1
|
Zhang M, Tian Y, Zhou H, Huang C, Ou J, Ou S, Liu P, Zheng J. Simultaneous elimination mechanism of formaldehyde and acrolein by resveratrol in food and the cytotoxicity of the products. Food Chem 2024; 468:142371. [PMID: 39671913 DOI: 10.1016/j.foodchem.2024.142371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Polyphenols have been intensively investigated for scavenging single harmful aldehydes, such as formaldehyde (FA) and acrolein (ACR). However, there is a lack of studies on the effect and mechanism of eliminating co-existing harmful aldehydes by polyphenols. In this study, resveratrol (RV) was found to simultaneously scavenge FA and ACR by forming various adducts, with the RV-ACR adduct (RA, molecular formula: C17H16O4) and RV-ACR-FA adduct (RAF, molecular formula: C18H18O5) being the dominant ones. The elimination of co-existing FA and ACR by RV were further confirmed in real food systems. RA (IC50, 67.22 and 147.70 μM in GES-1 and Caco-2 cells, respectively) and RAF (127.50 and over 250 μM, respectively) showed significantly lower cytotoxicity than the co-existing FA and ACR (18.27 and 5.26 μM, respectively) in the gastrointestinal cell lines. This study provided data support for food safety control by employing RV as a dietary supplement to scavenge harmful aldehydes in foods.
Collapse
Affiliation(s)
- Mianzhang Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yuan Tian
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Hua Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Pengzhan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Joint Innovation Platform of Baked Food Safety, Guangzhou 510632, China.
| |
Collapse
|
2
|
Yu X, Chen M, Wu J, Song R. Research progress of SIRTs activator resveratrol and its derivatives in autoimmune diseases. Front Immunol 2024; 15:1390907. [PMID: 38962006 PMCID: PMC11219927 DOI: 10.3389/fimmu.2024.1390907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Autoimmune diseases (AID) have emerged as prominent contributors to disability and mortality worldwide, characterized by intricate pathogenic mechanisms involving genetic, environmental, and autoimmune factors. In response to this challenge, a growing body of research in recent years has delved into genetic modifications, yielding valuable insights into AID prevention and treatment. Sirtuins (SIRTs) constitute a class of NAD-dependent histone deacetylases that orchestrate deacetylation processes, wielding significant regulatory influence over cellular metabolism, oxidative stress, immune response, apoptosis, and aging through epigenetic modifications. Resveratrol, the pioneering activator of the SIRTs family, and its derivatives have captured global scholarly interest. In the context of AID, these compounds hold promise for therapeutic intervention by modulating the SIRTs pathway, impacting immune cell functionality, suppressing the release of inflammatory mediators, and mitigating tissue damage. This review endeavors to explore the potential of resveratrol and its derivatives in AID treatment, elucidating their mechanisms of action and providing a comprehensive analysis of current research advancements and obstacles. Through a thorough examination of existing literature, our objective is to advocate for the utilization of resveratrol and its derivatives in AID treatment while offering crucial insights for the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Xiaolong Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Ruixiao Song
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
3
|
Barreiro-Sisto U, Fernández-Fariña S, González-Noya AM, Pedrido R, Maneiro M. Enemies or Allies? Hormetic and Apparent Non-Dose-Dependent Effects of Natural Bioactive Antioxidants in the Treatment of Inflammation. Int J Mol Sci 2024; 25:1892. [PMID: 38339170 PMCID: PMC10855620 DOI: 10.3390/ijms25031892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
This review aims to analyze the emerging number of studies on biological media that describe the unexpected effects of different natural bioactive antioxidants. Hormetic effects, with a biphasic response depending on the dose, or activities that are apparently non-dose-dependent, have been described for compounds such as resveratrol, curcumin, ferulic acid or linoleic acid, among others. The analysis of the reported studies confirms the incidence of these types of effects, which should be taken into account by researchers, discarding initial interpretations of imprecise methodologies or measurements. The incidence of these types of effects should enhance research into the different mechanisms of action, particularly those studied in the field of basic research, that will help us understand the causes of these unusual behaviors, depending on the dose, such as the inactivation of the signaling pathways of the immune defense system. Antioxidative and anti-inflammatory activities in biological media should be addressed in ways that go beyond a mere statistical approach. In this work, some of the research pathways that may explain the understanding of these activities are revised, paying special attention to the ability of the selected bioactive compounds (curcumin, resveratrol, ferulic acid and linoleic acid) to form metal complexes and the activity of these complexes in biological media.
Collapse
Affiliation(s)
- Uxía Barreiro-Sisto
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| | - Sandra Fernández-Fariña
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| | - Ana M. González-Noya
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| |
Collapse
|
4
|
Rogóż W, Mac K, Owczarzy A, Kulig K, Pożycka J, Maciążek-Jurczyk M. The effect of selected aminoglycoside antibiotics on human serum albumin antioxidant activity: a spectroscopic and calorimetric comparative study. Pharmacol Rep 2023; 75:1276-1290. [PMID: 37704832 PMCID: PMC10539444 DOI: 10.1007/s43440-023-00529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Human serum albumin (HSA) is a valuable component of non-enzymatic and endogenous antioxidant mechanisms. The antioxidant activity of HSA can be modulated by ligands, including drugs. Although this is a central topic in the field of oxidation, there is still a lack of information about the protection against the effects of elevated free radical levels. METHODS The aim of this study was to investigate the antioxidant activity of kanamycin (KAN) and neomycin (NEO) and their effect on the antioxidant potential of HSA using spectroscopic and microcalorimetric techniques. RESULTS Despite the fact that kanamycin and neomycin interact with HSA, no changes in the secondary structure of the protein have been observed. The analysis of the aminoglycoside antibiotics showed their low antioxidant activity and a synergistic effect of the interaction, probably due to the influence of ligands (KAN, NEO) on the availability of HSA amino acid residues functional groups, such as the free thiol group (Cys-34). CONCLUSIONS Based on the spectroscopic and microcalorimetric data, both KAN and NEO can be considered modulators of the HSA antioxidant activity.
Collapse
Affiliation(s)
- Wojciech Rogóż
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Kinga Mac
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Owczarzy
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Karolina Kulig
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jadwiga Pożycka
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Małgorzata Maciążek-Jurczyk
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
5
|
Jeevanandam J, Burra VLSP, Saraswathi NT. Conformational variation of site specific glycated albumin: A Molecular dynamics approach. Comput Biol Med 2023; 164:107276. [PMID: 37481949 DOI: 10.1016/j.compbiomed.2023.107276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/23/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Human serum albumin (HSA) is a major cargo protein, which undergoes glycation in hyperglycaemic conditions and results in impaired function. In physiological conditions, HSA plays a crucial role in pharmacological activities such as drug transport or delivery through its binding capacity and also by its enzymatic activity, which enables the translation of pro-drugs into active drugs. In this study, the impact of the methylglyoxal-mediated glycation on dynamic behaviour of inter-domain motion, Cys34 reactivity, binding site residual interaction and secondary structure transition were investigated through molecular dynamics simulation. The alteration in inter-domain motion reflects the effect of glycation-mediated changes on the structural conformation of albumin. The binding site residue interactions and volume analysis revealed the impact of glycation on the geometry of the binding site. We also found the correlation of Cys34 reactivity with increase of turns in the region between Ia-h4 and Ia-h5. The rise in turn formation in that region keeps Tyr84 farther away from Cys34 which could lead to higher Cys34 reactivity. In parallel, significant alterations in alpha helical content of helices in the binding sites were observed. These structural and conformational changes in glycated albumin could be the causative agents for functional impairment which leads to diabetic complications.
