1
|
Mehrdad SA, Cucchiarini A, Mergny JL, Kazemi Noureini S. Heavy metal ions interactions with G-quadruplex-prone DNA sequences. Biochimie 2024; 225:146-155. [PMID: 38821199 DOI: 10.1016/j.biochi.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The industrial world exposes living organisms to a variety of metal pollutants. Here we investigated whether such elements affect G-rich sequences susceptible to fold into G-quadruplex (GQ) structures. Thermal stability and conformation of these oligoncleotides was studied at various molar ratios of a variety of heavy metal salts using thermal FRET, transition-FRET (t-FRET) and circular dichroism. Metal ions affected the thermal stability of the GQs to different extents; some metals had no effect on Tm while other metals caused small to moderate changes in Tm at 1:1 or 1:10 molar ratio. While most of the metals had no major effect, Al3+, Cd2+, Pb2+, Hg2+ and Zn2+ altered the thermal stability and structural features of the GQs. Some metals such as Pb2+ and Hg2+ exhibit differential interactions with telomere, c-myc and c-kit GQs. Overall, toxic heavy metals affect G-quadruplex stability in a sequence and topology dependent manner. This study provides new insight into how heavy metal exposure may affect gene expression and cellular responses.
Collapse
Affiliation(s)
- Seyyed-Ali Mehrdad
- Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Sakineh Kazemi Noureini
- Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar, Iran.
| |
Collapse
|
2
|
Zhang H, Chen M, Xu Y, Wang K, Li H, Chen L, Huang C. Quality control of traditional Chinese medicine Chelidonii herba based on 2D-Q-NMR. Heliyon 2024; 10:e37405. [PMID: 39309912 PMCID: PMC11416267 DOI: 10.1016/j.heliyon.2024.e37405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Chelidonii herba is a traditional Chinese medicinal herb with effects including antispasmodic, analgesic, antitussive, and bronchodilator properties. Alkaloids are the main bioactive ingredients in Chelidonii herba. In this study, a two-dimensional nuclear magnetic resonance (Heteronuclear Singular Quantum Correlation, HSQC-2D-NMR) technique was employed to quantitatively analyze the total alkaloid content and three major active alkaloid monomers in Chelidonii herba from eleven different sources. The quantification results of the three monomeric alkaloids were also verified using conventional quantitative control methods such as HPLC. Experimental findings indicate that the total alkaloid content is not directly correlated with the content of the three monomeric alkaloids. Furthermore, the content of any individual monomeric alkaloid does not accurately reflect the overall quality of Chelidonii herba. It was demonstrated that the 2D-Q-NMR NMR can be applied as an alternative method. While maintaining the same levels of accuracy and precision, the 2D-Q-NMR method is simpler to operate and provides more comprehensive results with higher reproducibility in some cases.
Collapse
Affiliation(s)
- Huanbang Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mengjie Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Kun Wang
- Ningxia Institute for Drug Control, Ningxia, 750004, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chao Huang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
3
|
Li XL, Sun YP, Wang M, Wang ZB, Kuang HX. Alkaloids in Chelidonium majus L: a review of its phytochemistry, pharmacology and toxicology. Front Pharmacol 2024; 15:1440979. [PMID: 39239653 PMCID: PMC11374730 DOI: 10.3389/fphar.2024.1440979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Chelidonium majus L. (C. majus), commonly known as "Bai Qu Cai" in China, belongs to the genus Chelidonium of the Papaveraceae family. It has rich medicinal value, such as alleviating coughs, asthma, spasms and pain. Recent studies have demonstrated that C. majus is abundant in various alkaloids, which are the primary components of C. majus and have a range of pharmacological effects, including anti-microbial, anti-inflammatory, anti-viral, and anti-tumor effects. So far, 94 alkaloids have been isolated from C. majus, including benzophenanthridine, protoberberine, aporphine, protopine and other types of alkaloids. This paper aims to review the research progress in phytochemistry, pharmacology and toxicology of C. majus alkaloids, in order to provide a theoretical basis for the application of C. majus in the field of medicinal chemistry and to afford reference for further research and development efforts.
Collapse
Affiliation(s)
- Xin-Lan Li
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan-Ping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhi-Bin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Fazelifar P, Cucchiarini A, Khoshbin Z, Mergny JL, Kazemi Noureini S. Strong and selective interactions of palmatine with G-rich sequences in TRF2 promoter; experimental and computational studies. J Biomol Struct Dyn 2023:1-15. [PMID: 38100552 DOI: 10.1080/07391102.2023.2292793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
G-rich sequences have the potential to fold into G-quadruplexes (GQs). G-quadruplexes, particularly those positioned in the regulatory regions of proto-oncogenes, have recently garnered attention in anti-cancer drug design. A thermal FRET assay was employed to conduct preliminary screening of various alkaloids, aiming to identify stronger interactions with a specific set of G-rich double-labeled oligonucleotides in both K + and Na + buffers. These oligonucleotides were derived from regions associated with Kit, Myc, Ceb, Bcl2, human telomeres, and potential G-quadruplex forming sequences found in the Nrf2 and Trf2 promoters. Palmatine generally increased the stability of different G-rich sequences into their folded GQ structures, more or less in a concentration dependent manner. The thermal stability and interaction of palmatine was further studied using transition FRET (t-FRET), CD and UV-visible spectroscopy and molecular dynamics simulation methods. Palmatine showed the strongest interaction with T RF2 in both K+ and Na+ buffers even at equimolar concentration ratio. T-FRET studies revealed that palmatine has the potential to disrupt double-strand formation by the T RF2 sequence in the presence of its complementary strand. Palmatine exhibits a stronger interaction with G-rich strand DNA, promoting its folding into G-quadruplex structures. It is noteworthy that palmatine exhibits the strongest interaction with T RF2, which is the shortest sequence among the G-rich oligonucleotides studied, featuring only one nucleotide for two of its loops. Palmatine represents a suitable structure for drug design to develop more specific ligands targeting G-quadruplexes. Whether palmatine can also affect the expression of the T RF2 gene requires further studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pegah Fazelifar
- Department of Biology, Faculty of Basic Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | | |
Collapse
|
5
|
Tuzimski T, Petruczynik A. New trends in the practical use of isoquinoline alkaloids as potential drugs applicated in infectious and non-infectious diseases. Biomed Pharmacother 2023; 168:115704. [PMID: 37862968 DOI: 10.1016/j.biopha.2023.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
In the last years, traditional natural products have been the center of attention for the scientific community and exploration of their therapeutic abilities is proceeding permanently. Isoquinoline alkaloids have always attracted scientific interest due to either their positive or negative effects on human organism. The present review describes research on isoquinoline alkaloids isolated from different plant species. Alkaloids are one of the most important classes of plant derived compounds among these isoquinoline alkaloids possess varied biological activities such as anticancer, antineurodegenerative diseases, antidiabetic, antiinflammatory, antimicrobial, and many others. The use of plants against different disorders is entrenched in traditional medicine around the globe. Recent progress in modern therapeutics has stimulated the use of natural products worldwide for various ailments and diseases. The review provides a collection of information on the capabilities of some isoquinoline alkaloids, its potential for the treatment of various diseases and is designed to be a guide for future research on different biologically active isoquinoline alkaloids and plant species containing them. The authors are aware that they were not able to cover the whole area of the topic related to biological activity of isoquinoline alkaloids. This review is intended to suggest directions for further research and can also help other researchers in future studies.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Anna Petruczynik
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
6
|
Ali JH, Walter M. Combining old and new concepts in targeting telomerase for cancer therapy: transient, immediate, complete and combinatory attack (TICCA). Cancer Cell Int 2023; 23:197. [PMID: 37679807 PMCID: PMC10483736 DOI: 10.1186/s12935-023-03041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Telomerase can overcome replicative senescence by elongation of telomeres but is also a specific element in most cancer cells. It is expressed more vastly than any other tumor marker. Telomerase as a tumor target inducing replicative immortality can be overcome by only one other mechanism: alternative lengthening of telomeres (ALT). This limits the probability to develop resistance to treatments. Moreover, telomerase inhibition offers some degree of specificity with a low risk of toxicity in normal cells. Nevertheless, only one telomerase antagonist reached late preclinical studies. The underlying causes, the pitfalls of telomerase-based therapies, and future chances based on recent technical advancements are summarized in this review. Based on new findings and approaches, we propose a concept how long-term survival in telomerase-based cancer therapies can be significantly improved: the TICCA (Transient Immediate Complete and Combinatory Attack) strategy.
