1
|
Salama EA, Elgammal Y, Wijeratne A, Lanman NA, Utturkar SM, Farhangian A, Li J, Meunier B, Hazbun TR, Seleem MN. Lansoprazole interferes with fungal respiration and acts synergistically with amphotericin B against multidrug-resistant Candida auris. Emerg Microbes Infect 2024; 13:2322649. [PMID: 38431850 PMCID: PMC10911247 DOI: 10.1080/22221751.2024.2322649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Candida auris has emerged as a problematic fungal pathogen associated with high morbidity and mortality. Amphotericin B (AmB) is the most effective antifungal used to treat invasive fungal candidiasis, with resistance rarely observed among clinical isolates. However, C. auris possesses extraordinary resistant profiles against all available antifungal drugs, including AmB. In our pursuit of potential solutions, we screened a panel of 727 FDA-approved drugs. We identified the proton pump inhibitor lansoprazole (LNP) as a potent enhancer of AmB's activity against C. auris. LNP also potentiates the antifungal activity of AmB against other medically important species of Candida and Cryptococcus. Our investigations into the mechanism of action unveiled that LNP metabolite(s) interact with a crucial target in the mitochondrial respiratory chain (complex III, known as cytochrome bc1). This interaction increases oxidative stress within fungal cells. Our results demonstrated the critical role of an active respiratory function in the antifungal activity of LNP. Most importantly, LNP restored the efficacy of AmB in an immunocompromised mouse model, resulting in a 1.7-log (∼98%) CFU reduction in the burden of C. auris in the kidneys. Our findings strongly advocate for a comprehensive evaluation of LNP as a cytochrome bc1 inhibitor for combating drug-resistant C. auris infections.
Collapse
Affiliation(s)
- Ehab A. Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Aruna Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nadia A. Lanman
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Sagar M. Utturkar
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Atena Farhangian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Jianing Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Tony R. Hazbun
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
Salama EA, Elgammal Y, Utturkar SM, Lanman NA, Hazbun TR, Seleem MN. Overcoming amphotericin B resistance in Candida auris using the antiemetic drug rolapitant. Antimicrob Agents Chemother 2024; 68:e0055624. [PMID: 39387581 PMCID: PMC11539225 DOI: 10.1128/aac.00556-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
The emergence of Candida auris poses a significant health challenge that has led to a new era of multidrug-resistant fungal infections. Invasive infections caused by C. auris are usually associated with remarkable morbidity and mortality. For many years, amphotericin B (AmB) remained the most efficient and the last line of treatment against most hard-to-treat fungal infections. However, strains of C. auris possess extraordinary resistance to most antifungal agents, including AmB. In this study, we screened ~2,600 FDA-approved drugs and clinical compounds to identify the antiemetic drug rolapitant as a promising enhancer to AmB against C. auris. Rolapitant exhibited potent synergistic interactions with AmB against all tested (29/29) C. auris isolates. In a time-kill assay, rolapitant restored the fungicidal activity of AmB within 4 h. Additionally, the synergistic relationship between rolapitant and AmB was observed against other medically crucial Candida, Cryptococcus, and Aspergillus species. A transcriptomic study revealed that exposure to rolapitant affects oxidation reduction processes, ion transporters, and ATP production. Rolapitant triggers an elevation in cytosolic and mitochondrial calcium levels and induces oxidative stress within fungal cells. An ATP luminescence assay confirmed that rolapitant, at sub-inhibitory concentrations, significantly interfered with ATP production in C. auris. Moreover, rolapitant enhanced the in vivo activity of AmB in a mouse model of disseminated C. auris infection, as the combination reduced the fungal burden in murine kidneys by ~1 log (~90%) colony forming units. Our findings warrant further investigation of using rolapitant to overcome AmB resistance in C. auris and other fungal species.
Collapse
Affiliation(s)
- Ehab A. Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Sagar M. Utturkar
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Nadia A. Lanman
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Tony R. Hazbun
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Pan M, Cai C, Li W, Cao T, Liu Y, Yang L, Xie Q, Zhang X. Ebselen improves lipid metabolism by activating PI3K/Akt and inhibiting TLR4/JNK signaling pathway to alleviate nonalcoholic fatty liver. Cytokine 2024; 181:156671. [PMID: 38943739 DOI: 10.1016/j.cyto.2024.156671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a metabolic disease associated with obesity and type 2 diabetes. Due to its complex pathogenesis, there are still limitations in the knowledge of the disease. To date, no drug has been approved to treat NAFLD. This study aims to explore the role and mechanism of Ebselen (EbSe) in NAFLD. A high-fat diet-induced mouse model of NAFLD was employed to investigate EbSe function in NAFLD mice by EbSe gavage and to regularly monitor the mouse body weight. HE and oil red O staining were performed, respectively, to detect the pathological damage and lipid accumulation in mouse liver tissues. The biochemical and ELISA kits were employed to measure the levels of ALT, AST, TG, TC, LDL-C, HDL-C and pro-inflammatory cytokines within mouse serum or liver tissue. The expression of key proteins of PPARα, fatty acid β oxidation-related protein, PI3K/Akt and TLR4/JNK signaling pathway was detected by western blot. EbSe significantly downregulated body weight, liver weight and liver lipid accumulation in NAFLD mice and downregulated ALT, AST, TG, TC, LDL-C and increased HDL-C serum levels. EbSe upregulated the expression levels of PPARα and fatty acid β oxidation-associated proteins CPT1α, ACOX1, UCP2 and PGC1α. EbSe promoted Akt and PI3K phosphorylation, and inhibited TLR4 expression and JNK phosphorylation. EbSe can upregulate PPARα to promote fatty acid β-oxidation and improve hepatic lipid metabolism. Meanwhile, EbSe also activated PI3K/Akt and inhibited TLR4/JNK signaling pathway. EbSe is predicted to be an effective therapeutic drug for treating NAFLD.
Collapse
Affiliation(s)
- Meimin Pan
- Department of the Center for Clinical Trail Research, The First Hospital of Changsha, Changsha 410005, Hunan, China
| | - Chunlin Cai
- Department of Healthcare Associated Infection Control, The First Hospital of Changsha, Changsha 410005, Hunan, China
| | - Wenjuan Li
- Department of Infectious Disease, The First Hospital of Changsha, Changsha 410005, Hunan, China
| | - Tianran Cao
- Department of the Center for Clinical Trail Research, The First Hospital of Changsha, Changsha 410005, Hunan, China
| | - Yu Liu
- Department of the Center for Clinical Trail Research, The First Hospital of Changsha, Changsha 410005, Hunan, China
| | - Lihui Yang
- Department of Infectious Disease, The First Hospital of Changsha, Changsha 410005, Hunan, China
| | - Qing Xie
- Department of Infectious Disease, The First Hospital of Changsha, Changsha 410005, Hunan, China
| | - Xuehong Zhang
- Department of the Center for Clinical Trail Research, The First Hospital of Changsha, Changsha 410005, Hunan, China.
| |
Collapse
|
4
|
de Farias Cabral VP, Rodrigues DS, do Amaral Valente Sá LG, Moreira LEA, da Silva CR, de Andrade Neto JB, da Costa ÉRM, Ferreira TL, de Oliveira LC, de Souza BO, Cavalcanti BC, Magalhães IL, de Moraes MO, Júnior HVN. Analysis of the anti-Candida activity of tricyclic antidepressants in association with amphotericin B and their antifungal mechanisms. Braz J Microbiol 2024:10.1007/s42770-024-01459-y. [PMID: 39198376 DOI: 10.1007/s42770-024-01459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/09/2024] [Indexed: 09/01/2024] Open
Abstract
Candida species are among the priority pathogens in the area of research and development. Due to the problems associated with resistance to antifungals, new therapeutic alternatives are necessary. In this regard, drug repositioning has gained prominence. The objective of this study was to evaluate the activity of three tricyclic antidepressants (TCAs) - amitriptyline (AMT), nortriptyline (NOR) and clomipramine (CLO) - isolated or associated with antifungals against strains of Candida spp., as well as to analyze the possible mechanism of action. Among the methods used were broth microdilution tests, tolerance level assessment, checkerboard assays, flow cytometry and fluorescence microscopy. Furthermore, Candida cells were visualized after treatments by scanning electron microscopy (SEM). AMT presented MIC 50% in the range of 16 to 128 µg/mL, NOR from 8 to 128 µg/mL, and CLO from 8 to 64 µg/mL, with all three TCAs having a fungicidal inhibitory action profile. For these TCAs, there was synergism with amphotericin B (AMB) in 100% of the isolates. In association with fluconazole (FLC) and itraconazole (ITR), there were mostly indifferent interactions. TCAs isolated and associated with AMB reduced cell viability, promoted DNA fragmentation and damage, caused mitochondrial depolarization, externalization of phosphatidylserine, produced reactive oxygen species (ROS), decreased reduced glutathione (GSH) and increased carbonyl protein levels, causing morphological changes. The results suggest the antifungal mechanism of the TCAs works via the apoptotic pathway.
Collapse
Affiliation(s)
- Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Lara Elloyse Almeida Moreira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - João Batista de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Érica Rayanne Mota da Costa
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Thais Lima Ferreira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Leilson Carvalho de Oliveira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Beatriz Oliveira de Souza
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Bruno Coêlho Cavalcanti
- Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Islay Lima Magalhães
- Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.
- Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
5
|
Alkashef NM, Seleem MN. Novel combinatorial approach: Harnessing HIV protease inhibitors to enhance amphotericin B's antifungal efficacy in cryptococcosis. PLoS One 2024; 19:e0308216. [PMID: 39088434 PMCID: PMC11293717 DOI: 10.1371/journal.pone.0308216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024] Open
Abstract
Cryptococcosis is a fungal infection that is becoming increasingly prevalent worldwide, particularly among individuals with compromised immune systems, such as HIV patients. Amphotericin B (AmB) is the first-line treatment mainly combined with flucytosine. The scarcity and the prohibitive cost of this regimen urge the use of fluconazole as an alternative, leading to increased rates of treatment failure and relapses. Therefore, there is a critical need for efficient and cost-effective therapy to enhance the efficacy of AmB. In this study, we evaluated the efficacy of the HIV protease inhibitors (PIs) to synergize the activity of AmB in the treatment of cryptococcosis. Five PIs (ritonavir, atazanavir, saquinavir, lopinavir, and nelfinavir) were found to synergistically potentiate the killing activity of AmB against Cryptococcus strains with ƩFICI ranging between 0.09 and 0.5 against 20 clinical isolates. This synergistic activity was further confirmed in a time-kill assay, where different AmB/PIs combinations exhibited fungicidal activity within 24 hrs. Additionally, PIs in combination with AmB exhibited an extended post-antifungal effect on treated cryptococcal cells for approximately 10 hrs compared to 4 hours with AmB alone. This promising activity against cryptococcal cells did not exhibit increased cytotoxicity towards treated kidney cells, ruling out the risk of drug combination-induced nephrotoxicity. Finally, we evaluated the efficacy of AmB/PIs combinations in the Caenorhabditis elegans model of cryptococcosis, where these combinations significantly reduced the fungal burden of the treated nematodes by approximately 2.44 Log10 CFU (92.4%) compared to the untreated worms and 1.40 Log10 ((39.4%) compared to AmB alone. The cost-effectiveness and accessibility of PIs in resource-limited geographical areas compared to other antifungal agents, such as flucytosine, make them an appealing choice for combination therapy.