Collapse
Affiliation(s)
- Jayanth Jeevanandam
- Molecular Biophysics lab, School of Chemical and Biotechnology, SASTRA Deemed to- be University, Thanjavur, 613401, Tamilnadu, India
| | - V L S Prasad Burra
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed To Be) University, Vaddeswaram, Andhra Pradesh, 522 502, India
| | - N T Saraswathi
- Molecular Biophysics lab, School of Chemical and Biotechnology, SASTRA Deemed to- be University, Thanjavur, 613401, Tamilnadu, India.
| |
Collapse
|
6
|
Feng R, Liang W, Liu Y, Luo Y, Tan Y, Hong H. Protein oxidation affected the digestibility and modification sites of myofibrillar proteins from bighead carp fillets treated with hydroxyl radicals and endogenous oxidizing system. Food Chem 2023; 409:135279. [PMID: 36603476 DOI: 10.1016/j.foodchem.2022.135279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
This study aimed to investigate the effect of hydroxyl radical oxidizing system (HROS) and endogenous oxidizing system (EOS, i.e., frozen storage at -20 °C) on protein oxidation, digestive properties, and peptide modification of myofibrillar proteins (MPs) in bighead carp (Hypophthalmichthys nobilis) fillets. The oxidation degree increased with the frozen time and H2O2 concentration as evidenced by carbonyl group generation and sulfhydryl group loss in MPs. The digestibility of protein declined gradually during frozen storage, while it increased after treatment with 5 mM H2O2 compared with no H2O2 intervention. More modification numbers and types were observed in the EOS group than HROS in digested MPs peptides, which might be due to the complexity of the frozen fillet system such as the presence of lipid. The potential conversion of α-aminoadipic semialdehyde (AAS) to α-aminoadipic acids (AAA) was observed in HROS. Additionally, the myosin heavy chain was more susceptible to oxidation among all MPs by EOS oxidation.
Collapse
Affiliation(s)
- Ruifang Feng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Wenyu Liang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Yueyue Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China; National Research and Development Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China.
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China; Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China.
| |
Collapse
|
7
|
Chen X, He Z, Wang Z, Li H. Insight into the Interaction of Malondialdehyde with Rabbit Meat Myofibrillar Protein: Fluorescence Quenching and Protein Oxidation. Foods 2023; 12:foods12102044. [PMID: 37238862 DOI: 10.3390/foods12102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
This research explored the effects of oxidative modification caused by different malondialdehyde (MDA) concentrations on rabbit meat myofibrillar protein (MP) structural characteristics and the interactions between MDA and MP. The fluorescence intensity of MDA-MP adducts, and surface hydrophobicity increased, whereas the intrinsic fluorescence intensity and free-amine content of MPs decreased as MDA concentration and incubation time increased. The carbonyl content was 2.06 nmol/mg for native MPs, while the carbonyl contents increased to 5.17, 5.57, 7.01, 11.37, 13.78, and 23.24 nmol/mg for MP treated with 0.25 to 8 mM MDA, respectively. When the MP was treated with 0.25 mM MDA, the sulfhydryl content and the α-helix content decreased to 43.78 nmol/mg and 38.46%, while when MDA concentration increased to 8 mM, the contents for sulfhydryl and α-helix decreased to 25.70 nmol/mg and 15.32%. Furthermore, the denaturation temperature and ΔH decreased with the increase in MDA concentration, and the peaks disappeared when the MDA concentration reached 8 mM. Those results indicate MDA modification resulted in structural destruction, thermal stability reduction, and protein aggregation. Besides, the first-order kinetics and Stern-Volmer equation fitting results imply that the quenching mechanism of MP by MDA may be mainly driven by dynamic quenching.
Collapse
Affiliation(s)
- Xiaosi Chen
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Zhifei He
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongjun Li
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| |
Collapse
|
8
|
Sánchez-Quintero MJ, Delgado J, Medina-Vera D, Becerra-Muñoz VM, Queipo-Ortuño MI, Estévez M, Plaza-Andrades I, Rodríguez-Capitán J, Sánchez PL, Crespo-Leiro MG, Jiménez-Navarro MF, Pavón-Morón FJ. Beneficial Effects of Essential Oils from the Mediterranean Diet on Gut Microbiota and Their Metabolites in Ischemic Heart Disease and Type-2 Diabetes Mellitus. Nutrients 2022; 14:4650. [PMID: 36364913 PMCID: PMC9657080 DOI: 10.3390/nu14214650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Ischemic heart disease (IHD) and type-2 diabetes mellitus (T2DM) remain major health problems worldwide and commonly coexist in individuals. Gut microbial metabolites, such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs), have been linked to cardiovascular and metabolic diseases. Previous studies have reported dysbiosis in the gut microbiota of these patients and the prebiotic effects of some components of the Mediterranean diet. Essential oil emulsions of savory (Satureja hortensis), parsley (Petroselinum crispum) and rosemary (Rosmarinus officinalis) were assessed as nutraceuticals and prebiotics in IHD and T2DM. Humanized mice harboring gut microbiota derived from that of patients with IHD and T2DM were supplemented with L-carnitine and orally treated with essential oil emulsions for 40 days. We assessed the effects on gut microbiota composition and abundance, microbial metabolites and plasma markers of cardiovascular disease, inflammation and oxidative stress. Our results showed that essential oil emulsions in mice supplemented with L-carnitine have prebiotic effects on beneficial commensal bacteria, mainly Lactobacillus genus. There was a decrease in plasma TMAO and an increase in fecal SCFAs levels in mice treated with parsley and rosemary essential oils. Thrombomodulin levels were increased in mice treated with savory and parsley essential oils. While mice treated with parsley and rosemary essential oils showed a decrease in plasma cytokines (INFɣ, TNFα, IL-12p70 and IL-22); savory essential oil was associated with increased levels of chemokines (CXCL1, CCL2 and CCL11). Finally, there was a decrease in protein carbonyls and pentosidine according to the essential oil emulsion. These results suggest that changes in the gut microbiota induced by essential oils of parsley, savory and rosemary as prebiotics could differentially regulate cardiovascular and metabolic factors, which highlights the potential of these nutraceuticals for reducing IHD risk in patients affected by T2DM.
Collapse
Affiliation(s)
- María José Sánchez-Quintero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josué Delgado
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Higiene y Seguridad Alimentaria, Facultad de Veterinaria, IPROCAR, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Departamento de Dermatología y Medicina, Facultad de Medicina, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - Víctor M. Becerra-Muñoz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Isabel Queipo-Ortuño
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria y Centro de Investigaciones Médico Sanitarias (CIMES), 29010 Málaga, Spain
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - Mario Estévez
- Instituto Universitario de Investigación de Carne y Productos Cárnicos (IPROCAR), Universidad de Extremadura (UEX), 10003 Cáceres, Spain
| | - Isaac Plaza-Andrades
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria y Centro de Investigaciones Médico Sanitarias (CIMES), 29010 Málaga, Spain
| | - Jorge Rodríguez-Capitán
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pedro L. Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Cardiología, Hospital Universitario de Salamanca, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Maria G. Crespo-Leiro
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Cardiología, Complexo Hospitalario Universitario A Coruña (CHUAC), Universidade da Coruña (UDC), Instituto Investigación Biomédica A Coruña (INIBIC), 15006 A Coruña, Spain
| | - Manuel F. Jiménez-Navarro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Dermatología y Medicina, Facultad de Medicina, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - Francisco Javier Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain
- Unidad de Gestión Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| |
Collapse
|
9
|
Spectroscopic Analysis of an Antimalarial Drug’s (Quinine) Influence on Human Serum Albumin Reduction and Antioxidant Potential. Molecules 2022; 27:molecules27186027. [PMID: 36144764 PMCID: PMC9505252 DOI: 10.3390/molecules27186027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Quinine (Qi) is a well-known drug used in malaria therapy; it is also a potential anti-arrhythmic drug used in the treatment of calf cramps, rheumatoid arthritis, colds, and photodermatitis. Moreover, it is used in the food industry for the production of tonics. This study aimed to analyze the interaction between quinine and a transporting protein—human serum albumin (HSA)—as well as the influence of Qi on both protein reduction and antioxidant potential. It was found that Qi (via spectrofluorometric measurements and circular dichroism spectroscopy) binds to HSA with a low affinity and slightly affects the secondary structure of albumin. As demonstrated by the use of ABTS and FRAP assays, HSA has a higher antioxidant and reduction potential than Qi, while their mutual interaction results in a synergistic effect in antioxidant activity and reduction potential.