Collapse
Affiliation(s)
- Jaber Haj Ali
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany.
| |
Collapse
|
7
|
Ghosh S, De D, Banerjee V, Biswas S, Ghosh U. High throughput screening of a new fluorescent G-quadruplex ligand having telomerase inhibitory activity in human A549 cells. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023:1-22. [PMID: 36919622 DOI: 10.1080/15257770.2023.2188220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Identification of a new G-quadruplex ligand having anti-telomerase activity would be a promising strategy for cancer therapy. The screened compound from ZINC database using docking studies was experimentally verified for its binding with three different telomeric G-quadruplex DNA sequences and anti-telomerase activity in A549 cells. Identified compound is an intrinsic fluorescent molecule, permeable to live cells and has a higher affinity to 22AG out of three different telomeric G-quadruplex DNA. It showed cytotoxicity and a significant reduction of telomerase activity in human A549 cells at a very low dose. So, this compound has a good anti-cancer effect.
Collapse
Affiliation(s)
- Sourav Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Debapriya De
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Victor Banerjee
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Soumyajit Biswas
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Utpal Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| |
Collapse
|
8
|
Criscuolo A, Napolitano E, Riccardi C, Musumeci D, Platella C, Montesarchio D. Insights into the Small Molecule Targeting of Biologically Relevant G-Quadruplexes: An Overview of NMR and Crystal Structures. Pharmaceutics 2022; 14:pharmaceutics14112361. [PMID: 36365179 PMCID: PMC9696056 DOI: 10.3390/pharmaceutics14112361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
G-quadruplexes turned out to be important targets for the development of novel targeted anticancer/antiviral therapies. More than 3000 G-quadruplex small-molecule ligands have been described, with most of them exerting anticancer/antiviral activity by inducing telomeric damage and/or altering oncogene or viral gene expression in cancer cells and viruses, respectively. For some ligands, in-depth NMR and/or crystallographic studies were performed, providing detailed knowledge on their interactions with diverse G-quadruplex targets. Here, the PDB-deposited NMR and crystal structures of the complexes between telomeric, oncogenic or viral G-quadruplexes and small-molecule ligands, of both organic and metal-organic nature, have been summarized and described based on the G-quadruplex target, from telomeric DNA and RNA G-quadruplexes to DNA oncogenic G-quadruplexes, and finally to RNA viral G-quadruplexes. An overview of the structural details of these complexes is here provided to guide the design of novel ligands targeting more efficiently and selectively cancer- and virus-related G-quadruplex structures.
Collapse
Affiliation(s)
- Andrea Criscuolo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
- Institute of Biostructures and Bioimages, CNR, 80134 Naples, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
- Correspondence:
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| |
Collapse
|
9
|
Mazur O, Bałdysz S, Warowicka A, Nawrot R. Tap the sap - investigation of latex-bearing plants in the search of potential anticancer biopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2022; 13:979678. [PMID: 36388598 PMCID: PMC9664067 DOI: 10.3389/fpls.2022.979678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Latex-bearing plants have been in the research spotlight for the past couple of decades. Since ancient times their extracts have been used in folk medicine to treat various illnesses. Currently they serve as promising candidates for cancer treatment. Up to date there have been several in vitro and in vivo studies related to the topic of cytotoxicity and anticancer activity of extracts from latex-bearing plants towards various cell types. The number of clinical studies still remains scarce, however, over the years the number is systematically increasing. To the best of our knowledge, the scientific community is still lacking in a recent review summarizing the research on the topic of cytotoxicity and anticancer activity of latex-bearing plant extracts. Therefore, the aim of this paper is to review the current knowledge on in vitro and in vivo studies, which focus on the cytotoxicity and anticancer activities of latex-bearing plants. The vast majority of the studies are in vitro, however, the interest in this topic has resulted in the substantial growth of the number of in vivo studies, leading to a promising number of plant species whose latex can potentially be tested in clinical trials. The paper is divided into sections, each of them focuses on specific latex-bearing plant family representatives and their potential anticancer activity, which in some instances is comparable to that induced by commonly used therapeutics currently available on the market. The cytotoxic effect of the plant's crude latex, its fractions or isolated compounds, is analyzed, along with a study of cell apoptosis, chromatin condensation, DNA damage, changes in gene regulation and morphology changes, which can be observed in cell post plant extract addition. The in vivo studies go beyond the molecular level by showing significant reduction of the tumor growth and volume in animal models. Additionally, we present data regarding plant-mediated biosynthesis of nanoparticles, which is regarded as a new branch in plant latex research. It is solely based on the green-synthesis approach, which presents an interesting alternative to chemical-based nanoparticle synthesis. We have analyzed the cytotoxic effect of these particles on cells. Data regarding the cytotoxicity of such particles raises their potential to be involved in the design of novel cancer therapies, which further underlines the significance of latex-bearing plants in biotechnology. Throughout the course of this review, we concluded that plant latex is a rich source of many compounds, which can be further investigated and applied in the design of anticancer pharmaceuticals. The molecules, to which this cytotoxic effect can be attributed, include alkaloids, flavonoids, tannins, terpenoids, proteases, nucleases and many novel compounds, which still remain to be characterized. They have been studied extensively in both in vitro and in vivo studies, which provide an excellent starting point for their rapid transfer to clinical studies in the near future. The comprehensive study of molecules from latex-bearing plants can result in finding a promising alternative to several pharmaceuticals on the market and help unravel the molecular mode of action of latex-based preparations.
