1
|
Li P, Liu S, Wallerstein J, Villones RLE, Huang P, Lindkvist-Petersson K, Meloni G, Lu K, Steen Jensen K, Liin SI, Gourdon P. Closed and open structures of the eukaryotic magnesium channel Mrs2 reveal the auto-ligand-gating regulation mechanism. Nat Struct Mol Biol 2024:10.1038/s41594-024-01432-1. [PMID: 39609652 DOI: 10.1038/s41594-024-01432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
The CorA/Mrs2 family of pentameric proteins are cardinal for the influx of Mg2+ across cellular membranes, importing the cation to mitochondria in eukaryotes. Yet, the conducting and regulation mechanisms of permeation remain elusive, particularly for the eukaryotic Mrs2 members. Here, we report closed and open Mrs2 cryo-electron microscopy structures, accompanied by functional characterization. Mg2+ flux is permitted by a narrow pore, gated by methionine and arginine residues in the closed state. Transition between the conformations is orchestrated by two pairs of conserved sensor-serving Mg2+-binding sites in the mitochondrial matrix lumen, located in between monomers. At lower levels of Mg2+, these ions are stripped, permitting an alternative, symmetrical shape, maintained by the RDLR motif that replaces one of the sensor site pairs in the open conformation. Thus, our findings collectively establish the molecular basis for selective Mg2+ influx of Mrs2 and an auto-ligand-gating regulation mechanism.
Collapse
Affiliation(s)
- Ping Li
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Johan Wallerstein
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden
| | - Rhiza Lyne E Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Peng Huang
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kristine Steen Jensen
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
2
|
Erramilli SK, Dominik PK, Deneka D, Tokarz P, Kim SS, Reddy BG, Skrobek BM, Dalmas O, Perozo E, Kossiakoff AA. Conformation-specific Synthetic Antibodies Discriminate Multiple Functional States of the Ion Channel CorA. J Mol Biol 2023; 435:168192. [PMID: 37394032 PMCID: PMC10529903 DOI: 10.1016/j.jmb.2023.168192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
CorA, the primary magnesium ion channel in prokaryotes and archaea, is a prototypical homopentameric ion channel that undergoes ion-dependent conformational transitions. CorA adopts five-fold symmetric non-conductive states in the presence of high concentrations of Mg2+, and highly asymmetric flexible states in its complete absence. However, the latter were of insufficient resolution to be thoroughly characterized. In order to gain additional insights into the relationship between asymmetry and channel activation, we exploited phage display selection strategies to generate conformation-specific synthetic antibodies (sABs) against CorA in the absence of Mg2+. Two sABs from these selections, C12 and C18, showed different degrees of Mg2+-sensitivity. Through structural, biochemical, and biophysical characterization, we found the sABs are both conformation-specific but probe different features of the channel under open-like conditions. C18 is highly specific to the Mg2+-depleted state of CorA and through negative-stain electron microscopy (ns-EM), we show sAB binding reflects the asymmetric arrangement of CorA protomers in Mg2+-depleted conditions. We used X-ray crystallography to determine a structure at 2.0 Å resolution of sAB C12 bound to the soluble N-terminal regulatory domain of CorA. The structure shows C12 is a competitive inhibitor of regulatory magnesium binding through its interaction with the divalent cation sensing site. We subsequently exploited this relationship to capture and visualize asymmetric CorA states in different [Mg2+] using ns-EM. We additionally utilized these sABs to provide insights into the energy landscape that governs the ion-dependent conformational transitions of CorA.
