1
|
Neri S, Guidotti S, Panichi V, Minguzzi M, Cattini L, Platano D, Ursini F, Arciola CR, Borzì RM. IKKα affects the susceptibility of primary human osteoarthritis chondrocytes to oxidative stress-induced DNA damage by tuning autophagy. Free Radic Biol Med 2024; 225:726-740. [PMID: 39461484 DOI: 10.1016/j.freeradbiomed.2024.10.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The functional derangement affecting human chondrocytes during osteoarthritis (OA) onset and progression is sustained by the failure of major homeostatic mechanisms. This makes them more susceptible to oxidative stress (OS), which can induce DNA damage responses and exacerbate stress-induced senescence. The knockdown (KD) of IκB kinase α (IKKα), a dispensable protein in healthy articular cartilage physiology, was shown to increase the survival and replication potential of human primary OA chondrocytes. Our recent findings showed that the DNA Mismatch Repair pathway only partially accounts for the reduced susceptibility to OS of IKKαKD cells. Here we therefore investigated other ROS-mediated DNA damage and repair mechanisms. We exposed IKKαWT and IKKαKD chondrocytes to sub-cytotoxic hydrogen peroxide and evaluated the occurrence of double-strand breaks (DSB), 8-oxo-2'-deoxyguanosine (8-oxo-dG) and telomere shortening. ROS exposure was able to significantly increase the number of γH2AX foci (directly related to the number of DSB) in both cell types, but IKKα deficient cells undergoing cell division were able to better recover compared to their IKKα proficient counterpart. 8-oxo-dG signal proved to be the highest DNA damage signal among those investigated, located in the mitochondria and with a slightly higher intensity in IKKα proficient cells immediately after OS exposure. Furthermore, ROS significantly reduced telomere length both in IKKαWT and IKKαKD, with the former showing more pervasive effects, especially in dividing cells. Assessment of the HIF-1α>Beclin-1>LC3B axis after recovery from OS showed that IKKα deficient cells exhibited a more efficient autophagic machinery that allowed them to better cope with oxidative stress, possibly through the turnover of damaged mitochondria. Higher Beclin-1 levels likely helped in rescuing dividing cells (identified by coupled cell cycle analysis) because of Beclin-1's involvement in both autophagy and mitotic spindle organization. Therefore, our data further confirm the higher capacity of IKKαKD chondrocytes to cope with oxidative stress-induced DNA damage.
Collapse
Affiliation(s)
- Simona Neri
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Serena Guidotti
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Veronica Panichi
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Manuela Minguzzi
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Luca Cattini
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Daniela Platano
- Department of Biomedical and Neuromotor Sciences (DIBINEM), AlmaMater Studiorum University of Bologna, 40126, Bologna, Italy; Laboratory of Immunorheumatology and Tissue Regeneration, Physical Medicine and Rehabilitation Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Francesco Ursini
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), AlmaMater Studiorum University of Bologna, 40126, Bologna, Italy.
| | - Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration and Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), AlmaMater Studiorum University of Bologna, 40126, Bologna, Italy.
| | - Rosa Maria Borzì
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| |
Collapse
|
2
|
Rossi M, Pellegrino C, Rydzyk MM, Farruggia G, de Biase D, Cetrullo S, D'Adamo S, Bisi A, Blasi P, Malucelli E, Cappadone C, Gobbi S. Chalcones induce apoptosis, autophagy and reduce spreading in osteosarcoma 3D models. Biomed Pharmacother 2024; 179:117284. [PMID: 39151310 DOI: 10.1016/j.biopha.2024.117284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Osteosarcoma is the most common primary bone malignancy with a challenging prognosis marked by a high rate of metastasis. The limited success of current treatments may be partially attributed to an incomplete understanding of osteosarcoma pathophysiology and to the absence of reliable in vitro models to select the best molecules for in vivo studies. Among the natural compounds relevant for osteosarcoma treatment, Licochalcone A (Lic-A) and chalcone derivatives are particularly interesting. Here, Lic-A and selected derivatives have been evaluated for their anticancer effect on multicellular tumor spheroids from MG63 and 143B osteosarcoma cell lines. A metabolic activity assay revealed Lic-A, 1i, and 1k derivatives as the most promising candidates. To delve into their mechanism of action, caspase activity assay was conducted in 2D and 3D in vitro models. Notably, apoptosis and autophagic induction was generally observed for Lic-A and 1k. The invasion assay demonstrated that Lic-A and 1k possess the ability to mitigate the spread of osteosarcoma cells within a matrix. The effectiveness of chalcone as a natural scaffold for generating potential antiproliferative agents against osteosarcoma has been demonstrated. In particular, chalcones exert their antiproliferative activity by inducing apoptosis and autophagy, and in addition they are capable of reducing cell invasion. These findings suggest Lic-A and 1k as promising antitumor agents against osteosarcoma cells.
Collapse
Affiliation(s)
- M Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - C Pellegrino
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| | - M M Rydzyk
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - G Farruggia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - D de Biase
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - S Cetrullo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy; Istituto Nazionale per le Ricerche Cardiovascolari, Bologna 40126, Italy
| | - S D'Adamo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - A Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| | - P Blasi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - E Malucelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| | - C Cappadone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy.
| | - S Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| |
Collapse
|
3
|
Villagrán-Andrade KM, Núñez-Carro C, Blanco FJ, de Andrés MC. Nutritional Epigenomics: Bioactive Dietary Compounds in the Epigenetic Regulation of Osteoarthritis. Pharmaceuticals (Basel) 2024; 17:1148. [PMID: 39338311 PMCID: PMC11434976 DOI: 10.3390/ph17091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Nutritional epigenomics is exceptionally important because it describes the complex interactions among food compounds and epigenome modifications. Phytonutrients or bioactive compounds, which are secondary metabolites of plants, can protect against osteoarthritis by suppressing the expression of inflammatory and catabolic mediators, modulating epigenetic changes in DNA methylation, and the histone or chromatin remodelling of key inflammatory genes and noncoding RNAs. The combination of natural epigenetic modulators is crucial because of their additive and synergistic effects, safety and therapeutic efficacy, and lower adverse effects than conventional pharmacology in the treatment of osteoarthritis. In this review, we have summarized the chondroprotective properties of bioactive compounds used for the management, treatment, or prevention of osteoarthritis in both human and animal studies. However, further research is needed into bioactive compounds used as epigenetic modulators in osteoarthritis, in order to determine their potential value for future clinical applications in osteoarthritic patients as well as their relation with the genomic and nutritional environment, in order to personalize food and nutrition together with disease prevention.
Collapse
Affiliation(s)
- Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
4
|
Lee DY, Bahar ME, Kim CW, Seo MS, Song MG, Song SY, Kim SY, Kim DR, Kim DH. Autophagy in Osteoarthritis: A Double-Edged Sword in Cartilage Aging and Mechanical Stress Response: A Systematic Review. J Clin Med 2024; 13:3005. [PMID: 38792546 PMCID: PMC11122125 DOI: 10.3390/jcm13103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Although osteoarthritis (OA) development is epidemiologically multifactorial, a primary underlying mechanism is still under debate. Understanding the pathophysiology of OA remains challenging. Recently, experts have focused on autophagy as a contributor to OA development. Method: To better understand the pathogenesis of OA, we survey the literature on the role of autophagy and the molecular mechanisms of OA development. To identify relevant studies, we used controlled vocabulary and free text keywords to search the MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, Web of Science, and SCOPUS database. Thirty-one studies were included for data extraction and systematic review. Among these studies, twenty-five studies investigated the effects of autophagy in aging and OA chondrocytes, six studies examined the effects of autophagy in normal human chondrocytes, and only one study investigated the effects of mechanical stress-induced autophagy on the development of OA in normal chondrocytes. Results: The studies suggest that autophagy activation prevents OA by exerting cell-protective effects in normal human chondrocytes. However, in aging and osteoarthritis (OA) chondrocytes, the role of autophagy is intricate, as certain studies indicate that stimulating autophagy in these cells can have a cytotoxic effect, while others propose that it may have a protective (cytoprotective) effect against damage or degeneration. Conclusions: Mechanical stress-induced autophagy is also thought to be involved in the development of OA, but further research is required to identify the precise mechanism. Thus, autophagy contributions should be interpreted with caution in aging and the types of OA cartilage.
Collapse
Affiliation(s)
- Dong-Yeong Lee
- Department of Orthopaedic Surgery, Barun Hospital, Jinju 52725, Republic of Korea;
| | - Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (M.E.B.); (M.-S.S.)
| | - Chang-Won Kim
- Department of Orthopaedic Surgery, Institute of Medical Science, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (C.-W.K.); (S.-Y.S.); (S.-Y.K.)
| | - Min-Seok Seo
- Department of Biochemistry and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (M.E.B.); (M.-S.S.)
| | - Myung-Geun Song
- Department of Orthopaedic Surgery, Inha University Hospital, Incheon 22212, Republic of Korea;
| | - Sang-Youn Song
- Department of Orthopaedic Surgery, Institute of Medical Science, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (C.-W.K.); (S.-Y.S.); (S.-Y.K.)
| | - Soung-Yon Kim
- Department of Orthopaedic Surgery, Institute of Medical Science, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (C.-W.K.); (S.-Y.S.); (S.-Y.K.)
| | - Deok-Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (M.E.B.); (M.-S.S.)
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery, Institute of Medical Science, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (C.-W.K.); (S.-Y.S.); (S.-Y.K.)
| |
Collapse
|
5
|
Wang X, Wang M, Wu B, Yu S, Liu Z, Qin X, Xu H, Li W, Luo S, Wang L, Ma C, Liu S. Magnetic molecularly imprinted polymers using ternary deep eutectic solvent as novel functional monomer for hydroxytyrosol separation. Heliyon 2024; 10:e28257. [PMID: 38655314 PMCID: PMC11035953 DOI: 10.1016/j.heliyon.2024.e28257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024] Open
Abstract
In this work, magnetic molecularly imprinted polymers (MIPs) for specific recognition of Hydroxytyrosol (HT) were designed by vinyl-modified magnetic particles (Fe3O4@SiO2@VTEOs) as carrier, ternary deep eutectic solvent (DES) as functional monomer, while ethylene glycol dimethacrylate (EGDMA) as crosslinker. The optimum amount of DES was obtained by adsorption experiments (molar ratio, caffeic acid: choline chloride: formic acid = 1:6:3) which were 140 μL in total. Under the optimized amount of DES, the maximum adsorption capacity of the MIPs particles was 42.43 mg g-1, which was superior to non-imprinted polymer (4.64 mg g-1) and the imprinting factor (IF) is 9.10. Syringin and Oleuropicrin were used as two reference molecules to test the selectivity of the DES-MIPs particles. The adsorption capacity of HT was 40.11 mg g-1. Three repeated experiments show that the polymer has high stability and repeatability (RSD = 5.50).