Collapse
Affiliation(s)
- Oliwia Mazur
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Sophia Bałdysz
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Alicja Warowicka
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
10
|
Chen N, Qi Y, Ma X, Xiao X, Liu Q, Xia T, Xiang J, Zeng J, Tang J. Rediscovery of Traditional Plant Medicine: An Underestimated Anticancer Drug of Chelerythrine. Front Pharmacol 2022; 13:906301. [PMID: 35721116 PMCID: PMC9198297 DOI: 10.3389/fphar.2022.906301] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
In many studies, the extensive and significant anticancer activity of chelerythrine (CHE) was identified, which is the primary natural active compound in four traditional botanical drugs and can be applied as a promising treatment in various solid tumors. So this review aimed to summarize the anticancer capacities and the antitumor mechanism of CHE. The literature searches revolving around CHE have been carried out on PubMed, Web of Science, ScienceDirect, and MEDLINE databases. Increasing evidence indicates that CHE, as a benzophenanthridine alkaloid, exhibits its excellent anticancer activity as CHE can intervene in tumor progression and inhibit tumor growth in multiple ways, such as induction of cancer cell apoptosis, cell cycle arrest, prevention of tumor invasion and metastasis, autophagy-mediated cell death, bind selectively to telomeric G-quadruplex and strongly inhibit the telomerase activity through G-quadruplex stabilization, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), and PKC. The role of CHE against diverse types of cancers has been investigated in many studies and has been identified as the main antitumor drug candidate in drug discovery programs. The current complex data suggest the potential value in clinical application and the future direction of CHE as a therapeutic drug in cancer. Furthermore, the limitations and the present problems are also highlighted in this review. Despite the unclearly delineated molecular targets of CHE, extensive research in this area provided continuously fresh data exploitable in the clinic while addressing the present requirement for further studies such as toxicological studies, combination medication, and the development of novel chemical methods or biomaterials to extend the effects of CHE or the development of its derivatives and analogs, contributing to the effective transformation of this underestimated anticancer drug into clinical practice. We believe that this review can provide support for the clinical application of a new anticancer drug in the future.
Collapse
Affiliation(s)
- Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Qi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Xia
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juyi Xiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Shen J, Li J, Yu P, Du G. Research Status and Hotspots of Anticancer Natural Products Based on the Patent Literature and Scientific Articles. Front Pharmacol 2022; 13:903239. [PMID: 35784720 PMCID: PMC9247190 DOI: 10.3389/fphar.2022.903239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/02/2022] [Indexed: 01/16/2023] Open
Abstract
Background: The patent literature contains a large amount of information on the internal state of current industrial technologies that are not available in other literature studies. Scientific articles are the direct achievements of theoretical research in this field and can reveal how current theories in basic research have developed. In this study, the progress and status of natural anticancer products in this field were summarized, and the research hotspots were explored through the analysis of the relevant patent literature and scientific articles. Methods: Patent data were retrieved from the incoPat patent retrieval database, and paper data were retrieved from the Web of Science core set and PubMed. GraphPad Prism 8, Microsoft Excel 2010, and CiteSpace 5.8.R3 were used to perform visual processing. The analyzed patent literature includes the patent applicant type, country (or region), and technical subject. The analyzed scientific article includes academic groups, subject areas, keyword clustering, and burst detection. Results: A total of 20,435 patent families and 38,746 articles were collected by 4 January 2022. At present, antitumor drugs derived from natural products mainly include 1) apoptosis inducers such as curcumin, gallic acid, resveratrol, Theranekron D6, and gaillardin; 2) topoisomerase inhibitors such as camptothecins, scaffold-hopped flavones, podophyllotoxin, oxocrebanine, and evodiamine derivatives; 3) telomerase inhibitors such as camptothecin and isoquinoline alkaloids of Chelidonium majus, amentoflavone, and emodin; 4) microtubule inhibitors such as kolaflavanone, tanshinone IIA analog, eugenol, and millepachine; 5) immunomodulators such as fucoidan, myricetin, bergapten, and atractylenolide I; 6) tumor microenvironment regulators such as beta-escin and icaritin; 7) multidrug resistance reversal agents such as berberine, quercetin, and dihydromyricetin; and 8) antiangiogenic and antimetastatic agents such as epigallocatechin-3-gallate, lupeol, ononin, and saikosaponin A. Conclusion: Anticancer natural product technology was introduced earlier, but the later development momentum was insufficient. In addition, scientific research activities are relatively closed, and technical exchanges need to be strengthened. Currently, the development of medicinal plants and the research on the anticancer mechanism of natural active products are still research hotspots, especially those related to immune checkpoints, essential oils, and metastatic cancer. Theories of traditional Chinese medicine (TCM), such as "restraining excessiveness to acquire harmony," "same treatment for different diseases," "Meridian induction theory," and "Fuzheng Quxie," have important guiding significance to the research of anticancer mechanisms and the development of new drugs and can provide new ideas for this process. Systematic Review Registration: [https://sourceforge.net/projects/citespace/], identifier [000755430500001].
Collapse
Affiliation(s)
| | - Jiahuan Li
- *Correspondence: Jiahuan Li, ; Gangjun Du,
| | | | - Gangjun Du
- School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
12
|
Natural Product Library Screens Identify Sanguinarine Chloride as a Potent Inhibitor of Telomerase Expression and Activity. Cells 2022; 11:cells11091485. [PMID: 35563795 PMCID: PMC9104802 DOI: 10.3390/cells11091485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Reverse transcriptase hTERT is essential to telomerase function in stem cells, as well as in 85–90% of human cancers. Its high expression in stem cells or cancer cells has made telomerase/hTERT an attractive therapeutic target for anti-aging and anti-tumor applications. In this study, we screened a natural product library containing 800 compounds using an endogenous hTERT reporter. Eight candidates have been identified, in which sanguinarine chloride (SC) and brazilin (Braz) were selected due to their leading inhibition. SC could induce an acute and strong suppressive effect on the expression of hTERT and telomerase activity in multiple cancer cells, whereas Braz selectively inhibited telomerase in certain types of cancer cells. Remarkably, SC long-term treatment could cause telomere attrition and cell growth retardation, which lead to senescence features in cancer cells, such as the accumulation of senescence-associated β-galactosidase (SA-β-gal)-positive cells, the upregulation of p16/p21/p53 pathways and telomere dysfunction-induced foci (TIFs). Additionally, SC exhibited excellent capabilities of anti-tumorigenesis, both in vitro and in vivo. In the mechanism, the compound down-regulated several active transcription factors including p65, a subunit of NF-κB complex, and reintroducing p65 could alleviate its suppression of the hTERT/telomerase. Moreover, SC could directly bind hTERT and inhibit telomerase activity in vitro. In conclusion, we identified that SC not only down-regulates the hTERT gene’s expression, but also directly affects telomerase/hTERT. The dual function makes this compound an attractive drug candidate for anti-tumor therapy.