Collapse
|
10
|
Glucose boosts protein oxidation/nitration during simulated gastric digestion of myofibrillar proteins by creating a severe pro-oxidative environment. Food Chem 2022; 397:133805. [PMID: 35914463 DOI: 10.1016/j.foodchem.2022.133805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
Abstract
The severe pro-oxidative environment in the stomach promotes oxidation of dietary components. The pro-oxidant molecular mechanisms of reducing sugars on this environment are unknown. To investigate the mechanisms involved in protein oxidation and nitration during a simulated gastric digestion (porcine pepsin, 37 °C, 2 h) of meat proteins, these were exposed to several dietary reactive components namely myoglobin, glucose, glyoxal, myoglobin + glucose and myoglobin + glyoxal. Two versions of each experimental unit were prepared depending on the addition or absence of nitrite. Compared to control (only meat proteins), myoglobin + glucose showed the highest pro-oxidative and pro-nitrosative effect (p < 0.001), likely caused by an increase in ROS derived from the degradation of glucose during assay. Nitrite promoted the occurrence of protein nitration but decreased protein oxidation in myoglobin-added groups (p < 0.001) by, plausibly, stabilizing heme iron. These results indicate the relevant role of glyco-oxidation during digestion of red meat with other dietary components such as reducing sugars.
Collapse
|
11
|
β-lactoglobulin and resveratrol nanocomplex formation is driven by solvation water release. Food Res Int 2022; 158:111567. [DOI: 10.1016/j.foodres.2022.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
|
12
|
Sarmah S, Goswami A, Kumar Belwal V, Singha Roy A. Mitigation of ribose and glyoxal induced glycation, AGEs formation and aggregation of human serum albumin by citrus fruit phytochemicals naringin and naringenin: An insight into their mechanism of action. Food Res Int 2022; 157:111358. [DOI: 10.1016/j.foodres.2022.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
|
13
|
Xie MZ, Guo C, Dong JQ, Zhang J, Sun KT, Lu GJ, Wang L, Bo DY, Jiao LY, Zhao GA. Glyoxal damages human aortic endothelial cells by perturbing the glutathione, mitochondrial membrane potential, and mitogen-activated protein kinase pathways. BMC Cardiovasc Disord 2021; 21:603. [PMID: 34922451 PMCID: PMC8684178 DOI: 10.1186/s12872-021-02418-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
Background Exposure to glyoxal, the smallest dialdehyde, is associated with several diseases; humans are routinely exposed to glyoxal because of its ubiquitous presence in foods and the environment. The aim of this study was to examine the damage caused by glyoxal in human aortic endothelial cells.
Methods Cell survival assays and quantitative fluorescence assays were performed to measure DNA damage; oxidative stress was detected by colorimetric assays and quantitative fluorescence, and the mitogen-activated protein kinase pathways were assessed using western blotting. Results Exposure to glyoxal was found to be linked to abnormal glutathione activity, the collapse of mitochondrial membrane potential, and the activation of mitogen-activated protein kinase pathways. However, DNA damage and thioredoxin oxidation were not induced by dialdehydes. Conclusions Intracellular glutathione, members of the mitogen-activated protein kinase pathways, and the mitochondrial membrane potential are all critical targets of glyoxal. These findings provide novel insights into the molecular mechanisms perturbed by glyoxal, and may facilitate the development of new therapeutics and diagnostic markers for cardiovascular diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02418-3.
Collapse
Affiliation(s)
- Ming-Zhang Xie
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China.
| | - Chun Guo
- Henan Key Laboratory of Neural Regeneration (Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia), First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Jia-Qi Dong
- Department of Cardiovascular, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Jie Zhang
- Department of Integrating Western and Chinese of Internal Medicine, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Ke-Tao Sun
- Department of Laboratory, Zibo Central Hospital, Zibo, 255036, Shandong, People's Republic of China
| | - Guang-Jian Lu
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Lei Wang
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - De-Ying Bo
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Lu-Yang Jiao
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China.
| | - Guo-An Zhao
- Department of Cardiovascular, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China.
| |
Collapse
|
14
|
Dołowacka-Jóźwiak A, Matkowski A, Nawrot-Hadzik I. Antiglycoxidative Properties of Extracts and Fractions from Reynoutria Rhizomes. Nutrients 2021; 13:nu13114066. [PMID: 34836321 PMCID: PMC8622691 DOI: 10.3390/nu13114066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
Hyperglycemia, when sustained over a long time in diabetes mellitus (DM), leads to biochemical and cellular abnormalities, primarily through the formation of advanced glycation end-products (AGEs). In the treatment of diabetes, beside blood-sugar-lowering medications, a consumption of herbal products that can inhibit the AGEs’ formation is recommended. This study investigated the in vitro antiglycoxidative potential of extracts and fractions from the rhizomes of Japanese, Giant, and Bohemian knotweeds (Reynoutria japonica (Houtt.), R. sachalinensis (F. Schmidt) Nakai, and R.× bohemica Chrtek et Chrtkova). Their effects on glycooxidation of bovine and human serum albumin were evaluated by incubation of the proteins with a mixture of glucose and fructose (0.5 M) and 150 µg/mL of extract for 28 days at 37 °C, followed by measuring early and late glycation products, albumin oxidation (carbonyl and free thiol groups), and amyloid-β aggregation (thioflavin T and Congo red assays). The highest antiglycoxidative activity, comparable or stronger than the reference drug (aminoguanidine), was observed for ethyl acetate and diethyl ether fractions, enriched in polyphenols (stilbenes, phenylpropanoid disaccharide esters, and free and oligomeric flavan-3-ols). In conclusion, the antiglycoxidative compounds from these three species should be further studied for potential use in the prevention and complementary treatment of DM.
