistochemical studies. RESULTS Our combined studies confirmed an impact of CQ-exposure on proper protein processing/folding and clearance, highlighted changes in the interactome of p62, a known aggregation marker and hereby identified the Rett syndrome protein MeCP2 as being affected. Moreover, our approach revealed-among others-a vulnerability of the extracellular matrix, cytoskeleton and lipid homeostasis. CONCLUSION We demonstrated that CQ exposure (secondarily) impacts biological processes beyond lysosomal function and linked a variety of proteins with known roles in the manifestation of other neuromuscular diseases.
Collapse
Affiliation(s)
- Vietxuan Phan
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Denisa Hathazi
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Corinna Preuße
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany.,Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Artur Czech
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Erik Freier
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Gerta Shema
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - René P Zahedi
- Leibniz Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany.,Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, Department of Biochemistry and Medical Genetics, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB, Canada
| | - Andreas Roos
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| |
Collapse
|
42
|
Linders DGJ, Bijlstra OD, Fallert LC, Hilling DE, Walker E, Straight B, March TL, Valentijn ARPM, Pool M, Burggraaf J, Basilion JP, Vahrmeijer AL, Kuppen PJK. Cysteine Cathepsins in Breast Cancer: Promising Targets for Fluorescence-Guided Surgery. Mol Imaging Biol 2023; 25:58-73. [PMID: 36002710 PMCID: PMC9971096 DOI: 10.1007/s11307-022-01768-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022]
Abstract
The majority of breast cancer patients is treated with breast-conserving surgery (BCS) combined with adjuvant radiation therapy. Up to 40% of patients has a tumor-positive resection margin after BCS, which necessitates re-resection or additional boost radiation. Cathepsin-targeted near-infrared fluorescence imaging during BCS could be used to detect residual cancer in the surgical cavity and guide additional resection, thereby preventing tumor-positive resection margins and associated mutilating treatments. The cysteine cathepsins are a family of proteases that play a major role in normal cellular physiology and neoplastic transformation. In breast cancer, the increased enzymatic activity and aberrant localization of many of the cysteine cathepsins drive tumor progression, proliferation, invasion, and metastasis. The upregulation of cysteine cathepsins in breast cancer cells indicates their potential as a target for intraoperative fluorescence imaging. This review provides a summary of the current knowledge on the role and expression of the most important cysteine cathepsins in breast cancer to better understand their potential as a target for fluorescence-guided surgery (FGS). In addition, it gives an overview of the cathepsin-targeted fluorescent probes that have been investigated preclinically and in breast cancer patients. The current review underscores that cysteine cathepsins are highly suitable molecular targets for FGS because of favorable expression and activity patterns in virtually all breast cancer subtypes. This is confirmed by cathepsin-targeted fluorescent probes that have been shown to facilitate in vivo breast cancer visualization and tumor resection in mouse models and breast cancer patients. These findings indicate that cathepsin-targeted FGS has potential to improve treatment outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Daan G. J. Linders
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Okker D. Bijlstra
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Laura C. Fallert
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Denise E. Hilling
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ethan Walker
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Taryn L. March
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Rob P. M. Valentijn
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martin Pool
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jacobus Burggraaf
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Center for Drug Research, 2333 AL Leiden, The Netherlands
| | - James P. Basilion
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Radiology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
43
|
Shieu MK, Ho HY, Lin CC, Lo YS, Chuang YC, Hsieh MJ, Chen MK. Narciclasine suppresses oral cancer metastasis by modulating cathepsin B and extracellular signal-related kinase pathways. Biomed Pharmacother 2023; 158:114159. [PMID: 36577331 DOI: 10.1016/j.biopha.2022.114159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Oral cancer is a malignancy with unfavorable prognosis due to its high rates of recurrence and lymph node metastasis. Narciclasine is extracted from Narcissus species (Amaryllidaceae), which have antitumor and anti-inflammatory properties. However, the antitumor properties of narciclasine toward oral cancer remain unclear. The present study explored the antimetastatic effects of narciclasine in oral cancer as well as the underlying molecular mechanisms. We treated three oral cancer cell lines with noncytotoxic concentrations of narciclasine and discovered a dose-dependent antimetastatic effect. Mitogen-activated protein kinase (MAPK) pathways, including extracellular signal-related kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), were regulated by narciclasine. We further discovered the ERK pathway to directly affect narciclasine-induced metastasis inhibition by combining treatment with narciclasine and ERK inhibitor. Furthermore, downregulation of cathepsin B (CTSB) in the SAS and SCC-47 cell lines revealed the critical role of CTSB in the antimetastatic effect of narciclasine. Our findings indicate that narciclasine inhibits oral cancer metastasis by regulating the ERK pathway and CTSB. This study provides evidence of the mechanism of narciclasine-induced inhibition oral cancer metastasis and suggests potential targets for use in oral cancer treatment.