Collapse
|
13
|
Shen L, Lee S, Joo JC, Hong E, Cui ZY, Jo E, Park SJ, Jang HJ. Chelidonium majus Induces Apoptosis of Human Ovarian Cancer Cells via ATF3-Mediated Regulation of Foxo3a by Tip60. J Microbiol Biotechnol 2022; 32:493-503. [PMID: 35283423 PMCID: PMC9628819 DOI: 10.4014/jmb.2109.09030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/16/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Forkhead transcription factor 3a (Foxo3a) is believed to be a tumor suppressor as its inactivation leads to cell transformation and tumor development. However, further investigation is required regarding the involvement of the activating transcription factor 3 (ATF3)-mediated Tat-interactive protein 60 (Tip60)/Foxo3a pathway in cancer cell apoptosis. This study demonstrated that Chelidonium majus upregulated the expression of ATF3 and Tip60 and promoted Foxo3a nuclear translocation, ultimately increasing the level of Bcl-2-associated X protein (Bax) protein. ATF3 overexpression stimulated Tip60 expression, while ATF3 inhibition by siRNA repressed Tip60 expression. Furthermore, siRNA-mediated Tip60 inhibition significantly promoted Foxo3a phosphorylation, leading to blockade of Foxo3a translocation into the nucleus. Thus, we were able to deduce that ATF3 mediates the regulation of Foxo3a by Tip60. Moreover, siRNA-mediated Foxo3a inhibition suppressed the expression of Bax and subsequent apoptosis. Taken together, our data demonstrate that Chelidonium majus induces SKOV-3 cell death by increasing ATF3 levels and its downstream proteins Tip60 and Foxo3a. This suggests a potential therapeutic role of Chelidonium majus against ovarian cancer.
Collapse
Affiliation(s)
- Lei Shen
- Aerospace Center Hospital, Beijing 100049, P.R. China
| | - Soon Lee
- Division of Analytical Science, Korea Basic Science Institute, Daejeon 34133, Republic of Korea,Division of Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jong Cheon Joo
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Eunmi Hong
- Division of Analytical Science, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Zhen Yang Cui
- Rehabilitation Medicine College, Weifang Medical University, Weifang 261042, P.R. China
| | - Eunbi Jo
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Soo Jung Park
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Woosuk University, Jeonju 54987, Republic of Korea,
S.J. Park Phone: +82-63-220-8676 E-mail:
| | - Hyun-Jin Jang
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Corresponding authors H.J. Jang Phone: +42-860-4563 E-mail:
| |
Collapse
|
14
|
Pal S, Fatma K, Ravichandiran V, Dash J. Triazolyl Dibenzo[ a,c]phenazines Stabilize Telomeric G-quadruplex and Inhibit Telomerase. ASIAN J ORG CHEM 2021; 10:2921-2926. [PMID: 37823002 PMCID: PMC7614908 DOI: 10.1002/ajoc.202100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/10/2022]
Abstract
We herein report the synthesis and biophysical evaluation of triazolyl dibenzo[a,c]phenazine derivatives as a novel class of G-quadruplex ligands. The aromatic core facilitates π-π interaction and the flexible, protonatable side chains interact with the phosphate backbone of DNA via electrostatic interactions. Förster resonance energy transfer (FRET) melting assay and isothermal titration calorimetry (ITC) studies suggest that these ligands show binding preference for the hTELO G-quadruplex over G-quadruplexes found in the promoter region of various oncogenes and duplex DNA. The in vitro telomeric repeat amplification protocol (Q-TRAP) assay reveals that these ligands reduce telomerase activity in cancer cells.
Collapse
Affiliation(s)
- Sarmistha Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
- Department of Medicinal Chemistry, NIPER-KOLKATA, Chunilal Bhawan (Adjacent to BCPL), 168, Maniktala Main Road P.O. Bengal Chemicals, P.S. Phoolbagan, Kolkata – 700054, West Bengal
| | - Khushnood Fatma
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, NIPER-KOLKATA, Chunilal Bhawan (Adjacent to BCPL), 168, Maniktala Main Road P.O. Bengal Chemicals, P.S. Phoolbagan, Kolkata – 700054, West Bengal
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
15
|
Identification of Effective Anticancer G-Quadruplex-Targeting Chemotypes through the Exploration of a High Diversity Library of Natural Compounds. Pharmaceutics 2021; 13:pharmaceutics13101611. [PMID: 34683905 PMCID: PMC8537501 DOI: 10.3390/pharmaceutics13101611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
In the quest for selective G-quadruplex (G4)-targeting chemotypes, natural compounds have been thus far poorly explored, though representing appealing candidates due to the high structural diversity of their scaffolds. In this regard, a unique high diversity in-house library composed of ca. one thousand individual natural products was investigated. The combination of molecular docking-based virtual screening and the G4-CPG experimental screening assay proved to be useful to quickly and effectively identify-out of many natural compounds-five hit binders of telomeric and oncogenic G4s, i.e., Bulbocapnine, Chelidonine, Ibogaine, Rotenone and Vomicine. Biophysical studies unambiguously demonstrated the selective interaction of these compounds with G4s compared to duplex DNA. The rationale behind the G4 selective recognition was suggested by molecular dynamics simulations. Indeed, the selected ligands proved to specifically interact with G4 structures due to peculiar interaction patterns, while they were unable to firmly bind to a DNA duplex. From biological assays, Chelidonine and Rotenone emerged as the most active compounds of the series against cancer cells, also showing good selectivity over normal cells. Notably, the anticancer activity correlated well with the ability of the two compounds to target telomeric G4s.
