1
|
Zuo Y, Li B, Gao M, Xiong R, He R, Li N, Geng Q. Novel insights and new therapeutic potentials for macrophages in pulmonary hypertension. Respir Res 2024; 25:147. [PMID: 38555425 PMCID: PMC10981837 DOI: 10.1186/s12931-024-02772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Inflammation and immune processes underlie pulmonary hypertension progression. Two main different activated phenotypes of macrophages, classically activated M1 macrophages and alternatively activated M2 macrophages, are both involved in inflammatory processes related to pulmonary hypertension. Recent advances suggest that macrophages coordinate interactions among different proinflammatory and anti-inflammatory mediators, and other cellular components such as smooth muscle cells and fibroblasts. In this review, we summarize the current literature on the role of macrophages in the pathogenesis of pulmonary hypertension, including the origin of pulmonary macrophages and their response to triggers of pulmonary hypertension. We then discuss the interactions among macrophages, cytokines, and vascular adventitial fibroblasts in pulmonary hypertension, as well as the potential therapeutic benefits of macrophages in this disease. Identifying the critical role of macrophages in pulmonary hypertension will contribute to a comprehensive understanding of this pathophysiological abnormality, and may provide new perspectives for pulmonary hypertension management.
Collapse
Affiliation(s)
- Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
2
|
Lichawska-Cieslar A, Szukala W, Prajsnar TK, Pooranachandran N, Kulecka M, Dabrowska M, Mikula M, Rakus K, Chadzinska M, Jura J. MCPIP1 functions as a safeguard of early embryonic development. Sci Rep 2023; 13:16944. [PMID: 37805647 PMCID: PMC10560294 DOI: 10.1038/s41598-023-44294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023] Open
Abstract
Monocyte chemoattractant protein-induced protein 1 (MCPIP1), also called Regnase-1, is an RNase that has been described as a key negative modulator of inflammation. MCPIP1 also controls numerous tumor-related processes, such as proliferation, apoptosis and differentiation. In this study, we utilized a zebrafish model to investigate the role of Mcpip1 during embryogenic development. Our results demonstrated that during embryogenesis, the expression of the zc3h12a gene encoding Mcpip1 undergoes dynamic changes. Its transcript levels gradually increase from the 2-cell stage to the spherical stage and then decrease rapidly. We further found that ectopic overexpression of wild-type Mcpip1 but not the catalytically inactive mutant form resulted in an embryonic lethal phenotype in zebrafish embryos (24 hpf). At the molecular level, transcriptomic profiling revealed extensive changes in the expression of genes encoding proteins important in the endoplasmic reticulum stress response and in protein folding as well as involved in the formation of primary germ layer, mesendoderm and endoderm development, heart morphogenesis and cell migration. Altogether, our results demonstrate that the expression of zc3h12a must be tightly controlled during the first cell divisions of zebrafish embryos and that a rapid decrease in its mRNA expression is an important factor promoting proper embryo development.
Collapse
Affiliation(s)
- Agata Lichawska-Cieslar
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Weronika Szukala
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Kraków, Poland
| | - Tomasz K Prajsnar
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Niedharsan Pooranachandran
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Maria Kulecka
- Medical Center for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Marymoncka 99/103, 01-813, Warsaw, Poland
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Michalina Dabrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Michal Mikula
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
3
|
Momin T, Villasenor A, Singh A, Darweesh M, Singh A, Rajput M. ZFP36 ring finger protein like 1 significantly suppresses human coronavirus OC43 replication. PeerJ 2023; 11:e14776. [PMID: 36846448 PMCID: PMC9948753 DOI: 10.7717/peerj.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/03/2023] [Indexed: 02/22/2023] Open
Abstract
CCCH-type zinc figure proteins (ZFP) are small cellular proteins that are structurally maintained by zinc ions. Zinc ions coordinate the protein structure in a tetrahedral geometry by binding to cystine-cystine or cysteines-histidine amino acids. ZFP's unique structure enables it to interact with a wide variety of molecules including RNA; thus, ZFP modulates several cellular processes including the host immune response and virus replication. CCCH-type ZFPs have shown their antiviral efficacy against several DNA and RNA viruses. However, their role in the human coronavirus is little explored. We hypothesized that ZFP36L1 also suppresses the human coronavirus. To test our hypothesis, we used OC43 human coronavirus (HCoV) strain in our study. We overexpressed and knockdown ZFP36L1 in HCT-8 cells using lentivirus transduction. Wild type, ZFP36L1 overexpressed, and ZFP36L1 knockdown cells were each infected with HCoV-OC43, and the virus titer in each cell line was measured over 96 hours post-infection (p.i.). Our results show that HCoV-OC43 replication was significantly reduced with ZFP36L1 overexpression while ZFP36L1 knockdown significantly enhanced virus replication. ZFP36L1 knockdown HCT-8 cells started producing infectious virus at 48 hours p.i. which was an earlier timepoint as compared to wild -type and ZFP36L1 overexpressed cells. Wild-type and ZFP36L1 overexpressed HCT-8 cells started producing infectious virus at 72 hours p.i. Overall, the current study showed that overexpression of ZFP36L1 suppressed human coronavirus (OC43) production.
Collapse
Affiliation(s)
- Tooba Momin
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| | - Andrew Villasenor
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| | - Mahmoud Darweesh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Uppsala, Sweden
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhr University, Assiut, Egypt
| | - Aditi Singh
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| | - Mrigendra Rajput
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| |
Collapse
|
4
|
Darweesh M, Younis S, Hajikhezri Z, Ali A, Jin C, Punga T, Gupta S, Essand M, Andersson L, Akusjärvi G. ZC3H11A loss of function enhances NF-κB signaling through defective IκBα protein expression. Front Immunol 2022; 13:1002823. [PMID: 36439101 PMCID: PMC9681899 DOI: 10.3389/fimmu.2022.1002823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2023] Open
Abstract
ZC3H11A is a cellular protein associated with the transcription export (TREX) complex that is induced during heat-shock. Several nuclear-replicating viruses exploit the mRNA export mechanism of ZC3H11A protein for their efficient replication. Here we show that ZC3H11A protein plays a role in regulation of NF-κB signal transduction. Depletion of ZC3H11A resulted in enhanced NF-κB mediated signaling, with upregulation of numerous innate immune related mRNAs, including IL-6 and a large group of interferon-stimulated genes. IL-6 upregulation in the absence of the ZC3H11A protein correlated with an increased NF-κB transcription factor binding to the IL-6 promoter and decreased IL-6 mRNA decay. The enhanced NF-κB signaling pathway in ZC3H11A deficient cells correlated with a defect in IκBα inhibitory mRNA and protein accumulation. Upon ZC3H11A depletion The IκBα mRNA was retained in the cell nucleus resulting in failure to maintain normal levels of the cytoplasmic IκBα mRNA and protein that is essential for its inhibitory feedback loop on NF-κB activity. These findings indicate towards a previously unknown mechanism of ZC3H11A in regulating the NF-κB pathway at the level of IkBα mRNA export.
Collapse
Affiliation(s)
- Mahmoud Darweesh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alazhr University, Assiut, Egypt
| | - Shady Younis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States
| | - Zamaneh Hajikhezri
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Arwa Ali
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Chuan Jin
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Soham Gupta
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Wadowska M, Dobosz E, Golda A, Bryzek D, Lech M, Fu M, Koziel J. MCP-Induced Protein 1 Participates in Macrophage-Dependent Endotoxin Tolerance. THE JOURNAL OF IMMUNOLOGY 2022; 209:1348-1358. [DOI: 10.4049/jimmunol.2101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/28/2022] [Indexed: 11/06/2022]
|
6
|
Sobańska D, Komur AA, Chabowska-Kita A, Gumna J, Kumari P, Pachulska-Wieczorek K, Ciosk R. The silencing of ets-4 mRNA relies on the functional cooperation between REGE-1/Regnase-1 and RLE-1/Roquin-1. Nucleic Acids Res 2022; 50:8226-8239. [PMID: 35819231 PMCID: PMC9371910 DOI: 10.1093/nar/gkac609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Regnase-1 is an evolutionarily conserved endoribonuclease. It degrades diverse mRNAs important for many biological processes including immune homeostasis, development and cancer. There are two competing models of Regnase-1-mediated mRNA silencing. One model postulates that Regnase-1 works together with another RNA-binding protein, Roquin-1, which recruits Regnase-1 to specific mRNAs. The other model proposes that the two proteins function separately. Studying REGE-1, the Caenorhabditis elegans ortholog of Regnase-1, we have uncovered its functional relationship with RLE-1, the nematode counterpart of Roquin-1. While both proteins are essential for mRNA silencing, REGE-1 and RLE-1 appear to associate with target mRNA independently of each other. Thus, although the functional interdependence between REGE-1/Regnase-1 and RLE-1/Roquin-1 is conserved, the underlying mechanisms may display species-specific variation, providing a rare perspective on the evolution of this important post-transcriptional regulatory mechanism.