Collapse
Affiliation(s)
- Nour M. Alkashef
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Alsharkia, Egypt
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
6
|
Morán-Serradilla C, Plano D, Sharma AK, Sanmartín C. Following the Trace of Cyclodextrins on the Selenium and Tellurium Odyssey. Int J Mol Sci 2024; 25:7799. [PMID: 39063040 PMCID: PMC11277100 DOI: 10.3390/ijms25147799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
There is an urgent need to develop safer and more effective modalities for the treatment of numerous pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Over the past decades, cyclodextrins (CDs) have gathered great attention as potential drug carriers due to their ability to enhance their bioactivities and properties. Likewise, selenium (Se) and tellurium (Te) have been extensively studied during the last decades due to their possible therapeutical applications. Although there is limited research on the relationship between Se and Te and CDs, herein, we highlight different representative examples of the advances related to this topic as well as give our view on the future directions of this emerging area of research. This review encompasses three different aspects of this relationship: (1) modification of the structure of the different CDs; (2) formation of host-guest interaction complexes of naïve CDs with Se and Te derivatives in order to overcome specific limitations of the latter; and (3) the use of CDs as catalysts to achieve novel Se and Te compounds.
Collapse
Affiliation(s)
- Cristina Morán-Serradilla
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (C.M.-S.); (D.P.)
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (C.M.-S.); (D.P.)
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA;
- Penn State Cancer Institute, 400 University Drive, Hershey, PA 17033, USA
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (C.M.-S.); (D.P.)
| |
Collapse
|
7
|
Yu B, Wang Q, Zhang L, Lin J, Feng Z, Wang Z, Gu L, Tian X, Luan S, Li C, Zhao G. Ebselen improves fungal keratitis through exerting anti-inflammation, anti-oxidative stress, and antifungal effects. Redox Biol 2024; 73:103206. [PMID: 38796864 PMCID: PMC11152752 DOI: 10.1016/j.redox.2024.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Fungal keratitis is a severely vision-threatening corneal infection, where the prognosis depends on both fungal virulence and host immune defense. Inappropriate host responses can induce substantial inflammatory damage to the cornea. Therefore, in the treatment of fungal keratitis, it is important to concurrently regulate the immune response while efforts are made to eliminate the pathogen. Ebselen is a widely studied organo-selenium compound and has been demonstrated to have antifungal, antibacterial, anti-inflammatory, and oxidative stress-regulatory properties. The effectiveness of ebselen for the treatment of fungal keratitis remains unknown. In this study, ebselen was demonstrated to produce a marked inhibitory effect on Aspergillus fumigatus (A. fumigatus), including spore germination inhibition, mycelial growth reduction, and fungal biofilm disruption. The antifungal activity of ebselen was related to the cell membrane damage caused by thioredoxin (Trx) system inhibition-mediated oxidative stress. On the contrary, ebselen enhanced the antioxidation of Trx system in mammalian cells. Further, ebselen was proven to suppress the expressions of inflammatory mediators (IL-1β, IL-6, TNF-α, COX-2, iNOS, and CCL2) and reduce the production of oxidative stress-associated indicators (ROS, NO, and MDA) in fungi-stimulated RAW264.7 cells. In addition, ebselen regulated PI3K/Akt/Nrf2 and p38 MAPK signaling pathways, which contributed to the improvement of inflammation and oxidative stress. Finally, we verified the therapeutic effect of ebselen on mouse fungal keratitis. Ebselen improved the prognosis and reduced the fungal burden in mouse corneas. Expressions of inflammatory mediators, as well as the infiltration of macrophages and neutrophils in the cornea were also obviously decreased by ebselen. In summary, ebselen exerted therapeutic effects by reducing fungal load and protecting host tissues in fungal keratitis, making it a promising treatment for fungal infections.
Collapse
Affiliation(s)
- Bing Yu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Zhuhui Feng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Ziyi Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Songying Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China.
| |
Collapse
|
8
|
Cao L, Tan L, Li L. Metal copper and silver revealed potent antimicrobial activity for treating Caenorhabditis elegans infected with carbapenemase-producing Klebsiella pneumonia. Am J Transl Res 2024; 16:2011-2023. [PMID: 38883387 PMCID: PMC11170617 DOI: 10.62347/dieo8870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/06/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVES The increasing issue of bacterial resistance, coupled with inadequate progress in developing new antibiotics, necessitates exploring alternative treatments. Antibacterial biomaterials, such as silver and copper, possess advantageous properties such as heat resistance, durability, continuity, and safety. Particularly, they can effectively eliminate pathogenic bacteria while preserving cellular integrity, emphasizing the necessity of identifying optimal metal ion concentrations for practical application. Caenorhabditis elegans (C. elegans) can serve as a noteworthy model in this context. This study employed a C. elegans infection model to assess the efficacy of antibacterial metal ions. METHODS Hematoxylin-eosin (HE) staining and inductively coupled plasma mass spectrometry (ICP-MS) assay were utilized to determine the toxic levels of metal ions in mice. Additionally, RNA sequencing (RNA-seq) and assessment of reactive oxygen species (ROS) production in the C. elegans model were conducted to elucidate the mechanisms underlying metal ion toxicity. RESULTS Silver ion concentrations ranging from 10-6 to 10-7 M and copper ion concentrations ranging from 10-4 to 10-5 M exhibited antimicrobial properties without eliciting cytotoxic effects. Analysis of the transcriptome data derived from mRNA isolated from C. elegans indicated that CRKP infection activated the FoxO signaling pathway, potentially leading to ROS accumulation and C. elegans demise. CONCLUSIONS In conclusion, C. elegans serves as a comprehensive infection model for assessing antibacterial metal ions.
Collapse
Affiliation(s)
- Ling Cao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Nanchang University (The First Hospital of Nanchang) Nanchang 330008, Jiangxi, P. R. China
| | - Lili Tan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Nanchang University (The First Hospital of Nanchang) Nanchang 330008, Jiangxi, P. R. China
| | - Liping Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Nanchang University (The First Hospital of Nanchang) Nanchang 330008, Jiangxi, P. R. China
| |
Collapse
|
9
|
Zhou Y, Phelps GA, Mangrum MM, McLeish J, Phillips EK, Lou J, Ancajas CF, Rybak JM, Oelkers PM, Lee RE, Best MD, Reynolds TB. The small molecule CBR-5884 inhibits the Candida albicans phosphatidylserine synthase. mBio 2024; 15:e0063324. [PMID: 38587428 PMCID: PMC11077991 DOI: 10.1128/mbio.00633-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Systemic infections by Candida spp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, from Candida albicans is a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed an in vitro nucleotidase-coupled malachite-green-based high throughput assay for purified C. albicans Cho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising average Z' score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects against C. albicans cells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disrupting in vivo Cho1 function by inducing phenotypes consistent with the cho1∆∆ mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with a Ki of 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCE Fungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with a Ki value of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gregory A. Phelps
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jemma McLeish
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Elise K. Phillips
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Jeffrey M. Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Peter M. Oelkers
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Richard E. Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Michael D. Best
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
10
|
Alves de Lima e Silva A, Rio-Tinto A. Ebselen: A Promising Repurposing Drug to Treat Infections Caused by Multidrug-Resistant Microorganisms. Interdiscip Perspect Infect Dis 2024; 2024:9109041. [PMID: 38586592 PMCID: PMC10998725 DOI: 10.1155/2024/9109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial multiresistance to drugs is a rapidly growing global phenomenon. New resistance mechanisms have been described in different bacterial pathogens, threatening the effective treatment of even common infectious diseases. The problem worsens in infections associated with biofilms because, in addition to the pathogen's multiresistance, the biofilm provides a barrier that prevents antimicrobial access. Several "non-antibiotic" drugs have antimicrobial activity, even though it is not their primary therapeutic purpose. However, due to the urgent need to develop effective antimicrobials to treat diseases caused by multidrug-resistant pathogens, there has been an increase in research into "non-antibiotic" drugs to offer an alternative therapy through the so-called drug repositioning or repurposing. The prospect of new uses for existing drugs has the advantage of reducing the time and effort required to develop new compounds. Moreover, many drugs are already well characterized regarding toxicity and pharmacokinetic/pharmacodynamic properties. Ebselen has shown promise for use as a repurposing drug for antimicrobial purposes. It is a synthetic organoselenium with anti-inflammatory, antioxidant, and cytoprotective activity. A very attractive factor for using ebselen is that, in addition to potent antimicrobial activity, its minimum inhibitory concentration is very low for microbial pathogens.
Collapse
Affiliation(s)
- Agostinho Alves de Lima e Silva
- Laboratory of Biology and Physiology of Microorganisms, Biomedical Institute, DMP, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-030, Brazil
| | - André Rio-Tinto
- Laboratory of Pathogenic Cocci and Microbiota, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
| |
Collapse
|
11
|
García-Barbazán I, Torres-Cano A, García-Rodas R, Sachse M, Luque D, Megías D, Zaragoza O. Accumulation of endogenous free radicals is required to induce titan-like cell formation in Cryptococcus neoformans. mBio 2024; 15:e0254923. [PMID: 38078728 PMCID: PMC10790760 DOI: 10.1128/mbio.02549-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/27/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Cryptococcus neoformans is an excellent model to investigate fungal pathogenesis. This yeast can produce "titan cells," which are cells of an abnormally larger size that contribute to the persistence of the yeast in the host. In this work, we have used a new approach to characterize them by identifying drugs that inhibit this process. We have used a repurposing off-patent drug library, combined with an automatic method to image and analyze fungal cell size. In this way, we have identified many compounds that inhibit this transition. Interestingly, several compounds were antioxidants, allowing us to confirm that endogenous ROS and mitochondrial changes are important for titan cell formation. This work provides new evidence of the mechanisms required for titanization. Furthermore, the future characterization of the inhibitory mechanisms of the identified compounds by the scientific community will contribute to better understand the role of titan cells in virulence.