Collapse
|
16
|
Santos T, Salgado GF, Cabrita EJ, Cruz C. G-Quadruplexes and Their Ligands: Biophysical Methods to Unravel G-Quadruplex/Ligand Interactions. Pharmaceuticals (Basel) 2021; 14:769. [PMID: 34451866 PMCID: PMC8401999 DOI: 10.3390/ph14080769] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Progress in the design of G-quadruplex (G4) binding ligands relies on the availability of approaches that assess the binding mode and nature of the interactions between G4 forming sequences and their putative ligands. The experimental approaches used to characterize G4/ligand interactions can be categorized into structure-based methods (circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography), affinity and apparent affinity-based methods (surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS)), and high-throughput methods (fluorescence resonance energy transfer (FRET)-melting, G4-fluorescent intercalator displacement assay (G4-FID), affinity chromatography and microarrays. Each method has unique advantages and drawbacks, which makes it essential to select the ideal strategies for the biological question being addressed. The structural- and affinity and apparent affinity-based methods are in several cases complex and/or time-consuming and can be combined with fast and cheap high-throughput approaches to improve the design and development of new potential G4 ligands. In recent years, the joint use of these techniques permitted the discovery of a huge number of G4 ligands investigated for diagnostic and therapeutic purposes. Overall, this review article highlights in detail the most commonly used approaches to characterize the G4/ligand interactions, as well as the applications and types of information that can be obtained from the use of each technique.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Gilmar F. Salgado
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 33607 Pessac, France;
| | - Eurico J. Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
17
|
Effect of Protoberberine-Rich Fraction of Chelidonium majus L. on Endometriosis Regression. Pharmaceutics 2021; 13:pharmaceutics13070931. [PMID: 34201532 PMCID: PMC8309065 DOI: 10.3390/pharmaceutics13070931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Endometriosis is a gynecological disease defined by the presence of endometrial tissue outside the uterus. To date, the effective treatment of this disease is still based on invasive surgery or laparoscopy. Chelidonium majus L. (Papaveraceae) belongs to medicinal, latex-bearing plants. Extracts from the plant are a rich source of pharmacologically active agents. Protoberberine compounds derived from C. majus possess anticancer and antiproliferative activities. In the present study of a rat model of endometriosis, we investigated the influence of the plant protoberberine-rich fraction (BBR) obtained from the medicinal plant C. majus on the development of endometriosis. To understand of BBR therapeutic potential for endometriosis, metabolomics has been applied to study. BBR was prepared from an ethanolic extract of dry plants C. majus. Rats (n = 16) with confirmed endometriosis were treated with BBR administered orally (1 g/kg) for 14 days. Blood serum samples were collected from all of the animals and metabolites were studied using the NMR method. The metabolomic pattern was compared before and after the protoberberine treatment. The performed analysis showed significant changes in the concentrations of metabolites that are involved in energy homeostasis, including glucose, glutamine, and lactate. Histopathological studies showed no recurrence of endometriosis loci after treatment with BBR. The results of the study found that BBR treatment prevents the recurrence of endometriosis in rats. Moreover, metabolomics profiling can be applied to better understand the mechanisms of action of these protoberberine secondary plant metabolites. Our findings provide new insights into the pharmaceutical activity of natural protoberberine plant compounds.
Collapse
|
18
|
Ali I, Li J, Cui L, Zhao H, He Q, Wang D. Efficient extraction and purification of benzo[c]phenanthridine alkaloids from Macleaya cordata (Willd) R. Br. by combination of ultrahigh pressure extraction and pH-zone-refining counter-current chromatography with anti-breast cancer activity in vitro. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:423-432. [PMID: 32898923 DOI: 10.1002/pca.2990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Macleaya cordata (Willd) R. Br. (Papaveraceae family) is a well-known traditional Chinese medicine used to treat muscle pain, inflamed wounds, and bee bites. Benzo[c]phenanthridine alkaloids are the main active ingredients in M. cordata. In this work, sanguinarine and chelerythrine were efficiently extracted and purified by ultrahigh-pressure extraction (UHPE) technique and pH-zone-refining counter-current chromatography (PZRCCC) from M. cordata. OBJECTIVE To develop an efficient UHPE method followed by an efficient separation technique using PZRCCC for benzo[c]phenanthridine alkaloids from the study plant species, and to evaluate the study samples for anti-breast cancer activity. METHODOLOGY The optimal extraction conditions were optimised as extraction pressure 200 MPa, extraction solvent 95% ethanol, solid-liquid ratio 1:30 (g/mL) and extraction time 2 min. A two-phase n-hexane/ethyl acetate/i-propanol/water (1:3:1.5:4.5, v/v) solvent system was optimised with 10 mmol triethylamine in the upper phase and 10 mmol trifluoroacetic acid in lower phase in PZRCCC. The sample loading was optimised as 2.50 g. Moreover, the samples were evaluated for anti-breast cancer activity later on. RESULTS The 2.50 g sample loading yielded 0.45 g of sanguinarine and 0.59 g chelerythrine in one-step separation using PZRCCC. The anti-breast cancer activities of sanguinarine and chelerythrine were found stronger than positive control (vincristine 5.04 μg/mL) with half-maximal inhibitory concentration values of 0.96 and 3.00 μg/mL, respectively. CONCLUSION This study showed that the established methods were efficient in extraction (UHPE) and separation (PZRCCC) of the sanguinarine and chelerythrine from M. cordata.
Collapse
Affiliation(s)
- Iftikhar Ali
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Jingchao Li
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Cui
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongwei Zhao
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Daijie Wang
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
19
|
Cai Q, Meng J, Ge Y, Gao Y, Zeng Y, Li H, Sun Y. Fishing antitumor ingredients by G-quadruplex affinity from herbal extract on a three-phase-laminar-flow microfluidic chip. Talanta 2020; 220:121368. [DOI: 10.1016/j.talanta.2020.121368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/28/2022]
|
20
|
Basu A, Kumar GS. Interaction of the putative anticancer alkaloid chelerythrine with nucleic acids: biophysical perspectives. Biophys Rev 2020; 12:10.1007/s12551-020-00769-3. [PMID: 33131000 PMCID: PMC7755961 DOI: 10.1007/s12551-020-00769-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022] Open
Abstract
Alkaloids represent an important group of molecules that have immense pharmacological potential. Benzophenanthridine alkaloids are one such class of alkaloids known for their myriad pharmacological activities that include potential anticancer activities. Chelerythrine is a premier member of the benzophenanthridine family of the isoquinoline group. This alkaloid is endowed with excellent medicinal properties and exhibits antibacterial, antimicrobial and anti-inflammatory properties. The molecular basis of its therapeutic activity is considered due to its nucleic acid binding capabilities. This review focuses on consolidating the current status on the nucleic acid binding properties of chelerythrine that is essential for the rational design and development of this alkaloid as a potential drug. This work reviews the interaction of chelerythrine with different natural and synthetic nucleic acids like double- and single-stranded DNAs, heat-denatured DNA, quadruplex DNA, double- and single-stranded RNA, tRNA and triplex and quadruplex RNA. The review emphasizes on the mode, specificity, conformational aspects and energetics of the binding that is particularly helpful for developing nucleic acid targeted therapeutics. The fundamental results discussed in this review will greatly benefit drug development for many diseases and serve as a database for the design of futuristic benzophenanthridine-based therapeutics.
