1
|
Zhang S, Wang L, Lu Y, Guo C, Zhang T, Zhang L. Targeting spleen tyrosine kinase (SYK): structure, mechanisms and drug discovery. Drug Discov Today 2025; 30:104257. [PMID: 39653169 DOI: 10.1016/j.drudis.2024.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Spleen tyrosine kinase (SYK) is a crucial non-receptor tyrosine kinase involved in signaling pathways that regulate various cellular processes. It is primarily expressed in hematopoietic cells and myeloid cells, which are crucial for B-cell development, maturation and antibody production, and it is a key therapeutic target for autoimmune and allergic diseases. Overexpression of SYK is also associated with cancer and cardiovascular, cerebrovascular and neurodegenerative diseases, contributing to their initiation and progression. SYK is a promising target for drug development, and several inhibitors have already been reported. This review covers the structure and regulatory pathways of SYK, as well as its links to various diseases. It also highlights key small-molecule SYK inhibitors, their design strategies and their potential therapeutic benefits, aiming to enhance our understanding and aid in the discovery of more-effective SYK inhibitors.
Collapse
Affiliation(s)
- Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lilin Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chuanxin Guo
- Nucleic Acid Division, Shanghai Cell Therapy Group, Shanghai 201805, China.
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
2
|
Zhao Y, Su J, Xu CY, Li YB, Hu T, Li Y, Yang L, Zhao Q, Zhang WY. Establishment of a mandible defect model in rabbits infected with multiple bacteria and bioinformatics analysis. Front Bioeng Biotechnol 2024; 12:1350024. [PMID: 38282893 PMCID: PMC10811100 DOI: 10.3389/fbioe.2024.1350024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Objective: A model of chronic infectious mandibular defect (IMD) caused by mixed infection with Staphylococcus aureus and Pseudomonas aeruginosa was established to explore the occurrence and development of IMD and identify key genes by transcriptome sequencing and bioinformatics analysis. Methods: S. aureus and P. aeruginosa were diluted to 3 × 108 CFU/mL, and 6 × 3 × 3 mm defects lateral to the Mandibular Symphysis were induced in 28 New Zealand rabbits. Sodium Morrhuate (0.5%) and 50 μL bacterial solution were injected in turn. The modeling was completed after the bone wax closed; the effects were evaluated through postoperative observations, imaging and histological analyses. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein‒protein interaction (PPI) network analyses were performed to investigate the function of the differentially expressed genes (DEGs). Results: All rabbits showed characteristics of infection. The bacterial cultures were positive, and polymerase chain reaction (PCR) was used to identify S. aureus and P. aeruginosa. Cone beam CT and histological analyses showed inflammatory cell infiltration, pus formation in the medullary cavity, increased osteoclast activity in the defect area, and blurring at the edge of the bone defect. Bioinformatics analysis showed 1,804 DEGs, 743 were upregulated and 1,061 were downregulated. GO and KEGG analyses showed that the DEGs were enriched in immunity and osteogenesis inhibition, and the core genes identified by the PPI network were enriched in the Hedgehog pathway, which plays a role in inflammation and tissue repair; the MEF2 transcription factor family was predicted by IRegulon. Conclusion: By direct injection of bacterial solution into the rabbit mandible defect area, the rabbit chronic IMD model was successfully established. Based on the bioinformatics analysis, we speculate that the Hedgehog pathway and the MEF2 transcription factor family may be potential intervention targets for repairing IMD.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
- Postgraduate Research Institute, Kunming Medical University, Kunming, China
| | - Jun Su
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
| | - Chong-yan Xu
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
- Postgraduate Research Institute, Kunming Medical University, Kunming, China
| | - Yan-bo Li
- Postgraduate Research Institute, Kunming Medical University, Kunming, China
| | - Tong Hu
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
- Postgraduate Research Institute, Kunming Medical University, Kunming, China
| | - Yi Li
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
- Postgraduate Research Institute, Kunming Medical University, Kunming, China
| | - Li Yang
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
| | - Qiang Zhao
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
| | - Wen-yun Zhang
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
| |
Collapse
|
3
|
Wu C, Guo L, Muhataer X, Li Q, Lian Z, Li Y, Wang W, Ding W, Zhou Y, Yang X, Chen M. Interaction between the PI3K/AKT pathway and mitochondrial autophagy in macrophages and the leukocyte count in rats with LPS-induced pulmonary infection. Open Life Sci 2023; 18:20220588. [PMID: 37077346 PMCID: PMC10106970 DOI: 10.1515/biol-2022-0588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 04/21/2023] Open
Abstract
This study examined the effects of the PI3K/AKT pathway and mitochondrial autophagy in macrophages and the leukocyte count after pulmonary infection. Sprague‒Dawley rats were subjected to tracheal injection of lipopolysaccharide (LPS) to establish animal models of pulmonary infection. By inhibiting the PI3K/AKT pathway or inhibiting/inducing mitochondrial autophagy in macrophages, the severity of the pulmonary infection and the leukocyte count were altered. The PI3K/AKT inhibition group did not show a significant difference in leukocyte counts compared with the infection model group. Mitochondrial autophagy induction alleviated the pulmonary inflammatory response. The infection model group had significantly higher levels of LC3B, Beclin1, and p-mTOR than the control group. The AKT2 inhibitor group exhibited significantly increased levels of LC3B and Beclin1 compared with the control group (P < 0.05), and the Beclin1 level was significantly higher than that in the infection model group (P < 0.05). Compared with the infection model group, the mitochondrial autophagy inhibitor group exhibited significantly decreased levels of p-AKT2 and p-mTOR, whereas the levels of these proteins were significantly increased in the mitochondrial autophagy inducer group (P < 0.05). PI3K/AKT inhibition promoted mitochondrial autophagy in macrophages. Mitochondrial autophagy induction activated the downstream gene mTOR of the PI3K/AKT pathway, alleviated pulmonary inflammatory reactions, and decreased leukocyte counts.