Collapse
Affiliation(s)
- Irene García-Barbazán
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Alba Torres-Cano
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rocío García-Rodas
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Martin Sachse
- Electron Microscopy Unit, Central Core Facilities, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Luque
- Electron Microscopy Unit, Central Core Facilities, Instituto de Salud Carlos III, Madrid, Spain
| | - Diego Megías
- Advanced Optical Microscopy Unit, Central Core Facilities, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
12
|
Zhang R, Wang Y, Wu A, Wang J, Zhang J. Strategies of targeting CYP51 for IFIs therapy: Emerging prospects, opportunities and challenges. Eur J Med Chem 2023; 259:115658. [PMID: 37480712 DOI: 10.1016/j.ejmech.2023.115658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
CYP51, a monooxygenase associated with the sterol synthesis pathway, is responsible for the catalysis of the 14-methyl hydroxylation reaction of lanosterol precursors. This enzyme is widely present in microorganisms, plants, and mammals. In mammals, CYP51 plays a role in cholesterol production, oligodendrocyte formation, oocyte maturation, and spermatogenesis. In fungal cells, CYP51 is an enzyme that synthesizes membrane sterols. By inhibiting fungal CYP51, ergosterol synthesis can be inhibited and ergosterol membrane fluidity is altered, resulting in fungal cell apoptosis. Thus, targeting CYP51 is a reliable antifungal strategy with important implications for the treatment of invasive fungal infections (IFIs). Many CYP51 inhibitors have been approved by the FDA for clinical treatment. However, several limitations of CYP51 inhibitors remain to be resolved, including fungal resistance, hepatotoxicity, and drug-drug interactions. New broad-spectrum, anti-resistant, highly selective CYP51 inhibitors are expected to be developed to enhance clinical efficacy and minimize adverse effects. Herein, we summarize the structural features and biological functions of CYP51 and emphatically analyze the structure-activity relationship (SAR) and therapeutic potential of different chemical types of small-molecule CYP51 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CYP51 for clinical practice.
Collapse
Affiliation(s)
- Ruofei Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Aijia Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
13
|
Elgammal Y, Salama EA, Seleem MN. Saquinavir potentiates itraconazole's antifungal activity against multidrug-resistant Candida auris in vitro andin vivo. Med Mycol 2023; 61:myad081. [PMID: 37558393 DOI: 10.1093/mmy/myad081] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Candida species are highly opportunistic yeasts that are responsible for serious invasive fungal infections among immunocompromised patients worldwide. Due to the increase in drug resistance and incidence of infections, there is an urgent need to develop new antifungals and to identify co-drugs that can sensitize drug-resistant Candida to antifungals. The objective of this study was to assess the effect of saquinavir on the activity of azole antifungals against C. auris. The in vitro interaction of saquinavir and three azole antifungals (itraconazole, voriconazole, and fluconazole) was evaluated against a panel of C. auris isolates. The itraconazole/saquinavir combination exhibited a synergistic (SYN) relationship against all C. auris isolates tested with the fractional inhibitory concentration index ranging from 0.03 to 0.27. Moreover, a time-kill kinetics assay revealed that saquinavir restored the itraconazole's fungistatic activity against C. auris. Furthermore, saquinavir restored itraconazole's antifungal activity against other clinically important Candida species. The mechanistic investigation indicated that saquinavir significantly inhibited efflux pumps, glucose utilization, and ATP synthesis in Candida. Finally, a murine model of C. auris infection was used to evaluate the efficacy of the itraconazole/saquinavir combination in the presence of ritonavir (as a pharmacokinetic enhancer). The combination significantly reduced the fungal burden in the kidneys by 0.93-log10 colony-forming units (88%) compared to itraconazole alone. This study identified that saquinavir exhibits a potent SYN relationship in combination with itraconazole against Candida species, which warrants further consideration.
Collapse
Affiliation(s)
- Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ehab A Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
14
|
Hoque E, Tran P, Jacobo U, Bergfeld N, Acharya S, Shamshina JL, Reid TW, Abidi N. Antimicrobial Coatings for Medical Textiles via Reactive Organo-Selenium Compounds. Molecules 2023; 28:6381. [PMID: 37687210 PMCID: PMC10490204 DOI: 10.3390/molecules28176381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Bleached and cationized cotton fabrics were chemically modified with reactive organoselenium compounds through the nucleophilic aromatic substitution (SNAr) reaction, which allowed for organo-selenium attachment onto the surface of cotton fabrics via covalent bonds and, in the case of the cationized cotton fabric, additional ionic interactions. The resulting textiles exhibited potent bactericidal activity against S. aureus (99.99% reduction), although only moderate activity was observed against E. coli. Fabrics treated with reactive organo-selenium compounds also exhibited fungicidal activities against C. albicans, and much higher antifungal activity was observed when organo-selenium compounds were applied to the cationized cotton in comparison to the bleached cotton. The treatment was found to be durable against rigorous washing conditions (non-ionic detergent/100 °C). This paper is the first report on a novel approach integrating the reaction of cotton fabrics with an organo-selenium antimicrobial agent. This approach is attractive because it provides a method for imparting antimicrobial properties to cotton fabrics which does not disrupt the traditional production processes of a textile mill.
Collapse
Affiliation(s)
- Ejajul Hoque
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Phat Tran
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Unique Jacobo
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Sanjit Acharya
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Julia L. Shamshina
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Ted W. Reid
- Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
15
|
Zhang D, Yin F, Qin Q, Qiao L. Molecular responses during bacterial filamentation reveal inhibition methods of drug-resistant bacteria. Proc Natl Acad Sci U S A 2023; 120:e2301170120. [PMID: 37364094 PMCID: PMC10318954 DOI: 10.1073/pnas.2301170120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Bacterial antimicrobial resistance (AMR) is among the most significant challenges to current human society. Exposing bacteria to antibiotics can activate their self-saving responses, e.g., filamentation, leading to the development of bacterial AMR. Understanding the molecular changes during the self-saving responses can reveal new inhibition methods of drug-resistant bacteria. Herein, we used an online microfluidics mass spectrometry system for real-time characterization of metabolic changes of bacteria during filamentation under the stimulus of antibiotics. Significant pathways, e.g., nucleotide metabolism and coenzyme A biosynthesis, correlated to the filamentation of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E. coli) were identified. A cyclic dinucleotide, c-di-GMP, which is derived from nucleotide metabolism and reported closely related to bacterial resistance and tolerance, was observed significantly up-regulated during the bacterial filamentation. By using a chemical inhibitor, ebselen, to inhibit diguanylate cyclases which catalyzes the synthesis of c-di-GMP, the minimum inhibitory concentration of ceftriaxone against ESBL-E. coli was significantly decreased. This inhibitory effect was also verified with other ESBL-E. coli strains and other beta-lactam antibiotics, i.e., ampicillin. A mutant strain of ESBL-E. coli by knocking out the dgcM gene was used to demonstrate that the inhibition of the antibiotic resistance to beta-lactams by ebselen was mediated through the inhibition of the diguanylate cyclase DgcM and the modulation of c-di-GMP levels. Our study uncovers the molecular changes during bacterial filamentation and proposes a method to inhibit antibiotic-resistant bacteria by combining traditional antibiotics and chemical inhibitors against the enzymes involved in bacterial self-saving responses.
Collapse
Affiliation(s)
- Dongxue Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai200000, China
| | - Fan Yin
- Department of Chemistry, Shanghai Stomatological Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai200000, China
| | - Qin Qin
- Changhai Hospital, The Naval Military Medical University, Shanghai200433, China
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai200000, China
| |
Collapse
|
16
|
McMahon CL, Esqueda M, Yu JJ, Wall G, Romo JA, Vila T, Chaturvedi A, Lopez-Ribot JL, Wormley F, Hung CY. Development of an Imaging Flow Cytometry Method for Fungal Cytological Profiling and Its Potential Application in Antifungal Drug Development. J Fungi (Basel) 2023; 9:722. [PMID: 37504711 PMCID: PMC10381375 DOI: 10.3390/jof9070722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Automated imaging techniques have been in increasing demand for the more advanced analysis and efficient characterization of cellular phenotypes. The success of the image-based profiling method hinges on assays that can rapidly and simultaneously capture a wide range of phenotypic features. We have developed an automated image acquisition method for fungal cytological profiling (FCP) using an imaging flow cytometer that can objectively measure over 250 features of a single fungal cell. Fungal cells were labeled with calcofluor white and FM4-64FX, which bind to the cell wall and lipophilic membrane, respectively. Images of single cells were analyzed using IDEAS® software. We first acquired FCPs of fungal cells treated with fluconazole, amphotericin B, and caspofungin, each with a distinct mode of action, to establish FCP databases of profiles associated with specific antifungal treatment. Once fully established, we investigated the potential application of this technique as a screening methodology to identify compounds with novel antifungal activity against Candida albicans and Cryptococcus neoformans. Altogether, we have developed a rapid, powerful, and novel image-profiling method for the phenotypic characterization of fungal cells, also with potential applications in antifungal drug development.