Collapse
Affiliation(s)
- Anirban Basu
- Department of Chemistry, Vidyasagar University, Midnapore, 721 102, India.
| | | |
Collapse
|
21
|
Miao WQ, Liu JQ, Wang XS. CuI-catalyzed synthesis of (benzo)imidazo[2,1-a]isoquinolinone derivatives via successive α-arylation, deacylation and benzyl automatic oxidation. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Zielińska S, Czerwińska ME, Dziągwa-Becker M, Dryś A, Kucharski M, Jezierska-Domaradzka A, Płachno BJ, Matkowski A. Modulatory Effect of Chelidonium majus Extract and Its Alkaloids on LPS-Stimulated Cytokine Secretion in Human Neutrophils. Molecules 2020; 25:molecules25040842. [PMID: 32075082 PMCID: PMC7070267 DOI: 10.3390/molecules25040842] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/26/2020] [Accepted: 02/13/2020] [Indexed: 01/05/2023] Open
Abstract
Due to certain differences in terms of molecular structure, isoquinoline alkaloids from Chelidonium majus engage in various biological activities. Apart from their well-documented antimicrobial potential, some phenanthridine and protoberberine derivatives as well as C. majus extract present with anti-inflammatory and cytotoxic effects. In this study, the LC–MS/MS method was used to determine alkaloids, phenolic acids, carboxylic acids, and hydroxybenzoic acids. We investigated five individually tested alkaloids (coptisine, berberine, chelidonine, chelerythrine, and sanguinarine) as well as C. majus root extract for their effect on the secretion of IL-1β, IL-8, and TNF-α in human polymorphonuclear leukocytes (neutrophils). Berberine, chelidonine, and chelerythrine significantly decreased the secretion of TNF-α in a concentration-dependent manner. Sanguinarine was found to be the most potent inhibitor of IL-1β secretion. However, the overproduction of IL-8 and TNF-α and a high cytotoxicity for these compounds were observed. Coptisine was highly cytotoxic and slightly decreased the secretion of the studied cytokines. The extract (1.25–12.5 μg/mL) increased cytokine secretion in a concentration-dependent manner, but an increase in cytotoxicity was also noted. The alkaloids were active at very low concentrations (0.625–2.5 μM), but their potential cytotoxic effects, except for chelidonine and chelerythrine, should not be ignored.
Collapse
Affiliation(s)
- Sylwia Zielińska
- Department of Pharmaceutical Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.J.-D.); (A.M.)
- Correspondence:
| | - Monika Ewa Czerwińska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Magdalena Dziągwa-Becker
- Department of Weed Science and Tillage Systems, Institute of Soil Science and Plant Cultivation State Research Institute, Orzechowa 61, 50-540 Wrocław, Poland; (M.D.-B.); (M.K.)
| | - Andrzej Dryś
- Department of Physical Chemistry, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Mariusz Kucharski
- Department of Weed Science and Tillage Systems, Institute of Soil Science and Plant Cultivation State Research Institute, Orzechowa 61, 50-540 Wrocław, Poland; (M.D.-B.); (M.K.)
| | - Anna Jezierska-Domaradzka
- Department of Pharmaceutical Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.J.-D.); (A.M.)
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland;
| | - Adam Matkowski
- Department of Pharmaceutical Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.J.-D.); (A.M.)
- Laboratory of Experimental Cultivation, Botanical Garden of Medicinal Plants, Wroclaw Medical University, Al. Jana Kochanowskiego 14, 50-556 Wroclaw, Poland
| |
Collapse
|
23
|
Molecular dynamics simulations of G-quadruplexes: The basic principles and their application to folding and ligand binding. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2020. [DOI: 10.1016/bs.armc.2020.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Zhang YL, Deng CX, Zhou WF, Zhou LY, Cao QQ, Shen WY, Liang H, Chen ZF. Synthesis and in vitro antitumor activity evaluation of copper(II) complexes with 5-pyridin-2-yl-[1,3]dioxolo[4,5-g]isoquinoline derivatives. J Inorg Biochem 2019; 201:110820. [DOI: 10.1016/j.jinorgbio.2019.110820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/16/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023]
|
25
|
Warowicka A, Popenda Ł, Bartkowiak G, Musidlak O, Litowczenko-Cybulska J, Kuźma D, Nawrot R, Jurga S, Goździcka-Józefiak A. Protoberberine compounds extracted from Chelidonium majus L. as novel natural photosensitizers for cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:152919. [PMID: 31465980 DOI: 10.1016/j.phymed.2019.152919] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND It has been shown that secondary metabolites occur in Chelidonium majus L. (C. majus) crude extract and milky sap (alkaloids such as berberine, coptisine, chelidonine, chelerythrine, sanguinarine, and protopine) are biologically active compounds with a wide spectrum of pharmacological functions. Berberine, an isoquinoline alkaloid extracted from plants, possesses a wide range of biological activities, including inhibition of growth of a variety of cancer cell lines. PURPOSE AND STUDY DESIGN In the present study, we investigated the potential anticancer effect of a protoberberine alkaloidal fraction (BBR-F) isolated from the medicinal plant C. majus on HeLa and C33A cervical cancer cells after light irradiation (PDT treatment). METHODS BBR-F was prepared from an ethanolic extract of stems of C. majus. Identification of alkaloidal compounds was performed using high-performance liquid chromatography - mass spectrometry (HPLC/ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. BBR-F was then biologically evaluated for its anticancer properties. Cytotoxic activity after PDT treatment and without light irradiation (dark cytotoxicity) was determined by colorimetric WST-1 assay. The impact of the protoberberine alkaloidal fraction on the morphology and function of the cells was assessed by fluorescence and confocal microscopy as well as by flow cytometric analysis. To investigate the proinflammatory effect of the extracted natural BBR-F, nitric oxide concentration was determined using the Griess method. RESULTS An effective reduction in HeLa and C33A cell viability was observed after PDT treatment of BBR-F treated cells. Furthermore, microscopic analysis identified various morphological changes in the studied cells that occurred during apoptosis. Apoptosis of HeLa and C33A cells was also characterized by biochemical changes in cell membrane composition, activation of intracellular caspases, disruption of the mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) generation. CONCLUSION Our results strongly suggest that the components of the natural plant protoberberine fraction (BBR-F) extracted from C. majus may represent promising novel photosensitive agents and can be applied in cancer photodynamic therapy as natural photosensitizers.
