1
|
Nie Q, Yang J, Zhou X, Li N, Zhang J. The Role of Protein Disulfide Isomerase Inhibitors in Cancer Therapy. ChemMedChem 2025; 20:e202400590. [PMID: 39319369 DOI: 10.1002/cmdc.202400590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Protein disulfide isomerase (PDI) is a member of the mercaptan isomerase family, primarily located in the endoplasmic reticulum (ER). At least 21 PDI family members have been identified. PDI plays a key role in protein folding, correcting misfolded proteins, and catalyzing disulfide bond formation, rearrangement, and breaking. It also acts as a molecular chaperone. Dysregulation of PDI activity is thus linked to diseases such as cancer, infections, immune disorders, thrombosis, neurodegenerative diseases, and metabolic disorders. In particular, elevated intracellular PDI levels can enhance cancer cell proliferation, metastasis, and invasion, making it a potential cancer marker. Cancer cells require extensive protein synthesis, with disulfide bond formation by PDI being a critical producer. Thus, cancer cells have higher PDI levels than normal cells. Targeting PDI can induce ER stress and activate the Unfolded Protein Response (UPR) pathway, leading to cancer cell apoptosis. This review discusses the structure and function of PDI, PDI inhibitors in cancer therapy, and the limitations of current inhibitors, proposing especially future directions for developing new PDI inhibitors.
Collapse
Affiliation(s)
- Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Junwei Yang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Na Li
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Rapp K, Wei S, Roberts M, Yao S, Fei SS, Gao L, Ray K, Wang A, Godiah R, Han L. Transcriptional profiling of mucus production in rhesus macaque endocervical cells under hormonal regulation†. Biol Reprod 2024; 111:1045-1055. [PMID: 39115371 DOI: 10.1093/biolre/ioae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Endocervical mucus production is a key regulator of fertility throughout the menstrual cycle. With cycle-dependent variability in mucus quality and quantity, cervical mucus can either facilitate or block sperm ascension into the upper female reproductive tract. This study seeks to identify genes involved in the hormonal regulation of mucus production, modification, and regulation through profiling the transcriptome of endocervical cells from the non-human primate, the rhesus macaque (Macaca mulatta). INTERVENTION We treated differentiated primary endocervical cultures with estradiol (E2) and progesterone (P4) to mimic peri-ovulatory and luteal-phase hormonal changes. Using RNA-sequencing, we identified differential expression of gene pathways and mucus-producing and mucus-modifying genes in cells treated with E2 compared to hormone-free conditions and E2 compared to E2-primed cells treated with P4. MAIN OUTCOME MEASURES We pursued differential gene expression analysis on RNA-sequenced cells. Sequence validation was done using quantitative PCR (qPCR). RESULTS Our study identified 158 genes that show significant differential expression in E2-only conditions compared to hormone-free control and 250 genes that show significant differential expression in P4-treated conditions compared to E2-only conditions. From this list, we found hormone-induced changes in transcriptional profiles for genes across several classes of mucus production, including ion channels and enzymes involved in post-translational mucin modification that have not previously been described as hormonally regulated. CONCLUSION Our study is the first to use an in vitro culture system to create an epithelial cell-specific transcriptome of the endocervix. As a result, our study identifies new genes and pathways altered by sex steroids in cervical mucus production. SUMMARY SENTENCE In vitro hormonal regulation of mucus production, modification, and secretion was profiled using primary epithelial endocervical cells.
Collapse
Affiliation(s)
- Katrina Rapp
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Shuhao Wei
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
| | - Mackenzie Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
| | - Shan Yao
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
| | - Suzanne S Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Portland, OR, USA
| | - Lina Gao
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Portland, OR, USA
| | - Karina Ray
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Portland, OR, USA
| | - Alexander Wang
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Portland, OR, USA
| | - Rachelle Godiah
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
| | - Leo Han
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Mikami R, Nishizawa Y, Iwata Y, Kanemura S, Okumura M, Arai K. ER Oxidoreductin 1-Like Activity of Cyclic Diselenides Drives Protein Disulfide Isomerase in an Electron Relay System. Chembiochem 2024:e202400739. [PMID: 39505703 DOI: 10.1002/cbic.202400739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/17/2024] [Accepted: 11/06/2024] [Indexed: 11/08/2024]
Abstract
Disulfide formation generally involves a two-electron oxidation reaction between cysteine residues. Additionally, disulfide formation is an essential post-translational modification for the structural maturation of proteins. This oxidative folding is precisely controlled by an electron relay network constructed by protein disulfide isomerase (PDI), with a CGHC sequence as the redox-active site, and its family enzymes. Creating reagents that mimic the functions of these enzymes facilitates folding during chemical protein synthesis. In this study, we aimed to imitate a biological electron relay system using cyclic diselenide compounds as surrogates for endoplasmic reticulum oxidoreductin 1 (Ero1), which is responsible for the re-oxidation of PDI. Oxidized PDI (PDIox) introduces disulfide bonds into substrate proteins, resulting in its conversion to reduced PDI (PDIred). The PDIred is then re-oxidized to PDIox by a coexisting cyclic diselenide compound, thereby restoring the function of PDI as a disulfide-forming agent. The produced diselenol state is readily oxidized to the original diselenide state with molecular oxygen, continuously sustaining the PDI catalytic cycle. This artificial electron relay system regulating enzymatic PDI function effectively promotes the oxidative folding of disulfide-containing proteins, such as insulin - a hypoglycemic formulation - by enhancing both yield and reaction velocity.
Collapse
Affiliation(s)
- Rumi Mikami
- Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Yuya Nishizawa
- Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Yuki Iwata
- Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Miyagi, 980-8577, Japan
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
- Institute of Advanced Biosciences, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| |
Collapse
|
4
|
Luo Q, Mao J, Li Y, Wang M, Zhang L, Shen Z. Molecular characterization of a novel thioredoxin-related transmembrane protein gene AcTMX3 that plays important roles in antioxidant defence in Arma chinensis diapause. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39440724 DOI: 10.1111/imb.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Protein disulphide isomerase (PDI) possesses disulphide isomerase, oxidoreductase and molecular chaperone activities, and is involved in regulating various physiological processes. However, there are few studies on the function in insect diapause. In this study, we cloned one novel member PDI family (TMX3, thioredoxin-related transmembrane protein 3) in Arma chinensis. The AcTMX3 encodes 426 amino acids that contains a predicted N-terminal signal sequence, a thioredoxin-like domain with the CXXC active site and a potential transmembrane region, which are typical sequence features of TMX3. RT-qPCR results showed that AcTMX3 was mainly expressed in the head under non-diapause conditions, while AcTMX3 was highly expressed in the fat body (central metabolic organ) under diapause conditions. Moreover, temporal expression profile showed that compared with non-diapause conditions, diapause conditions significantly induced AcTMX3 expression, and the expression of AcTMX3 was enhanced at 15°C. Silencing AcTMX3 in A. chinensis significantly inhibited the expression of antioxidant genes (AcTrx2 and AcTrx-like), increased the content of H2O2 and ascorbate and reduced the survival rate of A. chinensis under diapause conditions. Our results suggested that AcTMX3 played an important role in the resistance of A. chinensis to oxidative stress under diapause conditions.
Collapse
Affiliation(s)
- Qiaozhi Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianjun Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuyan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengqing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lisheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhongjian Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Dabravolski SA, Churov AV, Sukhorukov VN, Kovyanova TI, Beloyartsev DF, Lyapina IN, Orekhov AN. The role of lipase maturation factor 1 in hypertriglyceridaemia and atherosclerosis: An update. SAGE Open Med 2024; 12:20503121241289828. [PMID: 39483624 PMCID: PMC11526315 DOI: 10.1177/20503121241289828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
Lipase maturation factor 1 is an endoplasmic reticulum-resident transmembrane protein, which acts as a critical chaperone necessary for the folding, dimerisation, and secretion of lipases. In this review, we summarise data about the recently revealed role of lipase maturation factor 1 in endoplasmic reticulum redox homeostasis, its novel interaction partners among oxidoreductases and lectin chaperones, and the identification of fibronectin and the low-density lipoprotein receptor as novel non-lipase client proteins of lipase maturation factor 1. Additionally, the role of lipase maturation factor 1-derived circular RNA in atherosclerosis progression via the miR-125a-3p/vascular endothelial growth factor A\Fibroblast Growth Factor 1 axis is discussed. Finally, we focus on the causative role of lipase maturation factor 1 variants in the development of hypertriglyceridaemia - a type of dyslipidaemia that significantly contributes to the development of atherosclerosis and other cardiovascular diseases via different mechanisms.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Karmiel, Israel
| | - Alexey V Churov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | | | - Tatiana I Kovyanova
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Institute for Atherosclerosis Research, Moscow, Russia
| | | | - Irina N Lyapina
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | | |
Collapse
|
6
|
Meschiari G, Minacori M, Fiorini S, Tedesco M, Eufemi M, Altieri F. Analysis of Punicalin and Punicalagin Interaction with PDIA3 and PDIA1. Int J Mol Sci 2024; 25:10531. [PMID: 39408858 PMCID: PMC11476419 DOI: 10.3390/ijms251910531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
PDIA3 is a pleiotropic protein primarily located in the endoplasmic reticulum where it is involved in protein folding, catalyzing the formation, breakage, and rearrangement of disulfide bonds. PDIA3 is implicated in numerous pathologies such as cancer, inflammation, and neurodegeneration. Although punicalagin has been proven to be a highly promising PDIA3 inhibitor and can be used as target protein in glioblastoma, it does not have sufficient selectivity for PDIA3 and is a quite-large molecule. With the aim of finding punicalagin derivatives with a simplified structure, we selected punicalin, which lacks the hexahydroxy-diphenic acid moiety. Previous docking studies suggest that this part of the molecule is not involved in the binding with PDIA3. In this study we compared the ability of punicalin to bind and inhibit PDIA3 and PDIA1. Tryptophan fluorescence quenching and disulfide reductase activity (using both glutathione and insulin as substrates) were evaluated, demonstrating the ability of punicalin to bind and inhibit PDIA3 even to a lesser extent compared to punicalagin. On the other hand, punicalin showed a very low inhibition activity towards PDIA1, demonstrating a higher selectivity for PDIA3. Protein thermal shift assay evidenced that both proteins can be destabilized by punicalin as well as punicalagin, with PDIA3 much more sensitive. Additionally, punicalin showed a higher change in the thermal stability of PDIA3, with a shift up to 8 °C. This result could explain the presence of PDIA3 aggregates, evidenced by immunofluorescence analysis, that accumulate within treated cells and that are more evident in the presence of punicalin. The results here obtained show punicalin is able to bind both proteins but with a higher selectivity for PDIA3, suggesting the possibility of developing new molecules with a simplified structure that are still able to selectively bind and inhibit PDIA3.
Collapse
Affiliation(s)
- Giorgia Meschiari
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Farmacy and Medicine, Sapienza University of Rome, Pl. A. Moro 5, 00185 Rome, Italy; (G.M.); (S.F.); (M.T.); (M.E.)
| | - Marco Minacori
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Campus “Aurelio Saliceti”, Via R. Balzarini 1, 64100 Teramo, Italy;
| | - Sara Fiorini
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Farmacy and Medicine, Sapienza University of Rome, Pl. A. Moro 5, 00185 Rome, Italy; (G.M.); (S.F.); (M.T.); (M.E.)
| | - Mariassunta Tedesco
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Farmacy and Medicine, Sapienza University of Rome, Pl. A. Moro 5, 00185 Rome, Italy; (G.M.); (S.F.); (M.T.); (M.E.)