Collapse
Affiliation(s)
- Daria Sobańska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Alicja A Komur
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | | | - Julita Gumna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Pooja Kumari
- Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | | | - Rafal Ciosk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland.,Department of Biosciences, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
7
|
Hildenbrand K, Aschenbrenner I, Franke FC, Devergne O, Feige MJ. Biogenesis and engineering of interleukin 12 family cytokines. Trends Biochem Sci 2022; 47:936-949. [PMID: 35691784 DOI: 10.1016/j.tibs.2022.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Interleukin 12 (IL-12) family cytokines are secreted proteins that regulate immune responses. Each family member is a heterodimer and nature uses shared building blocks to assemble the functionally distinct IL-12 cytokines. In recent years we have gained insights into the molecular principles and cellular regulation of IL-12 family biogenesis. For each of the family members, generally one subunit depends on its partner to acquire its native structure and be secreted from immune cells. If unpaired, molecular chaperones retain these subunits in cells. This allows cells to regulate and control secretion of the highly potent IL-12 family cytokines. Molecular insights gained into IL-12 family biogenesis, structure, and function now allow us to engineer IL-12 family cytokines to develop novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Karen Hildenbrand
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Isabel Aschenbrenner
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Fabian C Franke
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Odile Devergne
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), 75 013 Paris, France.
| | - Matthias J Feige
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
8
|
MCPIP1 regulates focal adhesion kinase and rho GTPase-dependent migration in clear cell renal cell carcinoma. Eur J Pharmacol 2022; 922:174804. [DOI: 10.1016/j.ejphar.2022.174804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/18/2022]
|
9
|
Ribeiro A, Dobosz E, Krill M, Köhler P, Wadowska M, Steiger S, Schmaderer C, Koziel J, Lech M. Macrophage-Specific MCPIP1/Regnase-1 Attenuates Kidney Ischemia-Reperfusion Injury by Shaping the Local Inflammatory Response and Tissue Regeneration. Cells 2022; 11:cells11030397. [PMID: 35159206 PMCID: PMC8834155 DOI: 10.3390/cells11030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Sterile inflammation either resolves the initial insult or leads to tissue damage. Kidney ischemia/reperfusion injury (IRI) is associated with neutrophilic infiltration, enhanced production of inflammatory mediators, accumulation of necrotic cells and tissue remodeling. Macrophage-dependent microenvironmental changes orchestrate many features of the immune response and tissue regeneration. The activation status of macrophages is influenced by extracellular signals, the duration and intensity of the stimulation, as well as various regulatory molecules. The role of macrophage-derived monocyte chemoattractant protein-induced protein 1 (MCPIP1), also known as Regnase-1, in kidney ischemia-reperfusion injury (IRI) and recovery from sterile inflammation remains unresolved. In this study, we showed that macrophage-specific Mcpip1 deletion significantly affects the kidney phenotype. Macrophage-specific Mcpip1 transgenic mice displayed enhanced inflammation and loss of the tubular compartment upon IRI. We showed that MCPIP1 modulates sterile inflammation by negative regulation of Irf4 expression and accumulation of IRF4+ cells in the tissue and, consequently, suppresses the post-ischemic kidney immune response. Thus, we identified MCPIP1 as an important molecular sentinel of immune homeostasis in experimental acute kidney injury (AKI) and renal fibrosis.
Collapse
Affiliation(s)
- Andrea Ribeiro
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, 80336 Munich, Germany;
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (E.D.); (M.W.); (J.K.)
| | - Moritz Krill
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
| | - Paulina Köhler
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
| | - Marta Wadowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (E.D.); (M.W.); (J.K.)
| | - Stefanie Steiger
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, 80336 Munich, Germany;
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (E.D.); (M.W.); (J.K.)
| | - Maciej Lech
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
- Correspondence:
| |
Collapse
|
10
|
Jin Z, Zheng E, Sareli C, Kolattukudy PE, Niu J. Monocyte Chemotactic Protein-Induced Protein 1 (MCPIP-1): A Key Player of Host Defense and Immune Regulation. Front Immunol 2021; 12:727861. [PMID: 34659213 PMCID: PMC8519509 DOI: 10.3389/fimmu.2021.727861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/08/2021] [Indexed: 01/14/2023] Open
Abstract
Inflammatory response is a host-protective mechanism against tissue injury or infections, but also has the potential to cause extensive immunopathology and tissue damage, as seen in many diseases, such as cardiovascular diseases, neurodegenerative diseases, metabolic syndrome and many other infectious diseases with public health concerns, such as Coronavirus Disease 2019 (COVID-19), if failure to resolve in a timely manner. Recent studies have uncovered a superfamily of endogenous chemical molecules that tend to resolve inflammatory responses and re-establish homeostasis without causing excessive damage to healthy cells and tissues. Among these, the monocyte chemoattractant protein-induced protein (MCPIP) family consisting of four members (MCPIP-1, -2, -3, and -4) has emerged as a group of evolutionarily conserved molecules participating in the resolution of inflammation. The focus of this review highlights the biological functions of MCPIP-1 (also known as Regnase-1), the best-studied member of this family, in the resolution of inflammatory response. As outlined in this review, MCPIP-1 acts on specific signaling pathways, in particular NFκB, to blunt production of inflammatory mediators, while also acts as an endonuclease controlling the stability of mRNA and microRNA (miRNA), leading to the resolution of inflammation, clearance of virus and dead cells, and promotion of tissue regeneration via its pleiotropic effects. Evidence from transgenic and knock-out mouse models revealed an involvement of MCPIP-1 expression in immune functions and in the physiology of the cardiovascular system, indicating that MCPIP-1 is a key endogenous molecule that governs normal resolution of acute inflammation and infection. In this review, we also discuss the current evidence underlying the roles of other members of the MCPIP family in the regulation of inflammatory processes. Further understanding of the proteins from this family will provide new insights into the identification of novel targets for both host effectors and microbial factors and will lead to new therapeutic treatments for infections and other inflammatory diseases.
Collapse
Affiliation(s)
- Zhuqing Jin
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - En Zheng
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Candice Sareli
- Office of Human Research, Memorial Healthcare System, Hollywood, FL, United States
| | - Pappachan E Kolattukudy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Jianli Niu
- Office of Human Research, Memorial Healthcare System, Hollywood, FL, United States.,Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| |
Collapse
|
11
|
Jin Z, Liang J, Kolattukudy PE. Tetramethylpyrazine Preserves the Integrity of Blood-Brain Barrier Associated With Upregulation of MCPIP1 in a Murine Model of Focal Ischemic Stroke. Front Pharmacol 2021; 12:710358. [PMID: 34393790 PMCID: PMC8355423 DOI: 10.3389/fphar.2021.710358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Tetramethylpyrazine (TMP), a prominent ingredient of Chinese herb Ligusticum chuanxiong Hort, is known to suppress neuroinflammation and protect blood-brain barrier (BBB) integrity. We investigated whether monocyte chemotactic protein-induced protein 1 (MCPIP1, also known as Regnase-1), a newly identified zinc-finger protein, plays a role in TMP-mediated anti-inflammation and neuroprotection. Male C57BL/6 mice were subjected to focal cerebral ischemia induced by middle cerebral artery occlusion (MCAO) for 2 h, followed by reperfusion for 24 h. TMP (25 mg/kg or 50 mg/kg) or vehicle was administered intraperitoneally 12 h before and post MCAO. The TMP significantly upregulated MCPIP1 in the ischemic brain tissues and effectively inhibited extravasation of fluorescein isothiocyanate (FITC)-dextran, resulting in attenuation of brain edema. These effects of the TMP were associated with a significant reduction in levels of inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and MMP-9 in the ischemic brain tissues. The TMP upregulated the expression of MCPIP1 in primary cultures of neurons and protected against oxygen-glucose deprivation-induced neuron death, while this neuroprotective effect of TMP was abolished by knockdown of MCPIP1 using MCPIP1-specific siRNA. These results suggest that preservation of BBB integrity by TMP is associated with its anti-inflammatory activity. The effect of TMP is mediated, at least in part, via upregulation of MCPIP1 in the ischemic brain.
Collapse
Affiliation(s)
- Zhuqing Jin
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Jian Liang
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Pappachan E Kolattukudy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| |
Collapse
|
12
|
Krajewski PK, Szukała W, Lichawska-Cieślar A, Matusiak Ł, Jura J, Szepietowski JC. MCPIP1/Regnase-1 Expression in Keratinocytes of Patients with Hidradenitis Suppurativa: Preliminary Results. Int J Mol Sci 2021; 22:ijms22147241. [PMID: 34298861 PMCID: PMC8307415 DOI: 10.3390/ijms22147241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
The pathogenesis of hidradenitis suppurativa (HS) is yet to be fully understood. However, inflammation is a key element in the development of skin lesions. The aim of this study was to evaluate the expression of monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in the skin of patients suffering from HS. Skin biopsies of 15 patients with HS and 15 healthy controls were obtained and processed for immunohistochemistry, western blot, and real time PCR. The highest mean MCPIP1 mRNA expression was found in the inflammatory lesional skin of HS patients. It was significantly higher than MCPIP1 mRNA expression in the biopsies from both healthy controls and non-lesional skin of HS patients. Western blot analysis indicated that expression of MCPIP1 was elevated within both lesional and non-lesional skin compared to the healthy control. The increased MCPIP1 mRNA and protein expression level in HS lesions may indicate its possible role in the disease pathogenesis.
Collapse
Affiliation(s)
- Piotr K. Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland; (P.K.K.); (Ł.M.)
| | - Weronika Szukała
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-392 Krakow, Poland; (W.S.); (J.J.)
| | - Agata Lichawska-Cieślar
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-392 Krakow, Poland; (W.S.); (J.J.)
- Correspondence: (A.L.-C.); (J.C.S.)
| | - Łukasz Matusiak
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland; (P.K.K.); (Ł.M.)
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-392 Krakow, Poland; (W.S.); (J.J.)
| | - Jacek C. Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland; (P.K.K.); (Ł.M.)
- Correspondence: (A.L.-C.); (J.C.S.)
| |
Collapse
|
13
|
Wang G, Zheng C. Zinc finger proteins in the host-virus interplay: multifaceted functions based on their nucleic acid-binding property. FEMS Microbiol Rev 2021; 45:fuaa059. [PMID: 33175962 DOI: 10.1093/femsre/fuaa059] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
Zinc finger proteins (ZFPs) are a huge family comprised of massive, structurally diverse proteins characterized by zinc ion coordinating. They engage in the host-virus interplay in-depth and occupy a significant portion of the host antiviral arsenal. Nucleic acid-binding is the basic property of certain ZFPs, which draws increasing attention due to their immense influence on viral infections. ZFPs exert multiple roles on the viral replications and host cell transcription profiles by recognizing viral genomes and host mRNAs. Their roles could be either antiviral or proviral and were separately discussed. Our review covers the recent research progress and provides a comprehensive understanding of ZFPs in antiviral immunity based on their DNA/RNA binding property.