Collapse
Affiliation(s)
- Chao Wu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, 830001Urumqi, China
| | - Lianghua Guo
- Department of Respiratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, 355000Fu’an City, China
| | - Xirennayi Muhataer
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, 830001Urumqi, China
| | - Qifeng Li
- Xinjiang Institute of Pediatrics, Children’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi830054, China
| | - Zhichuang Lian
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, 830001Urumqi, China
| | - Yafang Li
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, 830001Urumqi, China
| | - Wenyi Wang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, 830001Urumqi, China
| | - Wei Ding
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, 830001Urumqi, China
| | - Yuan Zhou
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, 830001Urumqi, China
| | - Xiaohong Yang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, 830001Urumqi, China
| | - Muzhi Chen
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318, Chaowang Road, Gongshu District, 310005Hangzhou, China
| |
Collapse
|
4
|
A Novel TLR4-SYK Interaction Axis Plays an Essential Role in the Innate Immunity Response in Bovine Mammary Epithelial Cells. Biomedicines 2022; 11:biomedicines11010097. [PMID: 36672605 PMCID: PMC9855420 DOI: 10.3390/biomedicines11010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Mammary gland epithelium, as the first line of defense for bovine mammary gland immunity, is crucial in the process of mammary glands’ innate immunity, especially that of bovine mammary epithelial cells (bMECs). Our previous studies successfully marked SYK as an important candidate gene for mastitis traits via GWAS and preliminarily confirmed that SYK expression is down-regulated in bMECs with LPS (E. coli) stimulation, but its work mechanism is still unclear. In this study, for the first time, in vivo, TLR4 and SYK were colocalized and had a high correlation in mastitis mammary epithelium; protein−protein interaction results also confirmed that there was a direct interaction between them in mastitis tissue, suggesting that SYK participates in the immune regulation of the TLR4 cascade for bovine mastitis. In vitro, TLR4 also interacts with SYK in LPS (E. coli)-stimulated or GBS (S. agalactiae)-infected bMECs, respectively. Moreover, TLR4 mRNA expression and protein levels were little affected in bMECsSYK- with LPS stimulation or GBS infection, indicating that SYK is an important downstream element of the TLR4 cascade in bMECs. Interestingly, IL-1β, IL-8, NF-κB and NLRP3 expression in LPS-stimulated or GBS-infected bMECsSYK- were significantly higher than in the control group, while AKT1 expression was down-regulated, implying that SYK could inhibit the IL-1β, IL-8, NF-κB and NLRP3 expression and alleviate inflammation in bMECs with LPS and GBS. Taken together, our solid evidence supports that TLR4/SYK/NF-κB signal axis in bMECs regulates the innate immunity response to LPS or GBS.
Collapse
|
5
|
Wang Y, Li Y, Guo W, Yang X, Qu J, Gao M, Chen S, Dong J, Li Q, Wang T. Comparison of the Chemical Components, Efficacy and Mechanisms of Action of Chrysanthemum morifolium Flower and Its Wild Relative Chrysanthemum indicum Flower against Liver-Fire Hyperactivity Syndrome of Hypertension via Integrative Analyses. Int J Mol Sci 2022; 23:ijms232213767. [PMID: 36430265 PMCID: PMC9692626 DOI: 10.3390/ijms232213767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
To clarify the differences in the clinical application scope of Chrysanthemum morifolium flower (CMF) and Chrysanthemum indicum flower (CIF), two herbs of similar origin, an integrated strategy of network pharmacology, molecular pharmacology, and metabolomics was employed, with a view to investigating the commonalities and dissimilarities in chemical components, efficacy and mechanisms of action. Initial HPLC-Q-TOF-MS analysis revealed that CMF and CIF had different flavonoid constituents. The biological processes underlying the therapeutic effects of CMF and CIF on liver-fire hyperactivity syndrome of hypertension (LFHSH) were predicted to be related to inflammatory response, fatty acid production, and other pathways based on network pharmacology analysis. ELISA, molecular docking, Western blot, and metabolomics techniques showed similar effects of CMF and CIF in lowering blood pressure, resistance to tissue, organ and functional damage, and dyslipidemia. However, distinct effects were found in the regulation of inflammatory response, PI3K-Akt and NF-κB signaling pathways, lipid anabolism, renin-angiotensin system, and metabolic abnormalities. The comparable efficacies of CMF and CIF, despite having distinct mechanisms of action, may be attributed to the integration and counteraction of their different regulating capabilities on the above anti-LFHSH mechanisms. This study offers a vital platform for assessment of differential and precise applications of herbs of close origin with similar but slightly different medicinal properties, and provides a research strategy for bridging Chinese medicine and modern precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qing Li
- Correspondence: (Q.L.); (T.W.); Tel.: +86-024-4352-0589 (Q.L.); +86-0755-2603-1728 (T.W.)
| | - Tiejie Wang
- Correspondence: (Q.L.); (T.W.); Tel.: +86-024-4352-0589 (Q.L.); +86-0755-2603-1728 (T.W.)
| |
Collapse
|
6
|
Cao M, Ma L, Yan C, Wang H, Ran M, Chen Y, Wang X, Liang X, Chai L, Li X. Mouse Ocilrp2/Clec2i negatively regulates LPS-mediated IL-6 production by blocking Dap12-Syk interaction in macrophage. Front Immunol 2022; 13:984520. [PMID: 36300111 PMCID: PMC9589251 DOI: 10.3389/fimmu.2022.984520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
C-type lectin Ocilrp2/Clec2i is widely expressed in dendritic cells, lymphokine-activated killer cells and activated T cells. Previous studies have shown that Ocilrp2 is an important regulator in the activation of T cells and NK cells. However, the role of Ocilrp2 in the inflammatory responses by activated macrophages is currently unknown. This study investigated the expression of inflammatory cytokines in LPS-induced macrophages from primary peritoneal macrophages silenced by specific siRNA target Ocilrp2. Ocilrp2 was significantly downregulated in macrophages via NF-κB and pathways upon LPS stimuli or VSV infection. Silencing Ocilrp2 resulted in the increased expression of IL-6 in LPS-stimulated peritoneal macrophages and mice. Moreover, IL-6 expression was reduced in LPS-induced Ocilrp2 over-expressing iBMDM cells. Furthermore, we found that Ocilrp2-related Syk activation is responsible for expressing inflammatory cytokines in LPS-stimulated macrophages. Silencing Ocilrp2 significantly promotes the binding of Syk to Dap12. Altogether, we identified the Ocilrp2 as a critical role in the TLR4 signaling pathway and inflammatory macrophages’ immune regulation, and added mechanistic insights into the crosstalk between TLR and Syk signaling.