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Farmacy and Medicine, Sapienza University of Rome, Pl. A. Moro 5, 00185 Rome, Italy; (G.M.); (S.F.); (M.T.); (M.E.)
| | - Fabio Altieri
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Farmacy and Medicine, Sapienza University of Rome, Pl. A. Moro 5, 00185 Rome, Italy; (G.M.); (S.F.); (M.T.); (M.E.)
| |
Collapse
|
7
|
Zhang B, Hong D, Qian H, Ma K, Zhu L, Jiang L, Ge J. Unveiling a new strategy for PDIA1 inhibition: Integration of activity-based probes profiling and targeted degradation. Bioorg Chem 2024; 150:107585. [PMID: 38917491 DOI: 10.1016/j.bioorg.2024.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
The overexpression of PDIA1 in cancer has spurred the quest for effective inhibitors. However, existing inhibitors often bind to only one active site, limiting their efficacy. In our study, we developed a PROTAC-mimetic probe dPA by combining PACMA31 (PA) analogs with cereblon-directed pomalidomide. Through protein profiling and analysis, we confirmed dPA's specific interaction with PDIA1's active site cysteines. We further synthesized PROTAC variants with a thiophene ring and various linkers to enhance degradation efficiency. Notably, H4, featuring a PEG linker, induced significant PDIA1 degradation and inhibited cancer cell proliferation similarly to PA. The biosafety profile of H4 is comparable to that of PA, highlighting its potential for further development in cancer therapy. Our findings highlight a novel strategy for PDIA1 inhibition via targeted degradation, offering promising prospects in cancer therapeutics. This approach may overcome limitations of conventional inhibitors, presenting new avenues for advancing anti-cancer interventions.
Collapse
Affiliation(s)
- Bei Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dawei Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hujuan Qian
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Keqing Ma
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liquan Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; General Surgery, Department of Breast Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Linye Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Suzuki K, Nojiri R, Matsusaki M, Mabuchi T, Kanemura S, Ishii K, Kumeta H, Okumura M, Saio T, Muraoka T. Redox-active chemical chaperones exhibiting promiscuous binding promote oxidative protein folding under condensed sub-millimolar conditions. Chem Sci 2024; 15:12676-12685. [PMID: 39148798 PMCID: PMC11323320 DOI: 10.1039/d4sc02123a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Proteins form native structures through folding processes, many of which proceed through intramolecular hydrophobic effect, hydrogen bond and disulfide-bond formation. In vivo, protein aggregation is prevented even in the highly condensed milieu of a cell through folding mediated by molecular chaperones and oxidative enzymes. Chemical approaches to date have not replicated such exquisite mediation. Oxidoreductases efficiently promote folding by the cooperative effects of oxidative reactivity for disulfide-bond formation in the client unfolded protein and chaperone activity to mitigate aggregation. Conventional synthetic folding promotors mimic the redox-reactivity of thiol/disulfide units but do not address client-recognition units for inhibiting aggregation. Herein, we report thiol/disulfide compounds containing client-recognition units, which act as synthetic oxidoreductase-mimics. For example, compound βCDWSH/SS bears a thiol/disulfide unit at the wide rim of β-cyclodextrin as a client recognition unit. βCDWSH/SS shows promiscuous binding to client proteins, mitigates protein aggregation, and accelerates disulfide-bond formation. In contrast, positioning a thiol/disulfide unit at the narrow rim of β-cyclodextrin promotes folding less effectively through preferential interactions at specific residues, resulting in aggregation. The combination of promiscuous client-binding and redox reactivity is effective for the design of synthetic folding promoters. βCDWSH/SS accelerates oxidative protein folding at highly condensed sub-millimolar protein concentrations.
Collapse
Affiliation(s)
- Koki Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
| | - Ryoya Nojiri
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
| | - Motonori Matsusaki
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University Tokushima 770-8503 Japan
| | - Takuya Mabuchi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
- Institute of Fluid Science, Tohoku University Sendai Miyagi 980-8577 Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Kotone Ishii
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Hiroyuki Kumeta
- Faculty of Advanced Life Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University Tokushima 770-8503 Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC) Kanagawa 243-0435 Japan
| |
Collapse
|
9
|
Du Y, Wang F, Liu P, Zheng S, Li J, Huang R, Li W, Zhang X, Wang Y. Redox Enzymes P4HB and PDIA3 Interact with STIM1 to Fine-Tune Its Calcium Sensitivity and Activation. Int J Mol Sci 2024; 25:7578. [PMID: 39062821 PMCID: PMC11276767 DOI: 10.3390/ijms25147578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Sensing the lowering of endoplasmic reticulum (ER) calcium (Ca2+), STIM1 mediates a ubiquitous Ca2+ influx process called the store-operated Ca2+ entry (SOCE). Dysregulated STIM1 function or abnormal SOCE is strongly associated with autoimmune disorders, atherosclerosis, and various forms of cancers. Therefore, uncovering the molecular intricacies of post-translational modifications, such as oxidation, on STIM1 function is of paramount importance. In a recent proteomic screening, we identified three protein disulfide isomerases (PDIs)-Prolyl 4-hydroxylase subunit beta (P4HB), protein disulfide-isomerase A3 (PDIA3), and thioredoxin domain-containing protein 5 (TXNDC5)-as the ER-luminal interactors of STIM1. Here, we demonstrated that these PDIs dynamically associate with STIM1 and STIM2. The mutation of the two conserved cysteine residues of STIM1 (STIM1-2CA) decreased its Ca2+ affinity both in cellulo and in situ. Knockdown of PDIA3 or P4HB increased the Ca2+ affinity of wild-type STIM1 while showing no impact on the STIM1-2CA mutant, indicating that PDIA3 and P4HB regulate STIM1's Ca2+ affinity by acting on ER-luminal cysteine residues. This modulation of STIM1's Ca2+ sensitivity was further confirmed by Ca2+ imaging experiments, which showed that knockdown of these two PDIs does not affect STIM1-mediated SOCE upon full store depletion but leads to enhanced SOCE amplitudes upon partial store depletion. Thus, P4HB and PDIA3 dynamically modulate STIM1 activation by fine-tuning its Ca2+ binding affinity, adjusting the level of activated STIM1 in response to physiological cues. The coordination between STIM1-mediated Ca2+ signaling and redox responses reported herein may have implications for cell physiology and pathology.
Collapse
Affiliation(s)
- Yangchun Du
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Feifan Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Panpan Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Sisi Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Jia Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Rui Huang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Xiaoyan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Essex DW, Wang L. Recent advances in vascular thiol isomerases and redox systems in platelet function and thrombosis. J Thromb Haemost 2024; 22:1806-1818. [PMID: 38518897 PMCID: PMC11214884 DOI: 10.1016/j.jtha.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
There have been substantial advances in vascular protein disulfide isomerases (PDIs) in platelet function and thrombosis in recent years. There are 4 known prothrombotic thiol isomerases; PDI, endoplasmic reticulum protein (ERp)57, ERp72, and ERp46, and 1 antithrombotic PDI; transmembrane protein 1. A sixth PDI, ERp5, may exhibit either prothrombotic or antithrombotic properties in platelets. Studies on ERp46 in platelet function and thrombosis provide insight into the mechanisms by which these enzymes function. ERp46-catalyzed disulfide cleavage in the αIIbβ3 platelet integrin occurs prior to PDI-catalyzed events to maximally support platelet aggregation. The transmembrane PDI transmembrane protein 1 counterbalances the effect of ERp46 by inhibiting activation of αIIbβ3. Recent work on the prototypic PDI found that oxidized PDI supports platelet aggregation. The a' domain of PDI is constitutively oxidized, possibly by endoplasmic reticulum oxidoreductase-1α. However, the a domain is normally reduced but becomes oxidized under conditions of oxidative stress. In contrast to the role of oxidized PDI in platelet function, reduced PDI downregulates activation of the neutrophil integrin αMβ2. Intracellular platelet PDI cooperates with Nox1 and contributes to thromboxane A2 production to support platelet function. Finally, αIIb and von Willebrand factor contain free thiols, which alter the functions of these proteins, although the extent to which the PDIs regulate these functions is unclear. We are beginning to understand the substrates and functions of vascular thiol isomerases and the redox network they form that supports hemostasis and thrombosis. Moreover, the disulfide bonds these enzymes target are being defined. The clinical implications of the knowledge gained are wide-ranging.
Collapse
Affiliation(s)
- David W Essex
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.
| | - Lu Wang
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, New York, USA
| |
Collapse
|
11
|
Chen X, Pan B, Yu L, Wang B, Pan L. Enhancement of protein production in Aspergillus niger by engineering the antioxidant defense metabolism. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:91. [PMID: 38951910 PMCID: PMC11218396 DOI: 10.1186/s13068-024-02542-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Research on protein production holds significant importance in the advancement of food technology, agriculture, pharmaceuticals, and bioenergy. Aspergillus niger stands out as an ideal microbial cell factory for the production of food-grade proteins, owing to its robust protein secretion capacity and excellent safety profile. However, the extensive oxidative folding of proteins within the endoplasmic reticulum (ER) triggers ER stress, consequently leading to protein misfolding reactions. This stressful phenomenon results in the accelerated generation of reactive oxygen species (ROS), thereby inducing oxidative stress. The accumulation of ROS can adversely affect intracellular DNA, proteins, and lipids. RESULT In this study, we enhanced the detoxification of ROS in A. niger (SH-1) by integrating multiple modules, including the NADPH regeneration engineering module, the glutaredoxin system, the GSH synthesis engineering module, and the transcription factor module. We assessed the intracellular ROS levels, growth under stress conditions, protein production levels, and intracellular GSH content. Our findings revealed that the overexpression of Glr1 in the glutaredoxin system exhibited significant efficacy across various parameters. Specifically, it reduced the intracellular ROS levels in A. niger by 50%, boosted glucoamylase enzyme activity by 243%, and increased total protein secretion by 88%. CONCLUSION The results indicate that moderate modulation of intracellular redox conditions can enhance overall protein output. In conclusion, we present a strategy for augmenting protein production in A. niger and propose a potential approach for optimizing microbial protein production system.
Collapse
Affiliation(s)
- Xin Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Baoxiang Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Leyi Yu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Rahi V, Kaundal RK. Exploring the intricacies of calcium dysregulation in ischemic stroke: Insights into neuronal cell death and therapeutic strategies. Life Sci 2024; 347:122651. [PMID: 38642844 DOI: 10.1016/j.lfs.2024.122651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Calcium ion (Ca2+) dysregulation is one of the main causes of neuronal cell death and brain damage after cerebral ischemia. During ischemic stroke, the ability of neurons to maintain Ca2+ homeostasis is compromised. Ca2+ regulates various functions of the nervous system, including neuronal activity and adenosine triphosphate (ATP) production. Disruptions in Ca2+ homeostasis can trigger a cascade of events, including activation of the unfolded protein response (UPR) pathway, which is associated with endoplasmic reticulum (ER) stress and mitochondrial dysfunction. This response occurs when the cell is unable to manage protein folding within the ER due to various stressors, such as a high influx of Ca2+. Consequently, the UPR is initiated to restore ER function and alleviate stress, but prolonged activation can lead to mitochondrial dysfunction and, ultimately, cell death. Hence, precise regulation of Ca2+ within the cell is mandatory. The ER and mitochondria are two such organelles that maintain intracellular Ca2+ homeostasis through various calcium-operating channels, including ryanodine receptors (RyRs), inositol trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum calcium ATPases (SERCAs), the mitochondrial Na+/Ca2+ exchanger (NCLX), the mitochondrial calcium uniporter (MCU) and voltage-dependent anion channels (VDACs). These channels utilize Ca2+ sequestering and release mechanisms to maintain intracellular Ca2+ homeostasis and ensure proper cellular function and survival. The present review critically evaluates the significance of Ca2+ and its physiological role in cerebral ischemia. We have compiled recent findings on calcium's role and emerging treatment strategies, particularly targeting mitochondria and the endoplasmic reticulum, to address Ca2+ overload in cerebral ischemia.