Collapse
Affiliation(s)
- Guanming Wang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, No.1 Xue Yuan Road, University Town, FuZhou Fujian, 350108, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, No.1 Xue Yuan Road, University Town, FuZhou Fujian, 350108, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, Canada, AB T2N 4N1
| |
Collapse
|
14
|
Nowak I, Boratyn E, Student S, Bernhart SF, Fallmann J, Durbas M, Stadler PF, Rokita H. MCPIP1 ribonuclease can bind and cleave AURKA mRNA in MYCN-amplified neuroblastoma cells. RNA Biol 2021; 18:144-156. [PMID: 32757706 PMCID: PMC7834091 DOI: 10.1080/15476286.2020.1804698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023] Open
Abstract
The role of the inflammation-silencing ribonuclease, MCPIP1 (monocyte chemoattractant protein-induced protein 1), in neoplasia continuous to emerge. The ribonuclease can cleave not only inflammation-related transcripts but also some microRNAs (miRNAs) and viral RNAs. The suppressive effect of the protein has been hitherto suggested in breast cancer, clear cell renal cell carcinoma, osteosarcoma, and neuroblastoma. Our previous results have demonstrated a reduced levels of several oncogenes, as well as inhibited growth of neuroblastoma cells upon MCPIP1 overexpression. Here, we investigate the mechanisms underlying the suppression of MYCN proto-oncogene, bHLH transcription factor (MYCN)-amplified neuroblastoma cells overexpressing the MCPIP1 protein. We showed that the levels of several transcripts involved in cell cycle progression decreased in BE(2)-C and KELLY cells overexpressing MCPIP1 in a ribonucleolytic activity-dependent manner. However, RNA immunoprecipitation indicated that only AURKA mRNA (encoding for Aurora A kinase) interacts with the ribonuclease. Furthermore, the application of a luciferase assay suggested MCPIP1-dependent destabilization of the transcript. Further analyses demonstrated that the entire conserved region of AURKA seems to be indispensable for the interaction with the MCPIP1 protein. Additionally, we examined the effect of the ribonuclease overexpression on the miRNA expression profile in MYCN-amplified neuroblastoma cells. However, no significant alterations were observed. Our data indicate a key role of the binding and cleavage of the AURKA transcript in an MCPIP1-dependent suppressive effect on neuroblastoma cells.
Collapse
Affiliation(s)
- Iwona Nowak
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Elżbieta Boratyn
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Sebastian Student
- Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Stephan F. Bernhart
- Bioinformatics Group, Department of Computer Science & Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science & Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Małgorzata Durbas
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science & Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Hanna Rokita
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
Gorka J, Marona P, Kwapisz O, Waligórska A, Pospiech E, Dobrucki JW, Rys J, Jura J, Miekus K. MCPIP1 inhibits Wnt/β-catenin signaling pathway activity and modulates epithelial-mesenchymal transition during clear cell renal cell carcinoma progression by targeting miRNAs. Oncogene 2021; 40:6720-6735. [PMID: 34657130 PMCID: PMC8677621 DOI: 10.1038/s41388-021-02062-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023]
Abstract
Epithelial-mesenchymal transition (EMT) refers to the acquisition of mesenchymal properties in cells participating in tumor progression. One hallmark of EMT is the increased level of active β-catenin, which can trigger the transcription of Wnt-specific genes responsible for the control of cell fate. We investigated how Monocyte Chemotactic Protein-1-Induced Protein-1 (MCPIP1), a negative regulator of inflammatory processes, affects EMT in a clear cell renal cell carcinoma (ccRCC) cell line, patient tumor tissues and a xenotransplant model. We showed that MCPIP1 degrades miRNAs via its RNase activity and thus protects the mRNA transcripts of negative regulators of the Wnt/β-catenin pathway from degradation, which in turn prevents EMT. Mechanistically, the loss of MCPIP1 RNase activity led to the upregulation of miRNA-519a-3p, miRNA-519b-3p, and miRNA-520c-3p, which inhibited the expression of Wnt pathway inhibitors (SFRP4, KREMEN1, CXXC4, CSNK1A1 and ZNFR3). Thus, the level of active nuclear β-catenin was increased, leading to increased levels of EMT inducers (SNAI1, SNAI2, ZEB1 and TWIST) and, consequently, decreased expression of E-cadherin, increased expression of mesenchymal markers, and acquisition of the mesenchymal phenotype. This study revealed that MCPIP1 may act as a tumor suppressor that prevents EMT by stabilizing Wnt inhibitors and decreasing the levels of active β-catenin and EMT inducers.
Collapse
Affiliation(s)
- Judyta Gorka
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Paulina Marona
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Oliwia Kwapisz
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Agnieszka Waligórska
- grid.5522.00000 0001 2162 9631Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Ewelina Pospiech
- grid.5522.00000 0001 2162 9631Human Genome Variation Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Jurek W. Dobrucki
- grid.5522.00000 0001 2162 9631Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Janusz Rys
- grid.418165.f0000 0004 0540 2543Department of Tumor Pathology, Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Cracow Branch, Garncarska 11, 31-115 Krakow, Poland
| | - Jolanta Jura
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Katarzyna Miekus
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
16
|
Selective degradation of plasmid-derived mRNAs by MCPIP1 RNase. Biochem J 2020; 476:2927-2938. [PMID: 31530713 DOI: 10.1042/bcj20190646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
Abstract
Detection and degradation of foreign nucleic acids is an ancient form of host defense. However, the underlying mechanisms are not completely clear. MCPIP1 is an endoribonuclease and an important regulator in both innate and adaptive immunity by targeting inflammatory mRNA degradation. Here we report that MCPIP1 RNase can also selectively detect and degrade the mRNAs encoded by transfected plasmids. In transient transfection, MCPIP1 expression potently degraded the mRNA from exogenously transfected vectors, which is independent on the vector, genes and cell types used. Conversely, the expression of transfected plasmids in MCPIP1-null cells is significantly higher than that in wild-type cells. Interestingly, overexpression of MCPIP1 or MCPIP1 deficiency does not affect the expression of the exogenous genes incorporated into the host genome in a stable cell line or the global gene expression of host genome. This ability is not associated with PKR/RNase L system, as PKR inhibitors does not block MCPIP1-mediated mRNA degradation of exogenously transfected genes. Lastly, expression of MCPIP1 suppressed replication of Zika virus in infected cells. The study may provide a model for understanding the antiviral mechanisms of MCPIP1, and a putative tool to increase the expression of transfected exogenous genes.
Collapse
|
17
|
Konieczny P, Lichawska-Cieslar A, Kwiecinska P, Cichy J, Pietrzycka R, Szukala W, Declercq W, Devos M, Paziewska A, Rumienczyk I, Kulecka M, Mikula M, Fu M, Borowczyk J, Santamaria-Babí LF, Jura J. Keratinocyte-specific ablation of Mcpip1 impairs skin integrity and promotes local and systemic inflammation. J Mol Med (Berl) 2019; 97:1669-1684. [PMID: 31786670 DOI: 10.1007/s00109-019-01853-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
MCPIP1 (Regnase-1, encoded by the ZC3H12A gene) regulates the mRNA stability of several inflammatory cytokines. Due to the critical role of this RNA endonuclease in the suppression of inflammation, Mcpip1 deficiency in mice leads to the development of postnatal multiorgan inflammation and premature death. Here, we generated mice with conditional deletion of Mcpip1 in the epidermis (Mcpip1EKO). Mcpip1 loss in keratinocytes resulted in the upregulated expression of transcripts encoding factors related to inflammation and keratinocyte differentiation, such as IL-36α/γ cytokines, S100a8/a9 antibacterial peptides, and Sprr2d/2h proteins. Upon aging, the Mcpip1EKO mice showed impaired skin integrity that led to the progressive development of spontaneous skin pathology and systemic inflammation. Furthermore, we found that the lack of epidermal Mcpip1 expression impaired the balance of keratinocyte proliferation and differentiation. Overall, we provide evidence that keratinocyte-specific Mcpip1 activity is crucial for the maintenance of skin integrity as well as for the prevention of excessive local and systemic inflammation. KEY MESSAGES: Loss of murine epidermal Mcpip1 upregulates transcripts related to inflammation and keratinocyte differentiation. Keratinocyte Mcpip1 function is essential to maintain the integrity of skin in adult mice. Ablation of Mcpip1 in mouse epidermis leads to the development of local and systemic inflammation.