Collapse
Affiliation(s)
- Xiaojing Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Mengru Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Bailin Wu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Shengyuan Yu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Zaizhi Liu
- College of Life Sciences, Jiangxi Normal University, 330022, Nanchang, China
| | - Xuyang Qin
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Huijuan Xu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Wei Li
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Sha Luo
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Lijuan Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Chunhui Ma
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| |
Collapse
|
6
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
7
|
Pagani S, Salerno M, Filardo G, Locs J, van Osch GJ, Vecstaudza J, Dolcini L, Borsari V, Fini M, Giavaresi G, Columbaro M. Human Osteoblasts' Response to Biomaterials for Subchondral Bone Regeneration in Standard and Aggressive Environments. Int J Mol Sci 2023; 24:14764. [PMID: 37834212 PMCID: PMC10573262 DOI: 10.3390/ijms241914764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Osteochondral lesions, when not properly treated, may evolve into osteoarthritis (OA), especially in the elderly population, where altered joint function and quality are usual. To date, a collagen/collagen-magnesium-hydroxyapatite (Col/Col-Mg-HAp) scaffold (OC) has demonstrated good clinical results, although suboptimal subchondral bone regeneration still limits its efficacy. This study was aimed at evaluating the in vitro osteogenic potential of this scaffold, functionalized with two different strategies: the addition of Bone Morphogenetic Protein-2 (BMP-2) and the incorporation of strontium (Sr)-ion-enriched amorphous calcium phosphate (Sr-ACP) granules. Human osteoblasts were seeded on the functionalized scaffolds (OC+BMP-2 and OC+Sr-ACP, compared to OC) under stress conditions reproduced with the addition of H2O2 to the culture system, as well as in normal conditions, and evaluated in terms of morphology, metabolic activity, gene expression, and matrix synthesis. The OC+BMP-2 scaffold supported a better osteoblast morphology and stimulated scaffold colonization, cell activity, and extracellular matrix secretion, especially in the stressed culture environment but also in normal culture conditions, with increased expression of genes related to osteoblast differentiation. In conclusion, the incorporation of BMP-2 into the Col/Col-Mg-HAp scaffold also represents an improvement of the osteochondral scaffold in more challenging conditions, supporting further preclinical studies to optimize it for use in clinical practice.
Collapse
Affiliation(s)
- Stefania Pagani
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.P.); (V.B.); (G.G.)
| | - Manuela Salerno
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007 Riga, Latvia; (J.L.); (J.V.)
| | - Gerjo J.V.M. van Osch
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Jana Vecstaudza
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007 Riga, Latvia; (J.L.); (J.V.)
| | | | - Veronica Borsari
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.P.); (V.B.); (G.G.)
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.P.); (V.B.); (G.G.)
| | - Marta Columbaro
- Electron Microscopy Platform, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| |
Collapse
|
8
|
Zheng G, Ren J, Shang L, Bao Y. Role of autophagy in the pathogenesis and regulation of pain. Eur J Pharmacol 2023; 955:175859. [PMID: 37429517 DOI: 10.1016/j.ejphar.2023.175859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Pain is a ubiquitous and highly concerned clinical symptom, usually caused by peripheral or central nervous injury, tissue damage, or other diseases. The long-term existence of pain can seriously affect daily physical function and quality of life and produce great torture on the physiological and psychological levels. However, the complex pathogenesis of pain involving molecular mechanisms and signaling pathways has not been fully elucidated, and managing pain remains highly challenging. As a result, finding new targets to pursue effective and long-term pain treatment strategies is required and urgent. Autophagy is an intracellular degradation and recycling process that maintains tissue homeostasis and energy supply, which can be cytoprotective and is vital in maintaining neural plasticity and proper nervous system function. Much evidence has shown that autophagy dysregulation is linked to the emergence of neuropathic pain, such as postherpetic neuralgia and cancer-related pain. Autophagy has also been connected to pain caused by osteoarthritis and lumbar disc degeneration. It is worth noting that in recent years, studies on traditional Chinese medicine have also proved that several traditional Chinese medicine monomers involve autophagy in the mechanism of pain relief. Therefore, autophagy can serve as a potential regulatory target to provide new ideas and inspiration for pain management.
Collapse
Affiliation(s)
- Guangda Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
9
|
Mitophagy—A New Target of Bone Disease. Biomolecules 2022; 12:biom12101420. [PMID: 36291629 PMCID: PMC9599755 DOI: 10.3390/biom12101420] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 01/17/2023] Open
Abstract
Bone diseases are usually caused by abnormal metabolism and death of cells in bones, including osteoblasts, osteoclasts, osteocytes, chondrocytes, and bone marrow mesenchymal stem cells. Mitochondrial dysfunction, as an important cause of abnormal cell metabolism, is widely involved in the occurrence and progression of multiple bone diseases, including osteoarthritis, intervertebral disc degeneration, osteoporosis, and osteosarcoma. As selective mitochondrial autophagy for damaged or dysfunctional mitochondria, mitophagy is closely related to mitochondrial quality control and homeostasis. Accumulating evidence suggests that mitophagy plays an important regulatory role in bone disease, indicating that regulating the level of mitophagy may be a new strategy for bone-related diseases. Therefore, by reviewing the relevant literature in recent years, this paper reviews the potential mechanism of mitophagy in bone-related diseases, including osteoarthritis, intervertebral disc degeneration, osteoporosis, and osteosarcoma, to provide a theoretical basis for the related research of mitophagy in bone diseases.
Collapse
|
10
|
Kao WC, Chen JC, Liu PC, Lu CC, Lin SY, Chuang SC, Wu SC, Chang LH, Lee MJ, Yang CD, Lee TC, Wang YC, Li JY, Wei CW, Chen CH. The Role of Autophagy in Osteoarthritic Cartilage. Biomolecules 2022; 12:biom12101357. [PMID: 36291565 PMCID: PMC9599131 DOI: 10.3390/biom12101357] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common diseases leading to physical disability, with age being the main risk factor, and degeneration of articular cartilage is the main focus for the pathogenesis of OA. Autophagy is a crucial intracellular homeostasis system recycling flawed macromolecules and cellular organelles to sustain the metabolism of cells. Growing evidences have revealed that autophagy is chondroprotective by regulating apoptosis and repairing the function of damaged chondrocytes. Then, OA is related to autophagy depending on different stages and models. In this review, we discuss the character of autophagy in OA and the process of the autophagy pathway, which can be modulated by some drugs, key molecules and non-coding RNAs (microRNAs, long non-coding RNAs and circular RNAs). More in-depth investigations of autophagy are needed to find therapeutic targets or diagnostic biomarkers through in vitro and in vivo situations, making autophagy a more effective way for OA treatment in the future. The aim of this review is to introduce the concept of autophagy and make readers realize its impact on OA. The database we searched in is PubMed and we used the keywords listed below to find appropriate article resources.
Collapse
Affiliation(s)
- Wei-Chun Kao
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Jian-Chih Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ping-Cheng Liu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheng-Chang Lu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shun-Cheng Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ling-hua Chang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mon-Juan Lee
- Department of Medical Science Industries, Chang Jung Christian University, Tainan 71101, Taiwan
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Chung-Da Yang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Tien-Ching Lee
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ying-Chun Wang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Jhong-You Li
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Chun-Wang Wei
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-W.W.); (C.-H.C.); Tel.: +886-7-3121101 (ext. 2648#19) (C-W.W.); +886-7-3209209 (C.-H.C.)
| | - Chung-Hwan Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80420, Taiwan
- Graduate Institute of Materials Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Correspondence: (C.-W.W.); (C.-H.C.); Tel.: +886-7-3121101 (ext. 2648#19) (C-W.W.); +886-7-3209209 (C.-H.C.)
| |
Collapse
|
11
|
Thermo-Responsive Gel Containing Hydroxytyrosol-Chitosan Nanoparticles (Hyt@tgel) Counteracts the Increase of Osteoarthritis Biomarkers in Human Chondrocytes. Antioxidants (Basel) 2022; 11:antiox11061210. [PMID: 35740107 PMCID: PMC9220116 DOI: 10.3390/antiox11061210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 12/11/2022] Open
Abstract
Although osteoarthritis (OA) is a chronic inflammatory degenerative disease affecting millions of people worldwide, the current therapies are limited to palliative care and do not eliminate the necessity of surgical intervention in the most severe cases. Several dietary and nutraceutical factors, such as hydroxytyrosol (Hyt), have demonstrated beneficial effects in the prevention or treatment of OA both in vitro and in animal models. However, the therapeutic application of Hyt is limited due to its poor bioavailability following oral administration. In the present study, a localized drug delivery platform containing a combination of Hyt-loading chitosan nanoparticles (Hyt-NPs) and in situ forming hydrogel have been developed to obtain the benefits of both hydrogels and nanoparticles. This thermosensitive formulation, based on Pluronic F-127 (F-127), hyaluronic acid (HA) and Hyt-NPs (called Hyt@tgel) presents the unique ability to be injected in a minimally invasive way into a target region as a freely flowing solution at room temperature forming a gel at body temperature. The Hyt@tgel system showed reduced oxidative and inflammatory effects in the chondrocyte cellular model as well as a reduction in senescent cells after induction with H2O2. In addition, Hyt@tgel influenced chondrocytes gene expression under pathological state maintaining their metabolic activity and limiting the expression of critical OA-related genes in human chondrocytes treated with stressors promoting OA-like features. Hence, it can be concluded that the formulated hydrogel injection could be proposed for the efficient and sustained Hyt delivery for OA treatment. The next step would be the extraction of “added-value” bioactive polyphenols from by-products of the olive industry, in order to develop a green delivery system able not only to enhance the human wellbeing but also to promote a sustainable environment.