Collapse
Affiliation(s)
- Vikrant Rahi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India
| | - Ravinder K Kaundal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India.
| |
Collapse
|
13
|
Kuramochi T, Yamashita Y, Arai K, Kanemura S, Muraoka T, Okumura M. Boosting the enzymatic activity of CxxC motif-containing PDI family members. Chem Commun (Camb) 2024; 60:6134-6137. [PMID: 38829522 DOI: 10.1039/d4cc01712a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Compounds harboring high acidity and oxidizability of thiol groups permit tuning the redox equilibrium constants of CxxC sites of members of the protein disulphide isomerase (PDI) family and thus can be used to accelerate folding processes and increase the production of native proteins by minimal loading in comparison to glutathione.
Collapse
Affiliation(s)
- Tsubura Kuramochi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Yukino Yamashita
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
- Institute of Advanced Biosciences, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakato, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
14
|
Anjo SI, He Z, Hussain Z, Farooq A, McIntyre A, Laughton CA, Carvalho AN, Finelli MJ. Protein Oxidative Modifications in Neurodegenerative Diseases: From Advances in Detection and Modelling to Their Use as Disease Biomarkers. Antioxidants (Basel) 2024; 13:681. [PMID: 38929122 PMCID: PMC11200609 DOI: 10.3390/antiox13060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidation-reduction post-translational modifications (redox-PTMs) are chemical alterations to amino acids of proteins. Redox-PTMs participate in the regulation of protein conformation, localization and function, acting as signalling effectors that impact many essential biochemical processes in the cells. Crucially, the dysregulation of redox-PTMs of proteins has been implicated in the pathophysiology of numerous human diseases, including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. This review aims to highlight the current gaps in knowledge in the field of redox-PTMs biology and to explore new methodological advances in proteomics and computational modelling that will pave the way for a better understanding of the role and therapeutic potential of redox-PTMs of proteins in neurodegenerative diseases. Here, we summarize the main types of redox-PTMs of proteins while providing examples of their occurrence in neurodegenerative diseases and an overview of the state-of-the-art methods used for their detection. We explore the potential of novel computational modelling approaches as essential tools to obtain insights into the precise role of redox-PTMs in regulating protein structure and function. We also discuss the complex crosstalk between various PTMs that occur in living cells. Finally, we argue that redox-PTMs of proteins could be used in the future as diagnosis and prognosis biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra I. Anjo
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-517 Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Zhicheng He
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zohaib Hussain
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aruba Farooq
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alan McIntyre
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Charles A. Laughton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mattéa J. Finelli
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
15
|
Jiao M, Zhang Y, Song X, Xu B. The role and mechanism of TXNDC5 in disease progression. Front Immunol 2024; 15:1354952. [PMID: 38629066 PMCID: PMC11019510 DOI: 10.3389/fimmu.2024.1354952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Thioredoxin domain containing protein-5 (TXNDC5), also known as endothelial protein-disulfide isomerase (Endo-PDI), is confined to the endoplasmic reticulum through the structural endoplasmic reticulum retention signal (KDEL), is a member of the PDI protein family and is highly expressed in the hypoxic state. TXNDC5 can regulate the rate of disulfide bond formation, isomerization and degradation of target proteins through its function as a protein disulfide isomerase (PDI), thereby altering protein conformation, activity and improving protein stability. Several studies have shown that there is a significant correlation between TXNDC5 gene polymorphisms and genetic susceptibility to inflammatory diseases such as rheumatoid, fibrosis and tumors. In this paper, we detail the expression characteristics of TXNDC5 in a variety of diseases, summarize the mechanisms by which TXNDC5 promotes malignant disease progression, and summarize potential therapeutic strategies to target TXNDC5 for disease treatment.
Collapse
Affiliation(s)
- Mingxia Jiao
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yeyong Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Xie Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
16
|
Juang YP, Tsai JY, Gu WL, Hsu HC, Lin CL, Wu CC, Liang PH. Discovery of 5-Hydroxy-1,4-naphthoquinone (Juglone) Derivatives as Dual Effective Agents Targeting Platelet-Cancer Interplay through Protein Disulfide Isomerase Inhibition. J Med Chem 2024; 67:3626-3642. [PMID: 38381886 PMCID: PMC10945480 DOI: 10.1021/acs.jmedchem.3c02107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
In this study, a series of 2- and/or 3-substituted juglone derivatives were designed and synthesized. Among them, 9, 18, 22, 30, and 31 showed stronger inhibition activity against cell surface PDI or recombinant PDI and higher inhibitory effects on U46619- and/or collagen-induced platelet aggregation than juglone. The glycosylated derivatives 18 and 22 showed improved selectivity for inhibiting the proliferation of multiple myeloma RPMI 8226 cells, and the IC50 values reached 61 and 48 nM, respectively, in a 72 h cell viability test. In addition, 18 and 22 were able to prevent tumor cell-induced platelet aggregation and platelet-enhanced tumor cell proliferation. The molecular docking showed the amino acid residues Gln243, Phe440, and Leu443 are important for the compound-protein interaction. Our results reveal the potential of juglone derivatives to serve as novel antiplatelet and anticancer dual agents, which are available to interrupt platelet-cancer interplay through covalent binding to PDI catalytic active site.
Collapse
Affiliation(s)
- Yu-Pu Juang
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
| | - Ju-Ying Tsai
- Graduate
Institute of Natural Product, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Wan-Lan Gu
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
| | - Hui-Ching Hsu
- Graduate
Institute of Natural Product, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Chao-Lung Lin
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
| | - Chin-Chung Wu
- Graduate
Institute of Natural Product, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Pi-Hui Liang
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
- The
Genomics Research Center, Academia Sinica, Taipei 128, Taiwan
| |
Collapse
|
17
|
Muraoka T, Okumura M, Saio T. Enzymatic and synthetic regulation of polypeptide folding. Chem Sci 2024; 15:2282-2299. [PMID: 38362427 PMCID: PMC10866363 DOI: 10.1039/d3sc05781j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Proper folding is essential for the biological functions of all proteins. The folding process is intrinsically error-prone, and the misfolding of a polypeptide chain can cause the formation of toxic aggregates related to pathological outcomes such as neurodegenerative disease and diabetes. Chaperones and some enzymes are involved in the cellular proteostasis systems that assist polypeptide folding to diminish the risk of aggregation. Elucidating the molecular mechanisms of chaperones and related enzymes is important for understanding proteostasis systems and protein misfolding- and aggregation-related pathophysiology. Furthermore, mechanistic studies of chaperones and related enzymes provide important clues to designing chemical mimics, or chemical chaperones, that are potentially useful for recovering proteostasis activities as therapeutic approaches for treating and preventing protein misfolding-related diseases. In this Perspective, we provide a comprehensive overview of the latest understanding of the folding-promotion mechanisms by chaperones and oxidoreductases and recent progress in the development of chemical mimics that possess activities comparable to enzymes, followed by a discussion of future directions.
Collapse
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC) Kanagawa 243-0435 Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University Tokushima 770-8503 Japan
| |
Collapse
|
18
|
Huang R, Wu D, Zhang K, Hu G, Liu Y, Jiang Y, Wang C, Zheng Y. ARID1A loss induces P4HB to activate fibroblasts to support lung cancer cell growth, invasion, and chemoresistance. Cancer Sci 2024; 115:439-451. [PMID: 38100120 PMCID: PMC10859615 DOI: 10.1111/cas.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 02/13/2024] Open
Abstract
Loss of AT-interacting domain-rich protein 1A (ARID1A) frequently occurs in human malignancies including lung cancer. The biological consequence of ARID1A mutation in lung cancer is not fully understood. This study was designed to determine the effect of ARID1A-depleted lung cancer cells on fibroblast activation. Conditioned media was collected from ARID1A-depleted lung cancer cells and employed to treat lung fibroblasts. The proliferation and migration of lung fibroblasts were investigated. The secretory genes were profiled in lung cancer cells upon ARID1A knockdown. Antibody-based neutralization was utilized to confirm their role in mediating the cross-talk between lung cancer cells and fibroblasts. NOD-SCID-IL2RgammaC-null (NSG) mice received tumor tissues from patients with ARID1A-mutated lung cancer to establish patient-derived xenograft (PDX) models. Notably, ARID1A-depleted lung cancer cells promoted the proliferation and migration of lung fibroblasts. Mechanistically, ARID1A depletion augmented the expression and secretion of prolyl 4-hydroxylase beta (P4HB) in lung cancer cells, which induced the activation of lung fibroblasts through the β-catenin signaling pathway. P4HB-activated lung fibroblasts promoted the proliferation, invasion, and chemoresistance in lung cancer cells. Neutralizing P4HB hampered the tumor growth and increased cisplatin cytotoxic efficacy in two PDX models. Serum P4HB levels were higher in ARID1A-mutated lung cancer patients than in healthy controls. Moreover, increased serum levels of P4HB were significantly associated with lung cancer metastasis. Together, our work indicates a pivotal role for P4HB in orchestrating the cross-talk between ARID1A-mutated cancer cells and cancer-associated fibroblasts during lung cancer progression. P4HB may represent a promising target for improving lung cancer treatment.
Collapse
Affiliation(s)
- Risheng Huang
- Department of Thoracic SurgeryThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| | - Danni Wu
- Department of Thoracic SurgeryThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| | - Kangliang Zhang
- Department of Central LabThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| | - Guanqiong Hu
- Department of NursingThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yu Liu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi Jiang
- Department of PathologyThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| | - Chichao Wang
- Department of Thoracic SurgeryThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| | - Yuanliang Zheng
- Department of Thoracic SurgeryThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| |
Collapse
|
19
|
Chen Z, Wang S, Pottekat A, Duffey A, Jang I, Chang BH, Cho J, Finck BN, Davidson NO, Kaufman RJ. Conditional hepatocyte ablation of PDIA1 uncovers indispensable roles in both APOB and MTTP folding to support VLDL secretion. Mol Metab 2024; 80:101874. [PMID: 38211723 PMCID: PMC10832468 DOI: 10.1016/j.molmet.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVES The assembly and secretion of hepatic very low-density lipoprotein (VLDL) plays pivotal roles in hepatic and plasma lipid homeostasis. Protein disulfide isomerase A1 (PDIA1/P4HB) is a molecular chaperone whose functions are essential for protein folding in the endoplasmic reticulum. Here we investigated the physiological requirement in vivo for PDIA1 in maintaining VLDL assembly and secretion. METHODS Pdia1/P4hb was conditionally deleted in adult mouse hepatocytes and the phenotypes characterized. Mechanistic analyses in primary hepatocytes determined how PDIA1 ablation alters MTTP synthesis and degradation as well as altering synthesis and secretion of Apolipoprotein B (APOB), along with complementary expression of intact PDIA1 vs a catalytically inactivated PDIA1 mutant. RESULTS Hepatocyte-specific deletion of Pdia1/P4hb inhibited hepatic MTTP expression and dramatically reduced VLDL production, leading to severe hepatic steatosis and hypolipidemia. Pdia1-deletion did not affect mRNA expression or protein stability of MTTP but rather prevented Mttp mRNA translation. We demonstrate an essential role for PDIA1 in MTTP synthesis and function and show that PDIA1 interacts with APOB in an MTTP-independent manner via its molecular chaperone function to support APOB folding and secretion. CONCLUSIONS PDIA1 plays indispensable roles in APOB folding, MTTP synthesis and activity to support VLDL assembly. Thus, like APOB and MTTP, PDIA1 is an obligatory component of hepatic VLDL production.