Collapse
Affiliation(s)
- Mingya Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
- Institute of Translational Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lina Ma
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Chenyang Yan
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Han Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Mengzhe Ran
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Ying Chen
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Xiao Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Xiaonan Liang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Lihui Chai
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
- Institute of Translational Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Lihui Chai, ; Xia Li,
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
- Institute of Translational Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Lihui Chai, ; Xia Li,
| |
Collapse
|
7
|
Yi YS, Kim HG, Kim JH, Yang WS, Kim E, Jeong D, Park JG, Aziz N, Kim S, Parameswaran N, Cho JY. Syk-MyD88 Axis Is a Critical Determinant of Inflammatory-Response in Activated Macrophages. Front Immunol 2022; 12:767366. [PMID: 35003083 PMCID: PMC8733199 DOI: 10.3389/fimmu.2021.767366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023] Open
Abstract
Background Inflammation, a vital immune response to infection and injury, is mediated by macrophage activation. While spleen tyrosine kinase (Syk) and myeloid differentiation primary response 88 (MyD88) are reportedly involved in inflammatory responses in macrophages, their roles and underlying mechanisms are largely unknown. Methods Here, the role of the MyD88-Syk axis and the mechanism by which Syk and MyD88 cooperate during macrophage-mediated inflammatory responses are explored using knockout conditions of these proteins and mutation strategy as well as flowcytometric and immunoblotting analyses. Results Syk rapidly activates the nuclear factor-kappa B (NF-κB) signaling pathway in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and the activation of the NF-κB signaling pathway is abolished in Syk−/− RAW264.7 cells. MyD88 activates Syk and Syk-induced activation of NF-κB signaling pathway in LPS-stimulated RAW264.7 cells but Syk-induced inflammatory responses are significantly inhibited in MyD88−/− RAW264.7 cells. MyD88 interacts with Syk through the tyrosine 58 residue (Y58) in the hemi-immunoreceptor tyrosine-based activation motif (ITAM) of MyD88, leading to Syk activation and Syk-induced activation of the NF-κB signaling pathway. Src activates MyD88 by phosphorylation at Y58 via the Src kinase domain. In addition, Ras-related C3 botulinum toxin substrate 1 (Rac1) activation and Rac1-induced formation of filamentous actin (F actin) activate Src in LPS-stimulated RAW264.7 cells. Conclusions These results suggest that the MyD88-Syk axis is a critical player in macrophage-mediated inflammatory responses, and its function is promoted by an upstream Src kinase activated by Rac1-generated filamentous actin (F-actin).
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea.,Department of Life Sciences, Kyonggi University, Suwon, South Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Woo Seok Yang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Jae Gwang Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Suk Kim
- Institute of Animal Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Narayanan Parameswaran
- Department of Physiology and Division of Pathology, Michigan State University, East Lansing, MI, United States
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
8
|
Ruiz Castro PA, Yepiskoposyan H, Gubian S, Calvino-Martin F, Kogel U, Renggli K, Peitsch MC, Hoeng J, Talikka M. Systems biology approach highlights mechanistic differences between Crohn's disease and ulcerative colitis. Sci Rep 2021; 11:11519. [PMID: 34075172 PMCID: PMC8169754 DOI: 10.1038/s41598-021-91124-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanisms of IBD have been the subject of intensive exploration. We, therefore, assembled the available information into a suite of causal biological network models, which offer comprehensive visualization of the processes underlying IBD. Scientific text was curated by using Biological Expression Language (BEL) and compiled with OpenBEL 3.0.0. Network properties were analysed by Cytoscape. Network perturbation amplitudes were computed to score the network models with transcriptomic data from public data repositories. The IBD network model suite consists of three independent models that represent signalling pathways that contribute to IBD. In the “intestinal permeability” model, programmed cell death factors were downregulated in CD and upregulated in UC. In the “inflammation” model, PPARG, IL6, and IFN-associated pathways were prominent regulatory factors in both diseases. In the “wound healing” model, factors promoting wound healing were upregulated in CD and downregulated in UC. Scoring of publicly available transcriptomic datasets onto these network models demonstrated that the IBD models capture the perturbation in each dataset accurately. The IBD network model suite can provide better mechanistic insights of the transcriptional changes in IBD and constitutes a valuable tool in personalized medicine to further understand individual drug responses in IBD.
Collapse
Affiliation(s)
- Pedro A Ruiz Castro
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Hasmik Yepiskoposyan
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Sylvain Gubian
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Florian Calvino-Martin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Ulrike Kogel
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Kasper Renggli
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
9
|
Cortés-Vieyra R, Silva-García O, Gómez-García A, Gutiérrez-Castellanos S, Álvarez-Aguilar C, Baizabal-Aguirre VM. Glycogen Synthase Kinase 3β Modulates the Inflammatory Response Activated by Bacteria, Viruses, and Parasites. Front Immunol 2021; 12:675751. [PMID: 34017345 PMCID: PMC8129516 DOI: 10.3389/fimmu.2021.675751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/12/2021] [Indexed: 01/12/2023] Open
Abstract
Knowledge of glycogen synthase kinase 3β (GSK3β) activity and the molecules identified that regulate its function in infections caused by pathogenic microorganisms is crucial to understanding how the intensity of the inflammatory response can be controlled in the course of infections. In recent years many reports have described small molecular weight synthetic and natural compounds, proteins, and interference RNA with the potential to regulate the GSK3β activity and reduce the deleterious effects of the inflammatory response. Our goal in this review is to summarize the most recent advances on the role of GSK3β in the inflammatory response caused by bacteria, bacterial virulence factors (i.e. LPS and others), viruses, and parasites and how the regulation of its activity, mainly its inhibition by different type of molecules, modulates the inflammation.
Collapse
Affiliation(s)
- Ricarda Cortés-Vieyra
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social (IMSS), Morelia, Mexico
| | - Octavio Silva-García
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Anel Gómez-García
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social (IMSS), Morelia, Mexico
| | - Sergio Gutiérrez-Castellanos
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social (IMSS), Morelia, Mexico
| | - Cleto Álvarez-Aguilar
- Coordinación Auxiliar Médica de Investigación en Salud, IMSS Michoacán, Morelia, Mexico
| | - Víctor M Baizabal-Aguirre
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
10
|
Xu S, Wang J, Zhong J, Shao M, Jiang J, Song J, Zhu W, Zhang F, Xu H, Xu G, Zhang Y, Ma X, Lyu F. CD73 alleviates GSDMD-mediated microglia pyroptosis in spinal cord injury through PI3K/AKT/Foxo1 signaling. Clin Transl Med 2021; 11:e269. [PMID: 33463071 PMCID: PMC7774461 DOI: 10.1002/ctm2.269] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Neuroinflammation-induced secondary injury is an important cause of sustained progression of spinal cord injury. Inflammatory programmed cell death pyroptosis executed by the pore-forming protein gasdermin D (GSDMD) is an essential step of neuroinflammation. However, it is unclear whether CD73, a widely accepted immunosuppressive molecule, can inhibit pyroptosis via mediating GSDMD. METHODS C57BL/6J CD73 deficient mice and wild-type mice, Lipopolysaccharide (LPS)-induced primary microglia and BV2 cells were respectively used to illustrate the effect of CD73 on microglia pyroptosis in vivo and in vitro. A combination of molecular and histological methods was performed to assess pyroptosis and explore the mechanism both in vivo and in vitro. RESULTS We have shown molecular evidence for CD73 suppresses the activation of NLRP3 inflammasome complexes to reduce the maturation of GSDMD, leading to decreased pyroptosis in microglia. Further analysis reveals that adenosine-A2B adenosine receptor-PI3K-AKT-Foxo1 cascade is a possible mechanism of CD73 regulation. Importantly, we determine that CD73 inhibits the expression of GSDMD at the transcriptional level through Foxo1. What's more, we confirm the accumulation of HIF-1α promotes the overexpression of CD73 after spinal cord injury (SCI), and the increased CD73 in turn upregulates the expression of HIF-1α, eventually forming a positive feedback regulatory loop. CONCLUSION Our data reveal a novel function of CD73 on microglia pyroptosis, suggesting a unique therapeutic opportunity for mitigating the disease process in SCI.