Collapse
|
12
|
Anti-Inflammatory Effects Induced by a Polyphenolic Granular Complex from Olive (Olea europaea, Mainly Cultivar coratina): Results from In Vivo and Ex Vivo Studies in a Model of Inflammation and MIA-Induced Osteoarthritis. Nutrients 2022; 14:nu14071487. [PMID: 35406100 PMCID: PMC9002755 DOI: 10.3390/nu14071487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 01/24/2023] Open
Abstract
MOMAST® GR25 is a polyphenolic granular complex from olive pressing juice with high total content in polyphenols. In this work, we evaluated the possible anti-inflammatory effects of MOMAST® GR25 in both acute and chronic inflammatory models. MOMAST® GR25 decreased the levels of prostaglandin (PG) E2 and 8-iso-PGF2α in isolated rat colon, liver, and heart specimens stimulated with lipopolysaccharide (LPS). In vivo, compared to controls, rats treated with MOMAST® GR25 (100 mg/kg to 1 g/kg) showed a significant reduction in both licking/biting time in the formalin test. In a rat model of osteoarthritis by monoiodoacetate (MIA) injection, MOMAST® GR25 showed pain-relieving properties when acutely administered, reducing mechanical hyperalgesia and spontaneous pain. Moreover, a repeated daily treatment with MOMAST® GR25 (300 mg/kg) fully counteracted osteoarticular pain without the development of tolerance to the antinociceptive effect. Taken together, our present findings showed that MOMAST® GR25 could represent a potential strategy for the treatment of inflammation and pain.
Collapse
|
13
|
Blanco-Benítez M, Calderón-Fernández A, Canales-Cortés S, Alegre-Cortés E, Uribe-Carretero E, Paredes-Barquero M, Gimenez-Bejarano A, Duque González G, Gómez-Suaga P, Ortega-Vidal J, Salido S, Altarejos J, Martínez-Chacón G, Niso-Santano M, Fuentes JM, González-Polo RA, Yakhine-Diop SMS. Biological effects of olive oil phenolic compounds on mitochondria. Mol Cell Oncol 2022; 9:2044263. [PMID: 35340790 PMCID: PMC8942445 DOI: 10.1080/23723556.2022.2044263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Phenolic compounds derived from olive oil have beneficial health properties against cancer, neurodegenerative, and metabolic diseases. Therefore, there are discrepancies in their impact on mitochondrial function that result in changes in oxidative capacity, mitochondrial respiration, and energetic demands. This review focuses on the versatile role of oleuropein, a potent antioxidant that regulates the AMPK/SIRT1/mTOR pathway to modulate autophagy/mitophagy and maintain metabolic homeostasis.
Collapse
Affiliation(s)
- Mercedes Blanco-Benítez
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Ana Calderón-Fernández
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Saray Canales-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Eva Alegre-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain
| | - Marta Paredes-Barquero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Alberto Gimenez-Bejarano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Gema Duque González
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Patricia Gómez-Suaga
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Juan Ortega-Vidal
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Sofía Salido
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Joaquín Altarejos
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Guadalupe Martínez-Chacón
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain
| | - Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain
| | - José M Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain
| | - Rosa A González-Polo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain
| | - Sokhna M S Yakhine-Diop
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain
| |
Collapse
|
14
|
Tian Z, Zhang X, Sun M. Phytochemicals Mediate Autophagy Against Osteoarthritis by Maintaining Cartilage Homeostasis. Front Pharmacol 2022; 12:795058. [PMID: 34987406 PMCID: PMC8722717 DOI: 10.3389/fphar.2021.795058] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease and is a leading cause of disability and reduced quality of life worldwide. There are currently no clinical treatments that can stop or slow down OA. Drugs have pain-relieving effects, but they do not slow down the course of OA and their long-term use can lead to serious side effects. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Autophagy is an intracellular protective mechanism, and targeting autophagy-related pathways has been found to prevent and treat various diseases. Attenuation of the autophagic pathway has now been found to disrupt cartilage homeostasis and plays an important role in the development of OA. Therefore, modulation of autophagic signaling pathways mediating cartilage homeostasis has been considered as a potential therapeutic option for OA. Phytochemicals are active ingredients from plants that have recently been found to reduce inflammatory factor levels in cartilage as well as attenuate chondrocyte apoptosis by modulating autophagy-related signaling pathways, which are not only widely available but also have the potential to alleviate the symptoms of OA. We reviewed preclinical studies and clinical studies of phytochemicals mediating autophagy to regulate cartilage homeostasis for the treatment of OA. The results suggest that phytochemicals derived from plant extracts can target relevant autophagic pathways as complementary and alternative agents for the treatment of OA if subjected to rigorous clinical trials and pharmacological tests.
Collapse
Affiliation(s)
- Zheng Tian
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xinan Zhang
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
15
|
Behl T, Upadhyay T, Singh S, Chigurupati S, Alsubayiel AM, Mani V, Vargas-De-La-Cruz C, Uivarosan D, Bustea C, Sava C, Stoicescu M, Radu AF, Bungau SG. Polyphenols Targeting MAPK Mediated Oxidative Stress and Inflammation in Rheumatoid Arthritis. Molecules 2021; 26:6570. [PMID: 34770980 PMCID: PMC8588006 DOI: 10.3390/molecules26216570] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune disorder, predominantly symmetric, which causes joint inflammation, cartilage degeneration and bone erosion, resulting in deformity and the loss of physical function. Although the management of RA has steadily improved, the pathophysiological mechanism is incompletely elucidated, and therapeutic options are still limited. Due to shortcomings in the efficacy or safety profiles of conventional RA therapies, therapeutic alternatives have been considered. Therefore, natural extracts containing polyphenolic compounds can become promising adjuvant agents for RA global management, due to their antioxidant, anti-inflammatory and apoptotic properties. Polyphenols can regulate intracellular signaling pathways in RA and can generate different immune responses through some key factors (i.e., MAPK, interleukins (ILs 1 and 6), tumor necrosis factor (TNF), nuclear factor light k chain promoter of activated receptor (NF-κB), and c-Jun N-terminal kinases (JNK)). The critical function of the Toll like-receptor (TLR)-dependent mitogen-activating protein kinase (MAPK) signaling pathway in mediating the pathogenic characteristics of RA has been briefly discussed. Oxidative stress can trigger a change in transcription factors, which leads to the different expression of some genes involved in the inflammatory process. This review aims to provide a comprehensive perspective on the efficacy of polyphenols in mitigating RA by inhibiting signaling pathways, suggesting future research perspectives in order to validate their use.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Tanuj Upadhyay
- Amity Institute of Pharmacy, Amity University Gwalior, Gwalior 474005, Madhya Pradesh, India;
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Amal M. Alsubayiel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Enseñanza e Investigación en Bacteriología Alimentaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru;
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (D.U.); (C.B.)
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (D.U.); (C.B.)
| | - Cristian Sava
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.S.); (M.S.)
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.S.); (M.S.)
| | - Andrei-Flavius Radu
- Faculty of Medicine and Pharmacy, Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania;
| | - Simona Gabriela Bungau
- Faculty of Medicine and Pharmacy, Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania;
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
16
|
Neri S, Guidotti S, Bini C, Pelotti S, D'Adamo S, Minguzzi M, Platano D, Santi S, Mariani E, Cattini L, Borzì RM. Oxidative stress-induced DNA damage and repair in primary human osteoarthritis chondrocytes: focus on IKKα and the DNA Mismatch Repair System. Free Radic Biol Med 2021; 166:212-225. [PMID: 33636333 DOI: 10.1016/j.freeradbiomed.2021.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/15/2022]
Abstract
During osteoarthritis development, chondrocytes are subjected to a functional derangement. This increases their susceptibility to stressful conditions such as oxidative stress, a characteristic of the aging tissue, which can further provoke extrinsic senescence by DNA damage responses. It was previously observed that IκB kinase α knockdown increases the replicative potential of primary human OA chondrocytes cultured in monolayer and the survival of the same cells undergoing hypertrophic-like differentiation in 3-D. In this paper we investigated whether IKKα knockdown could modulate oxidative stress-induced senescence of OA chondrocytes undergoing a DDR and particularly the involvement in this process of the DNA mismatch repair system, the principal mechanism for repair of replicative and recombinational errors, devoted to genomic stability maintenance in actively replicating cells. This repair system is also implicated in oxidative stress-mediated DNA damage repair. We analyzed microsatellite instability and expression of the mismatch repair components in human osteoarthritis chondrocytes after IKKα knockdown and H2O2 exposure. Only low MSI levels and incidence were detected and exclusively in IKKα proficient cells. Moreover, we found that IKKα proficient and deficient chondrocytes differently regulated MMR proteins after oxidative stress, both at mRNA and protein level, suggesting a reduced susceptibility of IKKα deficient cells. Our data suggest an involvement of the MMR system in the response to oxidative stress that tends to be more efficient in IKKαKD cells. This argues for a partial contribution of the MMR system to the better ability to recover DNA damage already observed in these cells.