Collapse
Affiliation(s)
- Piotr Konieczny
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Agata Lichawska-Cieslar
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Patrycja Kwiecinska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Roza Pietrzycka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Weronika Szukala
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Wim Declercq
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Michael Devos
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Izabela Rumienczyk
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Mingui Fu
- Department of Biomedical Science and Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 5100 Rockhill Rd, Kansas City, MO, 64110, USA
| | - Julia Borowczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.,Current address: Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Gabrielle Perret-Gentil 4, 1211, Geneva, Switzerland
| | - Luis F Santamaria-Babí
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University de Barcelona, Gran Via de les Corts Catalanes 585, 08007, Barcelona, Spain
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
18
|
Li Z, Han S, Jia Y, Yang Y, Han F, Wu G, Li X, Zhang W, Jia W, He X, Han J, Hu D. MCPIP1 regulates RORα expression to protect against liver injury induced by lipopolysaccharide via modulation of miR-155. J Cell Physiol 2019; 234:16562-16572. [PMID: 30811042 DOI: 10.1002/jcp.28327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
Liver injury plays vital roles in the development of inflammation and organ dysfunction during sepsis. MCP-1-induced protein 1 (MCPIP1), as an endoribonuclease, is a critical regulator for the maintenance of immune homeostasis. However, whether MCPIP1 participates in the septic liver injury remains unknown. The aim of this study was to investigate the role of MCPIP1 in lipopolysaccharides-induced liver injury and the underlying modulatory mechanisms. Quantitative real-time polymerase chain reaction and immunoblotting were used to determine proinflammatory cytokines, MCPIP1, retinoid-related orphan receptor α (RORα), miR-155, and related protein from nuclear factor-κB (NF-κB) pathway expression. Dual luciferase reporter assay was used to analyze whether miR-155 regulates RORα transcription. Secretion of inflammatory cytokines into sera in mice were measured by enzyme-linked immunosorbent assay. Hematoxylin and eosin staining, alanine aminotransferase, and aspartate transaminase, assay were used to evaluate liver function. We found that MCPIP1 expression was notably upregulated and significantly downregulated inflammatory cytokine secretion and NF-κB signaling activation in macrophages following exposure to lipopolysaccharide. Moreover, miR-155, lowered by MCPIP1, directly targeted on 3'-untranslated region of RORα to activate an inflammatory response. Importantly, MCPIP1 overexpression in mice alleviated septic liver injury symptoms following lipopolysaccharides stimulation. Collectively, these data highlight MCPIP1/miR-155/RORα axis as a novel modulation of inflammation in liver injury and potential therapeutic target for future research.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.,Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Fu Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Gaofeng Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiaoqiang Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wenbin Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiang He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
19
|
Behrens G, Winzen R, Rehage N, Dörrie A, Barsch M, Hoffmann A, Hackermüller J, Tiedje C, Heissmeyer V, Holtmann H. A translational silencing function of MCPIP1/Regnase-1 specified by the target site context. Nucleic Acids Res 2019; 46:4256-4270. [PMID: 29471506 PMCID: PMC5934641 DOI: 10.1093/nar/gky106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/09/2018] [Indexed: 12/13/2022] Open
Abstract
The expression of proteins during inflammatory and immune reactions is coordinated by post-transcriptional mechanisms. A particularly strong suppression of protein expression is exerted by a conserved translational silencing element (TSE) identified in the 3′ UTR of NFKBIZ mRNA, which is among the targets of the RNA-binding proteins Roquin-1/2 and MCPIP1/Regnase-1. We present evidence that in the context of the TSE MCPIP1, so far known for its endonuclease activity toward mRNAs specified by distinct stem–loop (SL) structures, also suppresses translation. Overexpression of MCPIP1 silenced translation in a TSE-dependent manner and reduced ribosome occupancy of the mRNA. Correspondingly, MCPIP1 depletion alleviated silencing and increased polysomal association of the mRNA. Translationally silenced NFKBIZ or reporter mRNAs were mostly capped, polyadenylated and ribosome associated. Furthermore, MCPIP1 silenced also cap-independent, CrPV-IRES-dependent translation. This suggests that MCPIP1 suppresses a post-initiation step. The TSE is predicted to form five SL structures. SL4 and 5 resemble target structures reported for MCPIP1 and together were sufficient for MCPIP1 binding and mRNA destabilization. Translational silencing, however, required SL1–3 in addition. Thus the NFKBIZ TSE functions as an RNA element in which sequences adjacent to the site of interaction with MCPIP1 and dispensable for accelerated mRNA degradation extend the functional repertoire of MCPIP1 to translational silencing.
Collapse
Affiliation(s)
- Gesine Behrens
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Reinhard Winzen
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Nina Rehage
- Institute for Immunology, Biomedical Center of the Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Anneke Dörrie
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Monika Barsch
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Anne Hoffmann
- Young Investigators Group Bioinformatics and Transcriptomics, Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Jörg Hackermüller
- Young Investigators Group Bioinformatics and Transcriptomics, Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany.,Department of Computer Science, University of Leipzig, 04081 Leipzig, Germany
| | - Christopher Tiedje
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center of the Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377 München, Germany
| | - Helmut Holtmann
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
20
|
Zhu L, Liao SE, Fukunaga R. Drosophila Regnase-1 RNase is required for mRNA and miRNA profile remodelling during larva-to-adult metamorphosis. RNA Biol 2019; 16:1386-1400. [PMID: 31195914 DOI: 10.1080/15476286.2019.1630799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Metamorphosis is an intricate developmental process in which large-scale remodelling of mRNA and microRNA (miRNA) profiles leads to orchestrated tissue remodelling and organogenesis. Whether, which, and how, ribonucleases (RNases) are involved in the RNA profile remodelling during metamorphosis remain unknown. Human Regnase-1 (also known as MCPIP1 and Zc3h12a) RNase remodels RNA profile by cleaving specific RNAs and is a crucial modulator of immune-inflammatory and cellular defence. Here, we studied Drosophila CG10889, which we named Drosophila Regnase-1, an ortholog of human Regnase-1. The larva-to-adult metamorphosis in Drosophila includes two major transitions, larva-to-pupa and pupa-to-adult. regnase-1 knockout flies developed until the pupa stage but could not complete pupa-to-adult transition, dying in puparium case. Regnase-1 RNase activity is required for completion of pupa-to-adult transition as transgenic expression of wild-type Drosophila Regnase-1, but not the RNase catalytic-dead mutants, rescued the pupa-to-adult transition in regnase-1 knockout. High-throughput RNA sequencing revealed that regnase-1 knockout flies fail to remodel mRNA and miRNA profiles during the larva-to-pupa transition. Thus, we uncovered the roles of Drosophila Regnase-1 in the larva-to-adult metamorphosis and large-scale remodelling of mRNA and miRNA profiles during this metamorphosis process.
Collapse
Affiliation(s)
- Li Zhu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Susan E Liao
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
21
|
von Gamm M, Schaub A, Jones AN, Wolf C, Behrens G, Lichti J, Essig K, Macht A, Pircher J, Ehrlich A, Davari K, Chauhan D, Busch B, Wurst W, Feederle R, Feuchtinger A, Tschöp MH, Friedel CC, Hauck SM, Sattler M, Geerlof A, Hornung V, Heissmeyer V, Schulz C, Heikenwalder M, Glasmacher E. Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. J Exp Med 2019; 216:1700-1723. [PMID: 31126966 PMCID: PMC6605757 DOI: 10.1084/jem.20181762] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/15/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
The RNase Regnase-1 is a master RNA regulator in macrophages and T cells that degrades cellular and viral RNA upon NF-κB signaling. The roles of its family members, however, remain largely unknown. Here, we analyzed Regnase-3-deficient mice, which develop hypertrophic lymph nodes. We used various mice with immune cell-specific deletions of Regnase-3 to demonstrate that Regnase-3 acts specifically within myeloid cells. Regnase-3 deficiency systemically increased IFN signaling, which increased the proportion of immature B and innate immune cells, and suppressed follicle and germinal center formation. Expression analysis revealed that Regnase-3 and Regnase-1 share protein degradation pathways. Unlike Regnase-1, Regnase-3 expression is high specifically in macrophages and is transcriptionally controlled by IFN signaling. Although direct targets in macrophages remain unknown, Regnase-3 can bind, degrade, and regulate mRNAs, such as Zc3h12a (Regnase-1), in vitro. These data indicate that Regnase-3, like Regnase-1, is an RNase essential for immune homeostasis but has diverged as key regulator in the IFN pathway in macrophages.
Collapse
Affiliation(s)
- Matthias von Gamm
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annalisa Schaub
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Center for Integrated Protein Science Munich, Chemistry Department, Technical University of Munich, Garching, Germany
| | - Christine Wolf
- Institute of Environmental Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Gesine Behrens
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Johannes Lichti
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Katharina Essig
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Anna Macht
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Ehrlich
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | | | - Dhruv Chauhan
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benjamin Busch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Munich, Germany.,Technische Universität München-Weihenstephan, Neuherberg-Munich, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Center for Integrated Protein Science Munich, Chemistry Department, Technical University of Munich, Garching, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.,German Center for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer (F180), German Cancer Research Center, Heidelberg, Germany
| | - Elke Glasmacher
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany .,Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
22
|
Han S, Li Z, Ji P, Jia Y, Bai X, Cai W, Li X, Yang C, Yang Y, Yang K, Wu G, Zhang W, Hu D. MCPIP1 alleviated lipopolysaccharide‐induced liver injury by regulating SIRT1 via modulation of microRNA‐9. J Cell Physiol 2019; 234:22450-22462. [PMID: 31099043 DOI: 10.1002/jcp.28809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Shichao Han
- Department of Burns and Cutaneous Surgery Xijing Hospital, Air Force Medical University Xi'an Shaanxi China
| | - Zhenzhen Li
- Department of Burns and Cutaneous Surgery Xijing Hospital, Air Force Medical University Xi'an Shaanxi China
| | - Peng Ji
- Department of Burns and Cutaneous Surgery Xijing Hospital, Air Force Medical University Xi'an Shaanxi China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery Xijing Hospital, Air Force Medical University Xi'an Shaanxi China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery Xijing Hospital, Air Force Medical University Xi'an Shaanxi China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery Xijing Hospital, Air Force Medical University Xi'an Shaanxi China
| | - Xiaoqiang Li
- Department of Burns and Cutaneous Surgery Xijing Hospital, Air Force Medical University Xi'an Shaanxi China
| | - Chen Yang
- Department of Burns and Cutaneous Surgery Xijing Hospital, Air Force Medical University Xi'an Shaanxi China
| | - Yunshu Yang
- Department of Burns and Cutaneous Surgery Xijing Hospital, Air Force Medical University Xi'an Shaanxi China
| | - Kuan Yang
- Department of Plastic Surgery Xijing Hospital, Air Force Medical University Xi'an Shaanxi China
| | - Gaofeng Wu
- Department of Burns and Cutaneous Surgery Xijing Hospital, Air Force Medical University Xi'an Shaanxi China
| | - Wanfu Zhang
- Department of Burns and Cutaneous Surgery Xijing Hospital, Air Force Medical University Xi'an Shaanxi China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery Xijing Hospital, Air Force Medical University Xi'an Shaanxi China
| |
Collapse
|
23
|
Qi S, Wang L, Chang X, Zhang Y, Zhang Y, Gao MQ. MCPIP1 mediates inflammatory responses induced by lipopolysaccharide and lipoteichoic acid in bovine mammary epithelial cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:150-158. [PMID: 30590418 DOI: 10.1093/abbs/gmy163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Monocyte chemoattractant protein-induced protein 1 (MCPIP1) is a kind of zinc finger RNA binding protein, which exerts immune responses in a variety of cell types. However, the role of MCPIP1 in bovine mammary epithelial cells during mastitis has not been studied. In this study, we explored the functions of MCPIP1 in the inflammatory process induced by virulence factors of pathogens in bovine mammary alveolar cell-T (MAC-T) cell line. Our results showed that MCPIP1 was significantly highly expressed both in the mammary tissue of dairy cows with mastitis and in inflammatory MAC-T cells induced by lipopolysaccharide (LPS) or lipoteichoic acid (LTA). Furthermore, we found that overexpression of MCPIP1 in MAC-T cells abated the LPS-induced increase at the gene expression levels of inflammatory mediators tumor necrosis factor-α-α, interleukin (IL)-1β, IL-6 and IL-8, enhanced the LPS- and LTA-induced inhibition of epithelial proliferation and promoted the LPS- and LTA-induced oxidative and DNA damage. These findings indicated that MCPIP1 has an enormous potential in regulating the inflammatory response of bovine mammary epithelial cells during infection and may provide an effective therapeutic target for bovine mastitis to reduce the damage caused by inflammatory reactions.