Collapse
Affiliation(s)
- Alicja Warowicka
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań 61-614, Poland; Department of Animal Physiology and Development, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Umultowska 89, Poznań 61-614, Poland.
| | - Łukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań 61-614, Poland
| | - Grażyna Bartkowiak
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań 61-614, Poland; Department of Supramolecular Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poland
| | - Oskar Musidlak
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Jagoda Litowczenko-Cybulska
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań 61-614, Poland; Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Dorota Kuźma
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań 61-614, Poland
| | - Anna Goździcka-Józefiak
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| |
Collapse
|
26
|
Hou FJ, Guo LX, Zheng KY, Song JN, Wang Q, Zheng YG. Chelidonine enhances the antitumor effect of lenvatinib on hepatocellular carcinoma cells. Onco Targets Ther 2019; 12:6685-6697. [PMID: 31695406 PMCID: PMC6707434 DOI: 10.2147/ott.s215103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background Lenvatinib is a newly approved molecular targeted drug for the treatment of advanced hepatocellular carcinoma (HCC). However, the high cost associated with this treatment poses a huge financial burden on patients and the entire public health system. Therefore, there is an urgent need to develop novel strategies that enhance the antitumor effect of lenvatinib. Methods The antitumor effects of chelidonine or/and lenvatinib on HCC cell lines MHCC97-H and LM-3 were examined using the 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2- H-tetrazolium bromide (MTT) assay. For the in-vivo investigation, the effect on subcutaneous or intrahepatic tumor growth in nude mice was also determined. The mRNA levels of epithelial mesenchymal transition (EMT)-related factors were examined through quantitative polymerase chain reaction or Western blot. Results In the present study, we found that treatment with chelidonine enhanced the apoptotic effect of lenvatinib on HCC cells and the in-vivo growth of HCC tumors in nude mice. Mechanistically, treatment with chelidonine increased the expression of epithelial indicator E-cadherin, whereas it decreased the expression of mesenchymal indicators N-cadherin and Vimentin. These findings suggest that chelidonine restricted the EMT in HCC cells. Conclusion Chelidonine inhibits the process of EMT and enhances the antitumor effect of lenvatinib on HCC cells.
Collapse
Affiliation(s)
- Fang-Jie Hou
- Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, People's Republic of China
| | - Li-Xiao Guo
- Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, People's Republic of China
| | - Kai-Yan Zheng
- Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, People's Republic of China
| | - Jun-Na Song
- Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, People's Republic of China
| | - Qian Wang
- Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, People's Republic of China
| | - Yu-Guang Zheng
- Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, People's Republic of China
| |
Collapse
|
27
|
Kazemi Noureini S, Fatemi L, Wink M. Telomere shortening in breast cancer cells (MCF7) under treatment with low doses of the benzylisoquinoline alkaloid chelidonine. PLoS One 2018; 13:e0204901. [PMID: 30281650 PMCID: PMC6169906 DOI: 10.1371/journal.pone.0204901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/17/2018] [Indexed: 01/23/2023] Open
Abstract
Telomeres, the specialized dynamic structures at chromosome ends, regularly shrink with every replication. Thus, they function as an internal molecular clock counting down the number of cell divisions. However, most cancer cells escape this limitation by activating telomerase, which can maintain telomere length. Previous studies showed that the benzylisoquinoline alkaloid chelidonine stimulates multiple modes of cell death and strongly down-regulates telomerase. It is still unknown if down-regulation of telomerase by chelidonine boosts substantial telomere shortening. The breast cancer cell line MCF7 was sequentially treated with very low concentrations of chelidonine over several cell passages. Telomere length and telomerase activity were measured by a monochrome multiplex quantitative PCR and a q-TRAP assay, respectively. Changes in population size and doubling time correlated well with telomerase inhibition and telomere shortening. MCF7 cell growth was arrested completely after three sequential treatments with 0.1 μM chelidonine, each ending after 48 h, while telomere length was reduced to almost 10% of the untreated control. However, treatment with 0.01 μM chelidonine did not have any apparent consequence. In addition to dose and time dependent telomerase inhibition, chelidonine changed the splicing pattern of hTERT towards non-enzyme coding isoforms of the transcript. In conclusion, telomere length and telomere stability are strongly affected by chelidonine in addition to microtubule formation.
Collapse
Affiliation(s)
- Sakineh Kazemi Noureini
- Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar, Iran
- * E-mail:
| | - Leili Fatemi
- Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Michael Wink
- Department of Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
28
|
Lin C, Wu G, Wang K, Onel B, Sakai S, Shao Y, Yang D. Molecular Recognition of the Hybrid-2 Human Telomeric G-Quadruplex by Epiberberine: Insights into Conversion of Telomeric G-Quadruplex Structures. Angew Chem Int Ed Engl 2018; 57:10888-10893. [PMID: 29888501 PMCID: PMC6192034 DOI: 10.1002/anie.201804667] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/29/2018] [Indexed: 02/05/2023]
Abstract
Human telomeres can form DNA G-quadruplex (G4), an attractive target for anticancer drugs. Human telomeric G4s bear inherent structure polymorphism, challenging for understanding specific recognition by ligands or proteins. Protoberberines are medicinal natural-products known to stabilize telomeric G4s and inhibit telomerase. Here we report epiberberine (EPI) specifically recognizes the hybrid-2 telomeric G4 predominant in physiologically relevant K+ solution and converts other telomeric G4 forms to hybrid-2, the first such example reported. Our NMR structure in K+ solution shows EPI binding induces extensive rearrangement of the previously disordered 5'-flanking and loop segments to form an unprecedented four-layer binding pocket specific to the hybrid-2 telomeric G4; EPI recruits the (-1) adenine to form a "quasi-triad" intercalated between the external tetrad and a T:T:A triad, capped by a T:T base pair. Our study provides structural basis for small-molecule drug design targeting the human telomeric G4.