Collapse
Affiliation(s)
- Simona Neri
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Immunorheumatology and Tissue Regeneration, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Serena Guidotti
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Immunorheumatology and Tissue Regeneration, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Carla Bini
- Department of Medical and Surgical Sciences, (DIMEC), Unit of Legal Medicine, University of Bologna, Via Irnerio, 49, 40126, Bologna, Italy.
| | - Susi Pelotti
- Department of Medical and Surgical Sciences, (DIMEC), Unit of Legal Medicine, University of Bologna, Via Irnerio, 49, 40126, Bologna, Italy.
| | - Stefania D'Adamo
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Immunorheumatology and Tissue Regeneration, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Manuela Minguzzi
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Immunorheumatology and Tissue Regeneration, Via di Barbiano 1/10, 40136, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum-Università di Bologna, Bologna, Italy.
| | - Daniela Platano
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Immunorheumatology and Tissue Regeneration, Via di Barbiano 1/10, 40136, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum-Università di Bologna, Bologna, Italy.
| | - Spartaco Santi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna at IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Erminia Mariani
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Immunorheumatology and Tissue Regeneration, Via di Barbiano 1/10, 40136, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum-Università di Bologna, Bologna, Italy.
| | - Luca Cattini
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Immunorheumatology and Tissue Regeneration, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Rosa Maria Borzì
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Immunorheumatology and Tissue Regeneration, Via di Barbiano 1/10, 40136, Bologna, Italy.
| |
Collapse
|
17
|
Xu C, Ni S, Zhuang C, Li C, Zhao G, Jiang S, Wang L, Zhu R, van Wijnen AJ, Wang Y. Polysaccharide from Angelica sinensis attenuates SNP-induced apoptosis in osteoarthritis chondrocytes by inducing autophagy via the ERK1/2 pathway. Arthritis Res Ther 2021; 23:47. [PMID: 33514407 PMCID: PMC7847159 DOI: 10.1186/s13075-020-02409-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/26/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Chondrocyte apoptosis plays a vital role in osteoarthritis (OA) progression. Angelica sinensis polysaccharide (ASP), a traditional Chinese medicine, possesses anti-inflammatory and anti-apoptotic properties in chondrocytes. This study aimed to determine the protective role of ASP on sodium nitroprusside (SNP)-induced chondrocyte apoptosis, and explore the underlying mechanism. METHOD Human primary chondrocytes isolated from the articular cartilage of OA patients were treated with SNP alone or in combination with different doses of ASP. Cell viability and apoptosis were assessed, and apoptosis-related proteins including Bcl-2 and Bax were detected. Autophagy levels were evaluated by light chain 3 (LC3) II immunofluorescence staining, mRFP-GFP-LC3 fluorescence localization, and western blot (LC3II, p62, Beclin-1, Atg5). Meanwhile, activation of the ERK 1/2 pathway was determined by western blot. The autophagy inhibitors, 3-methyladenine (3-MA), chloroquine (CQ), and a specific inhibitor of ERK1/2, SCH772984, were used to confirm the autophagic effect of ASP. RESULTS The results showed that SNP-induced chondrocyte apoptosis was significantly rescued by ASP, whereas ASP alone promoted chondrocyte proliferation. The anti-apoptotic effect of ASP was related to the enhanced autophagy and depended on the activation of the ERK1/2 pathway. CONCLUSION ASP markedly rescued SNP-induced apoptosis by activating ERK1/2-dependent autophagy in chondrocytes, and it made ASP as a potential therapeutic supplementation for OA treatment.
Collapse
Affiliation(s)
- Chao Xu
- Trauma Center, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Su Ni
- Medical Research Center, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Chao Zhuang
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Chenkai Li
- Medical Research Center, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Gongyin Zhao
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Shijie Jiang
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Ruixia Zhu
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN USA
| | - Yuji Wang
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
- Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN USA
- Department of Orthopedics, The Third Affiliated Hospital of Gansu University of Chinese Medicine, 222 Silong Road, Baiyin, 730900 China
| |
Collapse
|
18
|
Mao X, Fu P, Wang L, Xiang C. Mitochondria: Potential Targets for Osteoarthritis. Front Med (Lausanne) 2020; 7:581402. [PMID: 33324661 PMCID: PMC7726420 DOI: 10.3389/fmed.2020.581402] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a common and disabling joint disorder that is mainly characterized by cartilage degeneration and narrow joint spaces. The role of mitochondrial dysfunction in promoting the development of OA has gained much attention. Targeting endogenous molecules to improve mitochondrial function is a potential treatment for OA. Moreover, research on exogenous drugs to improve mitochondrial function in OA based on endogenous molecular targets has been accomplished. In addition, stem cells and exosomes have been deeply researched in the context of cartilage regeneration, and these factors both reverse mitochondrial dysfunctions. Thus, we hypothesize that biomedical approaches will be applied to the treatment of OA. Furthermore, we have summarized the global status of mitochondria and osteoarthritis research in the past two decades, which will contribute to the research field and the development of novel treatment strategies for OA.
Collapse
Affiliation(s)
- Xingjia Mao
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Panfeng Fu
- Department of Respiratory and Critical Care, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, The School of Medicine of Zhejiang University, Hangzhou, China
| | - Chuan Xiang
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
19
|
Pignatti C, D’Adamo S, Stefanelli C, Flamigni F, Cetrullo S. Nutrients and Pathways that Regulate Health Span and Life Span. Geriatrics (Basel) 2020; 5:geriatrics5040095. [PMID: 33228041 PMCID: PMC7709628 DOI: 10.3390/geriatrics5040095] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Both life span and health span are influenced by genetic, environmental and lifestyle factors. With the genetic influence on human life span estimated to be about 20–25%, epigenetic changes play an important role in modulating individual health status and aging. Thus, a main part of life expectance and healthy aging is determined by dietary habits and nutritional factors. Excessive or restricted food consumption have direct effects on health status. Moreover, some dietary interventions including a reduced intake of dietary calories without malnutrition, or a restriction of specific dietary component may promote health benefits and decrease the incidence of aging-related comorbidities, thus representing intriguing potential approaches to improve healthy aging. However, the relationship between nutrition, health and aging is still not fully understood as well as the mechanisms by which nutrients and nutritional status may affect health span and longevity in model organisms. The broad effect of different nutritional conditions on health span and longevity occurs through multiple mechanisms that involve evolutionary conserved nutrient-sensing pathways in tissues and organs. These pathways interacting each other include the evolutionary conserved key regulators mammalian target of rapamycin, AMP-activated protein kinase, insulin/insulin-like growth factor 1 pathway and sirtuins. In this review we provide a summary of the main molecular mechanisms by which different nutritional conditions, i.e., specific nutrient abundance or restriction, may affect health span and life span.
Collapse
Affiliation(s)
- Carla Pignatti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (C.P.); (F.F.)
| | - Stefania D’Adamo
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40136 Bologna, Italy;
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy;
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (C.P.); (F.F.)
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (C.P.); (F.F.)
- Correspondence: ; Tel.: +39-051-209-1241
| |
Collapse
|
20
|
Dietary Mitophagy Enhancer: A Strategy for Healthy Brain Aging? Antioxidants (Basel) 2020; 9:antiox9100932. [PMID: 33003315 PMCID: PMC7600282 DOI: 10.3390/antiox9100932] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, nutritional interventions have received attention as promising approaches to promote human health during a lifespan. The Mediterranean and Okinawan diets have been associated with longevity and decreasing risk for age-related diseases in contrast to the Western diet. The effect might be due to several antioxidative bioactive compounds highly consumed in both diets, namely, resveratrol, hydroxytyrosol, oleuropein, curcumin, and spermidine. This review aims to address the underlying mechanisms of these compounds to enhance mental fitness throughout life with a focus on brain mitophagy. Mitophagy is the autophagic clearance of dysfunctional, redundant, and aged mitochondria. In aging and neurodegenerative disorders, mitophagy is crucial to preserve the autophagy mechanism of the whole cell, especially during oxidative stress. Growing evidence indicates that curcumin, astaxanthin, resveratrol, hydroxytyrosol, oleuropein, and spermidine might exert protective functions via antioxidative properties and as well the enhanced induction of mitophagy mediators. The compounds seem to upregulate mitophagy and thereby alleviate the clearance of dysfunctional and aged mitochondria as well as mitogenesis. Thus, the Mediterranean or Okinawan diet could represent a feasible nutritional approach to reduce the risk of developing age-related cognitive impairment and corresponding disorders via the stimulation of mitophagy and thereby ensure a balanced redox state of brain cells.
Collapse
|
21
|
Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomed Pharmacother 2020; 129:110452. [PMID: 32768946 PMCID: PMC8404686 DOI: 10.1016/j.biopha.2020.110452] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint degenerative disease leading to irreversible structural and functional changes in the joint and is a major cause of disability and reduced life expectancy in ageing population. Despite the high prevalence of OA, there is no disease modifying drug available for the management of OA. Oxidative stress, a result of an imbalance between the production of reactive oxygen species (ROS) and their clearance by antioxidant defense system, is high in OA cartilage and is a major cause of chronic inflammation. Inflammatory mediators, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) are highly upregulated in OA joints and induce ROS production and expression of matrix degrading proteases leading to cartilage extracellular matrix degradation and joint dysfunction. ROS and inflammation are interdependent, each being the target of other and represent ideal target/s for the treatment of OA. Plant polyphenols possess potent antioxidant and anti-inflammatory properties and can inhibit ROS production and inflammation in chondrocytes, cartilage explants and in animal models of OA. The aim of this review is to discuss the chondroprotective effects of polyphenols and modulation of different molecular pathways associated with OA pathogenesis and limitations and future prospects of polyphenols in OA treatment.
Collapse
Affiliation(s)
- Mohammad Yunus Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, ST RT 44, Rootstown, Ohio, 44272, USA.
| | - Nashrah Ahmad
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, ST RT 44, Rootstown, Ohio, 44272, USA; School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.
| | - Tariq M Haqqi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, ST RT 44, Rootstown, Ohio, 44272, USA.
| |
Collapse
|
22
|
Varela-Eirín M, Carpintero-Fernández P, Sánchez-Temprano A, Varela-Vázquez A, Paíno CL, Casado-Díaz A, Continente AC, Mato V, Fonseca E, Kandouz M, Blanco A, Caeiro JR, Mayán MD. Senolytic activity of small molecular polyphenols from olive restores chondrocyte redifferentiation and promotes a pro-regenerative environment in osteoarthritis. Aging (Albany NY) 2020; 12:15882-15905. [PMID: 32745074 PMCID: PMC7485729 DOI: 10.18632/aging.103801] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Articular cartilage and synovial tissue from patients with osteoarthritis (OA) show an overactivity of connexin43 (Cx43) and accumulation of senescent cells associated with disrupted tissue regeneration and disease progression. The aim of this study was to determine the effect of oleuropein on Cx43 and cellular senescence for tissue engineering and regenerative medicine strategies for OA treatment. Oleuropein regulates Cx43 promoter activity and enhances the propensity of hMSCs to differentiate into chondrocytes and bone cells, reducing adipogenesis. This small molecule reduce Cx43 levels and decrease Twist-1 activity in osteoarthritic chondrocytes (OACs), leading to redifferentiation, restoring the synthesis of cartilage ECM components (Col2A1 and proteoglycans), and reducing the inflammatory and catabolic factors mediated by NF-kB (IL-1ß, IL-6, COX-2 and MMP-3), in addition to lowering cellular senescence in OACs, synovial and bone cells. Our in vitro results demonstrate the use of olive-derived polyphenols, such as oleuropein, as potentially effective therapeutic agents to improve chondrogenesis of hMSCs, to induce chondrocyte re-differentiation in OACs and clearing out senescent cells in joint tissues in order to prevent or stop the progression of the disease.