Collapse
Affiliation(s)
- Shaopei Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lixue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiao Chang
- Innovation Experimental College, Northwest A&F University, Yangling, China
| | - Yanfen Zhang
- Northwest A&F University Hospital, Northwest A&F University, Yangling, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ming-Qing Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
24
|
Essential Role of Endothelial MCPIP in Vascular Integrity and Post-Ischemic Remodeling. Int J Mol Sci 2019; 20:ijms20010172. [PMID: 30621250 PMCID: PMC6337340 DOI: 10.3390/ijms20010172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 11/17/2022] Open
Abstract
MCP-1-induced protein (MCPIP, also known as Zc3h12a or Regnase-1), a newly identified suppressor of cytokine signaling, is expressed in endothelial cells (ECs). To investigate the role of endothelial MCPIP in vascular homeostasis and function, we deleted the MCPIP gene specifically in ECs using the Cre-LoxP system. EC-specific MCPIP deletion resulted in systemic inflammation, increased vessel permeability, edema, thrombus formation, and premature death in mice. Serum levels of cytokines, chemokines, and biomarkers of EC dysfunction were significantly elevated in these mice. Upon lipopolysaccharide (LPS) challenge, mice with EC-specific MCPIP depletion were highly susceptible to LPS-induced death. When subjected to ischemia, these mice showed defective post-ischemic angiogenesis and impaired blood flow recovery in hind limb ischemia. In aortic ring cultures, the MCPIP-deficient ECs displayed significantly impaired vessel sprouting and tube elongation. Mechanistically, silencing of MCPIP by small interfering RNAs in cultured ECs enhanced NF-κΒ activity and dysregulated synthesis of microRNAs linked with elevated cytokines and biomarkers of EC dysfunction. Collectively, these results establish that constitutive expression of MCPIP in ECs is essential to maintaining endothelial homeostasis and function by serving as a key negative feedback regulator that keeps the inflammatory signaling suppressed.
Collapse
|
25
|
Yan S, Zhen J, Li Y, Zhang C, Stojkoska A, Lambert N, Li Q, Li P, Xie J. Mce-associated protein Rv0177 alters the cell wall structure of Mycobacterium smegmatis and promotes macrophage apoptosis via regulating the cytokines. Int Immunopharmacol 2019; 66:205-214. [DOI: 10.1016/j.intimp.2018.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
|
26
|
Seno K, Munakata Y, Sano M, Kawahara-Miki R, Takahashi H, Ohkuchi A, Iwata H, Kuwayama T, Shirasuna K. Aggregation of Human Trophoblast Cells into Three-Dimensional Culture System Enhances Anti-Inflammatory Characteristics through Cytoskeleton Regulation. Int J Mol Sci 2018; 19:ijms19082322. [PMID: 30096769 PMCID: PMC6121648 DOI: 10.3390/ijms19082322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) culture changes cell characteristics and function, suggesting that 3D culture provides a more physiologically relevant environment for cells compared with 2D culture. We investigated the differences in cell functions depending on the culture model in human trophoblast cells (Sw.71). METHODS Sw.71 cells were incubated in 2D monolayers or simple 3D spheroids. After incubation, cells were corrected to assess RNA-seq transcriptome or protein expression, and culture medium were corrected to detect cytokines. To clarify the role of actin cytoskeleton, spheroid Sw.71 cells were treated mycalolide B (inhibitor of actin polymerization) in a 3D culture. RESULTS RNA-seq transcriptome analysis, results revealed that 3D-cultured cells had a different transcriptional profile compared with 2D-cultured cells, especially regarding inflammation-related molecules. Although interleukin-6 (IL-6) mRNA level was higher in 3D-culured cells, its secretion levels were higher in 2D-cultured cells. In addition, the levels of mRNA and protein expression of regnase-1, regulatory RNase of inflammatory cytokine, significantly increased in 3D culture, suggesting post-translational modification of IL-6 mRNA via regnase-1. Treatment with mycalolide B reduced cell-to-cell contact to build 3D formation and increased expression of actin cytoskeleton, resulting in increased IL-6 secretin. CONCLUSION Cell dimensionality plays an essential role in governing the spatiotemporal cellular outcomes, including inflammatory cytokine production and its negative regulation associated with regnase-1.
Collapse
Affiliation(s)
- Kotomi Seno
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan.
| | - Yasuhisa Munakata
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan.
| | - Michiya Sano
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan.
| | - Ryouka Kawahara-Miki
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya, Tokyo 154-0017, Japan.
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan.
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan.
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan.
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan.
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan.
| |
Collapse
|
27
|
Chen XF, Wu J, Zhang YD, Zhang CX, Chen XT, Sun JH, Chen TX. Role of Zc3h12a in enhanced IL-6 production by newborn mononuclear cells in response to lipopolysaccharide. Pediatr Neonatol 2018; 59:288-295. [PMID: 29054363 DOI: 10.1016/j.pedneo.2017.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/07/2017] [Accepted: 09/15/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The uncontrolled inflammatory response following infection is closely related to the morbidity and mortality of neonates. Interleukin 6 (IL-6) plays an important role in the pathogenesis and prognosis of this process. To better elucidate the secretion of IL-6 following infection in neonates, we investigated the IL-6 level and mechanism of IL-6/TLR4 signaling pathways. METHODS We compared the IL-6, procalcitonin (PCT), and CRP levels between septic neonates and toddlers. In vitro cord blood samples from healthy term neonates and peripheral venous blood from healthy adult volunteers were collected. Protein expression was analyzed by Western blotting, mRNA expression by real-time PCR and membrane molecule expression by flow cytometry. RESULTS The IL-6 concentrations were significantly higher in the neonate group than in the toddler group (p < 0.05). In the toddler group, the IL-6 concentrations were correlated positively with both PCT and CRP (PCT: r = 0.451, p = 0.001; CRP: r = 0.243, p = 0.023). In vitro, the secretion of IL-6 increased with the rising concentrations of LPS; at 1000 ng/ml LPS, IL-6 secretion from the monocytes of neonates was significantly higher than that of adults. There was a marked decreased level of MyD88 in neonate monocytes compared with that in adult monocytes. Additionally, the mRNA levels of Zc3h12a in neonate monocytes were significantly lower than those in adult monocytes following LPS stimulation. CONCLUSION Neonates displayed enhanced IL-6 production after infection. Our study, for the first time, reported a significant decrease in the expression of Zc3h12a in neonates. Thus, Zc3h12a may be a key factor for the aberrant increase in IL-6 after neonate infection.
Collapse
Affiliation(s)
- Xia-Fang Chen
- Department of Allergy and Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai, Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jing Wu
- Department of Allergy and Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai, Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yi-Dan Zhang
- Department of Internal Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Chen-Xing Zhang
- Department of Allergy and Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai, Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xu-Ting Chen
- Department of Allergy and Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai, Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jian-Hua Sun
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Tong-Xin Chen
- Department of Allergy and Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai, Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
28
|
Wakahashi S, Kawakami F, Wakahashi K, Minagawa K, Matsuo K, Katayama Y, Yamada H, Matsui T, Sudo T. Transformed Follicular Lymphoma (TFL) Predicts Outcome in Advanced Endometrial Cancer. Cancer Epidemiol Biomarkers Prev 2018; 27:963-969. [PMID: 29784731 DOI: 10.1158/1055-9965.epi-17-0762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/13/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022] Open
Abstract
Background: Transformed follicular lymphoma (TFL, ZC3H12D) was identified as a candidate tumor suppressor gene that contributes to cell-cycle arrest through regulation of Rb phosphorylation, but the clinical impact of TFL is unknown. The goal of this study was to evaluate the prognostic significance of TFL expression in advanced endometrial cancer.Methods: Tissue samples were obtained from 103 patients with Federation Internationale des Gynaecologistes et Obstetristes stage III-IV endometrial cancer. Associations between TFL expression and outcomes were evaluated using the Kaplan-Meier method and multivariate Cox proportional hazards regression models.Results: There were 24 TFL-low cases (23.3%) and the 10-year progression-free survival (PFS) and overall survival (OS) in these cases were lower than those for patients with normal TFL expression in univariate analysis (PFS, P = 0.003; OS, P = 0.106). In multivariate analysis, TFL status was a significant predictor for PFS [HR = 2.76; 95% confidence interval (CI), 1.45-5.28; P = 0.002] and OS (HR = 1.94; 95% CI, 0.91-4.11; P = 0.085), adjusted for covariates. The TFL gene maps to human chromosome 6q25.1, where estrogen receptor alpha (ERα) gene ESR1 is also located. Lack of ERα expression is a poor prognostic factor in early endometrial cancer. Among 41 ERα-low patients, 10-year PFS was significantly lower in 15 TFL-low cases (univariate analysis, P = 0.055; multivariate analysis, HR = 4.70; 95% CI, 1.68-13.20; P = 0.003).Conclusions: We identified TFL as a strong independent prognostic factor, regardless of ERα status.Impact: An investigation of the mechanism underlying tumor suppression by TFL may lead to new therapies for patients with advanced endometrial cancer. Cancer Epidemiol Biomarkers Prev; 27(8); 963-9. ©2018 AACR.