Collapse
Affiliation(s)
- Zhouji Chen
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA.
| | - Shiyu Wang
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA
| | - Anita Pottekat
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA
| | - Alec Duffey
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA
| | - Insook Jang
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA
| | - Benny H Chang
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaehyung Cho
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas O Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA.
| |
Collapse
|
20
|
Ferrero E, Di Gregorio E, Ferrero M, Ortolan E, Moon YA, Di Campli A, Pavinato L, Mancini C, Tripathy D, Manes M, Hoxha E, Costanzi C, Pozzi E, Rossi Sebastiano M, Mitro N, Tempia F, Caruso D, Borroni B, Basso M, Sallese M, Brusco A. Spinocerebellar ataxia 38: structure-function analysis shows ELOVL5 G230V is proteotoxic, conformationally altered and a mutational hotspot. Hum Genet 2023; 142:1055-1076. [PMID: 37199746 PMCID: PMC10449689 DOI: 10.1007/s00439-023-02572-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Fatty acid elongase ELOVL5 is part of a protein family of multipass transmembrane proteins that reside in the endoplasmic reticulum where they regulate long-chain fatty acid elongation. A missense variant (c.689G>T p.Gly230Val) in ELOVL5 causes Spinocerebellar Ataxia subtype 38 (SCA38), a neurodegenerative disorder characterized by autosomal dominant inheritance, cerebellar Purkinje cell demise and adult-onset ataxia. Having previously showed aberrant accumulation of p.G230V in the Golgi complex, here we further investigated the pathogenic mechanisms triggered by p.G230V, integrating functional studies with bioinformatic analyses of protein sequence and structure. Biochemical analysis showed that p.G230V enzymatic activity was normal. In contrast, SCA38-derived fibroblasts showed reduced expression of ELOVL5, Golgi complex enlargement and increased proteasomal degradation with respect to controls. By heterologous overexpression, p.G230V was significantly more active than wild-type ELOVL5 in triggering the unfolded protein response and in decreasing viability in mouse cortical neurons. By homology modelling, we generated native and p.G230V protein structures whose superposition revealed a shift in Loop 6 in p.G230V that altered a highly conserved intramolecular disulphide bond. The conformation of this bond, connecting Loop 2 and Loop 6, appears to be elongase-specific. Alteration of this intramolecular interaction was also observed when comparing wild-type ELOVL4 and the p.W246G variant which causes SCA34. We demonstrate by sequence and structure analyses that ELOVL5 p.G230V and ELOVL4 p.W246G are position-equivalent missense variants. We conclude that SCA38 is a conformational disease and propose combined loss of function by mislocalization and gain of toxic function by ER/Golgi stress as early events in SCA38 pathogenesis.
Collapse
Affiliation(s)
- Enza Ferrero
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Eleonora Di Gregorio
- Unit of Medical Genetics, Città della Salute e Della Scienza Hospital, Turin, Italy
| | - Marta Ferrero
- Experimental Zooprophylactic Institute of Piedmont, Liguria and Aosta Valley, Turin, Italy
| | - Erika Ortolan
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Antonella Di Campli
- Institute of Protein Biochemistry, Italian National Research Council, Naples, Italy
- Department of Innovative Technologies in Medicine and Dentistry, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Cecilia Mancini
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Marta Manes
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano and Department of Neuroscience, University of Torino, Turin, Italy
| | | | - Elisa Pozzi
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Matteo Rossi Sebastiano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano and Department of Neuroscience, University of Torino, Turin, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michele Sallese
- Centre for Advanced Studies and Technology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy.
- Unit of Medical Genetics, Città della Salute e Della Scienza Hospital, Turin, Italy.
| |
Collapse
|
21
|
Okada S, Matsumoto Y, Takahashi R, Arai K, Kanemura S, Okumura M, Muraoka T. Semi-enzymatic acceleration of oxidative protein folding by N-methylated heteroaromatic thiols. Chem Sci 2023; 14:7630-7636. [PMID: 37476727 PMCID: PMC10355094 DOI: 10.1039/d3sc01540h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023] Open
Abstract
We report the first example of a synthetic thiol-based compound that promotes oxidative protein folding upon 1-equivalent loading to the disulfide bonds in the client protein to afford the native form in over 70% yield. N-Methylation is a central post-translational processing of proteins in vivo for regulating functions including chaperone activities. Despite the universally observed biochemical reactions in nature, N-methylation has hardly been utilized in the design, functionalization, and switching of synthetic bioregulatory agents, particularly folding promotors. As a biomimetic approach, we developed pyridinylmethanethiols to investigate the effects of N-methylation on the promotion of oxidative protein folding. For a comprehensive study on the geometrical effects, constitutional isomers of pyridinylmethanethiols with ortho-, meta-, and para-substitutions have been synthesized. Among the constitutional isomers, para-substituted pyridinylmethanethiol showed the fastest disulfide-bond formation of the client proteins to afford the native forms most efficiently. N-Methylation drastically increased the acidity and enhanced the oxidizability of the thiol groups in the pyridinylmethanethiols to enhance the folding promotion efficiencies. Among the isomers, para-substituted N-methylated pyridinylmethanethiol accelerated the oxidative protein folding reactions with the highest efficiency, allowing for protein folding promotion by 1-equivalent loading as a semi-enzymatic activity. This study will offer a novel bioinspired molecular design of synthetic biofunctional agents that are semi-enzymatically effective for the promotion of oxidative protein folding including biopharmaceuticals such as insulin in vitro by minimum loading.
Collapse
Affiliation(s)
- Shunsuke Okada
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Yosuke Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Rikana Takahashi
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
- Institute of Advanced Biosciences, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Shingo Kanemura
- School of Science, Kwansei Gakuin University 1 Gakuen Uegahara Sanda Hyogo 669-1330 Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University 6-3 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology 3-8-1 Harumi-cho Fuchu Tokyo 183-8538 Japan
- Kanagawa Institute of Industrial Science and Technology 3-2-1 Sakato, Takatsu-ku Kawasaki Kanagawa 213-0012 Japan
| |
Collapse
|
22
|
Ponzar N, Pozzi N. Probing the conformational dynamics of thiol-isomerases using non-canonical amino acids and single-molecule FRET. Methods 2023; 214:8-17. [PMID: 37068599 PMCID: PMC10203983 DOI: 10.1016/j.ymeth.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
Disulfide bonds drive protein correct folding, prevent protein aggregation, and stabilize three-dimensional structures of proteins and their assemblies. Dysregulation of this activity leads to several disorders, including cancer, neurodegeneration, and thrombosis. A family of 20+ enzymes, called thiol-isomerases (TIs), oversee this process in the endoplasmic reticulum of human cells to ensure efficacy and accuracy. While the biophysical and biochemical properties of cysteine residues are well-defined, our structural knowledge of how TIs select, interact and process their substrates remains poorly understood. How TIs structurally and functionally respond to changes in redox environment and other post-translational modifications remain unclear, too. We recently developed a workflow for site-specific incorporation of non-canonical amino acids into protein disulfide isomerase (PDI), the prototypical member of TIs. Combined with click chemistry, this strategy enabled us to perform single-molecule biophysical studies of PDI under various solution conditions. This paper details protocols and discusses challenges in performing these experiments. We expect this approach, combined with other emerging technologies in single-molecule biophysics and structural biology, to facilitate the exploration of the mechanisms by which TIs carry out their fascinating but poorly understood roles in humans, especially in the context of thrombosis.
Collapse
Affiliation(s)
- Nathan Ponzar
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
23
|
Rapp K, Wei S, Roberts M, Yao S, Fei SS, Gao L, Ray K, Wang A, Godiah R, Han L. Transcriptional profiling of mucus production and modification in rhesus macaque endocervical cells under hormonal regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541362. [PMID: 37292621 PMCID: PMC10245652 DOI: 10.1101/2023.05.18.541362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Objective Endocervical mucus production is a key regulator of fertility throughout the menstrual cycle. With cycle-dependent variability in mucus quality and quantity, cervical mucus can either facilitate or block sperm ascension into the upper female reproductive tract. This study seeks to identify genes involved in the hormonal regulation of mucus production, modification, and regulation through profiling the transcriptome of endocervical cells from the non-human primate, the Rhesus Macaque (Macaca mulatta). Design Experimental. Setting Translational science laboratory. Intervention We treated differentiated primary endocervical cultures with estradiol (E2) and progesterone (P4) to mimic peri-ovulatory and luteal-phase hormonal changes. Using RNA-sequencing, we identified differential expression of gene pathways and mucus producing and modifying genes in cells treated with E2 compared to hormone-free conditions and E2 compared to E2-primed cells treated with P4. Main Outcome Measures We pursued differential gene expression analysis on RNA-sequenced cells. Sequence validation was done using qPCR. Results Our study identified 158 genes that show significant differential expression in E2-only conditions compared to hormone-free control, and 250 genes that show significant differential expression in P4-treated conditions compared to E2-only conditions. From this list, we found hormone-induced changes in transcriptional profiles for genes across several classes of mucus production, including ion channels and enzymes involved in post-translational mucin modification that have not previously been described as hormonally regulated. Conclusion Our study is the first to use an in vitro culture system to create an epithelial-cell specific transcriptome of the endocervix. As a result, our study identifies new genes and pathways that are altered by sex-steroids in cervical mucus production.