Collapse
Affiliation(s)
- Shun Xu
- Department of OrthopedicsShanghai Fifth People's HospitalFudan UniversityShanghaiChina
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Jin Wang
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Junjie Zhong
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityFudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| | - Minghao Shao
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Jianyuan Jiang
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Jian Song
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Wei Zhu
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Fan Zhang
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Haocheng Xu
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Guangyu Xu
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Yuxuan Zhang
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Xiaosheng Ma
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| | - Feizhou Lyu
- Department of OrthopedicsShanghai Fifth People's HospitalFudan UniversityShanghaiChina
- Department of OrthopedicsHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
11
|
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2020; 78:1233-1261. [PMID: 33057840 PMCID: PMC7904555 DOI: 10.1007/s00018-020-03656-y] [Citation(s) in RCA: 687] [Impact Index Per Article: 137.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Toll-like receptor (TLR) 4 belongs to the TLR family of receptors inducing pro-inflammatory responses to invading pathogens. TLR4 is activated by lipopolysaccharide (LPS, endotoxin) of Gram-negative bacteria and sequentially triggers two signaling cascades: the first one involving TIRAP and MyD88 adaptor proteins is induced in the plasma membrane, whereas the second engaging adaptor proteins TRAM and TRIF begins in early endosomes after endocytosis of the receptor. The LPS-induced internalization of TLR4 and hence also the activation of the TRIF-dependent pathway is governed by a GPI-anchored protein, CD14. The endocytosis of TLR4 terminates the MyD88-dependent signaling, while the following endosome maturation and lysosomal degradation of TLR4 determine the duration and magnitude of the TRIF-dependent one. Alternatively, TLR4 may return to the plasma membrane, which process is still poorly understood. Therefore, the course of the LPS-induced pro-inflammatory responses depends strictly on the rates of TLR4 endocytosis and trafficking through the endo-lysosomal compartment. Notably, prolonged activation of TLR4 is linked with several hereditary human diseases, neurodegeneration and also with autoimmune diseases and cancer. Recent studies have provided ample data on the role of diverse proteins regulating the functions of early, late, and recycling endosomes in the TLR4-induced inflammation caused by LPS or phagocytosis of E. coli. In this review, we focus on the mechanisms of the internalization and intracellular trafficking of TLR4 and CD14, and also of LPS, in immune cells and discuss how dysregulation of the endo-lysosomal compartment contributes to the development of diverse human diseases.
Collapse
Affiliation(s)
- Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Marta Matyjek
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| |
Collapse
|
12
|
Schweig JE, Yao H, Jin C, Crawford F, Mullan M, Paris D. Neuronal Spleen tyrosine kinase (SYK) mediates cytokine release in Transgenic Tau P301S mice organotypic brain slice cultures. Neurosci Lett 2020; 729:134992. [PMID: 32334108 DOI: 10.1016/j.neulet.2020.134992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022]
Abstract
The Spleen Tyrosine Kinase (SYK) is known for its involvement in B-cell and T-cell signaling, modulating the peripheral immune response. We have previously shown that SYK is overactive in the brains of human Alzheimer's Disease (AD) patients, as well as mouse models of AD and tauopathy including Tg Tau P301S mice. More specifically, SYK activation occurs mainly in neurons in human AD brain specimens and mouse models of AD and colocalizes with tau pathogenic species, suggesting it could play a role in AD pathobiology. To assess the possible contribution of SYK to the inflammatory response induced by tau pathology, we analyzed cytokine production in organotypic brain slices cultures from Tg Tau P301S mice and wild-type littermates. Organotypic brains slices from Tau P301S mice produce more cytokines than brain slices from wild-type littermates while SYK inhibition completely antagonizes cytokine production from Tg Tau P301S brain slices. Interestingly, LPS exacerbates the production of pro-inflammatory cytokines in Tg Tau P301S brain sections compared to wild-type organotypic sections while SYK inhibition alleviates the release of pro-inflammatory cytokines induced by LPS. Given that SYK is mainly activated in neurons in Tg Tau P301S mice and not in glial cells, these data suggest that neuronal SYK contributes to the neuroinflammation triggered by the tau pathology. SYK represents an attractive target for regulating the underlying neuroinflammatory component induced by tau pathology.
Collapse
Affiliation(s)
- Jonas Elias Schweig
- The Roskamp Institute, Sarasota, FL, 34243, USA; James A. Haley Veterans' Hospital, Tampa, FL, 33612, USA.
| | - Hailan Yao
- The Roskamp Institute, Sarasota, FL, 34243, USA; James A. Haley Veterans' Hospital, Tampa, FL, 33612, USA
| | - Chao Jin
- The Roskamp Institute, Sarasota, FL, 34243, USA
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, 34243, USA; James A. Haley Veterans' Hospital, Tampa, FL, 33612, USA
| | | | - Daniel Paris
- The Roskamp Institute, Sarasota, FL, 34243, USA; James A. Haley Veterans' Hospital, Tampa, FL, 33612, USA
| |
Collapse
|
13
|
Niu J, Zhang B, Cui K, Gao Y, Li Z, Qian Z. Suppression of miR-147b contributed to H37Rv-infected macrophage viability and migration in tuberculosis in vitro. Microb Pathog 2020; 144:104125. [PMID: 32179078 DOI: 10.1016/j.micpath.2020.104125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Tuberculosis (TB) is a severe infectious disease. It was reported that microRNAs played important roles in tuberculosis. However, the role of miR-147b in the disease remained unveiling. METHODS Tuberculosis cell model was established using macrophage THP-1 cells infected with H37Rv strain. RT-qPCR was first for examination of miR-147b relative expression. Cell viabilities were then measured with MTT. Cell transfection was to interfere the relative expression of miR-147b or C11orf87 in infected cells. RT-qPCR was adopted to confirm the transfection efficiency. Luciferase assay verified the binding sites between miR-147b and C11orf87. Migration was examined by scratch and relative protein expression of EMT biomarkers and phosphorylation of Pi3K and AKT were assessed via Western blot. RESULT MiR-147b expression was higher and cell viability decreased in H32Rv-THP-1 cells. Cell viability was shown higher after miR-147b downregulation. Luciferase assay confirmed the binding. RT-qPCR found C11orf87 expression was lower in the H32Rv-THP-1 cells. MTT suggested that cell viability fell with the decrease of C11orf87 in infectious cells. Moreover, when H32Rv-THP-1 cells were co-transfected with miR-147b inhibitor and si-C11orf87, cell viability, migration and EMT and activation of Pi3K/AKT pathway was partially reversed compared with mere downregulation of miR-147b. CONCLUSION miR-147b might regulate macrophage proliferation and migration through targeting C11orf87 via Pi3K/AKT pathway in Tuberculosis in vitro, which calls for in-depth inter-cellular researches and animal researches to further support that miR-147b/C11orf87 axis might be a potential therapeutic target for the molecular treatment of Tuberculosis in the future.