Collapse
Affiliation(s)
- Clement Lin
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Guanhui Wu
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Kaibo Wang
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Buket Onel
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Saburo Sakai
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
- Institute of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yong Shao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Danzhou Yang
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| |
Collapse
|
29
|
Guesmi F, Tyagi AK, Prasad S, Landoulsi A. Terpenes from essential oils and hydrolate of Teucrium alopecurus triggered apoptotic events dependent on caspases activation and PARP cleavage in human colon cancer cells through decreased protein expressions. Oncotarget 2018; 9:32305-32320. [PMID: 30190788 PMCID: PMC6122345 DOI: 10.18632/oncotarget.25955] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/29/2018] [Indexed: 12/20/2022] Open
Abstract
This study focused on characterizing the Hydrophobic and Hydrophilic fractions of Teucrium alopecurus in the context of cancer prevention and therapy. The goal was also to elucidate the molecular mechanisms involved and to determine its efficacy against cancer by triggering apoptosis and suppressing tumorigenesis in human colon cancer. The data here clearly demonstrated that oily fractions of Teucrium alopecurus act as free radical scavengers, antibacterial agent and inhibited the proliferation of HCT-116, U266, SCC4, Panc28, KBM5, and MCF-7 cells in a time- and concentration-dependent manner. The results of live/dead and colony formation assays further revealed that Teucrium essential oil has the efficacy to suppress the growth of colon carcinoma cells. In addition, essential oil of Teucrium alopecurus induced apoptosis, as indicated by cleavage of caspases-3, -8, and -9 and poly-adenosine diphosphate ribose polymerase. Moreover, Teucrium alopecurus essential oil suppressed gene expression involved in survival, proliferation, invasion, angiogenesis, and metastasis in human colon cancer cells. No sign of toxicity was detected in vivo after treatment with increasing concentrations of essential oil. Oral administration of T.alopecurus inhibited LPS-induced colon inflammation. This anticancer property of this specie Teucrium alopecurus fractions could be due to their phenolic and/or sesquiterpene content (d-limonene, α-Bisabolol, Humulene, Thymol, and (+)-epi-Bicyclosesquiphellandrene). Hence our study reveals the anticancer activity of Teucrium alopecurus oil mediated through the suppression of cell growth, cell proliferation, and the induction of apoptosis of cancer cells. Thus, it has potential to be developed as an anticancer agent; however more in vitro and in vivo studies are warranted.
Collapse
Affiliation(s)
- Fatma Guesmi
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| | - Amit K Tyagi
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmed Landoulsi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| |
Collapse
|
30
|
|
31
|
Lin C, Wu G, Wang K, Onel B, Sakai S, Shao Y, Yang D. Molecular Recognition of the Hybrid-2 Human Telomeric G-Quadruplex by Epiberberine: Insights into Conversion of Telomeric G-Quadruplex Structures. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Clement Lin
- Medicinal Chemistry and Molecular Pharmacology; College of Pharmacy; Purdue Center for Cancer Research; Purdue University; West Lafayette IN 47906 USA
| | - Guanhui Wu
- Medicinal Chemistry and Molecular Pharmacology; College of Pharmacy; Purdue Center for Cancer Research; Purdue University; West Lafayette IN 47906 USA
| | - Kaibo Wang
- Medicinal Chemistry and Molecular Pharmacology; College of Pharmacy; Purdue Center for Cancer Research; Purdue University; West Lafayette IN 47906 USA
| | - Buket Onel
- Medicinal Chemistry and Molecular Pharmacology; College of Pharmacy; Purdue Center for Cancer Research; Purdue University; West Lafayette IN 47906 USA
| | - Saburo Sakai
- Medicinal Chemistry and Molecular Pharmacology; College of Pharmacy; Purdue Center for Cancer Research; Purdue University; West Lafayette IN 47906 USA
- Institute of Biogeochemistry; Japan Agency for Marine-Earth Science and Technology; Yokosuka Kanagawa 237-0061 Japan
| | - Yong Shao
- College of Chemistry and Life Sciences; Zhejiang Normal University; Jinhua 321004 China
| | - Danzhou Yang
- Medicinal Chemistry and Molecular Pharmacology; College of Pharmacy; Purdue Center for Cancer Research; Purdue University; West Lafayette IN 47906 USA
| |
Collapse
|
32
|
Zielińska S, Jezierska-Domaradzka A, Wójciak-Kosior M, Sowa I, Junka A, Matkowski AM. Greater Celandine's Ups and Downs-21 Centuries of Medicinal Uses of Chelidonium majus From the Viewpoint of Today's Pharmacology. Front Pharmacol 2018; 9:299. [PMID: 29713277 PMCID: PMC5912214 DOI: 10.3389/fphar.2018.00299] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/15/2018] [Indexed: 12/20/2022] Open
Abstract
As antique as Dioscorides era are the first records on using Chelidonium as a remedy to several sicknesses. Inspired by the "signatura rerum" principle and an apparent ancient folk tradition, various indications were given, such as anti-jaundice and cholagogue, pain-relieving, and quite often mentioned-ophthalmological problems. Central and Eastern European folk medicine has always been using this herb extensively. In this region, the plant is known under many unique vernacular names, especially in Slavonic languages, associated or not with old Greek relation to "chelidon"-the swallow. Typically for Papaveroidae subfamily, yellow-colored latex is produced in abundance and leaks intensely upon injury. Major pharmacologically relevant components, most of which were first isolated over a century ago, are isoquinoline alkaloids-berberine, chelerythrine, chelidonine, coptisine, sanguinarine. Modern pharmacology took interest in this herb but it has not ended up in gaining an officially approved and evidence-based herbal medicine status. On the contrary, the number of relevant studies and publications tended to drop. Recently, some controversial reports and sometimes insufficiently proven studies appeared, suggesting anticancer properties. Anticancer potential was in line with anecdotical knowledge spread in East European countries, however, in the absence of directly-acting cytostatic compounds, some other mechanisms might be involved. Other properties that could boost the interest in this herb are antimicrobial and antiviral activities. Being a common synanthropic weed or ruderal plant, C. majus spreads in all temperate Eurasia and acclimates well to North America. Little is known about the natural variation of bioactive metabolites, including several aforementioned isoquinoline alkaloids. In this review, we put together older and recent literature data on phytochemistry, pharmacology, and clinical studies on C. majus aiming at a critical evaluation of state-of-the-art from the viewpoint of historical and folk indications. The controversies around this herb, the safety and drug quality issues and a prospective role in phytotherapy are discussed as well.
Collapse
Affiliation(s)
- Sylwia Zielińska
- Pharmaceutical Biology and Botany, Wrocław Medical University, Wrocław, Poland
| | - Anna Jezierska-Domaradzka
- Pharmaceutical Biology and Botany, Wrocław Medical University, Wrocław, Poland
- Botanical Garden of Medicinal Plants, Wrocław Medical University, Wrocław, Poland
| | | | - Ireneusz Sowa
- Analytical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Adam Junka
- Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Wrocław, Poland
| | - Adam M. Matkowski
- Pharmaceutical Biology and Botany, Wrocław Medical University, Wrocław, Poland
- Botanical Garden of Medicinal Plants, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
33
|
Pan WC, Liu JQ, Wang XS. Study on the iodine-catalyzed reaction of 3-aminopyrazine-2-carbohydrazide and 2-(arylethynyl)benzaldehydes. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Maiti S, Saha P, Das T, Bessi I, Schwalbe H, Dash J. Human Telomeric G-Quadruplex Selective Fluoro-Isoquinolines Induce Apoptosis in Cancer Cells. Bioconjug Chem 2018; 29:1141-1154. [DOI: 10.1021/acs.bioconjchem.7b00781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Subhadip Maiti
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Puja Saha
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tania Das
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Irene Bessi
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Jyotirmayee Dash
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|