Collapse
Affiliation(s)
- Courtney L McMahon
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Marisol Esqueda
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jieh-Juen Yu
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Gina Wall
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jesus A Romo
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Taissa Vila
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Ashok Chaturvedi
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jose L Lopez-Ribot
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Floyd Wormley
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
17
|
De Jesus DFF, De Freitas ALD, De Oliveira IM, De Almeida LC, Bastos RW, Spadari CDC, Melo ASDA, Santos DDA, Costa-Lotufo LV, Reis FCG, Rodrigues ML, Stefani HA, Ishida K. Organoselenium Has a Potent Fungicidal Effect on Cryptococcus neoformans and Inhibits the Virulence Factors. Antimicrob Agents Chemother 2023; 67:e0075922. [PMID: 36815840 PMCID: PMC10019174 DOI: 10.1128/aac.00759-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/14/2023] [Indexed: 02/24/2023] Open
Abstract
Cryptococcosis therapy is often limited by toxicity problems, antifungal tolerance, and high costs. Studies approaching chalcogen compounds, especially those containing selenium, have shown promising antifungal activity against pathogenic species. This work aimed to evaluate the in vitro and in vivo antifungal potential of organoselenium compounds against Cryptococcus neoformans. The lead compound LQA_78 had an inhibitory effect on C. neoformans planktonic cells and dispersed cells from mature biofilms at similar concentrations. The fungal growth inhibition led to an increase in budding cells arrested in the G2/M phase, but the compound did not significantly affect structural cell wall components or chitinase activity, an enzyme that regulates the dynamics of the cell wall. The compound also inhibited titan cell (Tc) and enlarged capsule yeast (NcC) growth and reduced the body diameter and capsule thickness associated with increased capsular permeability of both virulent morphotypes. LQA_78 also reduced fungal melanization through laccase activity inhibition. The fungicidal activity was observed at higher concentrations (16 to 64 μg/mL) and may be associated with augmented plasma membrane permeability, ROS production, and loss of mitochondrial membrane potential. While LQA_78 is a nonhemolytic compound, its cytotoxic effects were cell type dependent, exhibiting no toxicity on Galleria mellonella larvae at a dose ≤46.5 mg/kg. LQA_78 treatment of larvae infected with C. neoformans effectively reduced the fungal burden and inhibited virulent morphotype formation. To conclude, LQA_78 displays fungicidal action and inhibits virulence factors of C. neoformans. Our results highlight the potential use of LQA_78 as a lead molecule for developing novel pharmaceuticals for treating cryptococcosis.
Collapse
Affiliation(s)
| | | | | | | | - Rafael Wesley Bastos
- Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | | | | | - Daniel de Assis Santos
- Institute of Biomedical Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Flavia C. G. Reis
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
18
|
Su H, Yi J, Tsui CK, Li C, Zhu J, Li L, Zhang Q, Zhu Y, Xu J, Zhu M, Han J. HIF1-α upregulation induces proinflammatory factors to boost host killing capacity after Aspergillus fumigatus exposure. Future Microbiol 2023; 18:27-41. [PMID: 36472203 DOI: 10.2217/fmb-2022-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims: HIF1-α is an important transcription factor in the regulation of the immune response. The protective function of HIF1-α in the host epithelial immune response to Aspergillus fumigatus requires further clarification. Methods: In this study we demonstrated the effect of upregulation of HIF1-α expression in A549 cells and mouse airway cells exposed to A. fumigatus in vivo. Results: The killing capacity was enhanced by boosting proinflammatory factors both in vitro and in vivo. Moreover, airway inflammation was reduced in the HIF1-α-upregulated mice. Conclusion: We identified a protective role for HIF1-α in anti-A. fumigatus immunity. Modulation of HIF1-α might be a target for the development of aspergillosis therapy.
Collapse
Affiliation(s)
- Huilin Su
- Department of Dermatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, 510080, China.,Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiu Yi
- Department of Dermatology, Naval Medical Center of PLA, Shanghai, 200052, China
| | - Clement Km Tsui
- Faculty of Medicine, University of British Columbia, Vancouver, V6T1Z3, Canada.,National Center for Infectious Diseases, Tan Tock Seng hospital, 308442, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Junhao Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Li Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qiangqiang Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center of PLA, Shanghai, 200052, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Min Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiande Han
- Department of Dermatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, 510080, China
| |
Collapse
|
19
|
Li X, Wang Q, Li H, Wang X, Zhang R, Yang X, Jiang Q, Shi Q. Revealing the Mechanisms for Linalool Antifungal Activity against Fusarium oxysporum and Its Efficient Control of Fusarium Wilt in Tomato Plants. Int J Mol Sci 2022; 24:ijms24010458. [PMID: 36613902 PMCID: PMC9820380 DOI: 10.3390/ijms24010458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Fusarium oxysporum f. sp. radicis-lycopersici (Forl) is a destructive soil-borne phytopathogenic fungus that causes Fusarium crown and root rot (FCRR) of tomato, leading to considerable field yield losses. In this study, we explored the antifungal capability of linalool, a natural plant volatile organic component, against Forl and its role in controlling FCRR symptoms in tomatoes. Our results showed that Forl mycelial growth was inhibited by the linalool treatment and that the linalool treatment damaged cell membrane integrity, enhanced reactive oxygen species levels, depleted glutathione, and reduced the activities of many antioxidant enzymes in Forl. Transcriptomic and proteomic analyses demonstrated that linalool also downregulated metabolic biosynthetic pathways at the transcript and protein levels, including redox, transporter activity, and carbohydrate metabolism in Forl. Moreover, linalool significantly decreased the expression of many Forl pathogenic genes, such as cell wall degrading enzymes (CWDEs) and G proteins, which is likely how a Forl infection was prevented. Importantly, exogenously applied linalool activated the salicylic acid (SA) and jasmonic acid (JA) defensive pathways to improve disease resistance and relieved the negative effects of Forl on plant growth. Taken together, we report that linalool is an effective fungicide against Forl and will be a promising green chemical agent for controlling FCRR.
Collapse
|
20
|
Tu J, Liu N, Huang Y, Yang W, Sheng C. Small molecules for combating multidrug-resistant superbug Candida auris infections. Acta Pharm Sin B 2022; 12:4056-4074. [PMID: 36386475 PMCID: PMC9643296 DOI: 10.1016/j.apsb.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023] Open
Abstract
Candida auris is emerging as a major global threat to human health. C. auris infections are associated with high mortality due to intrinsic multi-drug resistance. Currently, therapeutic options for the treatment of C. auris infections are rather limited. We aim to provide a comprehensive review of current strategies, drug candidates, and lead compounds in the discovery and development of novel therapeutic agents against C. auris. The drug resistance profiles and mechanisms are briefly summarized. The structures and activities of clinical candidates, drug combinations, antifungal chemosensitizers, repositioned drugs, new targets, and new types of compounds will be illustrated in detail, and perspectives for guiding future research will be provided. We hope that this review will be helpful to prompting the drug development process to combat this fungal pathogen.
Collapse
Affiliation(s)
| | | | - Yahui Huang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wanzhen Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
21
|
Zhang XF, Li QY, Wang M, Ma SQ, Zheng YF, Li YQ, Zhao DL, Zhang CS. 2 E,4 E-Decadienoic Acid, a Novel Anti-Oomycete Agent from Coculture of Bacillus subtilis and Trichoderma asperellum. Microbiol Spectr 2022; 10:e0154222. [PMID: 35943267 PMCID: PMC9430527 DOI: 10.1128/spectrum.01542-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
Phytophthora nicotianae is an oomycete pathogen of global significance threatening many important crops. It is mainly controlled by chemosynthetic fungicides, which endangers ecosystem and human health; thus, there is an urgent need to explore alternatives for these fungicides. In this study, a new anti-oomycete aliphatic compound, 2E,4E-decadienoic acid (DDA), was obtained through coculture of Bacillus subtilis Tpb55 and Trichoderma asperellum HG1. Both in vitro and in vivo tests showed that DDA had a strong inhibitory effect against P. nicotianae. In addition, rhizosphere microbiome analysis showed that DDA reduced the relative abundance of Oomycota in rhizosphere soil. Transcriptome sequencing (RNA-Seq) analysis revealed that treatment of P. nicotianae with DDA resulted in significant downregulation of antioxidant activity and energy metabolism, including antioxidant enzymes and ATP generation, and upregulation of membrane-destabilizing activity, such as phospholipid synthesis and degradation. The metabolomic analysis results implied that the pathways influenced by DDA were mainly related to carbohydrate metabolism, energy metabolism, and the cell membrane. The biophysical tests further indicated that DDA produced oxidative stress on P. nicotianae, inhibited antioxidant enzyme and ATPase activity, and increased cell membrane permeability. Overall, DDA exerts inhibitory activity by acting on multiple targets in P. nicotianae, especially on the cell membrane and mitochondria, and can therefore serve as a novel environment-friendly agent for controlling crop oomycete disease. IMPORTANCE P. nicotianae is an oomycete pathogen that is destructive to crops. Although some oomycete inhibitors have been used during crop production, most are harmful to the ecology and lead to pathogen resistance. Alternatively, medium-chain fatty acids have been reported to exhibit antimicrobial activity in the medical field in previous studies; however, their potential as biocontrol agents has rarely been evaluated. Our in vivo and in vitro analyses revealed that the medium-chain fatty acid 2E,4E-decadienoic acid (DDA) displayed specific inhibitory activity against oomycetes. Further analysis indicated that DDA may acted on multiple targets in P. nicotianae, especially on the cell membrane and mitochondria. Our findings highlight the potential of DDA in controlling oomycete diseases. In conclusion, these results provide insights regarding the future use of green and environment-friendly anti-oomycete natural products for the prevention and control of crop oomycete diseases.
Collapse
Affiliation(s)
- Xi-Fen Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People’s Republic of China
| | - Qing-Yu Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People’s Republic of China
| | - Mei Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People’s Republic of China
| | - Si-Qi Ma
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People’s Republic of China
| | - Yan-Fen Zheng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People’s Republic of China
| | - Yi-Qiang Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People’s Republic of China
| | - Dong-Lin Zhao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People’s Republic of China
| | - Cheng-Sheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People’s Republic of China
| |
Collapse
|
22
|
Design, synthesis, and biological evaluation of selenium-containing small molecule compounds based on the dual mechanism of fungal CYP51 inhibition and fungal ROS generation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Initial Results of the International Efforts in Screening New Agents against Candida auris. J Fungi (Basel) 2022; 8:jof8080771. [PMID: 35893139 PMCID: PMC9330594 DOI: 10.3390/jof8080771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND Candida auris is an emergent fungal pathogen and a global concern, mostly due to its resistance to many currently available antifungal drugs. OBJECTIVE Thus, in response to this challenge, we evaluated the in vitro activity of potential new drugs, diphenyl diselenide (PhSe)2 and nikkomycin Z (nikZ), alone and in association with currently available antifungals (azoles, echinocandins, and polyenes) against Candida auris. METHODS Clinical isolates of C. auris were tested in vitro. (PhSe)2 and nikZ activities were tested alone and in combination with amphotericin B, fluconazole, or the echinocandins, micafungin and caspofungin. RESULTS (PhSe)2 alone was unable to inhibit C. auris, and antagonism or indifferent effects were observed in the combination of this compound with the antifungals tested. NikZ appeared not active alone either, but frequently acted cooperatively with conventional antifungals. CONCLUSION Our data show that (PhSe)2 appears to not have a good potential to be a candidate in the development of new drugs to treat C. auris, but that nikZ is worthy of further study.