Collapse
Affiliation(s)
- Junmei Niu
- Tuberculosis Department, The First Affiliated Hospital of Xinxiang Medical College, Henan Provinve, China.
| | - Bianfang Zhang
- Tuberculosis Department, The First Affiliated Hospital of Xinxiang Medical College, Henan Provinve, China.
| | - Kuili Cui
- Tuberculosis Department, The First Affiliated Hospital of Xinxiang Medical College, Henan Provinve, China.
| | - Yuan Gao
- Tuberculosis Department, The First Affiliated Hospital of Xinxiang Medical College, Henan Provinve, China.
| | - Zhenkui Li
- Tuberculosis Department, The First Affiliated Hospital of Xinxiang Medical College, Henan Provinve, China.
| | - Zhibin Qian
- Functional Laboratory of Basic Medical College of Xinxiang Medical College, Henan Province, 453003, China.
| |
Collapse
|
14
|
Yang D, Li S, Duan X, Ren J, Liang S, Yakoumatos L, Kang Y, Uriarte SM, Shang J, Li W, Wang H. TLR4 induced Wnt3a-Dvl3 restrains the intensity of inflammation and protects against endotoxin-driven organ failure through GSK3β/β-catenin signaling. Mol Immunol 2020; 118:153-164. [PMID: 31884387 PMCID: PMC7035959 DOI: 10.1016/j.molimm.2019.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Accumulating evidence suggests a regulatory role of Wnt proteins in innate immune responses. However, the effects of Wnt3a signaling on TLR4-mediated inflammatory responses are controversial and the signaling crosstalk between TLR4 and Wnt3a remains uncertain. METHODS Gain- and Loss- of function approaches were utilized to determine the function of Wnt3a signaling in TLR4-mediated inflammatory responses. Cytokine production at protein and mRNA levels and phosphorylation of signaling molecules were measured by ELISA, qRT-PCR, and Western Blot, respectively. Endotoxemia mouse model was employed to assess the effect of Wnt3a on systemic inflammatory cytokine levels and neutrophil infiltration. RESULTS LPS stimulation leads to an increase of Wnt3a expression and its downstream molecule, Dvl3, in primary monocytes. Inhibition or silence of Wnt3a or Dvl3 significantly increases the production of pro-inflammatory cytokines (IL-12, IL-6, TNFα), robustly reduces β-catenin accumulation, and enhances the phosphorylation of NF-κB P65 and its DNA binding activity. These results were confirmed by multiple gain- and loss- of function approaches including specific siRNA and ectopic expression of Dvl3, GSK3β, and β-catenin in monocytes. Moreover, in vivo relevance was established in a murine endotoxin model, in which Wnt3a inhibition enhances the inflammatory responses by augmenting the systemic pro-inflammatory cytokine levels and neutrophil infiltration. CONCLUSIONS TLR4 activation promotes Wnt3a-Dvl3 signaling, which acts as rheostats to restrain the intensity of inflammation through regulating GSK3β-β-catenin signaling and NF-κB activity. GENERAL SIGNIFICANCE Wnt3a-Dvl3-β-catenin signaling axis could be a potential interventional target for manipulating the direction and intensity of inflammatory responses.
Collapse
Affiliation(s)
- Dongqiang Yang
- Department of Infectious Diseases, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - ShuJian Li
- Department of Neurology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - Xiaoxian Duan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Junling Ren
- VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, VA, USA
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Lan Yakoumatos
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Yi Kang
- Department of Infectious Diseases, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Jia Shang
- Department of Infectious Diseases, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - Wei Li
- Department of Neurology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - Huizhi Wang
- VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, VA, USA.
| |
Collapse
|
15
|
Zhou Y, Leng X, Luo X, Mo C, Zou Q, Liu Y, Wang Y. Regulatory Dendritic Cells Induced by K313 Display Anti-Inflammatory Properties and Ameliorate Experimental Autoimmune Encephalitis in Mice. Front Pharmacol 2020; 10:1579. [PMID: 32063843 PMCID: PMC6997778 DOI: 10.3389/fphar.2019.01579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022] Open
Abstract
As a GSK-3β inhibitor reported by our group, K313 is a novel benzoxazole derivative and displays anti-inflammatory properties in RAW264.7 macrophages without cytotoxicity. The activity of GSK-3β affects the differentiation and maturation of bone marrow-derived dendritic cells (DCs). This study aims to investigate whether K313 can be used to induce regulatory/tolerogenic dendritic cells (DCregs), and the therapeutic effects of DCregs induced by K313 in the autoimmune model of experimental autoimmune encephalitis (EAE). The results show that compared with LPS stimulated mature DCs, K313-treated bone marrow-derived DCs display obvious tolerogenic characteristics with decreased expression of co-stimulatory molecules, downregulated secretions of pro-inflammatory cytokines and unregulated secretion of anti-inflammatory cytokine IL-10. The above characteristics conform to the typical phenotypes of DCregs. Moreover, K313-modified DCregs inhibit antigen-specific T cell responses in vitro. Furthermore, by adoptive transfer, K313 modified DCregs to the EAE mice, and the development of disease was ameliorated to some extent. In addition, treatment with K313-modified DCregs also significantly reduced the percentages of splenetic Th1 and Th17 cells and increased the percentage of regulatory T cells in EAE mice. In conclusion, K313-modified DCregs show anti-inflammatory properties in vitro and have a significant positive effect on the EAE disease in vivo. Our data indicate that K313-induced DCregs pulsed with auto-antigen might have potential use as a therapeutic approach for autoimmune inflammation of the central nervous system.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Emergency, West China Second University Hospital and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiao Leng
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Xingyan Luo
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Chunfen Mo
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Qiang Zou
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Yang Liu
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Yantang Wang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, China
| |
Collapse
|
16
|
Nouwen LV, Everts B. Pathogens MenTORing Macrophages and Dendritic Cells: Manipulation of mTOR and Cellular Metabolism to Promote Immune Escape. Cells 2020; 9:cells9010161. [PMID: 31936570 PMCID: PMC7017145 DOI: 10.3390/cells9010161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells, including macrophages and dendritic cells, represent an important first line of defense against infections. Upon recognition of pathogens, these cells undergo a metabolic reprogramming that supports their activation and ability to respond to the invading pathogens. An important metabolic regulator of these cells is mammalian target of rapamycin (mTOR). During infection, pathogens use host metabolic pathways to scavenge host nutrients, as well as target metabolic pathways for subversion of the host immune response that together facilitate pathogen survival. Given the pivotal role of mTOR in controlling metabolism and DC and macrophage function, pathogens have evolved strategies to target this pathway to manipulate these cells. This review seeks to discuss the most recent insights into how pathogens target DC and macrophage metabolism to subvert potential deleterious immune responses against them, by focusing on the metabolic pathways that are known to regulate and to be regulated by mTOR signaling including amino acid, lipid and carbohydrate metabolism, and autophagy.