Collapse
Affiliation(s)
- Mu-Kuei Shieu
- Division of General Practice, Department of Medical Education, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; Ph.D. Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan.
| |
Collapse
|
44
|
Essa RZ, Wu YS, Batumalaie K, Sekar M, Poh CL. Antiviral peptides against SARS-CoV-2: therapeutic targets, mechanistic antiviral activity, and efficient delivery. Pharmacol Rep 2022; 74:1166-1181. [PMID: 36401119 PMCID: PMC9676828 DOI: 10.1007/s43440-022-00432-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022]
Abstract
The global pandemic of COVID-19 is a serious public health concern. Over 625 million confirmed cases and more than 6 million deaths have been recorded worldwide. Although several vaccines and antiviral medications have been developed, their efficacy is limited by the emerging new SARS-CoV-2 strains. Peptide-based therapeutics is a fast-growing class of new drugs and have unique advantages over large proteins and small molecules. Antiviral peptides (AVPs) are short polycationic antivirals with broad-spectrum effects, which have been shown to exert both prophylactic and therapeutic actions against reported coronaviruses. The potential therapeutic targets of AVPs are located either on the virus (e.g., E-protein and S-protein) to prohibit viral binding or host cells, particularly, those present on the cell surface (e.g., ACE2 and TMPRSS2). Despite AVPs having promising antiviral effects, their efficacy is limited by low bioavailability. Thus, nanoformulation is a prerequisite for prolonged bioavailability and efficient delivery. This review aimed to present an insight into the therapeutic AVP targets on both virus and host cells by discussing their antiviral activities and associated molecular mechanisms. Besides, it described the technique for discovering and developing possible AVPs based on their targets, as well as the significance of using nanotechnology for their efficient delivery against SARS-CoV-2.
Collapse
Affiliation(s)
- Raahilah Zahir Essa
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 47500 Selangor, Malaysia
| | - Yuan-seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Selangor, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Selangor, Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450 Ipoh, Perak Malaysia
| | - Chit-laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Selangor, Malaysia
| |
Collapse
|
45
|
Herrera C, Olejniczak N, Noël-Romas L, Plummer F, Burgener A. Pre-clinical evaluation of antiproteases as potential candidates for HIV-1 pre-exposure prophylaxis. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:998913. [DOI: 10.3389/frph.2022.998913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Previous studies on highly HIV-1-exposed, yet persistently seronegative women from the Punwami Sex Worker cohort in Kenya, have shed light on putative protective mechanisms, suggesting that mucosal immunological factors, such as antiproteases, could be mediating resistance to HIV-1 transmission in the female reproductive tract. Nine protease inhibitors were selected for this study: serpin B4, serpin A1, serpin A3, serpin C1, cystatin A, cystatin B, serpin B13, serpin B1 and α-2-macroglobulin-like-protein 1. We assessed in a pilot study, the activity of these antiproteases with cellular assays and an ex vivo HIV-1 challenge model of human ecto-cervical tissue explants. Preliminary findings with both models, cellular and tissue explants, established an order of inhibitory potency for the mucosal proteins as candidates for pre-exposure prophylaxis when mimicking pre-coital use. Combination of all antiproteases considered in this study was more active than any of the individual mucosal proteins. Furthermore, the migration of cells out of ecto-cervical explants was blocked indicating potential prevention of viral dissemination following amplification of the founder population. These findings constitute the base for further development of these mucosal protease inhibitors for prevention strategies.