Collapse
|
24
|
Cassano T, Giamogante F, Calcagnini S, Romano A, Lavecchia AM, Inglese F, Paglia G, Bukke VN, Romano AD, Friuli M, Altieri F, Gaetani S. PDIA3 Expression Is Altered in the Limbic Brain Regions of Triple-Transgenic Mouse Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24033005. [PMID: 36769334 PMCID: PMC9918299 DOI: 10.3390/ijms24033005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In the present study, we used a mouse model of Alzheimer's disease (AD) (3×Tg-AD mice) to longitudinally analyse the expression level of PDIA3, a protein disulfide isomerase and endoplasmic reticulum (ER) chaperone, in selected brain limbic areas strongly affected by AD-pathology (amygdala, entorhinal cortex, dorsal and ventral hippocampus). Our results suggest that, while in Non-Tg mice PDIA3 levels gradually reduce with aging in all brain regions analyzed, 3×Tg-AD mice showed an age-dependent increase in PDIA3 levels in the amygdala, entorhinal cortex, and ventral hippocampus. A significant reduction of PDIA3 was observed in 3×Tg-AD mice already at 6 months of age, as compared to age-matched Non-Tg mice. A comparative immunohistochemistry analysis performed on 3×Tg-AD mice at 6 (mild AD-like pathology) and 18 (severe AD-like pathology) months of age showed a direct correlation between the cellular level of Aβ and PDIA3 proteins in all the brain regions analysed, even if with different magnitudes. Additionally, an immunohistochemistry analysis showed the presence of PDIA3 in all post-mitotic neurons and astrocytes. Overall, altered PDIA3 levels appear to be age- and/or pathology-dependent, corroborating the ER chaperone's involvement in AD pathology, and supporting the PDIA3 protein as a potential novel therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Flavia Giamogante
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Angelo Michele Lavecchia
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Inglese
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giuliano Paglia
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Vidyasagar Naik Bukke
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Fabio Altieri
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| | - Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
25
|
Cuervo NZ, Grandvaux N. Redox proteomics and structural analyses provide insightful implications for additional non-catalytic thiol-disulfide motifs in PDIs. Redox Biol 2022; 59:102583. [PMID: 36567215 PMCID: PMC9868663 DOI: 10.1016/j.redox.2022.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Protein disulfide isomerases (PDIs) catalyze redox reactions that reduce, oxidize, or isomerize disulfide bonds and act as chaperones of proteins as they fold. The characteristic features of PDIs are the presence of one or more catalytic thioredoxin (TRX)-like domains harboring typical CXXC catalytic motifs responsible for redox reactions, as well as non-catalytic TRX-like domain. As increasing attention is paid to oxidative post-translational modifications of cysteines (Cys ox-PTMs) with the recognition that they control cellular signaling, strategies to identify sites of Cys ox-PTM by redox proteomics have been optimized. Exploration of an available Cys redoxome dataset supported by modeled structure provided arguments for the existence of an additional non-catalytic thiol-disulfide motif, distinct from those contained in the TRX type patterns, typical of PDIAs. Further structural analysis of PDIA3 and 6 allows us to consider the possibility that this hypothesis could be extended to other members of PDI. These elements invite future studies to decipher the exact role of these non-catalytic thiol-disulfide motifs in the functions of PDIs. Strategies that would allow to validate this hypothesis are discussed.
Collapse
Affiliation(s)
- Natalia Zamorano Cuervo
- CRCHUM – Centre de Recherche du Centre Hospitalier de l’Université de Montréal, 900 rue Saint Denis, Montréal, H2X 0A9, Québec, Canada
| | - Nathalie Grandvaux
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal, H2X 0A9, Québec, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, H3C 3J7, Québec, Canada.
| |
Collapse
|
26
|
Jiang H, Thapa P, Hao Y, Ding N, Alshahrani A, Wei Q. Protein Disulfide Isomerases Function as the Missing Link Between Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1191-1205. [PMID: 36000195 PMCID: PMC9805878 DOI: 10.1089/ars.2022.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 01/13/2023]
Abstract
Significance: Diabetes has long been recognized as an independent risk factor for cancer, but there is insufficient mechanistic understanding of biological mediators that bridge two disorders together. Understanding the pathogenic association between diabetes and cancer has become the focus of many studies, and findings are potentially valuable for the development of effective preventive or therapeutic strategies for both disorders. Recent Advances: A summary of literature reveals a possible connection between diabetes and cancer through the family of protein disulfide isomerase (PDI). Historical as well as the most recent findings on the structure, biochemistry, and biology of the PDI family were summarized in this review. Critical Issues: PDIs in general function as redox enzymes and protein chaperones to control the quality of proteins by correcting or otherwise eliminating misfolded proteins in conditions of oxidative stress and endoplasmic reticulum stress, respectively. However, individual members of the PDI family may contribute uniquely to the pathogenesis of diabetes and cancer. Studies of exemplary members such as protein disulfide isomerase-associated (PDIA) 1, PDIA6, and PDIA15 were reviewed to highlight their contributions in the pathogenesis of diabetes and cancer and how they can be potential links bridging the two disorders through the cross talk of signaling pathways. Future Directions: Apparently ubiquitous presence of the PDIs creates difficulties and challenges for scientific community to develop targeted therapeutics for the treatment of diabetes and cancer simultaneously. Understanding molecular contribution of individual PDI in the context of specific disease may provide some insights into the development of mechanism-based target-directed therapeutics. Antioxid. Redox Signal. 37, 1191-1205.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Pratik Thapa
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Yanning Hao
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Na Ding
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Aziza Alshahrani
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
27
|
Contreras‐Marciales ADP, López‐Guzmán SF, Benítez‐Hess ML, Oviedo N, Hernández‐Sánchez J. Characterization of the promoter region of the murine Catsper2 gene. FEBS Open Bio 2022; 12:2236-2249. [PMID: 36345591 PMCID: PMC9714369 DOI: 10.1002/2211-5463.13518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
CATSPER2 (Cation channel sperm-associated protein 2) protein, which is part of the calcium CATSPER channel located in the membrane of the flagellar principal piece of the sperm cell, is only expressed in the testis during spermatogenesis. Deletions or mutations in the Catsper2 gene are associated with the deafness-infertility syndrome (DIS) and non-syndromic male infertility. However, the mechanisms by which Catsper2 is regulated are unknown. Here, we report the characterization of the promoter region of murine Catsper2 and the role of CTCF and CREMτ in its transcription. We report that the promoter region has transcriptional activity in both directions, as determined by observing luciferase activity in mouse Sertoli and GC-1 spg transfected cells. WGBS data analysis indicated that a CpG island identified in silico is non-methylated; Chromatin immunoprecipitation (ChIP)-seq data analysis revealed that histone marks H3K4me3 and H3K36me3 are present in the promoter and body of the Catsper2 gene respectively, indicating that Catsper2 is subject to epigenetic regulation. In addition, the murine Catsper2 core promoter was delimited to a region between -54/+189 relative to the transcription start site (TSS), where three CTCF and one CRE binding site were predicted. The functionality of these sites was determined by mutation of the CTCF sites and deletion of the CRE site. Finally, ChIP assays confirmed that CREMτ and CTCF bind to the Catsper2 minimal promoter region. This study represents the first functional analysis of the murine Catsper2 promoter region and the mechanisms that regulate its expression.
Collapse
Affiliation(s)
- Andrea del Pilar Contreras‐Marciales
- Departamento de Genética y Biología MolecularCentro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)Ciudad de MéxicoMexico
| | - Sergio Federico López‐Guzmán
- Departamento de Genética y Biología MolecularCentro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)Ciudad de MéxicoMexico
| | - María Luisa Benítez‐Hess
- Departamento de Genética y Biología MolecularCentro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)Ciudad de MéxicoMexico
| | - Norma Oviedo
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional, La RazaInstituto Mexicano del Seguro SocialCiudad de MéxicoMexico
| | - Javier Hernández‐Sánchez
- Departamento de Genética y Biología MolecularCentro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)Ciudad de MéxicoMexico
| |
Collapse
|
28
|
Traczyk G, Świątkowska A, Hromada-Judycka A, Janikiewicz J, Kwiatkowska K. An intact zinc finger motif of the C1B domain is critical for stability and activity of diacylglycerol kinase-ε. Int J Biochem Cell Biol 2022; 152:106295. [PMID: 36113832 DOI: 10.1016/j.biocel.2022.106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 10/31/2022]
Abstract
Diacylglycerol kinase-ε (DGKε) phosphorylates DAG to phosphatidic acid with unique specificity toward 18:0/20:4 DAG (SAG). SAG is a typical backbone of phosphatidylinositol and its derivatives, therefore DGKε activity is crucial for the turnover of these signaling lipids. Malfunction of DGKε contributes to several pathophysiological conditions, including atypical hemolytic uremic syndrome (aHUS) linked with DGKE mutations. In the present study we analyzed the role of a zinc finger motif of the C1B domain of DGKε, as some aHUS-linked mutations affect this ill-defined part of the kinase. For this, we introduce a novel fluorescent assay for determination of DGKε activity which relies on the use of NBD-SAG in mixed micelles as a substrate, followed by TLC separation of NBD-phosphatidic acid formed. The assay reliably determines the activity of purified human GST-DGKε, also endogenous DGKε or overexpressed mouse DGKε-Myc in cell lysates, homogenates, and kinase immunoprecipitates. Using the above assay we found that four amino acids, Cys135, Cys138, His161 and Cys164, forming the zinc finger motif in the C1B domain are required for the DGKε-Myc activity and stability. Substitution of any of these amino acids with Ala or Trp in DGKε-Myc abolished its activity and led to its proteasomal degradation, possibly assisted by Hsp70/90/40 chaperones. Inhibition of the 26S proteasome prevented the degradation but the mutated proteins were inactive. The present data on the deleterious effect of the zinc finger motif disruption contribute to the understanding of the DGKε-linked aHUS, as the Cys164Trp substitution in mouse DGKε corresponds to the Cys167Trp one in human DGKε found in some aHUS patients.
Collapse
Affiliation(s)
- Gabriela Traczyk
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna Świątkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Aneta Hromada-Judycka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Justyna Janikiewicz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
29
|
Xing F, Song Z, Cheng Z. High expression of PDIA4 promotes malignant cell behavior and predicts reduced survival in cervical cancer. Oncol Rep 2022; 48:184. [PMID: 36082822 PMCID: PMC9478991 DOI: 10.3892/or.2022.8399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022] Open
Abstract
The protein disulfide isomerase (PDI) gene family plays important roles in the maintenance of several cellular functions. Previous studies have showed that protein disulfide isomerase family A member 4 (PDIA4) is aberrantly expressed in several types of cancer, and correlates with prognosis of patients. However, the role of PDIA4 in cervical cancer remains unclear. In the present study, the expression pattern of PDIA4 from both public database and immunohistochemical analysis in cervical samples was analyzed. Cell Counting Kit-8 and Transwell assays were performed to determine the effect of PDIA4 on cervical cancer cell proliferation and migration. Gene set enrichment analysis (GSEA) was used to provide the associated enriched pathways of PDIA4 in regulating cervical tumorigenesis. It was observed that mRNA expression and protein level of PDIA4 were upregulated in cervical cancer tissues. High expression of PDIA4 was significantly associated with poor overall survival (P=0.0095) and relapse-free survival (P=0.0019) in The Cancer Genome Atlas cohort. Knockdown of PDIA4 inhibited cervical cancer cell proliferation and migration. Moreover, PDIA4 affected the expression of proliferation-related molecules (cyclin D1 and PCNA) and migration-related molecules (E-cadherin and Vimentin). Additionally, GSEA revealed that PDIA4 was significantly associated with gene signatures involving glycan biosynthesis, glycosaminoglycan degradation and protein export. In conclusion, the present findings highlighted the importance of PDIA4 in cervical oncogenesis, and suggested that targeting PDIA4 may be a potential therapeutic application for cervical cancer.
Collapse
Affiliation(s)
- Feng Xing
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, P.R. China
| | - Zhijiao Song
- Department of Obstetrics and Gynecology, Zhabei Central Hospital of Jing'an, Shanghai 200070, P.R. China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, P.R. China
| |
Collapse
|
30
|
Boisteau E, Posseme C, Di Modugno F, Edeline J, Coulouarn C, Hrstka R, Martisova A, Delom F, Treton X, Eriksson LA, Chevet E, Lièvre A, Ogier-Denis E. Anterior gradient proteins in gastrointestinal cancers: from cell biology to pathophysiology. Oncogene 2022; 41:4673-4685. [PMID: 36068336 DOI: 10.1038/s41388-022-02452-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Most of the organs of the digestive tract comprise secretory epithelia that require specialized molecular machines to achieve their functions. As such anterior gradient (AGR) proteins, which comprise AGR1, AGR2, and AGR3, belong to the protein disulfide isomerase family, and are involved in secretory and transmembrane protein biogenesis in the endoplasmic reticulum. They are generally expressed in epithelial cells with high levels in most of the digestive tract epithelia. To date, the vast majority of the reports concern AGR2, which has been shown to exhibit various subcellular localizations and exert pro-oncogenic functions. AGR2 overexpression has recently been associated with a poor prognosis in digestive cancers. AGR2 is also involved in epithelial homeostasis. Its deletion in mice results in severe diffuse gut inflammation, whereas in inflammatory bowel diseases, the secretion of AGR2 in the extracellular milieu participates in the reshaping of the cellular microenvironment. AGR2 thus plays a key role in inflammation and oncogenesis and may represent a therapeutic target of interest. In this review, we summarize the already known roles and mechanisms of action of the AGR family proteins in digestive diseases, their expression in the healthy digestive tract, and in digestive oncology. At last, we discuss the potential diagnostic and therapeutic implications underlying the biology of AGR proteins.