Collapse
|
17
|
Wei W, Du H, Shao C, Zhou H, Lu Y, Yu L, Wan H, He Y. Screening of Antiviral Components of Ma Huang Tang and Investigation on the Ephedra Alkaloids Efficacy on Influenza Virus Type A. Front Pharmacol 2019; 10:961. [PMID: 31551774 PMCID: PMC6747051 DOI: 10.3389/fphar.2019.00961] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
Although Ma Huang Tang (MHT) has long been considered as a classical formula for respiratory infections like influenza, bronchitis and asthma, its chemical ingredients that really exert the main efficacy are still obscure. In this study we aimed to screen its antiviral components and investigate the potential mechanisms. The MDCK cellular research results showed that, among nine predominant ingredients of MHT, L-methylephedrin (LMEP), L-ephedrine (LEP) and D-pseudo- ephedrine (DPEP) significantly inhibited the proliferation of influenza A virus in vitro, and the inhibitory effect at 24 h after the treatment was more obvious than that at 48 h. They also significantly inhibited the mRNA expression levels of related genes in the TLR3, TLR4 and TLR7 signaling pathways, which were accompanied with the down-regulation of TNF-α level and the up-regulation of IFN-β level in the cell supernatant. Therefore, three Ephedra alkaloids exert an antiviral effect in vitro which may be closely related to the inhibition of viral replication and the modulation of inflammatory response. Animal research further indicated, at the 3rd and 7th days after infection, LEP and DPEP significantly attenuated lung injury, decreased lung index, virus load in the lung and the level of IL-1β in serum, inhibited the mRNA expression levels of TNF-α, TLR3, TLR4, TLR7, MyD88, NF-κB p65 and RIG-1 as well as the protein expression levels of TLR4, TLR7, MyD88 and NF-κB p65 and markedly increased thymus index, the level of IL-10 in serum and the mRNA expression level of IFN-γ. LEP and DPEP have certain protective effects on the influenza virus-infected mice, which may be associated with their abilities of effectively alleviating lung injury, improving the immunologic function of infected mice and adjusting the host's TLRs and RIG-1 pathways. The overall findings demonstrate that, as effective and inexpensive natural substances, Ephedra alkaloids and MHT may have potential utility in clinical management.
Collapse
Affiliation(s)
- Wenyang Wei
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haixia Du
- College of Basic, Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chongyu Shao
- College of Life Science, Zhejiang Chinese, Medical University, Hangzhou, China
| | - Huifen Zhou
- College of Life Science, Zhejiang Chinese, Medical University, Hangzhou, China
| | - Yiyu Lu
- Institute of Microbiology, Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| | - Li Yu
- College of Life Science, Zhejiang Chinese, Medical University, Hangzhou, China
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese, Medical University, Hangzhou, China
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
Yang F, Chen F, Li L, Yan L, Badri T, Lv C, Yu D, Zhang M, Jang X, Li J, Yuan L, Wang G, Li H, Li J, Cai Y. Three Novel Players: PTK2B, SYK, and TNFRSF21 Were Identified to Be Involved in the Regulation of Bovine Mastitis Susceptibility via GWAS and Post-transcriptional Analysis. Front Immunol 2019; 10:1579. [PMID: 31447828 PMCID: PMC6691815 DOI: 10.3389/fimmu.2019.01579] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022] Open
Abstract
Bovine mastitis is a common inflammatory disease caused by multiple factors in early lactation or dry period. Genome wide association studies (GWAS) can provide a convenient and effective strategy for understanding the biological basis of mastitis and better prevention. 2b-RADseq is a high-throughput sequencing technique that offers a powerful method for genome-wide genetic marker development and genotyping. In this study, single nucleotide polymorphisms (SNPs) of the immune-regulated gene correlative with mastitis were screened and identified by two stage association analysis via GWAS-2b-RADseq in Chinese Holstein cows. We have screened 10,058 high quality SNPs from 7,957,920 tags and calculated their allele frequencies. Twenty-seven significant SNPs were co-labeled in two GWAS analysis models [Bayesian (P < 0.001) and Logistic regression (P < 0.01)], and only three SNPs (rs75762330, C > T, PIC = 0.2999; rs88640083, A > G, PIC = 0.1676; rs20438858, G > A, PIC = 0.3366) were annotated to immune-regulated genes (PTK2B, SYK, and TNFRSF21). Identified three SNPs are located in non-coding regions with low or moderate genetic polymorphisms. However, independent sample population validation (Case-control study) data showed that three important SNPs (rs75762330, P < 0.025, OR > 1; rs88640083, P < 0.005, OR > 1; rs20438858, P < 0.001, OR < 1) were significantly associated with clinical mastitis trait. Importantly, PTK2B and SYK expression was down-regulated in both peripheral blood leukocytes (PBLs) of clinical mastitis cows and in vitro LPS (E. coli)-stimulated bovine mammary epithelial cells, while TNFRSF21 was up-regulated. Under the same conditions, expression of Toll-like receptor 4 (TLR4), AKT1, and pro-inflammatory factors (IL-1β and IL-8) were also up-regulated. Interestingly, network analysis indicated that PTK2B and SYK are co-expressed in innate immune signaling pathway of Chinese Holstein. Taken together, these results provided strong evidence for the study of SNPs in bovine mastitis, and revealed the role of SYK, PTK2B, and TNFRSF21 in bovine mastitis susceptibility/tolerance.