Collapse
Affiliation(s)
- Marta Varela-Eirín
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Paula Carpintero-Fernández
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Agustín Sánchez-Temprano
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Adrián Varela-Vázquez
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Carlos Luis Paíno
- Neurobiology-Research Service, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Antonio Casado-Díaz
- UGC Endocrinology and Nutrition, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Hospital Universitario Reina Sofía - CIBERFES, Universidad de Córdoba, Córdoba, Spain
| | - Alfonso Calañas Continente
- UGC Endocrinology and Nutrition, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Hospital Universitario Reina Sofía - CIBERFES, Universidad de Córdoba, Córdoba, Spain
| | - Virginia Mato
- Centre for Medical Informatics and Radiological Diagnosis, Universidade da Coruña, A Coruña, Spain
| | - Eduardo Fonseca
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Alfonso Blanco
- Flow Cytometry Core Technologies, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - José Ramón Caeiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Choupana s/n, Santiago de Compostela, Spain
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| |
Collapse
|
23
|
Wang S, Deng Z, Ma Y, Jin J, Qi F, Li S, Liu C, Lyu FJ, Zheng Q. The Role of Autophagy and Mitophagy in Bone Metabolic Disorders. Int J Biol Sci 2020; 16:2675-2691. [PMID: 32792864 PMCID: PMC7415419 DOI: 10.7150/ijbs.46627] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022] Open
Abstract
Bone metabolic disorders include osteolysis, osteoporosis, osteoarthritis and rheumatoid arthritis. Osteoblasts and osteoclasts are two major types of cells in bone constituting homeostasis. The imbalance between bone formation by osteoblasts and bone resorption by osteoclasts has been shown to have a direct contribution to the onset of these diseases. Recent evidence indicates that autophagy and mitophagy, the selective autophagy of mitochondria, may play a vital role in regulating the proliferation, differentiation and function of osteoblasts and osteoclasts. Several signaling pathways, including PINK1/Parkin, SIRT1, MAPK8/FOXO3, Beclin-1/BECN1, p62/SQSTM1, and mTOR pathways, have been implied in the regulation of autophagy and mitophagy in these cells. Here we review the current progress about the regulation of autophagy and mitophagy in osteoblasts and osteoclasts in these bone metabolic disorders, as well as the molecular signaling activated or deactivated during this process. Together, we hope to draw attention to the role of autophagy and mitophagy in bone metabolic disorders, and their potential as a new target for the treatment of bone metabolic diseases and the requirements of further mechanism studies.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China.,South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
| | - Jiewen Jin
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University
| | - Fangjie Qi
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China.,South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shuxian Li
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China.,South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Chang Liu
- South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Feng-Juan Lyu
- South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
| |
Collapse
|
24
|
Davinelli S, De Stefani D, De Vivo I, Scapagnini G. Polyphenols as Caloric Restriction Mimetics Regulating Mitochondrial Biogenesis and Mitophagy. Trends Endocrinol Metab 2020; 31:536-550. [PMID: 32521237 DOI: 10.1016/j.tem.2020.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
The tight coordination between mitochondrial biogenesis and mitophagy can be dysregulated during aging, critically influencing whole-body metabolism, health, and lifespan. To date, caloric restriction (CR) appears to be the most effective intervention strategy to improve mitochondrial turnover in aging organisms. The development of pharmacological mimetics of CR has gained attention as an attractive and potentially feasible approach to mimic the CR phenotype. Polyphenols, ubiquitously present in fruits and vegetables, have emerged as well-tolerated CR mimetics that target mitochondrial turnover. Here, we discuss the molecular mechanisms that orchestrate mitochondrial biogenesis and mitophagy, and we summarize the current knowledge of how CR promotes mitochondrial maintenance and to what extent different polyphenols may mimic CR and coordinate mitochondrial biogenesis and clearance.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy. @hsph.harvard.edu
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy
| |
Collapse
|
25
|
D'Adamo S, Cetrullo S, Guidotti S, Silvestri Y, Minguzzi M, Santi S, Cattini L, Filardo G, Flamigni F, Borzì RM. Spermidine rescues the deregulated autophagic response to oxidative stress of osteoarthritic chondrocytes. Free Radic Biol Med 2020; 153:159-172. [PMID: 32305648 DOI: 10.1016/j.freeradbiomed.2020.03.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative stress (OS) contributes to Osteoarthritis (OA) pathogenesis and its effects are worsened by the impairment of homeostatic mechanisms such as autophagy in OA chondrocytes. Rescue of an efficient autophagic flux could therefore reduce the bulk of damaged molecules, and at the same time improve cell function and viability. As a promising dietary or intra-articular supplement to rescue autophagy in OA chondrocytes, we tested spermidine (SPD), known to induce autophagy and to reduce OS in several other cellular models. Chondrocytes were obtained from OA cartilage and seeded at high-density to keep their differentiated phenotype. The damaging effects of OS and the chondroprotective activity of SPD were assessed by evaluating the extent of cell death, oxidative DNA damage and caspase 3 activation. The autophagy promoting activity of SPD was evaluated by assessing pivotal autophagic effectors, i.e. Beclin-1 (BECN-1), microtubule-associated protein 1 light chain 3 II (LC3-II) and p62. BECN-1 protein expression was significantly increased by SPD and reduced by H2O2 treatment. SPD also rescued the impaired autophagic flux consequent to H2O2 exposure by increasing mRNA and protein expression of LC3-II and p62. SPD induction of mitophagy was revealed by immunofluorescent co-localization of LC3-II and TOM20. The key protective role of autophagy was confirmed by the loss of SPD chondroprotection upon autophagy-related gene 5 (ATG5) silencing. Significant SPD tuning of the H2O2-dependent induction of degradative (MMP-13), inflammatory (iNOS, COX-2) and hypertrophy markers (RUNX2 and VEGF) was revealed by Real Time PCR and pointed at the SPD ability of reducing NF-κB activation through autophagy induction. Conversely, blockage of autophagy led to parallel increases of oxidative markers and p65 nuclear translocation. SPD also increased the proliferation of slow-proliferating primary cultures. Taken together, our findings highlight the chondroprotective, anti-oxidant and anti-inflammatory activity of SPD and suggest that the protection afforded by SPD against OS is exerted through the rescue of the autophagic flux.
Collapse
Affiliation(s)
- Stefania D'Adamo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy.
| | - Silvia Cetrullo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
| | - Serena Guidotti
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy.
| | - Ylenia Silvestri
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
| | - Manuela Minguzzi
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy.
| | - Spartaco Santi
- CNR-Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"-Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Luca Cattini
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Flavio Flamigni
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
26
|
Nutraceutical Activity in Osteoarthritis Biology: A Focus on the Nutrigenomic Role. Cells 2020; 9:cells9051232. [PMID: 32429348 PMCID: PMC7291002 DOI: 10.3390/cells9051232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a disease associated to age or conditions that precipitate aging of articular cartilage, a post-mitotic tissue that remains functional until the failure of major homeostatic mechanisms. OA severely impacts the national health system costs and patients' quality of life because of pain and disability. It is a whole-joint disease sustained by inflammatory and oxidative signaling pathways and marked epigenetic changes responsible for catabolism of the cartilage extracellular matrix. OA usually progresses until its severity requires joint arthroplasty. To delay this progression and to improve symptoms, a wide range of naturally derived compounds have been proposed and are summarized in this review. Preclinical in vitro and in vivo studies have provided proof of principle that many of these nutraceuticals are able to exert pleiotropic and synergistic effects and effectively counteract OA pathogenesis by exerting both anti-inflammatory and antioxidant activities and by tuning major OA-related signaling pathways. The latter are the basis for the nutrigenomic role played by some of these compounds, given the marked changes in the transcriptome, miRNome, and methylome. Ongoing and future clinical trials will hopefully confirm the disease-modifying ability of these bioactive molecules in OA patients.
Collapse
|
27
|
Modulation of Fatty Acid-Related Genes in the Response of H9c2 Cardiac Cells to Palmitate and n-3 Polyunsaturated Fatty Acids. Cells 2020; 9:cells9030537. [PMID: 32110930 PMCID: PMC7140414 DOI: 10.3390/cells9030537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
While high levels of saturated fatty acids are associated with impairment of cardiovascular functions, n-3 polyunsaturated fatty acids (PUFAs) have been shown to exert protective effects. However the molecular mechanisms underlying this evidence are not completely understood. In the present study we have used rat H9c2 ventricular cardiomyoblasts as a cellular model of lipotoxicity to highlight the effects of palmitate, a saturated fatty acid, on genetic and epigenetic modulation of fatty acid metabolism and fate, and the ability of PUFAs, eicosapentaenoic acid, and docosahexaenoic acid, to contrast the actions that may contribute to cardiac dysfunction and remodeling. Treatment with a high dose of palmitate provoked mitochondrial depolarization, apoptosis, and hypertrophy of cardiomyoblasts. Palmitate also enhanced the mRNA levels of sterol regulatory element-binding proteins (SREBPs), a family of master transcription factors for lipogenesis, and it favored the expression of genes encoding key enzymes that metabolically activate palmitate and commit it to biosynthetic pathways. Moreover, miR-33a, a highly conserved microRNA embedded in an intronic sequence of the SREBP2 gene, was co-expressed with the SREBP2 messenger, while its target carnitine palmitoyltransferase-1b was down-regulated. Manipulation of the levels of miR-33a and SREBPs allowed us to understand their involvement in cell death and hypertrophy. The simultaneous addition of PUFAs prevented the effects of palmitate and protected H9c2 cells. These results may have implications for the control of cardiac metabolism and dysfunction, particularly in relation to dietary habits and the quality of fatty acid intake.