Collapse
Affiliation(s)
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biology and Botany, Botanical Garden of Medicinal Plants, Wroclaw Medical University, 50556 Wroclaw, Poland
- Correspondence: (A.M.); (I.N.-H.)
| | - Izabela Nawrot-Hadzik
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biology and Botany, Botanical Garden of Medicinal Plants, Wroclaw Medical University, 50556 Wroclaw, Poland
- Correspondence: (A.M.); (I.N.-H.)
| |
Collapse
|
15
|
Abstract
Protein oxidation is a topic of indisputable scientific interest given the impact of oxidized proteins on food quality and safety. Carbonylation is regarded as one of the most notable post-translational modifications in proteins and yet, this reaction and its consequences are poorly understood. From a mechanistic perspective, primary protein carbonyls (i.e. α-aminoadipic and γ-glutamic semialdehydes) have been linked to radical-mediated oxidative stress, but recent studies emphasize the role alternative carbonylation pathways linked to the Maillard reaction. Secondary protein carbonyls are introduced in proteins via covalent linkage of lipid carbonyls (i.e. protein-bound malondialdehyde). The high reactivity of protein carbonyls in foods and other biological systems indicates the intricate chemistry of these species and urges further research to provide insight into these molecular mechanisms and pathways. In particular, protein carbonyls are involved in the formation of aberrant and dysfunctional protein aggregates, undergo further oxidation to yield carboxylic acids of biological relevance and establish interactions with other biomolecules such as oxidizing lipids and phytochemicals. From a methodological perspective, the routine dinitrophenylhydrazine (DNPH) method is criticized not only for the lack of accuracy and consistency but also authors typically perform a poor interpretation of DNPH results, which leads to misleading conclusions. From a practical perspective, the biological relevance of protein carbonyls in the field of food science and nutrition is still a topic of debate. Though the implication of carbonylation on impaired protein functionality and poor protein digestibility is generally recognized, the underlying mechanism of such connections requires further clarification. From a medical perspective, protein carbonyls are highlighted as markers of protein oxidation, oxidative stress and disease. Yet, the specific role of specific protein carbonyls in the onset of particular biological impairments needs further investigations. Recent studies indicates that regardless of the origin (in vivo or dietary) protein carbonyls may act as signalling molecules which activate not only the endogenous antioxidant defences but also implicate the immune system. The present paper concisely reviews the most recent advances in this topic to identify, when applicable, potential fields of interest for future studies.
Collapse
|
16
|
Akagawa M. Protein carbonylation: molecular mechanisms, biological implications, and analytical approaches. Free Radic Res 2021; 55:307-320. [DOI: 10.1080/10715762.2020.1851027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mitsugu Akagawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
17
|
Golchinfar Z, Tabibiazar M, Abdi F, Taghvimi A, Roufegarinejad L. Effect of resveratrol and curcumin on formation of N‐Carboxymethyl lysine and its intracellular oxidative stress. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zahra Golchinfar
- Student Research Committee Tabriz University of Medical Science Tabriz Iran
- Faculty of Nutrition and Food Science Tabriz University of Medical Science Tabriz Iran
| | - Mahnaz Tabibiazar
- Faculty of Nutrition and Food Science Tabriz University of Medical Science Tabriz Iran
| | - Fardin Abdi
- Student Research Committee Tabriz University of Medical Science Tabriz Iran
- Faculty of Nutrition and Food Science Tabriz University of Medical Science Tabriz Iran
| | - Arezou Taghvimi
- Biotechnology Research Centre Tabriz University of Medical Science Tabriz Iran
| | - Leila Roufegarinejad
- Department of Food Science and Technology Tabriz Branch Islamic Azad University Tabriz Iran
| |
Collapse
|
18
|
Morris G, Gamage E, Travica N, Berk M, Jacka FN, O'Neil A, Puri BK, Carvalho AF, Bortolasci CC, Walder K, Marx W. Polyphenols as adjunctive treatments in psychiatric and neurodegenerative disorders: Efficacy, mechanisms of action, and factors influencing inter-individual response. Free Radic Biol Med 2021; 172:101-122. [PMID: 34062263 DOI: 10.1016/j.freeradbiomed.2021.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
The pathophysiology of psychiatric and neurodegenerative disorders is complex and multifactorial. Polyphenols possess a range of potentially beneficial mechanisms of action that relate to the implicated pathways in psychiatric and neurodegenerative disorders. The aim of this review is to highlight the emerging clinical trial and preclinical efficacy data regarding the role of polyphenols in mental and brain health, elucidate novel mechanisms of action including the gut microbiome and gene expression, and discuss the factors that may be responsible for the mixed clinical results; namely, the role of interindividual differences in treatment response and the potentially pro-oxidant effects of some polyphenols. Further clarification as part of larger, well conducted randomized controlled trials that incorporate precision medicine methods are required to inform clinical efficacy and optimal dosing regimens.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Elizabeth Gamage
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Nikolaj Travica
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
19
|
Human astrocytes and astrocytoma respond differently to resveratrol. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102441. [PMID: 34302989 DOI: 10.1016/j.nano.2021.102441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/01/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
A fundamental problem in oncology is that anticancer chemotherapeutics kill both cancer and healthy cells in the surrounding tissues. Resveratrol is a natural antioxidant with intriguing and opposing biological properties: it reduces viability of some cancer cells but not of non-transformed ones (in equimolar concentrations). Therefore, we examined resveratrol in human non-transformed primary astrocytes and astrocytoma. Resveratrol reduced reactive oxygen species in astrocytes, but not in astrocytoma. Such cell-type dependent response is particularly evident with analyses at the single cell level showing clear population difference in high and low glutathione levels. Due to resveratrol's poor aqueous solubility that limits its use in clinics, we incorporated it into stimulus-responsive micelles assembled from miktoarm polymers. This could be an attractive chemotherapeutic delivery strategy in nano-oncology. As a proof of principle, we show that these formulations containing resveratrol markedly decrease astrocytoma viability, particularly in combination with temozolomide, a first line chemotherapeutic for astrocytoma.
Collapse
|
20
|
Abstract
Introduction Introduction and objetives: oxidative stress is considered one of the main mechanisms of genotoxicity and carcinogenicity of heavy metals. In contrast, resveratrol has antioxidant properties and is one of the most studied polyphenols due to its wide variety of beneficial health effects. However, there are no systematic reviews of the scientific literature in which the effects of resveratrol on oxidative stress induced by heavy metals are analyzed. Methods: in this review, articles were searched using the PubMed and ScienceDirect databases (1996-2018). After applying various filters, eleven in vivo and in vitro researches were considered, in which the effects of resveratrol on oxidative stress induced by arsenic (As), cadmium (Cd), copper (Cu), chromium (Cr) and iron (Fe) were studied. Results: this review presents an analysis of the chemical effects of resveratrol on oxidative stress associated with the exposure of metal compounds. The interaction of resveratrol with the production of reactive oxygen species (ERO's), the endogenous antioxidant system and its effects on DNA damage is discussed. From these studies, a diagram that shows the proposed interactions for resveratrol; heavy metals As, Cd, Cu, Cr and Fe; and oxidative stress is generated. Conclusions: the studies analyzed show that resveratrol is able to modulate the oxidative stress generated by different heavy metal compounds such as As, Cd, Cu, Cr and Fe.
Collapse
|
21
|
Luna C, Arjona A, Dueñas C, Estevez M. Allysine and α-Aminoadipic Acid as Markers of the Glyco-Oxidative Damage to Human Serum Albumin under Pathological Glucose Concentrations. Antioxidants (Basel) 2021; 10:474. [PMID: 33802856 PMCID: PMC8002732 DOI: 10.3390/antiox10030474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the molecular basis of the disease is of the utmost scientific interest as it contributes to the development of targeted strategies of prevention, diagnosis, and therapy. Protein carbonylation is a typical feature of glyco-oxidative stress and takes place in health disorders such as diabetes. Allysine as well as its oxidation product, the α-amino adipic acid (α-AA) have been found to be markers of diabetes risk whereas little is known about the chemistry involved in its formation under hyperglycemic conditions. To provide insight into this issue, human serum albumin was incubated in the presence of FeCl3 (25 μM) and increasing glucose concentrations for 32 h at 37 °C. These concentrations were selected to simulate (i) physiological fasting plasma concentration (4 mM), (ii) pathological pre-diabetes fasting plasma concentration (8 mM), and pathological diabetes fasting plasma concentration (12 mM) of glucose. While both allysine and α-AA were found to increase with increasing glucose concentrations, the carboxylic acid was only detected at pathological glucose concentrations and appeared to be a more reliable indicator of glyco-oxidative stress. The underlying chemical mechanisms of lysine glycation as well as of the depletion of tryptophan and formation of fluorescent and colored advanced glycation products are discussed.