Collapse
Affiliation(s)
- Fan Yang
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fanghui Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lili Li
- National Animal Husbandry Station, Beijing, China
| | - Li Yan
- Department of Radiation Oncology, Linyi People Hospital, Linyi, China
| | - Tarig Badri
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chenglong Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Daolun Yu
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Manling Zhang
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xiaojun Jang
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jie Li
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Lu Yuan
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Genlin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jun Li
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Al-Harbi NO, Nadeem A, Ahmad SF, Alanazi MM, Aldossari AA, Alasmari F. Amelioration of sepsis-induced acute kidney injury through inhibition of inflammatory cytokines and oxidative stress in dendritic cells and neutrophils respectively in mice: Role of spleen tyrosine kinase signaling. Biochimie 2019; 158:102-110. [DOI: 10.1016/j.biochi.2018.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
|
20
|
Gudmundsdottir AB, Brynjolfsdottir A, Olafsdottir ES, Hardardottir I, Freysdottir J. Exopolysaccharides from Cyanobacterium aponinum induce a regulatory dendritic cell phenotype and inhibit SYK and CLEC7A expression in dendritic cells, T cells and keratinocytes. Int Immunopharmacol 2019; 69:328-336. [PMID: 30772700 DOI: 10.1016/j.intimp.2019.01.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
Abstract
Regular bathing in the Blue Lagoon has beneficial effects on psoriasis. Previously, we showed that exopolysaccharides (EPS-Ca) secreted by Cyanobacterium aponinum, a dominating organism in the Blue Lagoon, increased IL-10 secretion by human dendritic cells (DCs). In addition, co-culturing allogeneic CD4+ T cells with DCs matured in the presence of EPS-Ca increased differentiation of T cells into T regulatory cells at the cost of the disease inducing Th17 cells. In the present study, EPS-Ca increased the proportion of DCs expressing CD141, a surface molecule linked to regulatory DCs, and the CD141+ cells secreted more IL-10 than the CD141- cells. EPS-Ca decreased T cell secretion of IL-17, IL-13 and IL-10 and the proportion of T cells expressing the activation marker CD69 that has also been linked to lymphocyte retention. In addition, EPS-Ca reduced keratinocyte secretion of CCL20 and CXCL10, chemokines implicated in recruitment of inflammatory cells. EPS-Ca decreased DC expression of Dectin-1/CLEC7A and SYK, keratinocyte expression of CLEC7A, SYK and CAMP (the gene for LL37), and T cell expression of phosphorylated Zap70. These results indicate that EPS-Ca may induce a regulatory phenotype of DCs, T cells that are less active/inflammatory and less prone to being retained in the skin, and keratinocytes that induce less recruitment of inflammatory cells to the skin and that these effects may be mediated by the effects of EPS-Ca on CLEC7A and SYK. Overall the results indicate that EPS-Ca may be involved in the beneficial effects psoriasis patients experience when bathing in the Blue Lagoon.
Collapse
Affiliation(s)
- Asa B Gudmundsdottir
- Faculty of Medicine, University of Iceland, Biomedical Center, Vatnsmyrarvegur 16, IS-101 Reykjavik, Iceland; Department of Immunology, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland; Center for Rheumatology Research, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland
| | | | - Elin Soffia Olafsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Ingibjorg Hardardottir
- Faculty of Medicine, University of Iceland, Biomedical Center, Vatnsmyrarvegur 16, IS-101 Reykjavik, Iceland; Department of Immunology, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland
| | - Jona Freysdottir
- Faculty of Medicine, University of Iceland, Biomedical Center, Vatnsmyrarvegur 16, IS-101 Reykjavik, Iceland; Department of Immunology, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland; Center for Rheumatology Research, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland.
| |
Collapse
|
21
|
The Mycobacterial Adjuvant Analogue TDB Attenuates Neuroinflammation via Mincle-Independent PLC-γ1/PKC/ERK Signaling and Microglial Polarization. Mol Neurobiol 2018; 56:1167-1187. [PMID: 29876879 DOI: 10.1007/s12035-018-1135-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
Microglial activation has long been recognized as a hallmark of neuroinflammation. Recently, the bacillus Calmette-Guerin (BCG) vaccine has been reported to exert neuroprotective effects against several neurodegenerative disorders. Trehalose-6,6'-dibehenate (TDB) is a synthetic analogue of trehalose-6,6'-dimycolate (TDM, also known as the mycobacterial cord factor) and is a new adjuvant of tuberculosis subunit vaccine currently in clinical trials. Both TDM and TDB can activate macrophages and dendritic cells through binding to C-type lectin receptor Mincle; however, its action mechanism in microglia and their relationship with neuroinflammation are still unknown. In this article, we found that TDB inhibited LPS-induced M1 microglial polarization in primary microglia and BV-2 cells. However, TDB itself had no effects on IKK, p38, and JNK activities or cytokine expression. In contrast, TDB activated ERK1/2 through PLC-γ1/PKC signaling and in turn decreased LPS-induced NF-κB nuclear translocation. Furthermore, TDB-induced AMPK activation via PLC-γ1/calcium/CaMKKβ-dependent pathway and thereby enhanced M2 gene expressions. Interestingly, knocking out Mincle did not alter the anti-inflammatory and M2 polarization effects of TDB in microglia. Conditional media from LPS-stimulated microglial cells can induce in vitro neurotoxicity, and this action was attenuated by TDB. Using a mouse neuroinflammation model, we found that TDB suppressed LPS-induced M1 microglial activation and sickness behavior, but promoted M2 microglial polarization in both WT and Mincle-/- mice. Taken together, our results suggest that TDB can act independently of Mincle to inhibit LPS-induced inflammatory response through PLC-γ1/PKC/ERK signaling and promote microglial polarization towards M2 phenotype via PLC-γ1/calcium/CaMKKβ/AMPK pathway. Thus, TDB may be a promising therapeutic agent for the treatment of neuroinflammatory diseases.
Collapse
|
22
|
Wei W, Wan H, Peng X, Zhou H, Lu Y, He Y. Antiviral effects of Ma Huang Tang against H1N1 influenza virus infection in vitro and in an ICR pneumonia mouse model. Biomed Pharmacother 2018; 102:1161-1175. [PMID: 29710534 DOI: 10.1016/j.biopha.2018.03.161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 02/08/2023] Open
Abstract
Ma Huang Tang (MHT), a classical Chinese herbal decoction which has been used in clinic for thousands of years, was very effective in treating the upper respiratory tract infection. But its activity against influenza virus A, the anti-inflammatory effect and the underlying mechanisms have been poorly investigated in previous researches. In this study, the antiviral efficacy of MHT directly inhibiting influenza virus A was investigated in vitro in MDCK cells. In an ICR pneumonia mouse model infected with influenza virus A PR/8/34, MHT (8, 4 and 2 g/kg) were oral administrated for 7 days after viral challenge, to evaluate the effect of MHT on ameliorating viral pneumonia and decipher the underlying mechanisms. The in vitro results showed that MHT possessed antiviral activity with low toxicity. The in vivo assays showed that MHT (8 and 4 g/kg) significantly attenuated lung histopathological changes, decreased lung index, interleukin (IL)-4,5, tumor necrosis factor alpha (TNF-α), CD3+, CD8+ T cell levels, increased IL-2, gamma interferon (IFN-γ), CD4+ T cell levels and CD4+/CD8+ ratio, inhibited toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and tumor necrosis factor receptor associated factor 6 (TRAF6) protein levels. All these results demonstrate that MHT can strikingly ameliorate influenza virus A pneumonia in mice, which is associated with the regulating effect of MHT in the imbalance of body's immune function and the MyD88-dependent signaling pathway of TLR4.