Collapse
|
24
|
Trans-cinnamaldehyde inhibits Penicillium italicum by damaging mitochondria and inducing apoptosis mechanisms. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Wang M, Li J, Cong W, Zhang J. Antimicrobial Mechanism and Secondary Metabolite Profiles of Biocontrol Agent Streptomyces lydicus M01 Based on Ultra-High-Performance Liquid Chromatography Connected to a Quadrupole Time-of-Flight Mass Spectrometer Analysis and Genome Sequencing. Front Microbiol 2022; 13:908879. [PMID: 35711789 PMCID: PMC9194905 DOI: 10.3389/fmicb.2022.908879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 11/15/2022] Open
Abstract
Streptomyces lydicus was used as biopesticide for crop protection in agriculture, however, the antimicrobial mechanism remains unclear and no systematic research on the secondary metabolites of S. lydicus has been reported. In this study, the extract of S. lydicus M01 culture was used to treat plant pathogen Alternaria alternata and morphological changes in the plasma membrane and cell wall of hyphae and conidia were observed. Fluorescence microscopy combined with different dyes showed that the accumulation of reactive oxygen species and cell death were also induced. To investigate the secondary metabolites in the culture filtrate, an online detection strategy of ultra-high-performance liquid chromatography connected to a quadrupole time-of-flight mass spectrometer (UPLC-Q-TOF-MS) was used for identification. The results revealed an excess of 120 metabolites, mainly consisted of fungicides, antibacterial agents, herbicides, insecticides, and plant growth regulators, such as IAA. Among which the five dominant components were oxadixyl, chloreturon, S-metolachlor, fentrazamide, and bucarpolate. On the other hand, the complete genome of S. lydicus M01 was sequenced and a number of key function gene clusters that contribute to the biosynthesis of active secondary metabolites were revealed. This is the first systematic characterization of S. lydicus secondary metabolites, and these results offer novel and valuable evidence for a comprehensive understanding of the biocontrol agent S. lydicus and its application in agriculture.
Collapse
Affiliation(s)
- Mingxuan Wang
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jing Li
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenjie Cong
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianguo Zhang
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
26
|
Gnat S, Łagowski D, Dyląg M, Jóźwiak G, Trościańczyk A, Nowakiewicz A. In Vitro Activity of Ebselen and Diphenyl Diselenide Alone and in Combination with Drugs against Trichophyton mentagrophytes Strains. Pharmaceutics 2022; 14:pharmaceutics14061158. [PMID: 35745731 PMCID: PMC9229022 DOI: 10.3390/pharmaceutics14061158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Dermatophytoses are one of the most prevalent infectious diseases in the world for which the pace of developing new drugs has not kept pace with the observed therapeutic problems. Thus, searching for new antifungals with an alternative and novel mechanism of action is necessary. Objective: This study aimed to evaluate the antifungal activity of ebselen and diphenyl diselenide against Trichophyton mentagrophytes clinical isolates. Methods: In vitro antifungal susceptibility was assessed for organoselenium compounds used alone or in combination with allylamines and azoles according to the 3rd edition of the CLSI M38 protocol. Results: Ebselen demonstrated high antifungal activity with MICGM equal to 0.442 μg/mL and 0.518 μg/mL in the case of human and animal origin strains, respectively. The values of MICGM of diphenyl diselenide were higher: 17.36 μg/mL and 13.45 μg/mL for the human and animal isolates, respectively. Synergistic or additive effects between terbinafine and ebselen or diphenyl diselenide were observed in the case of 12% and 20% strains, respectively. In turn, the combination of itraconazole with diphenyl diselenide showed a synergistic effect only in the case of 6% of the tested strains, whereas no synergism was shown in the combination with ebselen. Conclusions: The results highlight the promising activity of organoselenium compounds against Trichophyton mentagrophytes. However, their use in combinational therapy with antifungal drugs seems to be unjustified due to the weak synergistic effect observed.
Collapse
Affiliation(s)
- Sebastian Gnat
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (D.Ł.); (A.T.); (A.N.)
- Correspondence: ; Tel.: +48-81-445-6093
| | - Dominik Łagowski
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (D.Ł.); (A.T.); (A.N.)
| | - Mariusz Dyląg
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wroclaw, S. Przybyszewskiego 63, 50-137 Wroclaw, Poland;
| | - Grzegorz Jóźwiak
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Aleksandra Trościańczyk
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (D.Ł.); (A.T.); (A.N.)
| | - Aneta Nowakiewicz
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (D.Ł.); (A.T.); (A.N.)
| |
Collapse
|
27
|
Metabolomics Mechanism and Lignin Response to Laxogenin C, a Natural Regulator of Plants Growth. Int J Mol Sci 2022; 23:ijms23062990. [PMID: 35328410 PMCID: PMC8951225 DOI: 10.3390/ijms23062990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Laxogenin C (LGC) is a natural spirostanol deriving from plant hormone which has shown growing regulation similar to those of brassinosteroids. In the present study, LGC showed a promoting effect on tomato seed germination and seedling growth in a dose-dependent manner. We applied LC-MS/MS to investigate metabolome variations in the tomato treated with LGC, which revealed 10 differential metabolites (DMs) related to KEGG metabolites, associated with low and high doses of LGC. Enrichment and pathway mapping based on the KEGG database indicated that LGC regulated expressions of 2-hydroxycinnamic acid and l-phenylalanine to interfere with phenylalanine metabolism and phenylpropanoids biosynthesis. The two pathways are closely related to plant growth and lignin formation. In our further phenotypic verification, LGC was confirmed to affect seedling lignification and related phenylpropanoids, trans-ferulic acid and l-phenylalanine levels. These findings provided a metabolomic aspect on the plant hormone derivates and revealed the affected metabolites. Elucidating their regulation mechanisms can contribute to the development of sustainable agriculture. Further studies on agrichemical development would provide eco-friendly and efficient regulators for plant growth control and quality improvement.
Collapse
|
28
|
Thun‐Hohenstein STD, Suits TF, Malla TR, Tumber A, Brewitz L, Choudhry H, Salah E, Schofield CJ. Structure-Activity Studies Reveal Scope for Optimisation of Ebselen-Type Inhibition of SARS-CoV-2 Main Protease. ChemMedChem 2022; 17:e202100582. [PMID: 34850566 PMCID: PMC9015279 DOI: 10.1002/cmdc.202100582] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 11/08/2022]
Abstract
The reactive organoselenium compound ebselen is being investigated for treatment of coronavirus disease 2019 (COVID-19) and other diseases. We report structure-activity studies on sulfur analogues of ebselen with the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro ), employing turnover and protein-observed mass spectrometry-based assays. The results reveal scope for optimisation of ebselen/ebselen derivative- mediated inhibition of Mpro , particularly with respect to improved selectivity.
Collapse
Affiliation(s)
- Siegfried T. D. Thun‐Hohenstein
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research12 Mansfield RoadOxfordOX1 3TAUK
| | - Timothy F. Suits
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research12 Mansfield RoadOxfordOX1 3TAUK
| | - Tika R. Malla
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research12 Mansfield RoadOxfordOX1 3TAUK
| | - Anthony Tumber
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research12 Mansfield RoadOxfordOX1 3TAUK
| | - Lennart Brewitz
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research12 Mansfield RoadOxfordOX1 3TAUK
| | - Hani Choudhry
- Department of BiochemistryCenter for Artificial Intelligence in Precision MedicinesKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Eidarus Salah
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research12 Mansfield RoadOxfordOX1 3TAUK
| | - Christopher J. Schofield
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
29
|
Zhang RR, Jiao SF, Liu ZJ, Zheng YY, Yin YZ, Liang XT, Liu YX. Construction of starch-based bionic glutathione peroxidase and its catalytic mechanism. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
OUP accepted manuscript. Med Mycol 2022; 60:6526320. [PMID: 35142862 PMCID: PMC8929677 DOI: 10.1093/mmy/myac008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Candida auris is an emerging, multi drug resistant fungal pathogen that has caused infectious outbreaks in over 45 countries since its first isolation over a decade ago, leading to in-hospital crude mortality rates as high as 72%. The fungus is also acclimated to disinfection procedures and persists for weeks in nosocomial ecosystems. Alarmingly, the outbreaks of C. auris infections in Coronavirus Disease-2019 (COVID-19) patients have also been reported. The pathogenicity, drug resistance and global spread of C. auris have led to an urgent exploration of novel, candidate antifungal agents for C. auris therapeutics. This narrative review codifies the emerging data on the following new/emerging antifungal compounds and strategies: antimicrobial peptides, combinational therapy, immunotherapy, metals and nano particles, natural compounds, and repurposed drugs. Encouragingly, a vast majority of these exhibit excellent anti- C. auris properties, with promising drugs now in the pipeline in various stages of development. Nevertheless, further research on the modes of action, toxicity, and the dosage of the new formulations are warranted. Studies are needed with representation from all five C. auris clades, so as to produce data of grater relevance, and broader significance and validity.