Collapse
Affiliation(s)
- Carolina Luna
- Emergency unit, Hospital Nuestra Señora de la Montaña, Servicio Extremeño de Salud, Gobierno de Extremadura, 10002 Cáceres, Spain;
| | - Alexis Arjona
- Family and Community Medicine, Servicio Extremeño de Salud, Gobierno de Extremadura, 10002 Cáceres, Spain;
| | - Carmen Dueñas
- Gastroenterology unit, Hospital Universitario Cáceres, Servicio Extremeño de Salud, Gobierno de Extremadura, 10002 Cáceres, Spain;
| | - Mario Estevez
- Meat and Meat Products Research Institute (IPROCAR), Food Technology, University of Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
22
|
Bao M, Li J, Chen H, Chen Z, Xu D, Wen Y. Enantioselective effects of imazethapyr on the secondary metabolites and nutritional value of wheat seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143759. [PMID: 33279196 DOI: 10.1016/j.scitotenv.2020.143759] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
The secondary metabolism of plants is key for mediating responses to environmental stress, but few studies have examined how the relationship between secondary metabolism and the stress response of plants is affected by exposure to chiral herbicides. Here, we studied the enantioselective disturbance of the chiral herbicide imazethapyr (IM) on the secondary metabolism and nutrient levels of wheat seedlings. The bioactive enantiomer R-IM significantly increased the contents of major secondary metabolites, including phenolic acids, flavonoids, and carotenoids but greatly inhibited the production of benzoxazine. The antioxidant system also responded strongly to R-IM; specifically, the activities of SOD, CAT, and GPX enzymes were all significantly induced, and the GSH content initially increased but then decreased. Furthermore, the nutrient levels of wheat seedlings were also affected; dietary fiber content decreased, while the contents of the microelements Fe, Mn, and Zn increased. In sum, this study provides new insight into the phytotoxic effects of IM and raises new questions on the role of secondary metabolites and nutrients in mediating enantioselective effects.
Collapse
Affiliation(s)
- Manxin Bao
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Chen
- College of Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zunwei Chen
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, United States
| | - Dongmei Xu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Castro LDS, Bracht L, Peralta RM, Maróstica HVP, Comar JF, Babeto de Sá-Nakanishi A, Bracht A. Actions of multiple doses of resveratrol on oxidative and inflammatory markers in plasma and brain of healthy and arthritic rats. Basic Clin Pharmacol Toxicol 2021; 128:80-90. [PMID: 32772505 DOI: 10.1111/bcpt.13475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 11/27/2022]
Abstract
The actions of resveratrol in brain and plasma of rats with adjuvant-induced arthritis were investigated. Resveratrol was administered orally during a period of 23 days. A major concern of the present work was to explore an ample range of daily doses (10-200 mg/kg). Several oxidative and inflammatory markers were measured. Important effects of resveratrol treatment were the normalization of the plasma myeloperoxidase activity (inflammatory marker), the normalization of the brain xanthine oxidase activity (reactive oxygen species source) and the near-normalization of the catalase activity in the brain (antioxidant defence). These effects presented obvious dose dependencies in the range up to 200 mg/kg. Resveratrol also reduced protein and lipid damage within the lowest dose ranges investigated, and its action as a free radical scavenger activity was enhanced in brain mitochondria of arthritic rats. Resveratrol failed in restoring the diminished albumin levels and plasma protein thiols in arthritic rats. The latter, however, were substantially increased in healthy rats at low doses (up to 50 mg/kg), a sign of antioxidant action. This increase was reversed at higher doses, a sign of pro-oxidant action. The observations agree with the notion that low doses of resveratrol might be useful as an adjuvant to the conventional antirheumatic drugs.
Collapse
Affiliation(s)
| | - Lívia Bracht
- Department of Biochemistry, University of Maringá, Maringá, Brazil
| | | | | | | | | | - Adelar Bracht
- Department of Biochemistry, University of Maringá, Maringá, Brazil
| |
Collapse
|
24
|
Zheng J, Guo H, Ou J, Liu P, Huang C, Wang M, Simal-Gandara J, Battino M, Jafari SM, Zou L, Ou S, Xiao J. Benefits, deleterious effects and mitigation of methylglyoxal in foods: A critical review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Protective actions of bioactive flavonoids chrysin and luteolin on the glyoxal induced formation of advanced glycation end products and aggregation of human serum albumin: In vitro and molecular docking analysis. Int J Biol Macromol 2020; 165:2275-2285. [PMID: 33058977 DOI: 10.1016/j.ijbiomac.2020.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
The post-translational modification of proteins by nonenzymatic glycation (NEG) and the accumulation of AGEs are the two underlying factors associated with the long-term pathogenesis in diabetes. Glyoxal (GO) is a reactive intermediate which has the ability to modify proteins and generate AGEs at a faster rate. Human serum albumin (HSA) being the most abundant serum protein has a higher chance to be modified by NEG. The key objective of the present study is to investigate the potency of chrysin and luteolin as antiglycating and antifibrillating agents in the GO-mediated glycation and fibril formation of HSA. AGEs formation were confirmed from the absorption and fluorescence spectral measurements. Both the flavonoids were able to quench the AGEs fluorescence intensity in vitro indicating the antiglycating nature of the molecules. The formation of fibrils in the GO-modified HSA was confirmed by the Thioflavin T (ThT) fluorescence assay and the flavonoids were found to exihibit the antifibrillation properties in vitro. Docking results suggested that both the flavonoids interact with various amino acid residues of subdomain IIA including glycation prone lysines and arginines via non-covalent forces and further stabilized the structure of HSA, which further explains their mechanisms of action as antiglycating and antifibrillating agents.
Collapse
|
26
|
Estaras M, Ameur FZ, Estévez M, Díaz-Velasco S, Gonzalez A. The lysine derivative aminoadipic acid, a biomarker of protein oxidation and diabetes-risk, induces production of reactive oxygen species and impairs trypsin secretion in mouse pancreatic acinar cells. Food Chem Toxicol 2020; 145:111594. [PMID: 32738373 DOI: 10.1016/j.fct.2020.111594] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
We have examined the effects of α-aminoadipic acid, an oxidized derivative from the amino acid lysine, on the physiology of mouse pancreatic acinar cells. Changes in intracellular free-Ca2+ concentration, the generation of reactive oxygen species, the levels of carbonyls and thiobarbituric-reactive substances, cellular metabolic activity and trypsin secretion were studied. Stimulation of mouse pancreatic cells with cholecystokinin (1 nM) evoked a transient increase in [Ca2+]i. In the presence of α-amoniadipic acid increases in [Ca2+]i were observed. In the presence of the compound, cholecystokinin induced a Ca2+ response that was smaller compared with that observed when cholecystokinin was applied alone. Stimulation of cells with cholecystokinin in the absence of Ca2+ in the extracellular medium abolished further mobilization of Ca2+ by α-aminoadipic acid. In addition, potential pro-oxidant conditions, reflected as increases in ROS generation, oxidation of proteins and lipids, were noted in the presence of α-aminoadipic acid. Finally, the compound impaired trypsin secretion induced by the secretagogue cholecystokinin. We conclude that the oxidized derivative from the amino acid lysine induces pro-oxidative conditions and the impairment of enzyme secretion in pancreatic acinar cells. α-aminoadipic acid thus creates a situation that could potentially lead to disorders in the physiology of the pancreas.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Fatma Z Ameur
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire, Université d'Oran1 Ahmed BenBella, Algeria
| | - Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003, Cáceres, Spain
| | - Silvia Díaz-Velasco
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003, Cáceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
27
|
Zhang Q, He L, Dong Y, Fei Y, Wen J, Li X, Guan J, Liu F, Zhou T, Li Z, Fan Y, Wang N. Sitagliptin ameliorates renal tubular injury in diabetic kidney disease via STAT3-dependent mitochondrial homeostasis through SDF-1α/CXCR4 pathway. FASEB J 2020; 34:7500-7519. [PMID: 32281218 DOI: 10.1096/fj.201903038r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 01/15/2023]
Abstract
Mitochondrial abnormalities play critical roles in diabetic tubular injury progression. Dipeptidyl peptidase-4 (DPP4) inhibitors are widely used antihyperglycemic agents that exert renal protective and positive effects against mitochondrial dysfunction in diabetic kidney disease (DKD). However, their underlying mechanism remains unclear. In this study, DPP4 upregulation, mitochondrial fragmentation, and altered mitochondrial dynamics-associated protein expression were observed in the tubules of DBA2/J (D2) diabetic mice with unilateral nephrectomy and in albumin-stimulated tubular cells. The inhibition of DPP4 by sitagliptin (Sita) ameliorated these mitochondrial perturbations both in vivo and in vitro, whereas DPP4 overexpression aggravated mitochondrial fusion-fission disorder and tubular cell injury in albumin-treated HK-2 cells. Downstream of DPP4, the SDF-1α/CXCR4 pathway was significantly suppressed in diabetic tubules. After Sita treatment, this signaling pathway was restored, and the mitochondrial dynamics was improved. Furthermore, a direct interaction between STAT3 and OPA1 was found in the mitochondria of tubular cells, and this effect was weakened by overloading albumin and by CXCR4 siRNA treatment, suggesting a possible link between DPP4-mediated SDF-1α/CXCR4/STAT3 signaling and mitochondrial dysfunction in diabetic tubular cells. The results suggest that a novel mechanism links the DPP4 enzyme to impaired mitochondrial dynamics homeostasis during tubular injury in DKD and highlight that the SDF-1α/CXCR4/STAT3 signaling pathway could become a potential target for managing DKD.