Collapse
|
28
|
D’Andrea G, Ceccarelli M, Bernini R, Clemente M, Santi L, Caruso C, Micheli L, Tirone F. Hydroxytyrosol stimulates neurogenesis in aged dentate gyrus by enhancing stem and progenitor cell proliferation and neuron survival. FASEB J 2020; 34:4512-4526. [DOI: 10.1096/fj.201902643r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Giorgio D’Andrea
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
- Department of Ecological and Biological Sciences University of Tuscia Viterbo Italy
| | - Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE) University of Tuscia Viterbo Italy
| | - Mariangela Clemente
- Department of Agriculture and Forest Sciences (DAFNE) University of Tuscia Viterbo Italy
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE) University of Tuscia Viterbo Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences University of Tuscia Viterbo Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
| |
Collapse
|
29
|
Liang R, Zhao J, Li B, Cai P, Loh XJ, Xu C, Chen P, Kai D, Zheng L. Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials 2020; 230:119601. [DOI: 10.1016/j.biomaterials.2019.119601] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/31/2022]
|
30
|
Aman Y, Frank J, Lautrup SH, Matysek A, Niu Z, Yang G, Shi L, Bergersen LH, Storm-Mathisen J, Rasmussen LJ, Bohr VA, Nilsen H, Fang EF. The NAD +-mitophagy axis in healthy longevity and in artificial intelligence-based clinical applications. Mech Ageing Dev 2020; 185:111194. [PMID: 31812486 PMCID: PMC7545219 DOI: 10.1016/j.mad.2019.111194] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/24/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an important natural molecule involved in fundamental biological processes, including the TCA cycle, OXPHOS, β-oxidation, and is a co-factor for proteins promoting healthy longevity. NAD+ depletion is associated with the hallmarks of ageing and may contribute to a wide range of age-related diseases including metabolic disorders, cancer, and neurodegenerative diseases. One of the central pathways by which NAD+ promotes healthy ageing is through regulation of mitochondrial homeostasis via mitochondrial biogenesis and the clearance of damaged mitochondria via mitophagy. Here, we highlight the contribution of the NAD+-mitophagy axis to ageing and age-related diseases, and evaluate how boosting NAD+ levels may emerge as a promising therapeutic strategy to counter ageing as well as neurodegenerative diseases including Alzheimer's disease. The potential use of artificial intelligence to understand the roles and molecular mechanisms of the NAD+-mitophagy axis in ageing is discussed, including possible applications in drug target identification and validation, compound screening and lead compound discovery, biomarker development, as well as efficacy and safety assessment. Advances in our understanding of the molecular and cellular roles of NAD+ in mitophagy will lead to novel approaches for facilitating healthy mitochondrial homoeostasis that may serve as a promising therapeutic strategy to counter ageing-associated pathologies and/or accelerated ageing.
Collapse
Affiliation(s)
- Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Johannes Frank
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Sofie Hindkjær Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Adrian Matysek
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway; School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 40-055, Katowice, Poland
| | - Zhangming Niu
- Aladdin Healthcare Technologies Ltd., 24-26 Baltic Street West, London, EC1Y OUR, UK
| | - Guang Yang
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW3 6NP, UK; National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Linda H Bergersen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316, Oslo, Norway; Amino Acid Transporters, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences (IMB) and Healthy Brain Ageing Centre (SERTA), University of Oslo, NO-0317, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Jon Storm-Mathisen
- Amino Acid Transporters, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences (IMB) and Healthy Brain Ageing Centre (SERTA), University of Oslo, NO-0317, Oslo, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Lene J Rasmussen
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway; Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, United States; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway; Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway.
| |
Collapse
|
31
|
Shin HJ, Park H, Shin N, Kwon HH, Yin Y, Hwang JA, Song HJ, Kim J, Kim DW, Beom J. Pink1-Mediated Chondrocytic Mitophagy Contributes to Cartilage Degeneration in Osteoarthritis. J Clin Med 2019; 8:jcm8111849. [PMID: 31684073 PMCID: PMC6912334 DOI: 10.3390/jcm8111849] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Cartilage loss is a central event in the pathogenesis of osteoarthritis (OA), though other than mechanical loading, the biochemical mechanisms underlying OA pathology remain poorly elucidated. We investigated the role of Pink1-mediated mitophagy in mitochondrial fission, a crucial process in OA pathogenesis. We used a monosodium iodoacetate (MIA)-induced rodent model of OA, which inhibits the activity of articular chondrocytes, leading to disruption of glycolytic energy metabolism and eventual cell death. The OA rat cartilage exhibits significant induction of autophagy-related proteins LC3B and p62, similar to human osteoarthritic cartilage. Moreover, expression of Pink1 and Parkin proteins were also increased in OA. Here, we confirm that Pink1-mediated mitophagy leads to cell death in chondrocytes following MIA treatment, while deficiency in Pink1 expression was associated with decreased cartilage damage and pain behaviors in MIA-induced OA. Finally, we found that autophagy and mitophagy-related genes are highly expressed in human osteoarthritic cartilage. These results indicate that OA is a degenerative condition associated with mitophagy, and suggest that targeting the Pink1 pathway may provide a therapeutic avenue for OA treatment.
Collapse
Affiliation(s)
- Hyo Jung Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Hyewon Park
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Nara Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Hyeok Hee Kwon
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Yuhua Yin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Jeong-Ah Hwang
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Hee-Jung Song
- Department of Neurology, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Jinhyun Kim
- Division of Rheumatology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Jaewon Beom
- Department of Physical Medicine and Rehabilitation, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Korea.
| |
Collapse
|
32
|
D'Adamo S, Cetrullo S, Borzì RM, Flamigni F. Effect of oxidative stress and 3-hydroxytyrosol on DNA methylation levels of miR-9 promoters. J Cell Mol Med 2019; 23:7885-7889. [PMID: 31496000 PMCID: PMC6815808 DOI: 10.1111/jcmm.14657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/31/2019] [Accepted: 08/11/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Stefania D'Adamo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Silvia Cetrullo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Flavio Flamigni
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
33
|
Sun T, Chen Q, Zhu SY, Wu Q, Liao CR, Wang Z, Wu XH, Wu HT, Chen JT. Hydroxytyrosol promotes autophagy by regulating SIRT1 against advanced oxidation protein product‑induced NADPH oxidase and inflammatory response. Int J Mol Med 2019; 44:1531-1540. [PMID: 31432093 DOI: 10.3892/ijmm.2019.4300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/08/2019] [Indexed: 11/05/2022] Open
Abstract
Advanced oxidation protein products (AOPPs) can trigger NADPH oxidase (NOX) and lead to the production of reactive oxygen species (ROS) in the pathophysiology of rheumatoid arthritis (RA). Hydroxytyrosol (HT) is a phenolic composite in olive oil that has antioxidant and anti‑inflammatory effects and enhances autophagy. Early research has revealed that HT can activate the silent information regulator 1 (SIRT1) pathway to induce autophagy and alleviate the cartilage inflammatory response caused by H2O2. However, whether HT can attenuate AOPP‑induced NOX and inflammatory responses remains to be elucidated. The present study aimed to investigate how HT can alleviate the damage caused by AOPPs. In cell experiments, chondrocytes were pre‑stimulated with HT and then exposed to AOPPs. First, it was found that HT promoted autophagy through the SIRT1 pathway, increased the expression of autophagy‑related proteins including microtubule‑associated protein 1 light chain 3, autophagy related (ATG)5 and ATG7, and decreased the expression of P62. Furthermore, HT reduced the expression of NOX, which was affected by AOPPs in chondrocytes through the SIRT1 pathway. Finally, the expression of inflammatory cytokines caused by AOPPs was downregulated following HT treatment. In conclusion, it was found that HT reduced the expression of NOX and inhibited the inflammatory response caused by AOPPs in chondrocytes through the SIRT1 pathway.
Collapse
Affiliation(s)
- Tian Sun
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Chen
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Si-Yuan Zhu
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Wu
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Cong-Rui Liao
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zheng Wang
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiao-Hu Wu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hang-Tian Wu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jian-Ting Chen
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
34
|
Karković Marković A, Torić J, Barbarić M, Jakobušić Brala C. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019; 24:molecules24102001. [PMID: 31137753 PMCID: PMC6571782 DOI: 10.3390/molecules24102001] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
The Mediterranean diet and olive oil as its quintessential part are almost synonymous with a healthy way of eating and living nowadays. This kind of diet has been highly appreciated and is widely recognized for being associated with many favorable effects, such as reduced incidence of different chronic diseases and prolonged longevity. Although olive oil polyphenols present a minor fraction in the composition of olive oil, they seem to be of great importance when it comes to the health benefits, and interest in their biological and potential therapeutic effects is huge. There is a growing body of in vitro and in vivo studies, as well as intervention-based clinical trials, revealing new aspects of already known and many new, previously unknown activities and health effects of these compounds. This review summarizes recent findings regarding biological activities, metabolism and bioavailability of the major olive oil phenolic compounds—hydroxytyrosol, tyrosol, oleuropein, oleocanthal and oleacein—the most important being their antiatherogenic, cardioprotective, anticancer, neuroprotective and endocrine effects. The evidence presented in the review concludes that these phenolic compounds have great pharmacological potential, however, further studies are still required.
Collapse
Affiliation(s)
- Ana Karković Marković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Jelena Torić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Monika Barbarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Cvijeta Jakobušić Brala
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| |
Collapse
|
35
|
The role of sirtuin 1 and its activator, resveratrol in osteoarthritis. Biosci Rep 2019; 39:BSR20190189. [PMID: 30996115 PMCID: PMC6509056 DOI: 10.1042/bsr20190189] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Osteoarthitis (OA) is the most common aging-related joint pathology; the aging process results in changes to joint tissues that ultimately contribute to the development of OA. Articular chondrocytes exhibit an aging-related decline in their proliferative and synthetic capacity. Sirtuin 1 (SIRT 1), a longevity gene related to many diseases associated with aging, is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase and master metabolic regulator. Along with its natural activator resveratrol, SIRT 1 actively participates in the OA pathological progress. SIRT 1 expression in osteoarthritic cartilage decreases in the disease progression of OA; it appears to play a predominantly regulatory role in OA. SIRT 1 can regulate the expression of extracellular matrix (ECM)-related proteins; promote mesenchymal stem cell differentiation; play anti-catabolic, anti-inflammatory, anti-oxidative stress, and anti-apoptosis roles; participate in the autophagic process; and regulate bone homeostasis in OA. Resveratrol can activate SIRT 1 in order to inhibit OA disease progression. In the future, activating SIRT 1 via resveratrol with improved bioavailability may be an appropriate therapeutic approach for OA.