Collapse
Affiliation(s)
- Emeric Boisteau
- INSERM U1242, University of Rennes, Rennes, France.,Department of Gastroenterology, University Hospital Pontchaillou, University of Rennes, Rennes, France
| | - Céline Posseme
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Federico Di Modugno
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Julien Edeline
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Andrea Martisova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Xavier Treton
- Assistance Publique-Hôpitaux de Paris, University of Paris, Clichy, France
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France. .,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| | - Astrid Lièvre
- INSERM U1242, University of Rennes, Rennes, France. .,Department of Gastroenterology, University Hospital Pontchaillou, University of Rennes, Rennes, France.
| | - Eric Ogier-Denis
- INSERM U1242, University of Rennes, Rennes, France. .,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
31
|
Luo J, Xie M, Peng C, Ma Y, Wang K, Lin G, Yang H, Chen T, Liu Q, Zhang G, Lin H, Ji Z. Protein disulfide isomerase A6 promotes the repair of injured nerve through interactions with spastin. Front Mol Neurosci 2022; 15:950586. [PMID: 36090256 PMCID: PMC9449696 DOI: 10.3389/fnmol.2022.950586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
The maintenance of appropriate endoplasmic reticulum (ER) homeostasis is critical to effective spinal cord injury (SCI) repair. In previous reports, protein disulfide isomerase A6 (PDIA6) demonstrated to serve as a reversible functional modulator of ER stress responses, while spastin can coordinate ER organization through the modulation of the dynamic microtubule network surrounding this organelle. While both PDIA6 and spastin are thus important regulators of the ER, whether they interact with one another for SCI repair still needs to be determined. Here a proteomics analysis identified PDIA6 as being related to SCI repair, and protein interaction mass spectrometry further confirmed the ability of PDIA6 and spastin to interact with one another. Pull-down and co-immunoprecipitation assays were further performed to validate and characterize the interactions between these two proteins. The RNAi-based knockdown of PDIA6 in COS-7 cells inhibited the activity of spastin-dependent microtubule severing. PDIA6 was also found to promote injured neuron repair, while spastin knockdown reversed this reparative activity. Together, these results thus confirm that PDIA6 and spastin function together as critical mediators of nerve repair, highlighting their potential value as validated targets for efforts to promote SCI repair.
Collapse
Affiliation(s)
- Jianxian Luo
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Min Xie
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Orthopedics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, China
- Orthopedics Department I, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Cheng Peng
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yanming Ma
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ke Wang
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Gengxiong Lin
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hua Yang
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Tianjun Chen
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qiuling Liu
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Guowei Zhang
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
- *Correspondence: Guowei Zhang,
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Hongsheng Lin,
| | - Zhisheng Ji
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Zhisheng Ji,
| |
Collapse
|
32
|
Du QY, Huo FC, Du WQ, Sun XL, Jiang X, Zhang LS, Pei DS. METTL3 potentiates progression of cervical cancer by suppressing ER stress via regulating m6A modification of TXNDC5 mRNA. Oncogene 2022; 41:4420-4432. [DOI: 10.1038/s41388-022-02435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
|
33
|
Chinnaraj M, Flaumenhaft R, Pozzi N. Reduction of protein disulfide isomerase results in open conformations and stimulates dynamic exchange between structural ensembles. J Biol Chem 2022; 298:102217. [PMID: 35780832 PMCID: PMC9352907 DOI: 10.1016/j.jbc.2022.102217] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Human protein disulfide isomerase (PDI) is an essential redox-regulated enzyme required for oxidative protein folding. It comprises four thioredoxin domains, two catalytically active (a, a’) and two inactive (b, b’), organized to form a flexible abb’a’ U-shape. Snapshots of unbound oxidized and reduced PDI have been obtained by X-ray crystallography. Yet, how PDI’s structure changes in response to the redox environment and inhibitor binding remains controversial. Here, we used multiparameter confocal single-molecule FRET to track the movements of the two catalytic domains with high temporal resolution. We found that at equilibrium, PDI visits three structurally distinct conformational ensembles, two “open” (O1 and O2) and one “closed” (C). We show that the redox environment dictates the time spent in each ensemble and the rate at which they exchange. While oxidized PDI samples O1, O2, and C more evenly and in a slower fashion, reduced PDI predominantly populates O1 and O2 and exchanges between them more rapidly, on the submillisecond timescale. These findings were not expected based on crystallographic data. Using mutational analyses, we further demonstrate that the R300-W396 cation-π interaction and active site cysteines dictate, in unexpected ways, how the catalytic domains relocate. Finally, we show that irreversible inhibitors targeting the active sites of reduced PDI did not abolish these protein dynamics but rather shifted the equilibrium toward the closed ensemble. This work introduces a new structural framework that challenges current views of PDI dynamics, helps rationalize its multifaceted role in biology, and should be considered when designing PDI-targeted therapeutics.
Collapse
Affiliation(s)
- Mathivanan Chinnaraj
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
34
|
West JD. Experimental Approaches for Investigating Disulfide-Based Redox Relays in Cells. Chem Res Toxicol 2022; 35:1676-1689. [PMID: 35771680 DOI: 10.1021/acs.chemrestox.2c00123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reversible oxidation of cysteine residues within proteins occurs naturally during normal cellular homeostasis and can increase during oxidative stress. Cysteine oxidation often leads to the formation of disulfide bonds, which can impact protein folding, stability, and function. Work in both prokaryotic and eukaryotic models over the past five decades has revealed several multiprotein systems that use thiol-dependent oxidoreductases to mediate disulfide bond reduction, formation, and/or rearrangement. Here, I provide an overview of how these systems operate to carry out disulfide exchange reactions in different cellular compartments, with a focus on their roles in maintaining redox homeostasis, transducing redox signals, and facilitating protein folding. Additionally, I review thiol-independent and thiol-dependent approaches for interrogating what proteins partner together in such disulfide-based redox relays. While the thiol-independent approaches rely either on predictive measures or standard procedures for monitoring protein-protein interactions, the thiol-dependent approaches include direct disulfide trapping methods as well as thiol-dependent chemical cross-linking. These strategies may prove useful in the systematic characterization of known and newly discovered disulfide relay mechanisms and redox switches involved in oxidant defense, protein folding, and cell signaling.
Collapse
Affiliation(s)
- James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| |
Collapse
|
35
|
Critical roles of protein disulfide isomerases in balancing proteostasis in the nervous system. J Biol Chem 2022; 298:102087. [PMID: 35654139 PMCID: PMC9253707 DOI: 10.1016/j.jbc.2022.102087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/08/2023] Open
Abstract
Protein disulfide isomerases (PDIs) constitute a family of oxidoreductases promoting redox protein folding and quality control in the endoplasmic reticulum. PDIs catalyze disulfide bond formation, isomerization, and reduction, operating in concert with molecular chaperones to fold secretory cargoes in addition to directing misfolded proteins to be refolded or degraded. Importantly, PDIs are emerging as key components of the proteostasis network, integrating protein folding status with central surveillance mechanisms to balance proteome stability according to cellular needs. Recent advances in the field driven by the generation of new mouse models, human genetic studies, and omics methodologies, in addition to interventions using small molecules and gene therapy, have revealed the significance of PDIs to the physiology of the nervous system. PDIs are also implicated in diverse pathologies, ranging from neurodevelopmental conditions to neurodegenerative diseases and traumatic injuries. Here, we review the principles of redox protein folding in the ER with a focus on current evidence linking genetic mutations and biochemical alterations to PDIs in the etiology of neurological conditions.
Collapse
|
36
|
Liang C, Cai M, Xu Y, Fu W, Wu J, Liu Y, Liao X, Ning J, Li J, Huang M, Yuan C. Identification of Antithrombotic Natural Products Targeting the Major Substrate Binding Pocket of Protein Disulfide Isomerase. JOURNAL OF NATURAL PRODUCTS 2022; 85:1332-1339. [PMID: 35471830 DOI: 10.1021/acs.jnatprod.2c00080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein disulfide isomerase (PDI) is a vital oxidoreductase. Extracellular PDI promotes thrombus formation but does not affect physiological blood hemostasis. Inhibition of extracellular PDI has been demonstrated as a promising strategy for antithrombotic treatment. Herein, we focused on the major substrate binding site, a unique pocket in the PDI b' domain, and identified four natural products binding to PDI by combining virtual screening with tryptophan fluorescence-based assays against a customized natural product library. These hits all directly bound to the PDI-b' domain and inhibited the reductase activity of PDI. Among them, galangin showed the most prominent potency (5.9 μM) against PDI and as a broad-spectrum inhibitor for vascular thiol isomerases. In vivo studies manifested that galangin delayed the time of blood vessel occlusion in an electricity-induced mouse thrombosis model. Molecular docking and dynamics simulation further revealed that the hydroxyl-substituted benzopyrone moiety of galangin deeply inserted into the interface between the PDI-b' substrate-binding pocket and the a' domain. Together, these findings provide a potential antithrombotic drug candidate and demonstrate that the PDI b' domain is a critical domain for inhibitor development. Besides, we also report an innovative high-throughput screening method for the rapid discovery of PDI b' targeted inhibitors.
Collapse
Affiliation(s)
- Chenghui Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Meiqin Cai
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Yanyan Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Wei Fu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Juhong Wu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Yurong Liu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Xinyuan Liao
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Jiamin Ning
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| |
Collapse
|
37
|
Zhang Y, Miao Q, Shi S, Hao H, Li X, Pu Z, Yang Y, An H, Zhang W, Kong Y, Pang X, Gu C, Gamper N, Wu Y, Zhang H, Du X. Protein disulfide isomerase modulation of TRPV1 controls heat hyperalgesia in chronic pain. Cell Rep 2022; 39:110625. [PMID: 35385753 DOI: 10.1016/j.celrep.2022.110625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Protein disulfide isomerase (PDI) plays a key role in maintaining cellular homeostasis by mediating protein folding via catalyzing disulfide bond formation, breakage, and rearrangement in the endoplasmic reticulum. Increasing evidence suggests that PDI can be a potential treatment target for several diseases. However, the function of PDI in the peripheral sensory nervous system is unclear. Here we report the expression and secretion of PDI from primary sensory neurons is upregulated in inflammatory and neuropathic pain models. Deletion of PDI in nociceptive DRG neurons results in a reduction in inflammatory and neuropathic heat hyperalgesia. We demonstrate that secreted PDI activates TRPV1 channels through oxidative modification of extracellular cysteines of the channel, indicating that PDI acts as an unconventional positive modulator of TRPV1. These findings suggest that PDI in primary sensory neurons plays an important role in development of heat hyperalgesia and can be a potential therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Yongxue Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Pharmacy, The First Hospital of Handan, Handan, Hebei, China
| | - Qi Miao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sai Shi
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, Hebei, China
| | - Han Hao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinmeng Li
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zeyao Pu
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yakun Yang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, Hebei, China
| | - Wei Zhang
- Department of Spinal Surgery of the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Youzhen Kong
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xu Pang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Cunyang Gu
- Department of Pathology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Nikita Gamper
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China; Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, UK
| | - Yi Wu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China.