Collapse
Affiliation(s)
- Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Dawid Deneka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Piotr Tokarz
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Sangwoo S Kim
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Bharat G Reddy
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Blazej M Skrobek
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Olivier Dalmas
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Erramilli SK, Dominik PK, Deneka D, Tokarz P, Kim SS, Reddy BG, Skrobek BM, Dalmas O, Perozo E, Kossiakoff AA. Conformation-specific synthetic antibodies discriminate multiple functional states of the ion channel CorA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539746. [PMID: 37205530 PMCID: PMC10187328 DOI: 10.1101/2023.05.07.539746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
CorA, the primary magnesium ion channel in prokaryotes and archaea, is a prototypical homopentameric ion channel that undergoes ion-dependent conformational transitions. CorA adopts five-fold symmetric non-conductive states in the presence of high concentrations of Mg 2+ , and highly asymmetric flexible states in its complete absence. However, the latter were of insufficient resolution to be thoroughly characterized. In order to gain additional insights into the relationship between asymmetry and channel activation, we exploited phage display selection strategies to generate conformation-specific synthetic antibodies (sABs) against CorA in the absence of Mg 2+ . Two sABs from these selections, C12 and C18, showed different degrees of Mg 2+ -sensitivity. Through structural, biochemical, and biophysical characterization, we found the sABs are both conformation-specific but probe different features of the channel under open-like conditions. C18 is highly specific to the Mg 2+ -depleted state of CorA and through negative-stain electron microscopy (ns-EM), we show sAB binding reflects the asymmetric arrangement of CorA protomers in Mg 2+ -depleted conditions. We used X-ray crystallography to determine a structure at 2.0 Å resolution of sAB C12 bound to the soluble N-terminal regulatory domain of CorA. The structure shows C12 is a competitive inhibitor of regulatory magnesium binding through its interaction with the divalent cation sensing site. We subsequently exploited this relationship to capture and visualize asymmetric CorA states in different [Mg 2+ ] using ns-EM. We additionally utilized these sABs to provide insights into the energy landscape that governs the ion-dependent conformational transitions of CorA.
Collapse
|
4
|
Uthayabalan S, Vishnu N, Madesh M, Stathopulos PB. The human MRS2 magnesium-binding domain is a regulatory feedback switch for channel activity. Life Sci Alliance 2023; 6:e202201742. [PMID: 36754568 PMCID: PMC9909464 DOI: 10.26508/lsa.202201742] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Mitochondrial RNA splicing 2 (MRS2) forms a magnesium (Mg2+) entry protein channel in mitochondria. Whereas MRS2 contains two transmembrane domains constituting a pore on the inner mitochondrial membrane, most of the protein resides within the matrix. Yet, the precise structural and functional role of this obtrusive amino terminal domain (NTD) in human MRS2 is unknown. Here, we show that the MRS2 NTD self-associates into a homodimer, contrasting the pentameric assembly of CorA, an orthologous bacterial channel. Mg2+ and calcium suppress lower and higher order oligomerization of MRS2 NTD, whereas cobalt has no effect on the NTD but disassembles full-length MRS2. Mutating-pinpointed residues-mediating Mg2+ binding to the NTD not only selectively decreases Mg2+-binding affinity ∼sevenfold but also abrogates Mg2+ binding-induced secondary, tertiary, and quaternary structure changes. Disruption of NTD Mg2+ binding strikingly potentiates mitochondrial Mg2+ uptake in WT and Mrs2 knockout cells. Our work exposes a mechanism for human MRS2 autoregulation by negative feedback from the NTD and identifies a novel gain of function mutant with broad applicability to future Mg2+ signaling research.