Collapse
|
36
|
Modulated Autophagy by MicroRNAs in Osteoarthritis Chondrocytes. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1484152. [PMID: 31205933 PMCID: PMC6530247 DOI: 10.1155/2019/1484152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by articular cartilage regression. The etiology of OA is diverse, the exact pathogenesis of which remains unclear. Autophagy is a conserved maintenance mechanism in eukaryotic cells. Dysfunction of chondrocyte autophagy is regarded as a crucial pathogenesis of cartilage degradation in OA. MircoRNAs (miRNAs) are a category of small noncoding RNAs, acting as posttranscriptional modulators that regulate biological processes and cell signaling pathways via target genes. A series of miRNAs are involved in the progression of chondrocyte autophagy and are connected with numerous factors and pathways. This article focuses on the mechanisms of chondrocyte autophagy in OA and reviews the role of miRNA in their modulation. Potentially relevant miRNAs are also discussed in order to provide new directions for future research and improve our understanding of the autophagic network of miRNAs.
Collapse
|
37
|
de Pablos RM, Espinosa-Oliva AM, Hornedo-Ortega R, Cano M, Arguelles S. Hydroxytyrosol protects from aging process via AMPK and autophagy; a review of its effects on cancer, metabolic syndrome, osteoporosis, immune-mediated and neurodegenerative diseases. Pharmacol Res 2019; 143:58-72. [DOI: 10.1016/j.phrs.2019.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
|
38
|
Abstract
The sirtuin family of NAD+-dependent protein deacetylases promotes longevity and counteracts age-related diseases. One of the major targets of Sirtuins are the FoxO family of transcription factors. FoxOs play a major role in the adaptation of cells to a variety of stressors such as oxidative stress and growth factor deprivation. Studies with murine models of cell-specific loss- or gain-of-function of Sirtuins or FoxOs and with Sirtuin1 stimulators have provided novel insights into the function and signaling of these proteins on the skeleton. These studies have revealed that both Sirtuins and FoxOs acting directly in cartilage and bone cells are critical for normal skeletal development, homeostasis and that their dysregulation might contribute to skeletal disease. Deacetylation of FoxOs by Sirt1 in osteoblasts and osteoclasts stimulates bone formation and inhibits bone resorption, making Sirt1 ligands promising therapeutic agents for diseases of low bone mass. While a similar link has not been established in chondrocytes, Sirt1 and FoxOs both have chondroprotective actions, suggesting that Sirt1 activators may have similar efficacy in preventing cartilage degeneration due to aging or injury. In this review we summarize these advances and discuss their implications for the pathogenesis of age-related osteoporosis and osteoarthritis.
Collapse
Affiliation(s)
- Maria Almeida
- Department of Medicine, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Orthopedics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Ryan M Porter
- Department of Medicine, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Orthopedics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
39
|
De Bruyne T, Steenput B, Roth L, De Meyer GRY, Santos CND, Valentová K, Dambrova M, Hermans N. Dietary Polyphenols Targeting Arterial Stiffness: Interplay of Contributing Mechanisms and Gut Microbiome-Related Metabolism. Nutrients 2019; 11:E578. [PMID: 30857217 PMCID: PMC6471395 DOI: 10.3390/nu11030578] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
Increased arterial stiffness is a degenerative vascular process, progressing with age that leads to a reduced capability of arteries to expand and contract in response to pressure changes. This progressive degeneration mainly affects the extracellular matrix of elastic arteries and causes loss of vascular elasticity. Recent studies point to significant interference of dietary polyphenols with mechanisms involved in the pathophysiology and progression of arterial stiffness. This review summarizes data from epidemiological and interventional studies on the effect of polyphenols on vascular stiffness as an illustration of current research and addresses possible etiological factors targeted by polyphenols, including pathways of vascular functionality, oxidative status, inflammation, glycation, and autophagy. Effects can either be inflicted directly by the dietary polyphenols or indirectly by metabolites originated from the host or microbial metabolic processes. The composition of the gut microbiome, therefore, determines the resulting metabolome and, as a consequence, the observed activity. On the other hand, polyphenols also influence the intestinal microbial composition, and therefore the metabolites available for interaction with relevant targets. As such, targeting the gut microbiome is another potential treatment option for arterial stiffness.
Collapse
Affiliation(s)
- Tess De Bruyne
- Laboratory of Natural Products and Food-Research and Analysis (NatuRA), University of Antwerp, 2610 Antwerpen, Belgium.
| | - Bieke Steenput
- Laboratory of Natural Products and Food-Research and Analysis (NatuRA), University of Antwerp, 2610 Antwerpen, Belgium.
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Antwerpen, Belgium.
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Antwerpen, Belgium.
| | - Claudia Nunes Dos Santos
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia.
| | - Nina Hermans
- Laboratory of Natural Products and Food-Research and Analysis (NatuRA), University of Antwerp, 2610 Antwerpen, Belgium.
| |
Collapse
|
40
|
Meschini R, D'Eliseo D, Filippi S, Bertini L, Bizzarri BM, Botta L, Saladino R, Velotti F. Tyrosinase-Treated Hydroxytyrosol-Enriched Olive Vegetation Waste with Increased Antioxidant Activity Promotes Autophagy and Inhibits the Inflammatory Response in Human THP-1 Monocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12274-12284. [PMID: 30350961 DOI: 10.1021/acs.jafc.8b03630] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Treatment of olive vegetation waste with tyrosinase immobilized on multiwalled carbon nanotubes increased the antioxidant activity as a consequence of the conversion of phenols to corresponding catechol derivatives, as evaluated by DPPH, Comet assay, and micronucleus analyses. During this transformation, 4-hydroxyphenethyl alcohol (tyrosol) was quantitatively converted to bioactive 3,4-dihydroxyphenethyl alcohol (hydroxytyrosol). The hydroxytyrosol-enriched olive vegetation waste also promoted autophagy and inhibited the inflammatory response in human THP-1 monocytes.
Collapse
Affiliation(s)
- Roberta Meschini
- Department of Ecological and Biological Sciences (DEB) , University of Tuscia , Viterbo , Italy
| | - Donatella D'Eliseo
- Department of Ecological and Biological Sciences (DEB) , University of Tuscia , Viterbo , Italy
- Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy
| | - Silvia Filippi
- Department of Ecological and Biological Sciences (DEB) , University of Tuscia , Viterbo , Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences (DEB) , University of Tuscia , Viterbo , Italy
| | - Bruno Mattia Bizzarri
- Department of Ecological and Biological Sciences (DEB) , University of Tuscia , Viterbo , Italy
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences (DEB) , University of Tuscia , Viterbo , Italy
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences (DEB) , University of Tuscia , Viterbo , Italy
| | - Francesca Velotti
- Department of Ecological and Biological Sciences (DEB) , University of Tuscia , Viterbo , Italy
| |
Collapse
|
41
|
Alterations of autophagy in knee cartilage by treatment with treadmill exercise in a rat osteoarthritis model. Int J Mol Med 2018; 43:336-344. [PMID: 30365059 PMCID: PMC6257837 DOI: 10.3892/ijmm.2018.3948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate potential alterations in the articular cartilage in a rat model of monosodium iodoacetate (MIA)-induced osteoarthritis (OA) with or without treatment with moderate treadmill exercise. A total of 30 male Sprague-Dawley rats were randomly divided into three groups (n=10), including the control, OA and OA with treadmill exercise (OAE) groups. Rats were evaluated upon completing the treadmill exercise program (speed, 18 m/min; 30 min/day; 5 days/week for 4 weeks). Interleukin (IL)-1β and IL-4 levels in the serum and intra-articular lavage fluid (IALF) were measured by ELISA. Alterations in articular cartilage and synovium were also evaluated by histology, immunohistochemistry, western blotting and reverse transcription-quantitative polymerase chain reaction. The results revealed that IL-1β in the serum and IALF decreased in the OAE group, whereas IL-4 increased, and histological evaluation indicated that the OAE group had a clear treatment response. However, the expression of type II collagen in the articular cartilage increased in the OAE group as compared with the OA group, whereas ADAMTS5 expression decreased. In contrast to light chain 3B (LC3B), the protein expression levels of BECLIN1 and sequestosome 1 (SQSTM1) were increased in the OA group. In addition, a significant increase was observed between OA and OAE groups in LC3B and SQSTM1 protein levels, whereas no change was observed in BECLIN1 levels between the OA and OAE groups in the superficial and deep zones. The results of western blotting demonstrated that LC3II was notably decreased in the OA group and partially increased in the OAE group. The mRNA expression levels of LC3B and SQSTM1 increased in the OA and OAE groups, with a significant difference observed between the two groups, while a concomitant decrease was detected in BECLIN1 levels. In conclusion, 30 min of treadmill exercise had an evident protective effect in the articular cartilage of rats with MIA-induced OA and may promote autophagy in the articular cartilage.
Collapse
|
42
|
Hong JM, Shin JK, Kim JY, Jang MJ, Park SK, Lee JH, Choi JH, Lee SM. BST106 Protects against Cartilage Damage by Inhibition of Apoptosis and Enhancement of Autophagy in Osteoarthritic Rats. Biol Pharm Bull 2018; 41:1257-1268. [DOI: 10.1248/bpb.b18-00207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Jeom-Yong Kim
- GREENCROSS WellBeing Corporation, Research Institute
| | - Min-Jung Jang
- GREENCROSS WellBeing Corporation, Research Institute
| | - Sun-Kyu Park
- GREENCROSS WellBeing Corporation, Research Institute
| | - Jong-Hoon Lee
- GREENCROSS WellBeing Corporation, Research Institute
| | - Jung-Hyo Choi
- GREENCROSS WellBeing Corporation, Research Institute
| | | |
Collapse
|
43
|
Takuma M, Haruka K, Mutsuto W, Toshiki M, Kenshiro M, Akane T, Hiroshi M, Yoshihiro N. Olive leaf extract prevents cartilage degeneration in osteoarthritis of STR/ort mice. Biosci Biotechnol Biochem 2018; 82:1101-1106. [DOI: 10.1080/09168451.2018.1451741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
The chondroprotective effect of olive leaf extract (OLE) on knee osteoarthritis (OA) was studied with STR/ort mice (n = 5). OLE was administrated with a dosage of 100 mg/kg for 8 weeks and the OA severity score of hind limb knee joints was then measured. The Mankin scores of the knee joints of the non-OA control group, OA control group and OLE-treated group were 3.50, 11.13 and 7.20, respectively. This suggests that oral OLE supplements help prevent cartilage degeneration in STR/ort mice. In vitro, the synthesis of high molecular weight hyaluronan in synovial cells (HIG-82) was increased by OLE stimulation. This suggests that OLE modulates hyaluronan metabolism in synovial cells and improves OA symptoms. Our findings indicate that OLE intake inhibits cartilage destruction by increasing high molecular weight hyaluronan and thus preventing OA progress.