Collapse
Affiliation(s)
- Wenyang Wei
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xueqian Peng
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiyu Lu
- Zhejiang Center for Disease Control and Prevention, Hangzhou 310053, China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
23
|
Alhazmi A, Choi J, Ulanova M. Syk inhibitor R406 downregulates inflammation in an in vitro model of Pseudomonas aeruginosa infection. Can J Physiol Pharmacol 2017; 96:182-190. [PMID: 29020462 DOI: 10.1139/cjpp-2017-0307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As Pseudomonas aeruginosa infections are characterized by strong inflammation of infected tissues, anti-inflammatory therapies in combination with antibiotics have been considered for the treatment of associated diseases. Syk tyrosine kinase is an important regulator of inflammatory responses, and its specific inhibition was explored as a therapeutic option in several inflammatory conditions; however, this has not been studied in bacterial infections. We used a model of in vitro infection of human monocytic cell line THP-1 and lung epithelial cell line H292 with both wild-type and flagella-deficient mutant of P. aeruginosa strain K, as well as with clinical isolates from cystic fibrosis patients, to study the effect of a small molecule Syk inhibitor R406 on inflammatory responses induced by this pathogen. One-hour pretreatment of THP-1 cells with 10 μmol/L R406 resulted in a significant downregulation of the expression of the adhesion molecule ICAM-1, pro-inflammatory cytokines TNF-α and IL-1β, and phosphorylated signaling proteins ERK2, JNK, p-38, and IκBα, as well as significantly decreased TNF-α release by infected H292 cells. The results suggest that Syk is involved in the regulation of inflammatory responses to P. aeruginosa, and R406 may potentially be useful in dampening the damage caused by severe inflammation associated with this infection.
Collapse
Affiliation(s)
- Alaa Alhazmi
- a Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Joshua Choi
- b Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| | - Marina Ulanova
- a Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada.,b Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
24
|
Haddad Y, Lahoute C, Clément M, Laurans L, Metghalchi S, Zeboudj L, Giraud A, Loyer X, Vandestienne M, Wain-Hobson J, Esposito B, Potteaux S, Ait-Oufella H, Tedgui A, Mallat Z, Taleb S. The Dendritic Cell Receptor DNGR-1 Promotes the Development of Atherosclerosis in Mice. Circ Res 2017; 121:234-243. [DOI: 10.1161/circresaha.117.310960] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023]
Abstract
Rationale:
Necrotic core formation during the development of atherosclerosis is associated with a chronic inflammatory response and promotes accelerated plaque development and instability. However, the molecular links between necrosis and the development of atherosclerosis are not completely understood. Clec9a (C-type lectin receptor) or DNGR-1 (dendritic cell NK lectin group receptor-1) is preferentially expressed by the CD8α
+
subset of dendritic cells (CD8α
+
DCs) and is involved in sensing necrotic cells. We hypothesized that sensing of necrotic cells by DNGR-1 plays a determinant role in the inflammatory response of atherosclerosis.
Objective:
We sought to address the impact of total, bone marrow–restricted, or CD8α
+
DC–restricted deletion of DNGR-1 on atherosclerosis development.
Methods and Results:
We show that total absence of DNGR-1 in Apoe (apolipoprotein e)–deficient mice (
Apoe
−/−
) and bone marrow–restricted deletion of DNGR-1 in Ldlr (low-density lipoprotein receptor)–deficient mice (
Ldlr
−/−
) significantly reduce inflammatory cell content within arterial plaques and limit atherosclerosis development in a context of moderate hypercholesterolemia. This is associated with a significant increase of the expression of interleukin-10 (IL-10). The atheroprotective effect of DNGR-1 deletion is completely abrogated in the absence of bone marrow–derived IL-10. Furthermore, a specific deletion of DNGR-1 in CD8α
+
DCs significantly increases IL-10 expression, reduces macrophage and T-cell contents within the lesions, and limits the development of atherosclerosis.
Conclusions:
Our results unravel a new role of DNGR-1 in regulating vascular inflammation and atherosclerosis and potentially identify a new target for disease modulation.
Collapse
Affiliation(s)
- Yacine Haddad
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Charlotte Lahoute
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Marc Clément
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Ludivine Laurans
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Sarvenaz Metghalchi
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Lynda Zeboudj
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Andreas Giraud
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Xavier Loyer
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Marie Vandestienne
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Julien Wain-Hobson
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Bruno Esposito
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Stephane Potteaux
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Hafid Ait-Oufella
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Alain Tedgui
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Ziad Mallat
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| | - Soraya Taleb
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, France (Y.H., C.L., L.L., S.M., L.Z., A.G., X.L., M.V., J.W.-H., B.E., S.P., H.A.-O., A.T., Z.M., S.T.); and Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, United Kingdom (M.C., Z.M.)
| |
Collapse
|
25
|
Proteomic Analysis of HDAC3 Selective Inhibitor in the Regulation of Inflammatory Response of Primary Microglia. Neural Plast 2017; 2017:6237351. [PMID: 28293439 PMCID: PMC5331322 DOI: 10.1155/2017/6237351] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/27/2016] [Accepted: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
HDAC3 has been shown to regulate inflammation. However, the role of HDAC3 in primary microglia is largely unknown. RGFP966 is a newly discovered selective HDAC3 inhibitor. In this study, we used protein mass spectrometry to analyze protein alterations in LPS-treated primary microglia with the application of RGFP966. Generally, about 2000 proteins were studied. 168 of 444 (37.8%) LPS-induced proteins were significantly reduced with the treatment of RGFP966, which mainly concentrated on Toll-like receptor signaling pathway. In this regard, we selected Toll-like receptor 2 (TLR2), TLR3, TLR6, MAPK p38, CD36, and spleen tyrosine kinase (SYK) for further validation and found that they were all significantly upregulated after LPS stimulation and downregulated in the presence of RGFP966. Additionally, RGFP966 inhibited supernatant tumor necrosis factor (TNF)-α and Interleukin 6 (IL-6) concentrations. Activation of STAT3 and STAT5 was partially blocked by RGFP966 at 2 h after LPS-stimulation. The fluorescence intensity of CD16/32 was significantly decreased in LPS + RGFP966-treated group. In conclusion, our data provided a hint that RGFP966 may be a potential therapeutic medication combating microglia activation and inflammatory response in central nervous system, which was probably related to its repressive impacts on TLR signaling pathways and STAT3/STAT5 pathways.
Collapse
|