Collapse
Affiliation(s)
- Sukanthathulse Uthayabalan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Neelanjan Vishnu
- Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Muniswamy Madesh
- Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| |
Collapse
|
5
|
Franken GAC, Huynen MA, Martínez-Cruz LA, Bindels RJM, de Baaij JHF. Structural and functional comparison of magnesium transporters throughout evolution. Cell Mol Life Sci 2022; 79:418. [PMID: 35819535 PMCID: PMC9276622 DOI: 10.1007/s00018-022-04442-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/22/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022]
Abstract
Magnesium (Mg2+) is the most prevalent divalent intracellular cation. As co-factor in many enzymatic reactions, Mg2+ is essential for protein synthesis, energy production, and DNA stability. Disturbances in intracellular Mg2+ concentrations, therefore, unequivocally result in delayed cell growth and metabolic defects. To maintain physiological Mg2+ levels, all organisms rely on balanced Mg2+ influx and efflux via Mg2+ channels and transporters. This review compares the structure and the function of prokaryotic Mg2+ transporters and their eukaryotic counterparts. In prokaryotes, cellular Mg2+ homeostasis is orchestrated via the CorA, MgtA/B, MgtE, and CorB/C Mg2+ transporters. For CorA, MgtE, and CorB/C, the motifs that form the selectivity pore are conserved during evolution. These findings suggest that CNNM proteins, the vertebrate orthologues of CorB/C, also have Mg2+ transport capacity. Whereas CorA and CorB/C proteins share the gross quaternary structure and functional properties with their respective orthologues, the MgtE channel only shares the selectivity pore with SLC41 Na+/Mg2+ transporters. In eukaryotes, TRPM6 and TRPM7 Mg2+ channels provide an additional Mg2+ transport mechanism, consisting of a fusion of channel with a kinase. The unique features these TRP channels allow the integration of hormonal, cellular, and transcriptional regulatory pathways that determine their Mg2+ transport capacity. Our review demonstrates that understanding the structure and function of prokaryotic magnesiotropic proteins aids in our basic understanding of Mg2+ transport.
Collapse
Affiliation(s)
- G A C Franken
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - M A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L A Martínez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - R J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - J H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Johansen NT, Bonaccorsi M, Bengtsen T, Larsen AH, Tidemand FG, Pedersen MC, Huda P, Berndtsson J, Darwish T, Yepuri NR, Martel A, Pomorski TG, Bertarello A, Sansom MS, Rapp M, Crehuet R, Schubeis T, Lindorff-Larsen K, Pintacuda G, Arleth L. Mg 2+-dependent conformational equilibria in CorA and an integrated view on transport regulation. eLife 2022; 11:71887. [PMID: 35129435 PMCID: PMC8865849 DOI: 10.7554/elife.71887] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
The CorA family of proteins regulates the homeostasis of divalent metal ions in many bacteria, archaea, and eukaryotic mitochondria, making it an important target in the investigation of the mechanisms of transport and its functional regulation. Although numerous structures of open and closed channels are now available for the CorA family, the mechanism of the transport regulation remains elusive. Here, we investigated the conformational distribution and associated dynamic behaviour of the pentameric Mg2+ channel CorA at room temperature using small-angle neutron scattering (SANS) in combination with molecular dynamics (MD) simulations and solid-state nuclear magnetic resonance spectroscopy (NMR). We find that neither the Mg2+-bound closed structure nor the Mg2+-free open forms are sufficient to explain the average conformation of CorA. Our data support the presence of conformational equilibria between multiple states, and we further find a variation in the behaviour of the backbone dynamics with and without Mg2+. We propose that CorA must be in a dynamic equilibrium between different non-conducting states, both symmetric and asymmetric, regardless of bound Mg2+ but that conducting states become more populated in Mg2+-free conditions. These properties are regulated by backbone dynamics and are key to understanding the functional regulation of CorA.