Collapse
|
31
|
Jiao S, Shi C, Liang X, Wang F, Zheng Y, Liu Z, Liu M, Hu H, Zhong S, Yin Y. Synthesis of Selenium‐Enriched Cassava Starch with Immediate Antioxidant Activity and Its Antioxidant Catalytic Mechanism. STARCH-STARKE 2021. [DOI: 10.1002/star.202100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shufei Jiao
- Qinzhou Key Laboratory of Biowaste Resources for Selenium‐enriched Functional Utilization College of Petroleum and Chemical Engineering Beibu Gulf University Qinzhou 535011 China
| | - Cheng Shi
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 China
| | - Xingtang Liang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium‐enriched Functional Utilization College of Petroleum and Chemical Engineering Beibu Gulf University Qinzhou 535011 China
| | - Feng Wang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium‐enriched Functional Utilization College of Petroleum and Chemical Engineering Beibu Gulf University Qinzhou 535011 China
| | - Yunying Zheng
- Qinzhou Key Laboratory of Biowaste Resources for Selenium‐enriched Functional Utilization College of Petroleum and Chemical Engineering Beibu Gulf University Qinzhou 535011 China
| | - Zijie Liu
- Qinzhou Key Laboratory of Biowaste Resources for Selenium‐enriched Functional Utilization College of Petroleum and Chemical Engineering Beibu Gulf University Qinzhou 535011 China
| | - Min Liu
- Qinzhou Key Laboratory of Biowaste Resources for Selenium‐enriched Functional Utilization College of Petroleum and Chemical Engineering Beibu Gulf University Qinzhou 535011 China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 China
| | - Shuming Zhong
- Qinzhou Key Laboratory of Biowaste Resources for Selenium‐enriched Functional Utilization College of Petroleum and Chemical Engineering Beibu Gulf University Qinzhou 535011 China
| | - Yanzhen Yin
- Qinzhou Key Laboratory of Biowaste Resources for Selenium‐enriched Functional Utilization College of Petroleum and Chemical Engineering Beibu Gulf University Qinzhou 535011 China
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 China
| |
Collapse
|
32
|
HACE1-mediated NRF2 activation causes enhanced malignant phenotypes and decreased radiosensitivity of glioma cells. Signal Transduct Target Ther 2021; 6:399. [PMID: 34815381 PMCID: PMC8611003 DOI: 10.1038/s41392-021-00793-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 08/20/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
HACE1, an E3 ubiquitin-protein ligase, is frequently inactivated and has been evidenced as a putative tumor suppressor in different types of cancer. However, its role in glioma remains elusive. Here, we observed increased expression of HACE1 in gliomas related to control subjects, and found a strong correlation of high HACE1 expression with poor prognosis in patients with WHO grade III and IV as well as low-grade glioma (LGG) patients receiving radiotherapy. HACE1 knockdown obviously suppressed malignant behaviors of glioma cells, while ectopic expression of HACE1 enhanced cell growth in vitro and in vivo. Further studies revealed that HACE1 enhanced protein stability of nuclear factor erythroid 2-related factor 2 (NRF2) by competitively binding to NRF2 with another E3 ligase KEAP1. Besides, HACE1 also promoted internal ribosome entry site (IRES)-mediated mRNA translation of NRF2. These effects did not depend on its E3 ligase activity. Finally, we demonstrated that HACE1 dramatically reduced cellular ROS levels by activating NRF2, thereby decreasing the response of glioma cells to radiation. Altogether, our data demonstrate that HACE1 causes enhanced malignant phenotypes and decreased radiosensitivity of glioma cells by activating NRF2, and indicate that it may act as the role of prognostic factor and potential therapeutic target in glioma.
Collapse
|
33
|
Liu T, Sun L, Zhang Y, Wang Y, Zheng J. Imbalanced GSH/ROS and sequential cell death. J Biochem Mol Toxicol 2021; 36:e22942. [PMID: 34725879 DOI: 10.1002/jbt.22942] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/31/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) are produced in cells during metabolic processes. Excessive intracellular ROS may react with large biomolecules, such as DNA, RNA, proteins, and small biomolecules, that is, glutathione (GSH) and unsaturated fatty acids. GSH has physiological functions, including free radical scavenging, anti-oxidation, and electrophile elimination. The disruption of ROS/GSH balance results in the deleterious oxidation and chemical modification of biomacromolecules, which eventually leads to cell-cycle arrest and proliferation inhibition, and even induces cell death. Imbalanced ROS/GSH may result from a direct increase of ROS, consumption of GSH, intracellular oxidoreductase interference, or thioredoxin activity reduction. Some chemicals including arsenic trioxide (ATO), pyrogallol (PG), and carbobenzoxy-Leu-Leu-leucinal (MG132) could also disrupt the balance of GSH and ROS. This article reviews the occurrence and consequences of the imbalance between GSH and ROS and introduces factors responsible for the disruption of cellular ROS and GSH balance, resulting in cell death. "GSH" and "ROS" were used as keywords to search the relevant literaturess.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Li Sun
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China.,School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yubin Zhang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China.,School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yonglin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
34
|
Ahamefule CS, Ezeuduji BC, Ogbonna JC, Moneke AN, Ike AC, Jin C, Wang B, Fang W. Caenorhabditis elegans as an Infection Model for Pathogenic Mold and Dimorphic Fungi: Applications and Challenges. Front Cell Infect Microbiol 2021; 11:751947. [PMID: 34722339 PMCID: PMC8554291 DOI: 10.3389/fcimb.2021.751947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
The threat burden from pathogenic fungi is universal and increasing with alarming high mortality and morbidity rates from invasive fungal infections. Understanding the virulence factors of these fungi, screening effective antifungal agents and exploring appropriate treatment approaches in in vivo modeling organisms are vital research projects for controlling mycoses. Caenorhabditis elegans has been proven to be a valuable tool in studies of most clinically relevant dimorphic fungi, helping to identify a number of virulence factors and immune-regulators and screen effective antifungal agents without cytotoxic effects. However, little has been achieved and reported with regard to pathogenic filamentous fungi (molds) in the nematode model. In this review, we have summarized the enormous breakthrough of applying a C. elegans infection model for dimorphic fungi studies and the very few reports for filamentous fungi. We have also identified and discussed the challenges in C. elegans-mold modeling applications as well as the possible approaches to conquer these challenges from our practical knowledge in C. elegans-Aspergillus fumigatus model.
Collapse
Affiliation(s)
- Chukwuemeka Samson Ahamefule
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China.,Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | | | - James C Ogbonna
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Anene N Moneke
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Anthony C Ike
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Cheng Jin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bin Wang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
35
|
Abstract
Abstract
Ebselen is a well-known synthetic compound mimicking glutathione peroxidase (GPx), which catalyses some vital reactions that protect against oxidative damage. Based on a large number of in vivo and in vitro studies, various mechanisms have been proposed to explain its actions on multiple targets. It targets thiol-related compounds, including cysteine, glutathione, and thiol proteins (e.g., thioredoxin and thioredoxin reductase). Owing to this, ebselen is a unique multifunctional agent with important effects on inflammation, apoptosis, oxidative stress, cell differentiation, immune regulation and neurodegenerative disease, with anti-microbial, detoxifying and anti-tumour activity. This review summarises the current understanding of the multiple biological processes and molecules targeted by ebselen, and its pharmacological applications.
Collapse
|
36
|
Jamiu AT, Albertyn J, Sebolai OM, Pohl CH. Update on Candida krusei, a potential multidrug-resistant pathogen. Med Mycol 2021; 59:14-30. [PMID: 32400853 DOI: 10.1093/mmy/myaa031] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Although Candida albicans remains the main cause of candidiasis, in recent years a significant number of infections has been attributed to non-albicans Candida (NAC) species, including Candida krusei. This epidemiological change can be partly explained by the increased resistance of NAC species to antifungal drugs. C. krusei is a diploid, dimorphic ascomycetous yeast that inhabits the mucosal membrane of healthy individuals. However, this yeast can cause life-threatening infections in immunocompromised patients, with hematologic malignancy patients and those using prolonged azole prophylaxis being at higher risk. Fungal infections are usually treated with five major classes of antifungal agents which include azoles, echinocandins, polyenes, allylamines, and nucleoside analogues. Fluconazole, an azole, is the most commonly used antifungal drug due to its low host toxicity, high water solubility, and high bioavailability. However, C. krusei possesses intrinsic resistance to this drug while also rapidly developing acquired resistance to other antifungal drugs. The mechanisms of antifungal resistance of this yeast involve the alteration and overexpression of drug target, reduction in intracellular drug concentration and development of a bypass pathway. Antifungal resistance menace coupled with the paucity of the antifungal arsenal as well as challenges involved in antifungal drug development, partly due to the eukaryotic nature of both fungi and humans, have left researchers to exploit alternative therapies. Here we briefly review our current knowledge of the biology, pathophysiology and epidemiology of a potential multidrug-resistant fungal pathogen, C. krusei, while also discussing the mechanisms of drug resistance of Candida species and alternative therapeutic approaches.
Collapse
Affiliation(s)
- A T Jamiu
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - J Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - O M Sebolai
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - C H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| |
Collapse
|
37
|
Eldesouky HE, Lanman NA, Hazbun TR, Seleem MN. Aprepitant, an antiemetic agent, interferes with metal ion homeostasis of Candida auris and displays potent synergistic interactions with azole drugs. Virulence 2021; 11:1466-1481. [PMID: 33100149 PMCID: PMC7588212 DOI: 10.1080/21505594.2020.1838741] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
With the rapid increase in the frequency of azole-resistant species, combination therapy appears to be a promising tool to augment the antifungal activity of azole drugs against resistant Candida species. Here, we report the effect of aprepitant, an antiemetic agent, on the antifungal activities of azole drugs against the multidrug-resistant Candida auris. Aprepitant reduced the minimum inhibitory concentration (MIC) of itraconazole in vitro, by up to eight-folds. Additionally, the aprepitant/itraconazole combination interfered significantly with the biofilm-forming ability of C. auris by 95 ± 0.13%, and significantly disrupted mature biofilms by 52 ± 0.83%, relative to the untreated control. In a Caenorhabditis elegans infection model, the aprepitant/itraconazole combination significantly prolonged the survival of infected nematodes by ~90% (five days post-infection) and reduced the fungal burden by ~92% relative to the untreated control. Further, this novel drug combination displayed broad-spectrum synergistic interactions against other medically important Candida species such as C. albicans, C. krusei, C. tropicalis, and C. parapsilosis (ƩFICI ranged from 0.08 to 0.31). Comparative transcriptomic profiling and mechanistic studies indicated aprepitant/itraconazole interferes significantly with metal ion homeostasis and compromises the ROS detoxification ability of C. auris. This study presents aprepitant as a novel, potent, and broad-spectrum azole chemosensitizing agent that warrants further investigation.
Collapse
Affiliation(s)
- Hassan E Eldesouky
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University , West Lafayette, IN, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, VA, USA
| | - Nadia A Lanman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University , West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University , West Lafayette, IN, USA
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University , West Lafayette, IN, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University , West Lafayette, IN, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, VA, USA
| |
Collapse
|
38
|
Santi C, Scimmi C, Sancineto L. Ebselen and Analogues: Pharmacological Properties and Synthetic Strategies for Their Preparation. Molecules 2021; 26:4230. [PMID: 34299505 PMCID: PMC8306772 DOI: 10.3390/molecules26144230] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Ebselen is the leader of selenorganic compounds, and starting from its identification as mimetic of the key antioxidant enzyme glutathione peroxidase, several papers have appeared in literature claiming its biological activities. It was the subject of several clinical trials and it is currently in clinical evaluation for the treatment of COVID-19 patients. Given our interest in the synthesis and pharmacological evaluation of selenorganic derivatives with this review, we aimed to collect all the papers focused on the biological evaluation of ebselen and its close analogues, covering the timeline between 2016 and most of 2021. Our analysis evidences that, even if it lacks specificity when tested in vitro, being able to bind to every reactive cysteine, it proved to be always well tolerated in vivo, exerting no sign of toxicity whatever the administered doses. Besides, looking at the literature, we realized that no review article dealing with the synthetic approaches for the construction of the benzo[d][1,2]-selenazol-3(2H)-one scaffold is available; thus, a section of the present review article is completely devoted to this specific topic.