Collapse
|
46
|
Chan SW. Fusion assays for screening of fusion inhibitors targeting SARS-CoV-2 entry and syncytia formation. Front Pharmacol 2022; 13:1007527. [PMID: 36438831 PMCID: PMC9691968 DOI: 10.3389/fphar.2022.1007527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/19/2022] [Indexed: 08/30/2023] Open
Abstract
Virus fusion process is evolutionarily conserved and provides a promising pan-viral target. Cell-cell fusion leads to syncytial formation and has implications in pathogenesis, virus spread and immune evasion. Drugs that target these processes can be developed into anti-virals. Here, we have developed sensitive, rapid, adaptable fusion reporter gene assays as models for plasma membrane and alternative fusion pathways as well as syncytial fusion in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and have confirmed their specificity using neutralizing antibodies and specific protease inhibitors. The fusion report gene assays are more sensitive and unbiased than morphological fusion assay. The fusion assays can differentiate between transmembrane serine protease 2 (TMPRSS2)-dependency in TMPRSS2(+) cells and trypsin-dependency in angiotensin-converting enzyme 2 (ACE2)(+)TMPRSS2(-) cells. Moreover, we have identified putative novel fusion processes that are triggered by an acidic pH with and without trypsin. Coupled with morphological fusion criteria, we have found that syncytia formation is enhanced by TMPRSS2 or trypsin. By testing against our top drug hits previously shown to inhibit SARS-CoV-2 pseudovirus infection, we have identified several fusion inhibitors including structurally related lopsided kite-shaped molecules. Our results have important implications in the development of universal blockers and synergistic therapeutics and the small molecule inhibitors can provide important tools in elucidating the fusion process.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
47
|
Structure determinants defining the specificity of papain-like cysteine proteases. Comput Struct Biotechnol J 2022; 20:6552-6569. [DOI: 10.1016/j.csbj.2022.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
|
48
|
Macrophages disseminate pathogen associated molecular patterns through the direct extracellular release of the soluble content of their phagolysosomes. Nat Commun 2022; 13:3072. [PMID: 35654768 PMCID: PMC9163141 DOI: 10.1038/s41467-022-30654-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Recognition of pathogen-or-damage-associated molecular patterns is critical to inflammation. However, most pathogen-or-damage-associated molecular patterns exist within intact microbes/cells and are typically part of non-diffusible, stable macromolecules that are not optimally immunostimulatory or available for immune detection. Partial digestion of microbes/cells following phagocytosis potentially generates new diffusible pathogen-or-damage-associated molecular patterns, however, our current understanding of phagosomal biology would have these molecules sequestered and destroyed within phagolysosomes. Here, we show the controlled release of partially-digested, soluble material from phagolysosomes of macrophages through transient, iterative fusion-fission events between mature phagolysosomes and the plasma membrane, a process we term eructophagy. Eructophagy is most active in proinflammatory macrophages and further induced by toll like receptor engagement. Eructophagy is mediated by genes encoding proteins required for autophagy and can activate vicinal cells by release of phagolysosomally-processed, partially-digested pathogen associated molecular patterns. We propose that eructophagy allows macrophages to amplify local inflammation through the processing and dissemination of pathogen-or-damage-associated molecular patterns. The detection of conserved motifs by pattern recognition receptors is a crucial component of the innate detection of pathogens and danger signals via conserved pattern recognition receptors. Here the authors define a pathway that transfers partially digested material from the phagolysosomal pathway of macrophages to release at the plasma membrane which is associated with enhanced inflammatory potential, by a process they introduce as eructophagy.
Collapse
|
49
|
Georgieva VS, Bluhm B, Probst K, Zhu M, Heilig J, Niehoff A, Brachvogel B. Ablation of the miRNA cluster 24 in cartilage and osteoblasts impairs bone remodeling. Sci Rep 2022; 12:9116. [PMID: 35650319 PMCID: PMC9160244 DOI: 10.1038/s41598-022-13231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate cartilage and bone development and function, however, only few miRNAs have been described to play a role for cartilage to bone transition in vivo. Previously, we showed that cartilage-specific deletion of the Mirc24 cluster in newborn male mice leads to impaired growth plate cartilage development due to increased RAF/MEK/ERK signaling and affects the stability of the cartilage extracellular matrix on account of decreased SOX6 and SOX9 and increased MMP13 levels. Here, we studied how Mirc24 cluster inactivation in cartilage and osteoblasts leads to an increased bone density associated with defects in collagen remodeling in trabecular bone. No changes in osteoblast distribution were observed, whereas the number of osteoclasts was reduced and TRAP activity in osteoclasts decreased. Surprisingly, an increased level of cluster-encoded miR-322 or miR-503 raises Rankl gene expression and inactivation of the cluster in chondrocytes reduces Rankl expression. These results suggest that the Mirc24 cluster regulates Rankl expression in chondrocytes at the chondro-osseous border, where the cluster is mainly expressed to modulate osteoclast formation, bone remodeling and bone integrity.
Collapse
Affiliation(s)
- Veronika S Georgieva
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Björn Bluhm
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Kristina Probst
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Mengjie Zhu
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Juliane Heilig
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, 50931, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, 50931, Cologne, Germany
| | - Bent Brachvogel
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany. .,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
50
|
Biochemistry of human tear film: A review. Exp Eye Res 2022; 220:109101. [DOI: 10.1016/j.exer.2022.109101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
|