Collapse
Affiliation(s)
- Senn Wakahashi
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Fumi Kawakami
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe, Japan
| | - Kanako Wakahashi
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kentaro Minagawa
- Department of Hematology/Oncology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yoshio Katayama
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideto Yamada
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshimitsu Matsui
- Department of Hematology, Nishiwaki Municipal Hospital, Nishiwaki, Hyogo, Japan
| | - Tamotsu Sudo
- Section of Translational Research, Hyogo Cancer Center, Akashi, Japan
| |
Collapse
|
29
|
MCPIP3 as a Potential Metastasis Suppressor Gene in Human Colorectal Cancer. Int J Mol Sci 2018; 19:ijms19051350. [PMID: 29751537 PMCID: PMC5983627 DOI: 10.3390/ijms19051350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/18/2022] Open
Abstract
Monocyte chemotactic protein induced protein 3 (MCPIP3) belongs to the Cys–Cys–Cys–His (CCCH)-zinc finger protein family and contains a highly conserved CCCH-zinc finger domain and a Nedd4-BP1 YacP nuclease (NYN) domain. Previous studies showed that MCPIP3 inhibits the expression of proinflammatory genes, such as vascular cell adhesion molecule (VCAM)-1, in human endothelial cells, but the roles and functions of MCPIP3 in cancer cells are still unknown. In human colorectal cancer specimens, we found that the messenger RNA expression of MCPIP3 was significantly downregulated in cancer tissues compared to adjacent normal tissues (18/25; average fold change of 8.18). Two cell models were used to demonstrate the anti-migration activity of MCPIP3. First, Tet-on T-REx-293/HA-MCPIP3 cells were used to examine whether MCPIP3 can change epithelial–mesenchymal transition (EMT)-related gene expressions. Second, we used two human colorectal cancer cell lines, SW620 and HCT116, to prove the role of MCPIP3 in regulating EMT-related gene expressions. We found that overexpression of MCPIP3 inhibited cell migration according to a wound-healing assay and Transwell invasion assay and vimentin expression, and increased E-cadherin expression in these two cell lines. These results suggest that MCPIP3 might play a negative role in cell migration of human colorectal cancer cells.
Collapse
|
30
|
Miyazawa M, Bogdan AR, Hashimoto K, Tsuji Y. Regulation of transferrin receptor-1 mRNA by the interplay between IRE-binding proteins and miR-7/miR-141 in the 3'-IRE stem-loops. RNA (NEW YORK, N.Y.) 2018; 24:468-479. [PMID: 29295890 PMCID: PMC5855948 DOI: 10.1261/rna.063941.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/21/2017] [Indexed: 05/07/2023]
Abstract
Intracellular iron is tightly regulated by coordinated expression of iron transport and storage genes, such as transferrin receptor-1 (TfR1) and ferritin. They are primarily regulated by iron through iron-induced dissociation of iron-regulatory proteins (IRPs) from iron-responsive elements (IREs) in the 3'-UTR (untranslated region) of TfR1 or 5'-UTR of ferritin mRNA, resulting in destabilization of TfR1 mRNA and release of ferritin translation block. Thus high iron decreases iron transport via TfR1 mRNA degradation and increases iron storage via ferritin translational up-regulation. However, the molecular mechanism of TfR1 mRNA destabilization in response to iron remains elusive. Here, we demonstrate that miR-7-5p and miR-141-3p target 3'-TfR1 IREs and down-regulate TfR1 mRNA and protein expression. Conversely, miR-7-5p and miR-141-3p antagomiRs partially but significantly blocked iron- or IRP knockdown-induced down-regulation of TfR1 mRNA, suggesting the interplay between these microRNAs and IRPs along with involvement of another uncharacterized mechanism in TfR1 mRNA degradation. Luciferase reporter assays using 3'-UTR TfR1 IRE mutants suggested that the IREs C and E are targets of miR-7-5p and miR-141-3p, respectively. Furthermore, miR-7 expression was inversely correlated with TfR1 mRNA in human pancreatic adenocarcinoma patient samples. These results suggest a role of microRNAs in the TfR1 regulation in the IRP-IRE system.
Collapse
Affiliation(s)
- Masaki Miyazawa
- Department of Biological Sciences, Toxicology Program, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Alexander R Bogdan
- Department of Biological Sciences, Toxicology Program, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Kazunori Hashimoto
- Department of Biological Sciences, Toxicology Program, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Yoshiaki Tsuji
- Department of Biological Sciences, Toxicology Program, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
31
|
MINO T, TAKEUCHI O. Post-transcriptional regulation of immune responses by RNA binding proteins. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:248-258. [PMID: 29887569 PMCID: PMC6085518 DOI: 10.2183/pjab.94.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cytokines are critical mediators of inflammation and host immune defense. Cytokine production is regulated at both transcriptional and post-transcriptional levels. Post-transcriptional damping of inflammatory mRNAs is mediated by a set of RNA binding proteins (RBPs) interacting with cis-elements, such as AU-rich elements (ARE) and stem-loop structures. Whereas ARE-binding proteins such as tristetraprolin and a stem-loop recognizing protein, Roquin, downregulate cytokine mRNA abundance by recruiting a CCR4-NOT deadenylase complex, another stem-loop RBP, Regnase-1, acts as an endoribonuclease, directly degrading target cytokine mRNAs. These RBPs control translation-active or -inactive mRNAs in distinct intracellular locations. The presence of various RBPs regulating mRNAs in distinct locations enables elaborate control of cytokines under inflammatory conditions. Dysregulation of cytokine mRNA decay leads to pathologies such as the development of autoimmune diseases or impaired activation of immune responses. Here we review current knowledge about the post-transcriptional regulation of immune responses by RBPs and the importance of their alteration during inflammatory pathology and autoimmunity.
Collapse
Affiliation(s)
- Takashi MINO
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Osamu TAKEUCHI
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Correspondence should be addressed: O. Takeuchi, Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan (e-mail: )
| |
Collapse
|
32
|
Bando SY, Iamashita P, Guth BE, dos Santos LF, Fujita A, Abe CM, Ferreira LR, Moreira-Filho CA. A hemolytic-uremic syndrome-associated strain O113:H21 Shiga toxin-producing Escherichia coli specifically expresses a transcriptional module containing dicA and is related to gene network dysregulation in Caco-2 cells. PLoS One 2017; 12:e0189613. [PMID: 29253906 PMCID: PMC5734773 DOI: 10.1371/journal.pone.0189613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023] Open
Abstract
Shiga toxin-producing (Stx) Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some of these strains may cause hemolytic uremic syndrome (HUS). The molecular mechanism underlying this capacity and the differential host cell response to HUS-causing strains are not yet completely understood. In Brazil O113:H21 strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here we conducted comparative gene co-expression network (GCN) analyses of two O113:H21 STEC strains: EH41, reference strain, isolated from HUS patient in Australia, and Ec472/01, isolated from cattle feces in Brazil. These strains were cultured in fresh or in Caco-2 cell conditioned media. GCN analyses were also accomplished for cultured Caco-2 cells exposed to EH41 or Ec472/01. Differential transcriptome profiles for EH41 and Ec472/01 were not significantly changed by exposure to fresh or Caco-2 conditioned media. Conversely, global gene expression comparison of both strains cultured in conditioned medium revealed a gene set exclusively expressed in EH41, which includes the dicA putative virulence factor regulator. Network analysis showed that this set of genes constitutes an EH41 specific transcriptional module. PCR analysis in Ec472/01 and in other 10 Brazilian cattle-isolated STEC strains revealed absence of dicA in all these strains. The GCNs of Caco-2 cells exposed to EH41 or to Ec472/01 presented a major transcriptional module containing many hubs related to inflammatory response that was not found in the GCN of control cells. Moreover, EH41 seems to cause gene network dysregulation in Caco-2 as evidenced by the large number of genes with high positive and negative covariance interactions. EH41 grows slowly than Ec472/01 when cultured in Caco-2 conditioned medium and fitness-related genes are hypoexpressed in that strain. Therefore, EH41 virulence may be derived from its capacity for dysregulating enterocyte genome functioning and its enhanced enteric survival due to slow growth.
Collapse
Affiliation(s)
- Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Beatriz E. Guth
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Luis F. dos Santos
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - André Fujita
- Department of Computer Science, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cecilia M. Abe
- Laboratory of Bacteriology, Butantan Institute, São Paulo, SP, Brazil
| | - Leandro R. Ferreira
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
33
|
Central role of myeloid MCPIP1 in protecting against LPS-induced inflammation and lung injury. Signal Transduct Target Ther 2017; 2:17066. [PMID: 29263935 PMCID: PMC5721545 DOI: 10.1038/sigtrans.2017.66] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/21/2017] [Accepted: 10/29/2017] [Indexed: 12/27/2022] Open
Abstract
Although systemic inflammatory responses attributable to infection may lead to significant lung injury, the precise molecular mechanisms leading to lung damage are poorly understood and therapeutic options remain limited. Here, we show that myeloid monocyte chemotactic protein-inducible protein 1 (MCPIP1) plays a central role in protecting against LPS-induced inflammation and lung injury. Myeloid-specific MCPIP1 knockout mice developed spontaneous inflammatory syndromes, but at a late age compared to global MCPIP1 knockout mice. Moreover, mice with a myeloid-specific deletion of MCPIP1 were extremely sensitive to LPS-induced lung injury due to overproduction of proinflammatory cytokines and chemokines. We identified C/EBPβ and C/EBPδ, two critical transcriptional factors that drive cytokine production and lung injury, as targets of MCPIP1 RNase. LPS administration caused MCPIP1 protein degradation in the lungs. Pharmacological inhibition of MALT1, a paracaspase that cleaves MCPIP1, by MI-2 selectively increased the MCPIP1 protein levels in macrophages and in the lungs. Meanwhile, administration of MI-2 protected mice from LPS-induced inflammation, lung injury and death. Collectively, these results indicate that myeloid MCPIP1 is central in controlling LPS-induced inflammation and lung injury. Pharmacological inhibition of MALT1 protease activity may be a good strategy to treat inflammatory diseases by enhancing MCPIP1 expression in myeloid cells.