Collapse
Affiliation(s)
| | | | - Luca Sancineto
- Group of Catalysis and Green Organic Chemistry, Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1, 06122 Perugia, Italy; (C.S.); (C.S.)
| |
Collapse
|
39
|
Sakita KM, Capoci IRG, Conrado PCV, Rodrigues-Vendramini FAV, Faria DR, Arita GS, Becker TCA, Bonfim-Mendonça PDS, Svidzinski TIE, Kioshima ES. Efficacy of Ebselen Against Invasive Aspergillosis in a Murine Model. Front Cell Infect Microbiol 2021; 11:684525. [PMID: 34249777 PMCID: PMC8260993 DOI: 10.3389/fcimb.2021.684525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Invasive aspergillosis is one of the major causes of morbidity and mortality among invasive fungal infections. The search for new antifungal drugs becomes imperative when existing drugs are not able to efficiently treat these infections. Ebselen, is an organoselenium compound, already successfully approved in clinical trials as a repositioned drug for the treatment of bipolar disorder and prevention of noise-induced hearing loss. In this study, we aimed to reposition ebselen for the treatment of invasive aspergillosis by showing ebselen effectiveness in a murine model. For this, BALB/c mice were immunosuppressed and infected systemically with Aspergillus fumigatus. Animals were divided and treated with ebselen, voriconazole, or drug-free control, for four days. The kidneys were used for CFU count and, histopathological and cytokine analysis. Ebselen was able to significantly reduce the fungal burden in the kidneys of infected mice with efficacy comparable with voriconazole treatment as both had reductions to the same extent. The absence of hyphae and intact kidney tissue structure observed in the histopathological sections analyzed from treated groups corroborate with the downregulation of IL-6 and TNF. In summary, this study brings for the first time in vivo evidence of ebselen efficacy against invasive aspergillosis. Despite these promising results, more animal studies are warranted to evaluate the potential role of ebselen as an alternative option for the management of invasive aspergillosis in humans.
Collapse
Affiliation(s)
- Karina Mayumi Sakita
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - Isis Regina Grenier Capoci
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | | | | | - Daniella Renata Faria
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - Glaucia Sayuri Arita
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | | | | | | | - Erika Seki Kioshima
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| |
Collapse
|
40
|
Atriwal T, Azeem K, Husain FM, Hussain A, Khan MN, Alajmi MF, Abid M. Mechanistic Understanding of Candida albicans Biofilm Formation and Approaches for Its Inhibition. Front Microbiol 2021; 12:638609. [PMID: 33995297 PMCID: PMC8121174 DOI: 10.3389/fmicb.2021.638609] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the demand for novel antifungal therapies has increased several- folds due to its potential to treat severe biofilm-associated infections. Biofilms are made by the sessile microorganisms attached to the abiotic or biotic surfaces, enclosed in a matrix of exopolymeric substances. This results in new phenotypic characteristics and intrinsic resistance from both host immune response and antimicrobial drugs. Candida albicans biofilm is a complex association of hyphal cells that are associated with both abiotic and animal tissues. It is an invasive fungal infection and acts as an important virulent factor. The challenges linked with biofilm-associated diseases have urged scientists to uncover the factors responsible for the formation and maturation of biofilm. Several strategies have been developed that could be adopted to eradicate biofilm-associated infections. This article presents an overview of the role of C. albicans biofilm in its pathogenicity, challenges it poses and threats associated with its formation. Further, it discusses strategies that are currently available or under development targeting prostaglandins, quorum-sensing, changing surface properties of biomedical devices, natural scaffolds, and small molecule-based chemical approaches to combat the threat of C. albicans biofilm. This review also highlights the recent developments in finding ways to increase the penetration of drugs into the extracellular matrix of biofilm using different nanomaterials against C. albicans.
Collapse
Affiliation(s)
- Tanu Atriwal
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammed Nadeem Khan
- Department of Tashreehul Badan, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
41
|
Yaakoub H, Staerck C, Mina S, Godon C, Fleury M, Bouchara JP, Calenda A. Repurposing of auranofin and honokiol as antifungals against Scedosporium species and the related fungus Lomentospora prolificans. Virulence 2021; 12:1076-1090. [PMID: 33825667 PMCID: PMC8032236 DOI: 10.1080/21505594.2021.1909266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The slowing-down de novo drug-discovery emphasized the importance of repurposing old drugs. This is particularly true when combating infections caused by therapy-refractory microorganisms, such as Scedosporium species and Lomentospora prolificans. Recent studies on Scedosporium responses to oxidative stress underscored the importance of targeting the underlying mechanisms. Auranofin, ebselen, PX-12, honokiol, and to a lesser extent, conoidin A are known to disturb redox-homeostasis systems in many organisms. Their antifungal activity was assessed against 27 isolates belonging to the major Scedosporium species: S. apiospermum, S. aurantiacum, S. boydii, S. dehoogii, S. minutisporum, and Lomentospora prolificans. Auranofin and honokiol were the most active against all Scedosporium species (mean MIC50 values of 2.875 and 6.143 μg/ml, respectively) and against L. prolificans isolates (mean MIC50 values of 4.0 and 3.563μg/ml respectively). Combinations of auranofin with voriconazole or honokiol revealed additive effects against 9/27 and 18/27 isolates, respectively. Synergistic interaction between auranofin and honokiol was only found against one isolate of L. prolificans. The effects of auranofin upon exposure to oxidative stress were also investigated. For all species except S. dehoogii, the maximal growth in the presence of auranofin significantly decreased when adding a sublethal dose of menadione. The analysis of the expression of genes encoding oxidoreductase enzymes upon exposure of S. apiospermum to honokiol unveiled the upregulation of many genes, especially those coding peroxiredoxins, thioredoxin reductases, and glutaredoxins. Altogether, these data suggest that auranofin and honokiol act via dampening the redox balance and support their repurposing as antifungals against Scedosporium species and L. prolificans.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France
| | - Cindy Staerck
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France
| | - Sara Mina
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Charlotte Godon
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France
| | - Maxime Fleury
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France
| | - Jean-Philippe Bouchara
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France.,Département de biologie des agents infectieux , Laboratoire De Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | - Alphonse Calenda
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France
| |
Collapse
|
42
|
Gu P, Li Q, Zhang W, Gao Y, Sun K, Zhou L, Zheng Z. Biological toxicity of fresh and rotten algae on freshwater fish: LC 50, organ damage and antioxidant response. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124620. [PMID: 33338807 DOI: 10.1016/j.jhazmat.2020.124620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
In recent decades, harmful algal blooms (HABs) induced by eutrophication have caused organisms in freshwater ecosystems to become surrounded by toxic cells and dissolved toxins. In this study, the toxic effects of fresh algae solution (FAS) and rotten algae solution (RAS) were investigated. The results showed that the composition of RAS was predominantly organic acids, ketones, polypeptides, esters, phenols, amino acids and intermediate metabolic products. The safety concentrations (SCs) of FAS to Carassius auratus, Ctenopharyngodon idellus and Hypophthalmichthys molitrix were 1.92 × 1010 cells/L, 1.58 × 1011 cells/L and 1.30 × 1011 cells/L, respectively. The SCs of the RAS were significantly lower than those of the FAS (p < 0.05), with the values of 1.25 × 109 cells/L, 8.8 × 109 cells/L and 9.7 × 109 cells/L, for each species, respectively. The toxic algae solutions caused congestion inside the gills, intestinal lesions and high infection rates in the tested fish. FAS and RAS exposure also activated the antioxidant defense system and changed the intestinal microbial structure, resulting in the damage to the microbial balance in the body, and eventually the death of the fish. By studying the acute toxicity to fish, the harm of HABs to aquatic organisms can be predicted.
Collapse
Affiliation(s)
- Peng Gu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Weizhen Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Yang Gao
- Jiangsu Dongfang Ecological Dredging Engineering Co., Ltd, Jiangsu 214000, China
| | - Ke Sun
- Jiangsu Dongfang Ecological Dredging Engineering Co., Ltd, Jiangsu 214000, China
| | - Liang Zhou
- Nanjing Perennial root flowers Botanical garden, 210017, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
43
|
Zhang J, Yang L, Wang Y, Cao T, Sun Z, Xu J, Liu Y, Chen G. Ebselen-Agents for Sensing, Imaging and Labeling: Facile and Full-Featured Application in Biochemical Analysis. ACS APPLIED BIO MATERIALS 2021; 4:2217-2230. [PMID: 35014346 DOI: 10.1021/acsabm.0c01561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phenyl-1,2-benzoselenazol-3(2H)-one (ebselen) is a classical mimic of glutathione peroxidase (GPx). Thioredoxin interaction endows ebselen attractive biological functions, such as antioxidation and anti-infection, as well as versatile therapeutic usage. Accordingly, application of ebselen analogues in biosensing, chemical labeling, imaging analysis, disease pathology, drug development, clinical treatment, etc. have been widely developed, in which mercaptans, reactive oxygen species, reactive sulfur species, peptides, and proteins were involved. Herein, focusing on the application of ebselen-agents in biochemistry, we have made a systematic summary and comprehensive review. First, we summarized both the classical and the innovative methods for preparing ebselen-agents to present the synthetic strategies. Then we discussed the full functional applicability of ebselen analogues in three fields of biochemical analysis including the fluorescence sensing and bioimaging, derivatization for high throughput fluorescence analysis, and the labeling gents for proteomics. Finally, we discussed the current challenges and perspectives for ebselen-agents as analytical tools in biological research. By presenting the multifunctional applicability of ebselen, we hope this review could appeal researchers to design the ebselen-related biomaterials for biochemical analysis.