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
38
|
Bakshi T, Pham D, Kaur R, Sun B. Hidden Relationships between N-Glycosylation and Disulfide Bonds in Individual Proteins. Int J Mol Sci 2022; 23:ijms23073742. [PMID: 35409101 PMCID: PMC8998389 DOI: 10.3390/ijms23073742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
N-Glycosylation (NG) and disulfide bonds (DBs) are two prevalent co/post-translational modifications (PTMs) that are often conserved and coexist in membrane and secreted proteins involved in a large number of diseases. Both in the past and in recent times, the enzymes and chaperones regulating these PTMs have been constantly discovered to directly interact with each other or colocalize in the ER. However, beyond a few model proteins, how such cooperation affects N-glycan modification and disulfide bonding at selective sites in individual proteins is largely unknown. Here, we reviewed the literature to discover the current status in understanding the relationships between NG and DBs in individual proteins. Our results showed that more than 2700 human proteins carry both PTMs, and fewer than 2% of them have been investigated in the associations between NG and DBs. We summarized both these proteins with the reported relationships in the two PTMs and the tools used to discover the relationships. We hope that, by exposing this largely understudied field, more investigations can be encouraged to unveil the hidden relationships of NG and DBs in the majority of membranes and secreted proteins for pathophysiological understanding and biotherapeutic development.
Collapse
Affiliation(s)
- Tania Bakshi
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - David Pham
- Department of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Raminderjeet Kaur
- Faculty of Health Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Bingyun Sun
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence:
| |
Collapse
|
39
|
Miyahara H, Hasegawa K, Yashiro M, Ohara T, Fujisawa M, Yoshimura T, Matsukawa A, Tsukahara H. Thioredoxin interacting protein protects mice from fasting induced liver steatosis by activating ER stress and its downstream signaling pathways. Sci Rep 2022; 12:4819. [PMID: 35314758 PMCID: PMC8938456 DOI: 10.1038/s41598-022-08791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Under normal conditions, fasting results in decreased protein disulfide isomerase (PDI) activity and accumulation of unfolded proteins, leading to the subsequent activation of the unfolded protein response (UPR)/autophagy signaling pathway to eliminate damaged mitochondria. Fasting also induces upregulation of thioredoxin-interacting protein (TXNIP) expression and mice deficient of this protein (TXNIP-KO mice) was shown to develop severe hypoglycemia, hyperlipidemia and liver steatosis (LS). In the present study, we aimed to determine the role of TXNIP in fasting-induced LS by using male TXNIP-KO mice that developed LS without severe hypoglycemia. In TXNIP-KO mice, fasting induced severe microvesicular LS. Examinations by transmission electron microscopy revealed mitochondria with smaller size and deformities and the presence of few autophagosomes. The expression of β-oxidation-associated genes remained at the same level and the level of LC3-II was low. PDI activity level stayed at the original level and the levels of p-IRE1 and X-box binding protein 1 spliced form (sXBP1) were lower. Interestingly, treatment of TXNIP-KO mice with bacitracin, a PDI inhibitor, restored the level of LC3-II after fasting. These results suggest that TXNIP regulates PDI activity and subsequent activation of the UPR/autophagy pathway and plays a protective role in fasting-induced LS.
Collapse
Affiliation(s)
- Hiroyuki Miyahara
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan. .,Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Kosei Hasegawa
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masato Yashiro
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
40
|
Freije BJ, Freije WM, Do TU, Adkins GE, Bruch A, Hurtig JE, Morano KA, Schaffrath R, West JD. Identifying Interaction Partners of Yeast Protein Disulfide Isomerases Using a Small Thiol-Reactive Cross-Linker: Implications for Secretory Pathway Proteostasis. Chem Res Toxicol 2022; 35:326-336. [PMID: 35084835 PMCID: PMC8860869 DOI: 10.1021/acs.chemrestox.1c00376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein disulfide isomerases (PDIs) function in forming the correct disulfide bonds in client proteins, thereby aiding the folding of proteins that enter the secretory pathway. Recently, several PDIs have been identified as targets of organic electrophiles, yet the client proteins of specific PDIs remain largely undefined. Here, we report that PDIs expressed in Saccharomyces cerevisiae are targets of divinyl sulfone (DVSF) and other thiol-reactive protein cross-linkers. Using DVSF, we identified the interaction partners that were cross-linked to Pdi1 and Eug1, finding that both proteins form cross-linked complexes with other PDIs, as well as vacuolar hydrolases, proteins involved in cell wall biosynthesis and maintenance, and many ER proteostasis factors involved ER stress signaling and ER-associated protein degradation (ERAD). The latter discovery prompted us to examine the effects of DVSF on ER quality control, where we found that DVSF inhibits the degradation of the ERAD substrate CPY*, in addition to covalently modifying Ire1 and blocking the activation of the unfolded protein response. Our results reveal that DVSF targets many proteins within the ER proteostasis network and suggest that these proteins may be suitable targets for covalent therapeutic development in the future.
Collapse
Affiliation(s)
- Benjamin J. Freije
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA
| | - Wilson M. Freije
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA
| | - To Uyen Do
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA
| | - Grace E. Adkins
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA
| | - Alexander Bruch
- Fachgebiet Mikrobiologie; Institut für Biologie; Universität Kassel; Kassel, Germany
| | - Jennifer E. Hurtig
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA,Department of Microbiology & Molecular Genetics; McGovern Medical School; University of Texas at Houston; Houston, TX USA
| | - Kevin A. Morano
- Department of Microbiology & Molecular Genetics; McGovern Medical School; University of Texas at Houston; Houston, TX USA
| | - Raffael Schaffrath
- Fachgebiet Mikrobiologie; Institut für Biologie; Universität Kassel; Kassel, Germany
| | - James D. West
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA,Corresponding author , phone: 330-263-2368
| |
Collapse
|
41
|
Chichiarelli S, Altieri F, Paglia G, Rubini E, Minacori M, Eufemi M. ERp57/PDIA3: new insight. Cell Mol Biol Lett 2022; 27:12. [PMID: 35109791 PMCID: PMC8809632 DOI: 10.1186/s11658-022-00315-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
The ERp57/PDIA3 protein is a pleiotropic member of the PDIs family and, although predominantly located in the endoplasmic reticulum (ER), has indeed been found in other cellular compartments, such as the nucleus or the cell membrane. ERp57/PDIA3 is an important research target considering it can be found in various subcellular locations. This protein is involved in many different physiological and pathological processes, and our review describes new data on its functions and summarizes some ligands identified as PDIA3-specific inhibitors.
Collapse
Affiliation(s)
- Silvia Chichiarelli
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy.
| | - Fabio Altieri
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Giuliano Paglia
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy.,Enrico Ed Enrica Sovena" Foundation, Rome, Italy
| | - Marco Minacori
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Margherita Eufemi
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| |
Collapse
|
42
|
Chen T, Yang C, Yang M, Kuo T, Chang CL, Chen C, Lee T, Yang G, Yang W, Chiu C, Yu AY. Protein disulfide isomerase a4 promotes lung cancer development via the Stat3 pathway in stromal cells. Clin Transl Med 2022; 12:e606. [PMID: 35170261 PMCID: PMC8847735 DOI: 10.1002/ctm2.606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Protein disulfide isomerases a4 (Pdia4) is known to be involved in cancer development. Our previous publication showed that Pdia4 positively promotes cancer development via its inhibition of procaspase-dependent apoptosis in cancer cells. However, nothing is known about its role in the cancer microenvironment. RESULTS Here, we first found that Pdia4 expression in lung cancer was negatively correlated with patient survival. Next, we investigated the impact of host Pdia4 in stromal cells during cancer development. We showed that Pdia4 was expressed at a low level in stromal cells, and this expression was up-regulated akin to its expression in cancer cells. This up-regulation was stimulated by tumour cell-derived stimuli. Genetics studies in tumour-bearing wild-type and Pdia4-/- mice showed that host Pdia4 promoted lung cancer development in the mice via cancer stroma. This promotion was abolished in Rag1-/- mice which lacked T and B cells. This promotion could be restored once T and B cells were added back to Rag1-/- mice. In addition, host Pdia4 positively regulated the number and immunosuppressive function of stromal cells. Mechanistic studies showed that host Pdia4 positively controlled the Stat3/Vegf pathway in T and B lymphocytes via its stabilization of activated Stat3 in a Thioredoxin-like domain (CGHC)-dependent manner. CONCLUSIONS These findings identify Pdia4 as a possible target for intervention in cancer stroma, suggesting that targeting Pdia4 in cancer stroma is a promising anti-cancer approach.
Collapse
Affiliation(s)
- Tzung‐Yan Chen
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
- Institute of BiotechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Chun‐Yen Yang
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan
| | - Meng‐Ting Yang
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Tien‐Fen Kuo
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | | | - Chih‐Li Chen
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Tsung‐Han Lee
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan
| | - Greta Yang
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Wen‐Chin Yang
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
- Institute of BiotechnologyNational Taiwan UniversityTaipeiTaiwan
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan
- Institute of PharmacologyNational Yang‐Ming UniversityTaipeiTaiwan
- Graduate Institute of Integrated MedicineChina Medical UniversityTaichungTaiwan
| | - Ching‐Feng Chiu
- Graduate Institute of Metabolism and Obesity SciencesCollege of NutritionTaipei Medical UniversityTaipeiTaiwan
| | - Alex Yang‐Hao Yu
- Division of Pulmonology, Chang‐Hua HospitalMinistry of Health and WelfareChanghuaTaiwan
| |
Collapse
|
43
|
Yang Z, Wang H, Liu Y, Feng Y, Xiang Y, Li J, Shan Z, Teng W. The expression of anti-protein disulfide isomerase A3 autoantibody is associated with the increased risk of miscarriage in euthyroid women with thyroid autoimmunity. Int Immunopharmacol 2022; 104:108507. [PMID: 34996009 DOI: 10.1016/j.intimp.2021.108507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
Miscarriage frequently occurs in euthyroid women with thyroid autoimmunity (TAI), but its mechanisms remain unclear. Our previous study has found that the serum level of anti-protein disulfide isomerase A3 autoantibody (PDIA3Ab) was significantly increased in mice with TAI. This study was aimed to explore whether there could be an association between the expression of PDIA3Ab and the occurrence of miscarriage in euthyroid TAI women. It was found that the serum level of PDIA3Ab was significantly increased in euthyroid TAI women as compared with that of non-TAI controls. Especially, serum PDIA3Ab level was markedly higher in euthyroid TAI women with miscarriage than the ones without miscarriage. Furthermore, binary logistic regression analysis showed that the serum PDIA3Ab level was an independent risk factor for spontaneous abortion in euthyroid TAI women with an odds ratio of 13.457 (95% CI, 2.965-61.078). The receiver operating characteristic (ROC) analysis of serum PDIA3Ab expression for predicting the miscarriage in euthyroid TAI women showed that the area under the curve was 0.707 ± 0.05 (P < 0.001). The optimal cut-off OD450 value of serum PDIA3Ab was 0.7129 with a sensitivity of 52.5% and specificity of 86.3% in euthyroid TAI women. Trend test showed that the prevalence of spontaneous abortion was markedly increased with the rise of serum PDIA3Ab level among TAI women in a titer-dependent manner. In conclusion, serum PDIA3Ab expression may imply an increased risk of spontaneous abortion in euthyroid TAI women, and it can be used as a new predictive bio-marker.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Haoyu Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Yifu Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Yan Feng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China; Gastroenterology Tumor and Microenvironment Laboratory, Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610000, PR China
| | - Yang Xiang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China; Department of Endocrinology, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, PR China
| | - Jing Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| |
Collapse
|
44
|
Li H, Sun S. Protein Aggregation in the ER: Calm behind the Storm. Cells 2021; 10:cells10123337. [PMID: 34943844 PMCID: PMC8699410 DOI: 10.3390/cells10123337] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
As one of the largest organelles in eukaryotic cells, the endoplasmic reticulum (ER) plays a vital role in the synthesis, folding, and assembly of secretory and membrane proteins. To maintain its homeostasis, the ER is equipped with an elaborate network of protein folding chaperones and multiple quality control pathways whose cooperative actions safeguard the fidelity of protein biogenesis. However, due to genetic abnormalities, the error-prone nature of protein folding and assembly, and/or defects or limited capacities of the protein quality control systems, nascent proteins may become misfolded and fail to exit the ER. If not cleared efficiently, the progressive accumulation of misfolded proteins within the ER may result in the formation of toxic protein aggregates, leading to the so-called “ER storage diseases”. In this review, we first summarize our current understanding of the protein folding and quality control networks in the ER, including chaperones, unfolded protein response (UPR), ER-associated protein degradation (ERAD), and ER-selective autophagy (ER-phagy). We then survey recent research progress on a few ER storage diseases, with a focus on the role of ER quality control in the disease etiology, followed by a discussion on outstanding questions and emerging concepts in the field.