Collapse
Affiliation(s)
| | - Marta Bonaccorsi
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | - Tone Bengtsen
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Andreas Haahr Larsen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen E, Denmark
| | | | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen E, Denmark
| | - Pie Huda
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Jens Berndtsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Tamim Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Lucas Heights, Australia
| | - Nageshewar Rao Yepuri
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Lucas Heights, Australia
| | | | - Thomas Günther Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrea Bertarello
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | - Mark Sp Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mikaela Rapp
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ramon Crehuet
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Tobias Schubeis
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | | | - Guido Pintacuda
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Nemchinova M, Melcr J, Wassenaar TA, Marrink SJ, Guskov A. Asymmetric CorA Gating Mechanism as Observed by Molecular Dynamics Simulations. J Chem Inf Model 2021; 61:2407-2417. [PMID: 33886304 PMCID: PMC8154316 DOI: 10.1021/acs.jcim.1c00261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The CorA family of
proteins plays a housekeeping role in the homeostasis
of divalent metal ions in many bacteria and archaea as well as in
mitochondria of eukaryotes, rendering it an important target to study
the mechanisms of divalent transport and regulation across different
life domains. Despite numerous studies, the mechanistic details of
the channel gating and the transport of the metal ions are still not
entirely understood. Here, we use all-atom and coarse-grained molecular
dynamics simulations combined with in vitro experiments
to investigate the influence of divalent cations on the function of
CorA. Simulations reveal pronounced asymmetric movements of monomers
that enable the rotation of the α7 helix and the cytoplasmic
subdomain with the subsequent formation of new interactions and the
opening of the channel. These computational results are functionally
validated using site-directed mutagenesis of the intracellular cytoplasmic
domain residues and biochemical assays. The obtained results infer
a complex network of interactions altering the structure of CorA to
allow gating. Furthermore, we attempt to reconcile the existing gating
hypotheses for CorA to conclude the mechanism of transport of divalent
cations via these proteins.
Collapse
Affiliation(s)
- Mariia Nemchinova
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Josef Melcr
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Tsjerk A Wassenaar
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Albert Guskov
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
8
|
Abstract
CorA proteins belong to 2-TM-GxN family of membrane proteins, and play a major role in Mg2+ transport in prokaryotes and eukaryotic mitochondria. The selection of substrate is believed to occur via the signature motif GxN, however there is no consensus how strict this selection within the family. To answer this question, we employed fluorescence-based transport assays on three different family members, namely CorA from bacterium Thermotoga maritima, CorA from the archeon Methanocaldococcus jannaschii and ZntB from bacterium Escherichia coli, reconstituted into proteoliposomes. Our results show that all three proteins readily transport Mg2+, Co2+, Ni2+ and Zn2+, but not Al3+. Despite the similarity in cation specificity, ZntB differs from the CorA proteins, as in the former transport is stimulated by a proton gradient, but in the latter by the membrane potential, confirming the hypothesis that CorA and ZntB proteins diverged to different transport mechanisms within the same protein scaffold.
Collapse
|
9
|
Rangl M, Schmandt N, Perozo E, Scheuring S. Real time dynamics of Gating-Related conformational changes in CorA. eLife 2019; 8:47322. [PMID: 31774394 PMCID: PMC6927688 DOI: 10.7554/elife.47322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023] Open
Abstract
CorA, a divalent-selective channel in the metal ion transport superfamily, is the major Mg2+-influx pathway in prokaryotes. CorA structures in closed (Mg2+-bound), and open (Mg2+-free) states, together with functional data showed that Mg2+-influx inhibits further Mg2+-uptake completing a regulatory feedback loop. While the closed state structure is a symmetric pentamer, the open state displayed unexpected asymmetric architectures. Using high-speed atomic force microscopy (HS-AFM), we explored the Mg2+-dependent gating transition of single CorA channels: HS-AFM movies during Mg2+-depletion experiments revealed the channel’s transition from a stable Mg2+-bound state over a highly mobile and dynamic state with fluctuating subunits to asymmetric structures with varying degree of protrusion heights from the membrane. Our data shows that at Mg2+-concentration below Kd, CorA adopts a dynamic (putatively open) state of multiple conformations that imply structural rearrangements through hinge-bending in TM1. We discuss how these structural dynamics define the functional behavior of this ligand-dependent channel.
Collapse
Affiliation(s)
- Martina Rangl
- Department of Anesthesiology, Weill Cornell Medical College, New York, United States.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States
| | - Nicolaus Schmandt
- Department of Biochemistry and Molecular Biophysics, The University of Chicago, Chicago, United States
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biophysics, The University of Chicago, Chicago, United States
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medical College, New York, United States.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States
| |
Collapse
|