Collapse
Affiliation(s)
- Qunzi Zhang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li He
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Dong
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Fei
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiejun Wen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaomei Li
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jian Guan
- Therapy Center for Obstructive Sleep Apnea, Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Feng Liu
- Therapy Center for Obstructive Sleep Apnea, Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ting Zhou
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ze Li
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ying Fan
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
28
|
Shaito A, Posadino AM, Younes N, Hasan H, Halabi S, Alhababi D, Al-Mohannadi A, Abdel-Rahman WM, Eid AH, Nasrallah GK, Pintus G. Potential Adverse Effects of Resveratrol: A Literature Review. Int J Mol Sci 2020; 21:E2084. [PMID: 32197410 PMCID: PMC7139620 DOI: 10.3390/ijms21062084] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Due to its health benefits, resveratrol (RE) is one of the most researched natural polyphenols. Resveratrol's health benefits were first highlighted in the early 1990s in the French paradox study, which opened extensive research activity into this compound. Ever since, several pharmacological activities including antioxidant, anti-aging, anti-inflammatory, anti-cancerous, anti-diabetic, cardioprotective, and neuroprotective properties, were attributed to RE. However, results from the available human clinical trials were controversial concerning the protective effects of RE against diseases and their sequelae. The reason for these conflicting findings is varied but differences in the characteristics of the enrolled patients, RE doses used, and duration of RE supplementation were proposed, at least in part, as possible causes. In particular, the optimal RE dosage capable of maximizing its health benefits without raising toxicity issues remains an area of extensive research. In this context, while there is a consistent body of literature on the protective effects of RE against diseases, there are relatively few reports investigating its possible toxicity. Indeed, toxicity and adverse effects were reported following consumption of RE; therefore, extensive future studies on the long-term effects, as well as the in vivo adverse effects, of RE supplementation in humans are needed. Furthermore, data on the interactions of RE when combined with other therapies are still lacking, as well as results related to its absorption and bioavailability in the human body. In this review, we collect and summarize the available literature about RE toxicity and side effects. In this process, we analyze in vitro and in vivo studies that have addressed this stilbenoid. These studies suggest that RE still has an unexplored side. Finally, we discuss the new delivery methods that are being employed to overcome the low bioavailability of RE.
Collapse
Affiliation(s)
- Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, 1105 Beirut, Lebanon;
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Nadin Younes
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Sarah Halabi
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 1105 Beirut, Lebanon;
| | - Dalal Alhababi
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Anjud Al-Mohannadi
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Wael M Abdel-Rahman
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates;
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon
| | - Gheyath K. Nasrallah
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates;
| |
Collapse
|
29
|
Xu X, Zhao M, Han Q, Wang H, Zhang H, Wang Y. Effects of piceatannol on the structure and activities of bovine serum albumin: A multi-spectral and molecular modeling studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117706. [PMID: 31753657 DOI: 10.1016/j.saa.2019.117706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Piceatannol (PIC) displays a wide spectrum of biological activities, such as antioxidation, antibacterial activity and anti-inflammation, but the biochemical and molecular mechanism is not fully understood. In this study, the interaction of PIC with bovine serum albumin (BSA) was studied by fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, circular dichroism spectroscopy and molecular simulation. The effects of PIC on BSA non-enzymatic glycosylation, fibrillation, thermal stability, and structure information were also studied. The results showed that the formation of PIC-BSA complex by mainly hydrogen-bonding forces resulted in the conformational changes of protein. PIC inhibited the formation of β-sheets structures of BSA. BSA still maintained the esterase-like good activity in the presence of PIC. In addition, PIC significantly reduced the degree of BSA glycosylation. These results provided a basis for the molecular interaction between PIC and protein, and suggested the potential effect of PIC in preventing the progression of diabetes mellitus.
Collapse
Affiliation(s)
- Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, B508, No. 364 Building, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China.
| | - Mengshu Zhao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, B508, No. 364 Building, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China
| | - Qianqian Han
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, People's Republic of China
| | - Huijie Wang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, People's Republic of China
| | - Hongmei Zhang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, People's Republic of China
| | - Yanqing Wang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, People's Republic of China.
| |
Collapse
|
30
|
Rezende JDP, Hudson EA, De Paula HMC, Meinel RS, Da Silva AD, Da Silva LHM, Pires ACDS. Human serum albumin-resveratrol complex formation: Effect of the phenolic chemical structure on the kinetic and thermodynamic parameters of the interactions. Food Chem 2019; 307:125514. [PMID: 31639576 DOI: 10.1016/j.foodchem.2019.125514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Abstract
The thermodynamics and kinetics of binding between human serum albumin (HSA) and resveratrol (RES) or its analog (RESAn1) were investigated by surface plasmon resonance (SPR). The binding constant and the kinetic constants of association and dissociation indicated that RESAn1 has higher affinity toward HSA than does RES. The formation of these complexes was entropically driven ( [Formula: see text] , [Formula: see text] KJ mol-1). However, for both polyphenols, the activation energy (Eact) of association (a) of free molecules was higher than that for dissociation (d) of the stable complex ( [Formula: see text] KJ mol-1), and the rate of association was faster than that of dissociation since the activation Gibbs free energy (ΔG‡) was lower for the former (ΔGaHSA-RES‡≅54.73,ΔGdHSA-RES‡≅73.83,ΔGaHSA-RESAn1‡≅54.14,ΔGdHSA-RESAn1‡≅73.97 KJ mol-1). This study showed that small differences in the structure of polyphenols such as RES and RESAn1 influenced the thermodynamics and kinetics of the complex formation with HSA.