Collapse
Affiliation(s)
- Haisen Li
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Shengyi Sun
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
45
|
Vascular thiol isomerases: Structures, regulatory mechanisms, and inhibitor development. Drug Discov Today 2021; 27:626-635. [PMID: 34757205 DOI: 10.1016/j.drudis.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Vascular thiol isomerases (VTIs), including PDI, ERp5, ERp57, ERp72, and thioredoxin-related transmembrane protein 1 (TMX1), have important roles in platelet aggregation and thrombosis. Research on VTIs, their substrates in thrombosis, their regulatory mechanisms, and inhibitor development is an emerging and rapidly evolving area in vascular biology. Here, we describe the structures and functions of VTIs, summarize the relationship between the vascular TIs and thrombosis, and focus on the development of VTI inhibitors for antithrombotic applications.
Collapse
|
46
|
Matsusaki M, Okada R, Tanikawa Y, Kanemura S, Ito D, Lin Y, Watabe M, Yamaguchi H, Saio T, Lee YH, Inaba K, Okumura M. Functional Interplay between P5 and PDI/ERp72 to Drive Protein Folding. BIOLOGY 2021; 10:biology10111112. [PMID: 34827105 PMCID: PMC8615271 DOI: 10.3390/biology10111112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
P5 is one of protein disulfide isomerase family proteins (PDIs) involved in endoplasmic reticulum (ER) protein quality control that assists oxidative folding, inhibits protein aggregation, and regulates the unfolded protein response. P5 reportedly interacts with other PDIs via intermolecular disulfide bonds in cultured cells, but it remains unclear whether complex formation between P5 and other PDIs is involved in regulating enzymatic and chaperone functions. Herein, we established the far-western blot method to detect non-covalent interactions between P5 and other PDIs and found that PDI and ERp72 are partner proteins of P5. The enzymatic activity of P5-mediated oxidative folding is up-regulated by PDI, while the chaperone activity of P5 is stimulated by ERp72. These findings shed light on the mechanism by which the complex formations among PDIs drive to synergistically accelerate protein folding and prevents aggregation. This knowledge has implications for understanding misfolding-related pathology.
Collapse
Affiliation(s)
- Motonori Matsusaki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3, Aramakiaza Aoba, Aoba-ku, Sendai 980-8578, Japan; (M.M.); (S.K.); (M.W.)
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan;
| | - Rina Okada
- School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda 669-1337, Japan; (R.O.); (Y.T.); (H.Y.)
| | - Yuya Tanikawa
- School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda 669-1337, Japan; (R.O.); (Y.T.); (H.Y.)
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3, Aramakiaza Aoba, Aoba-ku, Sendai 980-8578, Japan; (M.M.); (S.K.); (M.W.)
- School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda 669-1337, Japan; (R.O.); (Y.T.); (H.Y.)
| | - Dai Ito
- Department of Brain and Cognitive Science, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang Daero, Daegu 42988, Korea;
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si 28119, Korea; (Y.L.); (Y.-H.L.)
| | - Mai Watabe
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3, Aramakiaza Aoba, Aoba-ku, Sendai 980-8578, Japan; (M.M.); (S.K.); (M.W.)
| | - Hiroshi Yamaguchi
- School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda 669-1337, Japan; (R.O.); (Y.T.); (H.Y.)
| | - Tomohide Saio
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan;
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si 28119, Korea; (Y.L.); (Y.-H.L.)
- Bio-Analytical Science, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
- Research Headquarters, Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu 41068, Korea
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan;
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3, Aramakiaza Aoba, Aoba-ku, Sendai 980-8578, Japan; (M.M.); (S.K.); (M.W.)
- Correspondence: ; Tel.: +81-22-795-5764
| |
Collapse
|
47
|
Mikami R, Tsukagoshi S, Arai K. Abnormal Enhancement of Protein Disulfide Isomerase-like Activity of a Cyclic Diselenide Conjugated with a Basic Amino Acid by Inserting a Glycine Spacer. BIOLOGY 2021; 10:biology10111090. [PMID: 34827083 PMCID: PMC8615077 DOI: 10.3390/biology10111090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
In a previous study, we reported that (S)-1,2-diselenane-4-amine (1) catalyzes oxidative protein folding through protein disulfide isomerase (PDI)-like catalytic mechanisms and that the direct conjugation of a basic amino acid (Xaa: His, Lys, or Arg) via an amide bond improves the catalytic activity of 1 by increasing its diselenide (Se–Se) reduction potential (E′°). In this study, to modulate the Se–Se redox properties and the association of the compounds with a protein substrate, new catalysts, in which a Gly spacer was inserted between 1 and Xaa, were synthesized. Exhaustive comparison of the PDI-like catalytic activities and E′° values among 1, 1-Xaa, and 1-Gly-Xaa showed that the insertion of a Gly spacer into 1-Xaa either did not change or slightly reduced the PDI-like activity and the E′° values. Importantly, however, only 1-Gly-Arg deviated from this generality and showed obviously increased E°′ value and PDI-like activity compared to the corresponding compound with no Gly spacer (1-Arg); on the contrary, its catalytic activity was the highest among the diselenide compounds employed in this study, while this abnormal enhancement of the catalytic activity of 1-Gly-Arg could not be fully explained by the thermodynamics of the Se–Se bond and its association ability with protein substrates.
Collapse
|
48
|
Powers ET, Gierasch LM. The Proteome Folding Problem and Cellular Proteostasis. J Mol Biol 2021; 433:167197. [PMID: 34391802 DOI: 10.1016/j.jmb.2021.167197] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
Stunning advances have been achieved in addressing the protein folding problem, providing deeper understanding of the mechanisms by which proteins navigate energy landscapes to reach their native states and enabling powerful algorithms to connect sequence to structure. However, the realities of the in vivo protein folding problem remain a challenge to reckon with. Here, we discuss the concept of the "proteome folding problem"-the problem of how organisms build and maintain a functional proteome-by admitting that folding energy landscapes are characterized by many misfolded states and that cells must deploy a network of chaperones and degradation enzymes to minimize deleterious impacts of these off-pathway species. The resulting proteostasis network is an inextricable part of in vivo protein folding and must be understood in detail if we are to solve the proteome folding problem. We discuss how the development of computational models for the proteostasis network's actions and the relationship to the biophysical properties of the proteome has begun to offer new insights and capabilities.
Collapse
Affiliation(s)
- Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Lila M Gierasch
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
49
|
Fujii J. Ascorbate is a multifunctional micronutrient whose synthesis is lacking in primates. J Clin Biochem Nutr 2021; 69:1-15. [PMID: 34376908 PMCID: PMC8325764 DOI: 10.3164/jcbn.20-181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Ascorbate (vitamin C) is an essential micronutrient in primates, and exhibits multiple physiological functions. In addition to antioxidative action, ascorbate provides reducing power to α-ketoglutarate-dependent non-heme iron dioxygenases, such as prolyl hydroxylases. Demethylation of histones and DNA with the aid of ascorbate results in the reactivation of epigenetically silenced genes. Ascorbate and its oxidized form, dehydroascorbate, have attracted interest in terms of their roles in cancer therapy. The last step in the biosynthesis of ascorbate is catalyzed by l-gulono-γ-lactone oxidase whose gene Gulo is commonly mutated in all animals that do not synthesize ascorbate. One common explanation for this deficiency is based on the increased availability of ascorbate from foods. In fact, pathways for ascorbate synthesis and the detoxification of xenobiotics by glucuronate conjugation share the metabolic processes up to UDP-glucuronate, which prompts another hypothesis, namely, that ascorbate-incompetent animals might have developed stronger detoxification systems in return for their lack of ability to produce ascorbate, which would allow them to cope with their situation. Here, we overview recent advances in ascorbate research and propose that an enhanced glucuronate conjugation reaction may have applied positive selection pressure on ascorbate-incompetent animals, thus allowing them to dominate the animal kingdom.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
50
|
Meng J, Wang L, Wang C, Zhao G, Wang H, Xu B, Guo X. AccPDIA6 from Apis cerana cerana plays important roles in antioxidation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104830. [PMID: 33993956 DOI: 10.1016/j.pestbp.2021.104830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
PDIA6 is a member of the protein disulfide isomerase (PDI) family, shows disulfide isomerase activity and oxidoreductase activity, and can act as a molecular chaperone. Its biological functions include modulating apoptosis, regulating the proliferation and invasion of cancer cells, supporting thrombosis and modulating insulin secretion. However, the roles of PDIA6 in Apis cerana cerana are poorly understood. Herein, we obtained the PDIA6 gene from A. cerana cerana (AccPDIA6). We investigated the expression patterns of AccPDIA6 in response to oxidative stress induced by H2O2, UV, HgCl2, extreme temperatures (4 °C, 42 °C) and pesticides (thiamethoxam and hexythiazox) and found that AccPDIA6 was upregulated by these treatments. Western blot analysis indicated that AccPDIA6 was also upregulated by oxidative stress at the protein level. In addition, a survival test demonstrated that the survival rate of E. coli cells expressing AccPDIA6 increased under oxidative stress, suggesting a possible antioxidant function of AccPDIA6. In addition, we tested the transcripts of other antioxidant genes and found that some of them were downregulated in AccPDIA6 knockdown samples. It was also discovered that the antioxidant enzymatic activity of superoxide dismutase (SOD) decreased in AccPDIA6-silenced bees. Moreover, the survival rate of AccPDIA6 knockdown bees decreased under oxidative stress, implying that AccPDIA6 may function in the oxidative stress response by enhancing the viability of honeybees. Taken together, these results indicated that AccPDIA6 may play an essential role in counteracting oxidative stress.
Collapse
Affiliation(s)
- Jie Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|