Collapse
|
34
|
Habacher C, Ciosk R. ZC3H12A/MCPIP1/Regnase-1-related endonucleases: An evolutionary perspective on molecular mechanisms and biological functions. Bioessays 2017; 39. [PMID: 28719000 DOI: 10.1002/bies.201700051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mammalian Zc3h12a/MCPIP1/Regnase-1, an extensively studied regulator of inflammatory response, is the founding member of a ribonuclease family, which includes proteins related by the presence of the so-called Zc3h12a-like NYN domain. Recently, several related proteins have been described in Caenorhabditis elegans, allowing comparative evaluation of molecular functions and biological roles of these ribonucleases. We discuss the structural features of these proteins, which endow some members with ribonuclease (RNase) activity while others with auxiliary or RNA-independent functions. We also consider their RNA specificity and highlight a common role for these proteins in cellular defense, which is remarkable considering the evolutionary distance and fundamental differences in cellular defense mechanisms between mammals and nematodes.
Collapse
Affiliation(s)
- Cornelia Habacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
35
|
Tomecki R, Sikorski PJ, Zakrzewska-Placzek M. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases. FEBS Lett 2017; 591:1801-1850. [PMID: 28524231 DOI: 10.1002/1873-3468.12682] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Abstract
Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | | | | |
Collapse
|
36
|
Keogh K, Waters SM, Cormican P, Kelly AK, O’Shea E, Kenny DA. Effect of dietary restriction and subsequent re-alimentation on the transcriptional profile of bovine ruminal epithelium. PLoS One 2017; 12:e0177852. [PMID: 28545102 PMCID: PMC5435337 DOI: 10.1371/journal.pone.0177852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/04/2017] [Indexed: 11/19/2022] Open
Abstract
Compensatory growth (CG) is utilised worldwide in beef production systems as a management approach to reduce feed costs. However the underlying biology regulating the expression of CG remains to be fully elucidated. The objective of this study was to examine the effect of dietary restriction and subsequent re-alimentation induced CG on the global gene expression profile of ruminal epithelial papillae. Holstein Friesian bulls (n = 60) were assigned to one of two groups: restricted feed allowance (RES; n = 30) for 125 days (Period 1) followed by ad libitum access to feed for 55 days (Period 2) or (ii) ad libitum access to feed throughout (ADLIB; n = 30). At the end of each period, 15 animals from each treatment were slaughtered and rumen papillae harvested. mRNA was isolated from all papillae samples collected. cDNA libraries were then prepared and sequenced. Resultant reads were subsequently analysed bioinformatically and differentially expressed genes (DEGs) are defined as having a Benjamini-Hochberg P value of <0.05. During re-alimentation in Period 2, RES animals displayed CG, growing at 1.8 times the rate of their ADLIB contemporary animals in Period 2 (P < 0.001). At the end of Period 1, 64 DEGs were identified between RES and ADLIB, with only one DEG identified at the end of Period 2. When analysed within RES treatment (RES, Period 2 v Period 1), 411 DEGs were evident. Genes identified as differentially expressed in response to both dietary restriction and subsequent CG included those involved in processes such as cellular interactions and transport, protein folding and gene expression, as well as immune response. This study provides an insight into the molecular mechanisms underlying the expression of CG in rumen papillae of cattle; however the results suggest that the role of the ruminal epithelium in supporting overall animal CG may have declined by day 55 of re-alimentation.
Collapse
Affiliation(s)
- Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Sinead M. Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Paul Cormican
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Alan K. Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Emma O’Shea
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - David A. Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- * E-mail:
| |
Collapse
|
37
|
Mao R, Yang R, Chen X, Harhaj EW, Wang X, Fan Y. Regnase-1, a rapid response ribonuclease regulating inflammation and stress responses. Cell Mol Immunol 2017; 14:412-422. [PMID: 28194024 PMCID: PMC5423090 DOI: 10.1038/cmi.2016.70] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) are central players in post-transcriptional regulation and immune homeostasis. The ribonuclease and RBP Regnase-1 exerts critical roles in both immune cells and non-immune cells. Its expression is rapidly induced under diverse conditions including microbial infections, treatment with inflammatory cytokines and chemical or mechanical stimulation. Regnase-1 activation is transient and is subject to negative feedback mechanisms including proteasome-mediated degradation or mucosa-associated lymphoid tissue 1 (MALT1) mediated cleavage. The major function of Regnase-1 is promoting mRNA decay via its ribonuclease activity by specifically targeting a subset of genes in different cell types. In monocytes, Regnase-1 downregulates IL-6 and IL-12B mRNAs, thus mitigating inflammation, whereas in T cells, it restricts T-cell activation by targeting c-Rel, Ox40 and Il-2 transcripts. In cancer cells, Regnase-1 promotes apoptosis by inhibiting anti-apoptotic genes including Bcl2L1, Bcl2A1, RelB and Bcl3. Together with up-frameshift protein-1 (UPF1), Regnase-1 specifically cleaves mRNAs that are active during translation by recognizing a stem-loop (SL) structure within the 3'UTRs of these genes in endoplasmic reticulum-bound ribosomes. Through this mechanism, Regnase-1 rapidly shapes mRNA profiles and associated protein expression, restricts inflammation and maintains immune homeostasis. Dysregulation of Regnase-1 has been described in a multitude of pathological states including autoimmune diseases, cancer and cardiovascular diseases. Here, we provide a comprehensive update on the function, regulation and molecular mechanisms of Regnase-1, and we propose that Regnase-1 may function as a master rapid response gene for cellular adaption triggered by microenvironmental changes.
Collapse
Affiliation(s)
- Renfang Mao
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Riyun Yang
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xia Chen
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Edward W Harhaj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Xiaoying Wang
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yihui Fan
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| |
Collapse
|
38
|
Bugara B, Konieczny P, Wolnicka-Glubisz A, Eckhart L, Fischer H, Skalniak L, Borowczyk-Michalowska J, Drukala J, Jura J. MCPIP1 contributes to the inflammatory response of UVB-treated keratinocytes. J Dermatol Sci 2017; 87:10-18. [PMID: 28377026 DOI: 10.1016/j.jdermsci.2017.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Monocyte chemoattractant protein-1-induced protein-1 (MCPIP1), also known as regnase-1, negatively regulates many cellular processes including the cellular response to inflammatory agents, differentiation, viability, and proliferation. It possesses a PilT N-terminus (PIN) domain that is directly involved in regulating the stability of transcripts and miRNAs by recognizing stem loop structures and degrading them by endonucleolytic cleavage. OBJECTIVE We investigated the role of MCPIP1 in the response of human primary keratinocytes to UVB stress. METHODS Keratinocytes were treated with UVB, siRNA against MCPIP1, pharmacological inhibitors of signaling pathways, or subjected to control treatments. The mRNA and protein levels of MCPIP1 and MCPIP1-dependent changes gene expression were analyzed by quantitative (Q)-RT-PCRs and Western blots. Secretion of TNFα and IL-8 was determined by ELISA. RESULTS UVB treatment of keratinocytes induced upregulation of MCPIP1 at the mRNA level after 4-8h and at the protein level after 8-16h. MCPIP1 abundance depended on NF-κB activity. Using an siRNA strategy, we found that diminished MCPIP1 resulted in an up-regulation of transcripts coding for IL-8, TNFα, COX-2, and BCL-2, as well as an enhanced release of IL-8. Moreover, decreased phosphorylation of NF-κB and p38 signaling pathways were observed in addition to a slight up-regulation of ERK1/2 directly after UVB treatment. Twenty-four hours later, decreased phosphorylation was observed only for NF-κB and p38. Furthermore, in MCPIP1-suppressed cells, the levels of pro-apoptotic Puma, the phosphorylated form of p53 and the abundance of its target p21 as well as the activity of caspase 3 decreased, while the level of cyclin D1 increased. CONCLUSION MCPIP1 contributes to the UVB response of keratinocytes by altering metabolic and apoptotic processes and the release of inflammatory mediators.
Collapse
Affiliation(s)
- Beata Bugara
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Piotr Konieczny
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heinz Fischer
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Lukasz Skalniak
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Julia Borowczyk-Michalowska
- Cell Bank, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Drukala
- Cell Bank, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
39
|
Abstract
Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense‐mediated decay (NMD) and motif‐specific transcript destabilization by CCCH‐type zinc finger RNA‐binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those of RNA viruses and retrotransposable elements. We further hypothesize that the subsequent advent of “professional” innate and adaptive immunity systems allowed NMD and the motif‐triggered mechanisms to be efficiently repurposed for regulation of endogenous cellular transcripts. This scenario explains the rapid emergence of archetypical mRNA destabilization pathways in eukaryotes and argues that other aspects of post‐transcriptional gene regulation in this lineage might have been derived through a similar exaptation route.