Collapse
Affiliation(s)
- Jaqueline de Paula Rezende
- Applied Molecular Thermodynamics Group (THERMA), Department of Food Technology, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil
| | - Eliara Acipreste Hudson
- Applied Molecular Thermodynamics Group (THERMA), Department of Food Technology, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil
| | - Hauster Maximiler Campos De Paula
- Colloidal and Macromolecular Green Chemistry Group (QUIVECOM), Department of Chemistry, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil
| | - Raissa Soares Meinel
- Department of Chemistry, Institute of Exact Sciences (I.C.E.), Federal University of Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Adilson David Da Silva
- Department of Chemistry, Institute of Exact Sciences (I.C.E.), Federal University of Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Luis Henrique Mendes Da Silva
- Colloidal and Macromolecular Green Chemistry Group (QUIVECOM), Department of Chemistry, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil.
| | - Ana Clarissa Dos Santos Pires
- Applied Molecular Thermodynamics Group (THERMA), Department of Food Technology, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil.
| |
Collapse
|
31
|
Estévez M, Padilla P, Carvalho L, Martín L, Carrapiso A, Delgado J. Malondialdehyde interferes with the formation and detection of primary carbonyls in oxidized proteins. Redox Biol 2019; 26:101277. [PMID: 31352127 PMCID: PMC6669345 DOI: 10.1016/j.redox.2019.101277] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022] Open
Abstract
Carbonylation is one of the most remarkable expressions of the oxidative damage to proteins and the DNPH method the most common procedure to assess protein oxidation in biological samples. The present study was elicited by two hypotheses: i) is malondialdehyde, as a reactive dicarbonyl, able to induce the formation of allysine through a Maillard-type reaction? and ii) to which extent does the attachment of MDA to proteins interfere in the assessment of protein carbonyls using the DNPH method? Human serum albumin (HSA), human hemoglobin (HEM) and β-lactoglobulin (LAC) (5 mg/mL) were incubated with MDA (0.25 mM) for 24 h at 37 °C (HSA and HEM) or 80 °C (LAC). Results showed that MDA was unable to induce oxidative deamination of lysine residues and instead, formed stable and fluorescent adducts with proteins. Such adducts were tagged by the DNPH method, accounting for most of the protein hydrazones quantified. This interfering effect was observed in a wide range of MDA concentrations (0.05-1 mM). Being aware of its limitations, protein scientists should accurately interpret results from the DNPH method, and apply, when required, other methodologies such as chromatographic methods to detect specific primary oxidation products such as allysine.
Collapse
Affiliation(s)
- Mario Estévez
- IPROCAR Research Institute, Faculty of Veterinary, University of Extremadura, 10003, Cáceres, Spain.
| | - Patricia Padilla
- IPROCAR Research Institute, Faculty of Veterinary, University of Extremadura, 10003, Cáceres, Spain
| | - Leila Carvalho
- Post-Graduate Program in Food Science and Technology, Federal University of Paraiba, João Pessoa, Brazil
| | - Lourdes Martín
- Food Technology, School of Agricultural Engineering, University of Extremadura, 06007, Badajoz, Spain
| | - Ana Carrapiso
- Food Technology, School of Agricultural Engineering, University of Extremadura, 06007, Badajoz, Spain
| | - Josué Delgado
- IPROCAR Research Institute, Faculty of Veterinary, University of Extremadura, 10003, Cáceres, Spain; Heart Clinical Unit, Virgen de la Victoria University Clinic Hospital. Institute of Biomedical Research in Malaga. IBIMA. CIBERCV. University of Málaga, Málaga, Spain
| |
Collapse
|
32
|
Hajizadeh-Sharafabad F, Sahebkar A, Zabetian-Targhi F, Maleki V. The impact of resveratrol on toxicity and related complications of advanced glycation end products: A systematic review. Biofactors 2019; 45:651-665. [PMID: 31185146 DOI: 10.1002/biof.1531] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Accumulation of advanced glycation end products (AGEs) promotes the generation of free radicals, which leads to chronic oxidative stress predisposing to chronic oxidative stress, inflammation, and related diseases. This systematic review aimed to determine the effect of resveratrol (RSV) on AGE-induced toxicity and its deleterious consequences. A comprehensive search was performed through literature were published until December 2018 using relevant keywords. The databases that were used for the search were PubMed, Scopus, Embase, ProQuest, and Google Scholar. A total of 29 eligible studies were found and included in the review for the analysis. Except one, all studies showed suppressing effects for RSV on the production of AGEs or receptor for advanced glycation end products (RAGE) and its detrimental consequences including oxidative stress, inflammatory response, cellular immune reactions, insulin response, and atherosclerosis. RSV exerts its effects through influencing RAGE, nuclear factor kappa B (NF-κB), peroxisome proliferator-activated receptor (PPAR) γ, and transforming growth factor (TGF)-β activities. This review suggests that RSV has got potential to decrease AGEs toxicity and inhibit the AGE-induced complications. More clinical trials are suggested to evaluate the beneficial effect of RSV on AGEs in chronic metabolic diseases.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antioxidants/pharmacology
- Atherosclerosis/drug therapy
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Gene Expression Regulation
- Glycation End Products, Advanced/antagonists & inhibitors
- Glycation End Products, Advanced/genetics
- Glycation End Products, Advanced/metabolism
- Glycation End Products, Advanced/toxicity
- Humans
- Inflammation
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Oxidative Stress
- PPAR gamma/genetics
- PPAR gamma/metabolism
- Pyruvaldehyde/metabolism
- Resveratrol/pharmacology
- Signal Transduction
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Fatemeh Hajizadeh-Sharafabad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fateme Zabetian-Targhi
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Han L, Lin Q, Liu G, Han D, Niu L, Su D. Inhibition Mechanism of Catechin, Resveratrol, Butylated Hydroxylanisole, and Tert-Butylhydroquinone on Carboxymethyl 1,2-Dipalmitoyl-sn-Glycero-3-Phosphatidylethanolamine Formation. J Food Sci 2019; 84:2042-2049. [PMID: 31313292 DOI: 10.1111/1750-3841.14668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 01/25/2023]
Abstract
It is important to inhibit the food-derived, potentially hazardous chemical glycated lipids by natural products. A model system was established and the products are identified to study the inhibitory mechanism of four types of catechin, resveratrol (RES), and the synthetic antioxidants butylated hydroxylanisole (BHA) and tert-butylhydroquinone (TBHQ) on the formation of carboxymethyl 1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (CM-DPPE) by determining hydroxyl radical (OH·), Amadori-1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (Amadori-DPPE) and glyoxal (GO). The results show that the inhibitory rates of catechin and RES on the content of CM-DPPE in the model system are higher than those of BHA and TBHQ. There are at least two inhibitory mechanisms of antioxidants on CM-DPPE. (1) Antioxidants scavenge OH·, which blocks the process of Amadori-DPPE oxidation to form CM-DPPE. (2) Antioxidants trap GO, which blocks the reaction between GO and DPPE to form CM-DPPE. This research will reveal the inhibitory mechanisms of natural antioxidants on glycated lipids from the aspect of scavenging OH· and trapping GO. PRACTICAL APPLICATION: Food manufacturers should pay attention on the production of glycated lipids in food processing. This study will provide the theoretical basis for the use of natural products to inhibit the formation of food-derived glycated lipids. Natural products, such as catechin and resveratrol, can substitute chemical synthesis antioxidants, such as butylated hydroxylanisole and tert-butylhydroquinone, in food processing, which inhibit the formation of glycated lipids.