Collapse
Affiliation(s)
- Jiawei Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Lei Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Yuxin Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Tianyi Cao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Zhiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Jie Xu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yuxia Liu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Guang Chen
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China.,Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
44
|
Reactive oxygen mediated apoptosis as a therapeutic approach against opportunistic Candida albicans. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:25-49. [PMID: 33931141 DOI: 10.1016/bs.apcsb.2020.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Candida albicans are polymorphic fungal species commonly occurs in a symbiotic association with the host's usual microflora. Certain specific changes in its usual microenvironment can lead to diseases ranging from external mucosal to severally lethal systemic infections like invasive candidiasis hospital-acquired fatal infection caused by different species of Candida. The patient acquired with this infection has a high mortality and morbidity rate, ranging from 40% to 60%. This is an ill-posed problem by its very nature. Hence, early diagnosis and management is a crucial part. Antifungal drug resistance against the first and second generation of antifungal drugs has made it difficult to treat such fatal diseases. After a few dormant years, recently, there has been a rapid turnover of identifying novel drugs with low toxicity to limit the problem of drug resistance. After an initial overview of related work, we examine specific prior work on how a change in oxidative stress can facilitate apoptosis in C. albicans. Subsequently, it was investigated that Candida spp. suppresses the production of ROS mediated host defense system. Here, we have reviewed possibly all the small molecule inhibitors, natural products, antimicrobial peptide, and some naturally derived semi-synthetic compounds which are known to influence oxidative stress, to generate a proper apoptotic response in C. albicans and thus might be a novel therapeutic approach to augment the current treatment options.
Collapse
|
45
|
Benelli JL, Poester VR, Munhoz LS, Melo AM, Trápaga MR, Stevens DA, Xavier MO. Ebselen and diphenyl diselenide against fungal pathogens: A systematic review. Med Mycol 2021; 59:409-421. [PMID: 33421963 DOI: 10.1093/mmy/myaa115] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/16/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Fungal infections are one of the most prevalent diseases in the world and there is a lack of new antifungal drug development for these diseases. We conducted a systematic review of the literature regarding the in vitro antifungal activity of the organoselenium compounds ebselen (Eb) and diphenyl diselenide [(PhSe)2]. A systematic review was carried out based on the search for articles with data concerning Minimal Inhibitory Concentration (MIC) values, indexed in international databases and published until August 2020. A total of 2337 articles were found, and, according to the inclusion and exclusion criteria used, 22 articles were included in the study. Inhibitory activity against 96% (200/208) and 95% (312/328) of the pathogenic fungi tested was described for Eb and [(PhSe)2], respectively. Including in these 536 fungal isolates tested, organoselenium activity was highlighted against Candida spp., Cryptococcus ssp., Trichosporon spp., Aspergillus spp., Fusarium spp., Pythium spp., and Sporothrix spp., with MIC values lower than 64 μg/mL. In conclusion, Eb and [(PhSe)2] have a broad spectrum of in vitro inhibitory antifungal activity. These data added with other pharmacological properties of these organoselenium compounds suggest that both compounds are potential future antifungal drugs. Whether MICs toward the upper end of the ranges described here are compatible with efficacious therapy, and whether they may achieve such end as a result of the favorable non-antimicrobial effects of selenium on the host, requires more in vivo testing.
Collapse
Affiliation(s)
- Jéssica Louise Benelli
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Health Science Post-graduation program, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Vanice Rodrigues Poester
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Health Science Post-graduation program, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Lívia Silveira Munhoz
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Health Science Post-graduation program, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Aryse Martins Melo
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Microbiology and Parasitology Post-graduation program, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - David A Stevens
- California Institute for Medical Research, San Jose, California, USA.,Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, California, USA
| | - Melissa Orzechowski Xavier
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Health Science Post-graduation program, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Microbiology and Parasitology Post-graduation program, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
46
|
Thamban Chandrika N, Dennis EK, Brubaker KR, Kwiatkowski S, Watt DS, Garneau-Tsodikova S. Broad-Spectrum Antifungal Agents: Fluorinated Aryl- and Heteroaryl-Substituted Hydrazones. ChemMedChem 2021; 16:124-133. [PMID: 33063957 PMCID: PMC10898509 DOI: 10.1002/cmdc.202000626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/28/2020] [Indexed: 12/25/2022]
Abstract
Fluorinated aryl- and heteroaryl-substituted monohydrazones displayed excellent broad-spectrum activity against various fungal strains, including a panel of clinically relevant Candida auris strains relative to a control antifungal agent, voriconazole (VRC). These monohydrazones displayed less hemolysis of murine red blood cells than that of VRC at the same concentrations, possessed fungicidal activity in a time-kill study, and exhibited no mammalian cell cytotoxicity. In addition, these monohydrazones prevented the formation of biofilms that otherwise block antibiotic effectiveness and did not trigger the development of resistance when exposed to C. auris AR Bank # 0390 over 15 passages.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Emily K Dennis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Katelyn R Brubaker
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Stefan Kwiatkowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - David S Watt
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| |
Collapse
|
47
|
Shi C, Huang Q, Zhang R, Liang X, Wang F, Liu Z, Liu M, Hu H, Yin Y. Preparation and catalytic behavior of antioxidant cassava starch with selenium active sites and hydrophobic microenvironments. RSC Adv 2021; 11:39758-39767. [PMID: 35494106 PMCID: PMC9044535 DOI: 10.1039/d1ra06832f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
The preparation of antioxidant starch with the activity of glutathione peroxidase (GPx) for scavenging free radicals can not only enrich the types of modified starch but also alternate native GPx to overcome its drawbacks.
Collapse
Affiliation(s)
- Cheng Shi
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiugang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ruirui Zhang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Xingtang Liang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Feng Wang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Zijie Liu
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Min Liu
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yanzhen Yin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-enriched Functional Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
48
|
Eldesouky HE, Salama EA, Lanman NA, Hazbun TR, Seleem MN. Potent Synergistic Interactions between Lopinavir and Azole Antifungal Drugs against Emerging Multidrug-Resistant Candida auris. Antimicrob Agents Chemother 2020; 65:e00684-20. [PMID: 33046487 PMCID: PMC7927799 DOI: 10.1128/aac.00684-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
The limited therapeutic options and the recent emergence of multidrug-resistant Candida species present a significant challenge to human medicine and underscore the need for novel therapeutic approaches. Drug repurposing appears as a promising tool to augment the activity of current azole antifungals, especially against multidrug-resistant Candida auris In this study, we evaluated the fluconazole chemosensitization activities of 1,547 FDA-approved drugs and clinical molecules against azole-resistant C. auris This led to the discovery that lopinavir, an HIV protease inhibitor, is a potent agent capable of sensitizing C. auris to the effect of azole antifungals. At a therapeutically achievable concentration, lopinavir exhibited potent synergistic interactions with azole drugs, particularly with itraconazole against C. auris (fractional inhibitory concentration index [ΣFICI] ranged from 0.04 to 0.09). Additionally, the lopinavir/itraconazole combination enhanced the survival rate of C. auris-infected Caenorhabditis elegans by 90% and reduced the fungal burden in infected nematodes by 88.5% (P < 0.05) relative to that of the untreated control. Furthermore, lopinavir enhanced the antifungal activity of itraconazole against other medically important Candida species, including C. albicans, C. tropicalis, C. krusei, and C. parapsilosis Comparative transcriptomic profiling and mechanistic studies revealed that lopinavir was able to significantly interfere with the glucose permeation and ATP synthesis. This compromised the efflux ability of C. auris and consequently enhanced the susceptibility to azole drugs, as demonstrated by Nile red efflux assays. Altogether, these findings present lopinavir as a novel, potent, and broad-spectrum azole-chemosensitizing agent that warrants further investigation against recalcitrant Candida infections.
Collapse
Affiliation(s)
- Hassan E Eldesouky
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ehab A Salama
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Nadia A Lanman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
49
|
Abstract
Ebselen is a synthetic organoselenium radical scavenger compound that possesses glutathione peroxidase-like activity and its own unique bioactivity by reacting with thiols, hydroperoxides and peroxynitrites. Owing to its high affinity toward several essential reactions, ebselen protects cellular components from oxidative and free radical damage, and it has been employed as a useful tool for studying redox-related mechanisms. Based on numerous in vitro and in vivo research, mechanisms are proposed to understand the biomedical and molecular actions of ebselen in health and disease, and it is currently under clinical trials for the prevention and treatment of various human disorders. Based on these outstanding discoveries, this review summarizes the current understanding of the biochemical and molecular characteristics, pharmacological applications and future directions of ebselen.
Collapse
|
50
|
Kim JH, Cheng LW, Chan KL, Tam CC, Mahoney N, Friedman M, Shilman MM, Land KM. Antifungal Drug Repurposing. Antibiotics (Basel) 2020; 9:antibiotics9110812. [PMID: 33203147 PMCID: PMC7697925 DOI: 10.3390/antibiotics9110812] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
Control of fungal pathogens is increasingly problematic due to the limited number of effective drugs available for antifungal therapy. Conventional antifungal drugs could also trigger human cytotoxicity associated with the kidneys and liver, including the generation of reactive oxygen species. Moreover, increased incidences of fungal resistance to the classes of azoles, such as fluconazole, itraconazole, voriconazole, or posaconazole, or echinocandins, including caspofungin, anidulafungin, or micafungin, have been documented. Of note, certain azole fungicides such as propiconazole or tebuconazole that are applied to agricultural fields have the same mechanism of antifungal action as clinical azole drugs. Such long-term application of azole fungicides to crop fields provides environmental selection pressure for the emergence of pan-azole-resistant fungal strains such as Aspergillus fumigatus having TR34/L98H mutations, specifically, a 34 bp insertion into the cytochrome P450 51A (CYP51A) gene promoter region and a leucine-to-histidine substitution at codon 98 of CYP51A. Altogether, the emerging resistance of pathogens to currently available antifungal drugs and insufficiency in the discovery of new therapeutics engender the urgent need for the development of new antifungals and/or alternative therapies for effective control of fungal pathogens. We discuss the current needs for the discovery of new clinical antifungal drugs and the recent drug repurposing endeavors as alternative methods for fungal pathogen control.
Collapse
Affiliation(s)
- Jong H. Kim
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
- Correspondence: ; Tel.: +1-510-559-5841
| | - Luisa W. Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Kathleen L. Chan
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Christina C. Tam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Noreen Mahoney
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Mendel Friedman
- Healthy Processed Foods Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
| | | | - Kirkwood M. Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|