Collapse
Affiliation(s)
- Maruyama Takuma
- Applied Protein Chemistry, Department of Agriculture, Tokyo University of Agriculture and Technology , Fuchu, Japan
| | - Kamihama Haruka
- Applied Protein Chemistry, Department of Agriculture, Tokyo University of Agriculture and Technology , Fuchu, Japan
| | - Watanabe Mutsuto
- Applied Protein Chemistry, Department of Agriculture, Tokyo University of Agriculture and Technology , Fuchu, Japan
| | | | - Matsuda Kenshiro
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology , Fuchu, Japan
| | - Tanaka Akane
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology , Fuchu, Japan
| | - Matsuda Hiroshi
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology , Fuchu, Japan
| | - Nomura Yoshihiro
- Applied Protein Chemistry, Department of Agriculture, Tokyo University of Agriculture and Technology , Fuchu, Japan
| |
Collapse
|
44
|
Lin S, Xing H, Zang T, Ruan X, Wo L, He M. Sirtuins in mitochondrial stress: Indispensable helpers behind the scenes. Ageing Res Rev 2018; 44:22-32. [PMID: 29580919 DOI: 10.1016/j.arr.2018.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/16/2018] [Accepted: 03/22/2018] [Indexed: 12/26/2022]
Abstract
Mitochondria play an essential part in guaranteeing normal cellular physiological functions through providing ATP and participating in diverse processes and signaling pathways. Recently, more and more studies have revealed the vital roles of mitochondria in coping with stressors in the aging process, metabolic disturbances and neurological disorders. Mitochondrial stress responses, including the mitochondrial unfolded protein response (UPRmt), antioxidant defense, mitochondrial fission, mitochondrial fusion and mitophagy, are induced to maintain cellular integrity in response to stress. The sirtuin family, a group of NAD+-dependent deacetylases, has been the focus of much attention in recent years for their multiple regulatory functions, especially in aging and metabolism. Recent reports validated the significant link between mitochondrial stress responses and the sirtuin family, which may help to elucidate the pathogenesis and therapies for diseases such as Alzheimer's disease or Parkinson's disease. This review will summarize recent related studies and illuminate the interplay between sirtuins and mitochondrial stress.
Collapse
|
45
|
Wani TA, Masoodi F, Gani A, Baba WN, Rahmanian N, Akhter R, Wani IA, Ahmad M. Olive oil and its principal bioactive compound: Hydroxytyrosol – A review of the recent literature. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Vinatier C, Domínguez E, Guicheux J, Caramés B. Role of the Inflammation-Autophagy-Senescence Integrative Network in Osteoarthritis. Front Physiol 2018; 9:706. [PMID: 29988615 PMCID: PMC6026810 DOI: 10.3389/fphys.2018.00706] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis is the most common musculoskeletal disease causing chronic disability in adults. Studying cartilage aging, chondrocyte senescence, inflammation, and autophagy mechanisms have identified promising targets and pathways with clinical translatability potential. In this review, we highlight the most recent mechanistic and therapeutic preclinical models of aging with particular relevance in the context of articular cartilage and OA. Evidence supporting the role of metabolism, nuclear receptors and transcription factors, cell senescence, and circadian rhythms in the development of musculoskeletal system degeneration assure further translational efforts. This information might be useful not only to propose hypothesis and advanced models to study the molecular mechanisms underlying joint degeneration, but also to translate our knowledge into novel disease-modifying therapies for OA.
Collapse
Affiliation(s)
- Claire Vinatier
- INSERM, UMR 1229, Regenerative Medicine and Skeleton, University of Nantes, ONIRIS, Nantes, France.,University of Nantes, UFR Odontologie, Nantes, France
| | - Eduardo Domínguez
- Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jerome Guicheux
- INSERM, UMR 1229, Regenerative Medicine and Skeleton, University of Nantes, ONIRIS, Nantes, France.,University of Nantes, UFR Odontologie, Nantes, France.,CHU Nantes, PHU4 OTONN, Nantes, France
| | - Beatriz Caramés
- Grupo de Biología del Cartílago, Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| |
Collapse
|
47
|
Crespo MC, Tomé-Carneiro J, Dávalos A, Visioli F. Pharma-Nutritional Properties of Olive Oil Phenols. Transfer of New Findings to Human Nutrition. Foods 2018; 7:E90. [PMID: 29891766 PMCID: PMC6025313 DOI: 10.3390/foods7060090] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023] Open
Abstract
The Mediterranean diet has been long associated with improved cardiovascular prognosis, chemoprevention, and lower incidence of neurodegeneration. Of the multiple components of this diet, olive oil stands out because its use has historically been limited to the Mediterranean basin. The health benefits of olive oil and some of its components are being rapidly decoded. In this paper we review the most recent pharma-nutritional investigations on olive oil biophenols and their health effects, chiefly focusing on recent findings that elucidate their molecular mechanisms of action.
Collapse
Affiliation(s)
- M Carmen Crespo
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Joao Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
48
|
Oliviero F, Scanu A, Zamudio-Cuevas Y, Punzi L, Spinella P. Anti-inflammatory effects of polyphenols in arthritis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1653-1659. [PMID: 28886220 DOI: 10.1002/jsfa.8664] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Polyphenols have been extensively investigated with regard to their antioxidant, anti-inflammatory, and immunomodulant properties in many inflammatory chronic conditions. The aim of this review is to summarise how these compounds can modulate the inflammatory pathways which characterise the most prevalent arthropathies including osteoarthritis, rheumatoid arthritis and crystal-induced arthritis. Among polyphenols, epigallocatechin gallate, carnosol, hydroxytyrosol, curcumin, resveratrol, kaempferol and genistein have been the most widely investigated in arthritis. The most important results of the studies outlined in this article show how polyphenolic compounds are able to inhibit the expression and the release of a number of pro-inflammatory mediators and proteolytic enzymes, the activity of different transcriptional factors and the production of reactive oxygen species in vitro. Studies on animal models of rheumatoid arthritis, osteoarthritis and gout show interesting results in terms of reduced tissue damage, restored cartilage homeostasis, and decreased levels of uric acid, respectively. Despite the multiple protective effects of polyphenols, there are no dietary recommendations for patients affected by rheumatic diseases. Future studies, including intervention trials, should be conducted to determine the relevance of polyphenols consumption or supplementation in arthritis. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francesca Oliviero
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Italy
| | - Anna Scanu
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Italy
| | - Yessica Zamudio-Cuevas
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Leonardo Punzi
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Italy
| | - Paolo Spinella
- Clinical Nutrition Unit, Department of Medicine - DIMED, University of Padova, ltaly
| |
Collapse
|
49
|
Varela-Eirin M, Loureiro J, Fonseca E, Corrochano S, Caeiro JR, Collado M, Mayan MD. Cartilage regeneration and ageing: Targeting cellular plasticity in osteoarthritis. Ageing Res Rev 2018; 42:56-71. [PMID: 29258883 DOI: 10.1016/j.arr.2017.12.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/20/2017] [Accepted: 12/15/2017] [Indexed: 01/15/2023]
Abstract
Ageing processes play a major contributing role for the development of Osteoarthritis (OA). This prototypic degenerative condition of ageing is the most common form of arthritis and is accompanied by a general decline, chronic pain and mobility deficits. The disease is primarily characterized by articular cartilage degradation, followed by subchondral bone thickening, osteophyte formation, synovial inflammation and joint degeneration. In the early stages, osteoarthritic chondrocytes undergo phenotypic changes that increase cell proliferation and cluster formation and enhance the production of matrix-remodelling enzymes. In fact, chondrocytes exhibit differentiation plasticity and undergo phenotypic changes during the healing process. Current studies are focusing on unravelling whether OA is a consequence of an abnormal wound healing response. Recent investigations suggest that alterations in different proteins, such as TGF-ß/BMPs, NF-Kß, Wnt, and Cx43, or SASP factors involved in signalling pathways in wound healing response, could be directly implicated in the initiation of OA. Several findings suggest that osteoarthritic chondrocytes remain in an immature state expressing stemness-associated cell surface markers. In fact, the efficacy of new disease-modifying OA drugs that promote chondrogenic differentiation in animal models indicates that this may be a drug-sensible state. In this review, we highlight the current knowledge regarding cellular plasticity in chondrocytes and OA. A better comprehension of the mechanisms involved in these processes may enable us to understand the molecular pathways that promote abnormal repair and cartilage degradation in OA. This understanding would be advantageous in identifying novel targets and designing therapies to promote effective cartilage repair and successful joint ageing by preventing functional limitations and disability.
Collapse
Affiliation(s)
- Marta Varela-Eirin
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Jesus Loureiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Eduardo Fonseca
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | | | - Jose R Caeiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Manuel Collado
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Maria D Mayan
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, 84, 15006 A Coruña, Spain.
| |
Collapse
|
50
|
Benefit of Oleuropein Aglycone for Alzheimer's Disease by Promoting Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5010741. [PMID: 29675133 PMCID: PMC5838478 DOI: 10.1155/2018/5010741] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/21/2018] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease is a proteinopathy characterized by accumulation of hyperphosphorylated Tau and β-amyloid. Autophagy is a physiological process by which aggregated proteins and damaged organelles are eliminated through lysosomal digestion. Autophagy deficiency has been demonstrated in Alzheimer's patients impairing effective elimination of aggregates and damaged mitochondria, leading to their accumulation, increasing their toxicity and oxidative stress. In the present study, we demonstrated by microarray analysis the downregulation of fundamental autophagy and mitophagy pathways in Alzheimer's patients. The benefits of the Mediterranean diet on Alzheimer's disease and cognitive impairment are well known, attributing this effect to several polyphenols, such as oleuropein aglycone (OLE), present in extra virgin olive oil. OLE is able to induce autophagy, achieving a decrease of aggregated proteins and a reduction of cognitive impairment in vivo. This effect is caused by the modulation of several pathways including the AMPK/mTOR axis and the activation of autophagy gene expression mediated by sirtuins and histone acetylation or EB transcription factor. We propose that supplementation of diet with extra virgin olive oil might have potential benefits for Alzheimer's patients by the induction of autophagy by OLE.
Collapse
|