Collapse
Affiliation(s)
- Lipeng Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Univ., Guangzhou, 510006, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, China
| | - Qingna Lin
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510640, China
| | - Guoqin Liu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, China.,School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510640, China
| | - Dongxue Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Univ., Guangzhou, 510006, China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Univ., Guangzhou, 510006, China
| | - Dongxiao Su
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Univ., Guangzhou, 510006, China
| |
Collapse
|
34
|
Zambrano A, Molt M, Uribe E, Salas M. Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as A Potential Therapeutic Strategy. Int J Mol Sci 2019; 20:ijms20133374. [PMID: 31324056 PMCID: PMC6651361 DOI: 10.3390/ijms20133374] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/14/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022] Open
Abstract
An important hallmark in cancer cells is the increase in glucose uptake. GLUT1 is an important target in cancer treatment because cancer cells upregulate GLUT1, a membrane protein that facilitates the basal uptake of glucose in most cell types, to ensure the flux of sugar into metabolic pathways. The dysregulation of GLUT1 is associated with numerous disorders, including cancer and metabolic diseases. There are natural products emerging as a source for inhibitors of glucose uptake, and resveratrol is a molecule of natural origin with many properties that acts as antioxidant and antiproliferative in malignant cells. In the present review, we discuss how GLUT1 is involved in the general scheme of cancer cell metabolism, the mechanism of glucose transport, and the importance of GLUT1 structure to understand the inhibition process. Then, we review the current state-of-the-art of resveratrol and other natural products as GLUT1 inhibitors, focusing on those directed at treating different types of cancer. Targeting GLUT1 activity is a promising strategy for the development of drugs aimed at treating neoplastic growth.
Collapse
Affiliation(s)
- Angara Zambrano
- Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia 0000000, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Concepción, Concepción 4070386, Chile
| | - Matías Molt
- Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia 0000000, Chile
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Concepción, Concepción 4070386, Chile
| | - Mónica Salas
- Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia 0000000, Chile.
| |
Collapse
|
35
|
Fan F, Zhao Y, Cao Z. Insight into the delivery channel and selectivity of multiple binding sites in bovine serum albumin towards naphthalimide-polyamine derivatives. Phys Chem Chem Phys 2019; 21:7429-7439. [PMID: 30892331 DOI: 10.1039/c9cp00527g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Naphthalimide derivatives are types of small-molecule anticancer drug candidates; however, their negative factors and potential side effects make their application limited. The pharmacophores select a direct access into the tumor cells as the first choice; this can reduce the side effect of the anti-cancer drugs on the normal cells. Herein, the delivery and binding of the naphthalimide-polyamine complex assisted by the bovine serum albumin (BSA) protein have been studied by combining several molecular dynamic simulations. The plausible transportation channels and the most favorable pathways for the delivery of the naphthalimide-polyamine complex to two drug sites (DSI and DSII), their thermodynamic and dynamic properties and the mechanisms have been discussed in detail. The residues His287 and Phe394 acted as guards in the DSI and DSII, respectively, which played a gating-switch role by flipping the ring from open to close during the compound delivery. The binding mode, binding energy and substituent effects have been also identified. The two drug sites have different preferences towards the compound with the electron-withdrawing and electron-donating substituents, and their strong interactions are more sensitive to the number of the substituent groups. The naphthalimide-polyamine complexes are more likely to choose DSI, both thermodynamically and dynamically, as compared to DSII. This selective specificity of these two drug sites manipulated by the electron-withdrawing and electron-donating substituents is quite promising for the design of new naphthalimide drugs.
Collapse
Affiliation(s)
- Fangfang Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | | | | |
Collapse
|
36
|
Hamzalıoğlu A, Gökmen V. Investigations on the effect of broccoli and wine sulphur compounds on glyoxal scavenging under simulated physiological conditions. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
37
|
Resveratrol Enhances Apoptotic and Oxidant Effects of Paclitaxel through TRPM2 Channel Activation in DBTRG Glioblastoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4619865. [PMID: 30984336 PMCID: PMC6431513 DOI: 10.1155/2019/4619865] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/25/2018] [Accepted: 01/03/2019] [Indexed: 01/06/2023]
Abstract
Numerous studies have reported a strong association between increased production of reactive oxygen species (ROS) and the pathobiology of several diseases, and cancer in particular. Therefore, manipulation of cellular oxidative stress levels represents an important therapeutic target. Recently, resveratrol (RESV), a naturally occurring phytochemical, has been shown to sensitize several cell lines to the anticancer effects of other chemotherapeutic agents, including paclitaxel (PAX). However, the molecular mechanisms of action of RESV through oxidative sensitive TRPM2 channel activation remain unclear. The aim of this study was to evaluate the effect of combination therapy of RESV and PAX on activation of TRPM2 in DBTRG glioblastoma cells. DBTRG cells were divided into four treatment groups: control, RESV (50 μM), PAX (50 μM), and PAX + RESV for 24 hours. Our data shows that markers for apoptosis, mitochondrial membrane depolarization and mitochondrial function, intracellular steady-state ROS levels, caspase 3 activity, TRPM2 current density, and Ca2+ florescence intensity were significantly increased in DBTRG cells following treatment with PAX and RESV, respectively, although cell viability was also decreased by these treatments. These biochemical markers were further increased to favor the anticancer effects of PAX in DBTRG cells in combination with RESV. The PAX and RESV-mediated increase in current density and Ca2+ florescence intensity was decreased with a TRPM2 blocker. This suggests that for this combination therapy to have a substantial effect on apoptosis and cell viability, the TRPM2 channel must be stimulated.
Collapse
|
38
|
Estévez M, Xiong Y. Intake of Oxidized Proteins and Amino Acids and Causative Oxidative Stress and Disease: Recent Scientific Evidences and Hypotheses. J Food Sci 2019; 84:387-396. [PMID: 30714623 DOI: 10.1111/1750-3841.14460] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/26/2018] [Accepted: 01/13/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Mario Estévez
- Meat and Meat Products Research Institute, TECAL Research Group; Univ. of Extremadura; Avda. Universidad s/n 10003 Cáceres Spain
| | - Youling Xiong
- Depart. of Animal and Food Sciences; Univ. of Kentucky; Lexington KY 40546-0215 U.S.A
| |
Collapse
|
39
|
Bartoli-Leonard F, Wilkinson FL, Langford-Smith AWW, Alexander MY, Weston R. The Interplay of SIRT1 and Wnt Signaling in Vascular Calcification. Front Cardiovasc Med 2018; 5:183. [PMID: 30619890 PMCID: PMC6305318 DOI: 10.3389/fcvm.2018.00183] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
Vascular calcification is a major health risk and is highly correlated with atherosclerosis, diabetes, and chronic kidney disease. The development of vascular calcification is an active and complex process linked with a multitude of signaling pathways, which regulate promoters and inhibitors of osteogenesis, the balance of which become deregulated in disease conditions. SIRT1, a protein deacetylase, known to be protective in inhibiting oxidative stress and inflammation within the vessel wall, has been shown as a possible key player in modulating the cell-fate determining canonical Wnt signaling pathways. Suppression of SIRT1 has been reported in patients suffering with cardiovascular pathologies, suggesting that the sustained acetylation of osteogenic factors could contribute to their activation and in turn, lead to the progression of calcification. There is clear evidence of the synergy between β-Catenin and elevated Runx2, and with Wnt signaling being β-Catenin dependent, further understanding is needed as to how these molecular pathways converge and interact, in order to provide novel insight into the mechanism by which smooth muscle cells switch to an osteogenic differentiation programme. Therefore, this review will describe the current concepts of pathological soft tissue mineralization, with a focus on the contribution of SIRT1 as a regulator of Wnt signaling and its targets, discussing SIRT1 as a potential target for manipulation and therapy.
Collapse
Affiliation(s)
- Francesca Bartoli-Leonard
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Fiona L Wilkinson
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alex W W Langford-Smith
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - M Y Alexander
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ria Weston
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|