Collapse
Affiliation(s)
- Fursham M Hamid
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Eugene V Makeyev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Centre for Developmental Neurobiology, King's College London, London, UK
| |
Collapse
|
40
|
Gu SQ, Gallego-Perez D, McClory SP, Shi J, Han J, Lee LJ, Schoenberg DR. The human PMR1 endonuclease stimulates cell motility by down regulating miR-200 family microRNAs. Nucleic Acids Res 2016; 44:5811-9. [PMID: 27257068 PMCID: PMC4937341 DOI: 10.1093/nar/gkw497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022] Open
Abstract
The motility of MCF-7 cells increases following expression of a human PMR1 transgene and the current study sought to identify the molecular basis for this phenotypic change. Ensemble and single cell analyses show increased motility is dependent on the endonuclease activity of hPMR1, and cells expressing active but not inactive hPMR1 invade extracellular matrix. Nanostring profiling identified 14 microRNAs that are downregulated by hPMR1, including all five members of the miR-200 family and others that also regulate invasive growth. miR-200 levels increase following hPMR1 knockdown, and changes in miR-200 family microRNAs were matched by corresponding changes in miR-200 targets and reporter expression. PMR1 preferentially cleaves between UG dinucleotides within a consensus YUGR element when present in the unpaired loop of a stem–loop structure. This motif is present in the apical loop of precursors to most of the downregulated microRNAs, and hPMR1 targeting of pre-miRs was confirmed by their loss following induced expression and increase following hPMR1 knockdown. Introduction of miR-200c into hPMR1-expressing cells reduced motility and miR-200 target gene expression, confirming hPMR1 acts upstream of Dicer processing. These findings identify a new role for hPMR1 in the post-transcriptional regulation of microRNAs in breast cancer cells.
Collapse
Affiliation(s)
- Shan-Qing Gu
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Gallego-Perez
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH 43210, USA Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, OH 43210, USA
| | - Sean P McClory
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Junfeng Shi
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH 43210, USA
| | - Joonhee Han
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - L James Lee
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH 43210, USA Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel R Schoenberg
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
41
|
Nakayama H, Nishida K, Otsu K. Macromolecular Degradation Systems and Cardiovascular Aging. Circ Res 2016; 118:1577-92. [DOI: 10.1161/circresaha.115.307495] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
Aging-related cardiovascular diseases are a rapidly increasing problem worldwide. Cardiac aging demonstrates progressive decline of diastolic dysfunction of ventricle and increase in ventricular and arterial stiffness accompanied by increased fibrosis stimulated by angiotensin II and proinflammatory cytokines. Reactive oxygen species and multiple signaling pathways on cellular senescence play major roles in the process. Aging is also associated with an alteration in steady state of macromolecular dynamics including a dysfunction of protein synthesis and degradation. Currently, impaired macromolecular degradation is considered to be closely related to enhanced inflammation and be involved in the process and mechanism of cardiac aging. Herein, we review the role and mechanisms of the degradation system of intracellular macromolecules in the process and pathophysiology of cardiovascular aging.
Collapse
Affiliation(s)
- Hiroyuki Nakayama
- From the Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan (H.N.); and Cardiovascular Division, King’s College London British Heart Foundation Centre of Research Excellence, London, United Kingdom (K.N., K.O.)
| | - Kazuhiko Nishida
- From the Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan (H.N.); and Cardiovascular Division, King’s College London British Heart Foundation Centre of Research Excellence, London, United Kingdom (K.N., K.O.)
| | - Kinya Otsu
- From the Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan (H.N.); and Cardiovascular Division, King’s College London British Heart Foundation Centre of Research Excellence, London, United Kingdom (K.N., K.O.)
| |
Collapse
|
42
|
Athanasopoulos V, Ramiscal RR, Vinuesa CG. ROQUIN signalling pathways in innate and adaptive immunity. Eur J Immunol 2016; 46:1082-90. [PMID: 27060455 DOI: 10.1002/eji.201545956] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/15/2016] [Accepted: 03/30/2016] [Indexed: 12/25/2022]
Abstract
ROQUIN is an RNA-binding protein that plays important roles in both the innate and adaptive immune systems. ROQUIN binds to several key immune-relevant messenger RNA (mRNA) targets through its ROQ domain modulating their stability and influencing macrophage function and the peripheral homeostasis of T cells and B cells. More recently, the E3 ubiquitin ligase activity of the ROQUIN RING domain has been shown to be crucial for T-cell-dependent B-cell responses against infection. Defective ROQUIN activity can culminate in a range of diseases, such as systemic autoimmunity, immunodeficiency, and inflammatory bowel disorder. Here, we provide a current overview of the immunomodulatory role of ROQUIN defined by its ribonucleoprotein-like structure, its repertoire of mRNA targets shared by related RNA-binding enzymes, and its involvement in a range of intracellular signalling pathways central to shaping immune responses.
Collapse
Affiliation(s)
- Vicki Athanasopoulos
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Roybel R Ramiscal
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Carola G Vinuesa
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|
43
|
Yokogawa M, Tsushima T, Noda NN, Kumeta H, Enokizono Y, Yamashita K, Standley DM, Takeuchi O, Akira S, Inagaki F. Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions. Sci Rep 2016; 6:22324. [PMID: 26927947 PMCID: PMC4772114 DOI: 10.1038/srep22324] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/22/2016] [Indexed: 12/15/2022] Open
Abstract
Regnase-1 is an RNase that directly cleaves mRNAs of inflammatory genes such as IL-6 and IL-12p40, and negatively regulates cellular inflammatory responses. Here, we report the structures of four domains of Regnase-1 from Mus musculus-the N-terminal domain (NTD), PilT N-terminus like (PIN) domain, zinc finger (ZF) domain and C-terminal domain (CTD). The PIN domain harbors the RNase catalytic center; however, it is insufficient for enzymatic activity. We found that the NTD associates with the PIN domain and significantly enhances its RNase activity. The PIN domain forms a head-to-tail oligomer and the dimer interface overlaps with the NTD binding site. Interestingly, mutations blocking PIN oligomerization had no RNase activity, indicating that both oligomerization and NTD binding are crucial for RNase activity in vitro. These results suggest that Regnase-1 RNase activity is tightly controlled by both intramolecular (NTD-PIN) and intermolecular (PIN-PIN) interactions.
Collapse
Affiliation(s)
- Mariko Yokogawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Takashi Tsushima
- Graduate school of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan
| | - Hiroyuki Kumeta
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yoshiaki Enokizono
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kazuo Yamashita
- World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Daron M Standley
- World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Osamu Takeuchi
- World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Shizuo Akira
- World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Fuyuhiko Inagaki
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
44
|
The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response. Int J Mol Sci 2016; 17:ijms17010074. [PMID: 26760998 PMCID: PMC4730318 DOI: 10.3390/ijms17010074] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed.
Collapse
|
45
|
Stoll B, Binder S. Two NYN domain containing putative nucleases are involved in transcript maturation in Arabidopsis mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:278-288. [PMID: 26711866 DOI: 10.1111/tpj.13111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Plant mitochondrial transcripts frequently undergo maturation processes at their 5' ends. This almost completely enigmatic process requires the function of several proteins such as RNA processing factors, which are selectively involved in distinct 5' processing events. As RNA processing factors represent pentatricopeptide repeat proteins without apparent enzymatic function, it is hypothesized that a ribonuclease, most likely with endonucleolytic activity is involved in the 5' end maturation. We have now applied a reverse genetic approach to analyze the role of two potential mitochondrial nucleases, MNU1 and MNU2, in Arabidopsis thaliana. Both proteins contain several RNA-binding domains and NYN domains found in other endonucleases. A thorough analysis of various mitochondrial transcripts in MNU1 and MNU2 mutants revealed aberrant transcript pattern characterized by a decrease in mature RNA species often accompanied by an accumulation of larger, 5' extended precursor molecules. In addition, severely reduced amounts of nad9 mRNAs in the rpf2-1/mnu2-1 double mutant indicate a corporate function of RNA processing factor 2 and MNU2 in the maturation of these transcripts. However, the dramatic reduction of the nad9 mRNA is not reflected by the level of the corresponding Nad9 protein, which is found to be only moderately lowered. Collectively, our analysis strongly suggests a function of MNU1 and MNU2 in 5' processing of plant mitochondrial transcripts.
Collapse
Affiliation(s)
- Birgit Stoll
- Institut Molekulare Botanik, Universität Ulm, Ulm, D-89069, Germany
| | - Stefan Binder
- Institut Molekulare Botanik, Universität Ulm, Ulm, D-89069, Germany
| |
Collapse
|
46
|
Mycobacterium tuberculosis 38-kDa antigen induces endoplasmic reticulum stress-mediated apoptosis via toll-like receptor 2/4. Apoptosis 2015; 20:358-70. [PMID: 25544271 DOI: 10.1007/s10495-014-1080-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Endoplasmic reticulum (ER) stress responses play critical roles in the pathogenesis of tuberculosis. To investigate the regulatory role of the ER stress response in 38-kDa antigen-induced apoptosis, we examined the relationship between the ER stress response and apoptosis in bone marrow-derived macrophages (BMDMs) stimulated with Mycobacterium tuberculosis antigen (38-kDa Ag). The expression of ER molecular chaperones, including C/EBP homologous protein (CHOP), glucose-regulated protein (Bip) and phosphorylated alpha subunit of eukaryotic initiation factor 2, was induced in BMDMs stimulated with the 38-kDa Ag. Interestingly, 38-kDa Ag-stimulation induced apoptosis via activation of caspase-12, -9 and -3. However, 38-kDa Ag-induced apoptosis was significantly reduced in TLR2- and TLR4-deficient macrophages. Because toll-like receptors (TLRs) initiate the activation of mitogen-activated protein kinase (MAPK) signaling cascades, we evaluated the effect of MAPK activation on ER stress. The 38-kDa Ag activated Jun N-terminal kinase, extracellular signal-regulated kinase and p38 phosphorylation. MAPK signaling induced the secretion of proinflammatory cytokines such as MCP-1, TNF-α and IL-6. The 38-kDa Ag-induced MCP-1 was especially associated with the induction of MCP-1-induced protein (MCPIP), which increased the generation of reactive oxygen species (ROS) and ER stress. To investigate the role of MCPIP in ROS-induced ER stress by 38-kDa Ag stimulation, we transfected MCPIP siRNA into RAW264.7 cells before 38-kDa Ag stimulation, and measured the generation of ROS and expression of ER molecular chaperones. ROS production and CHOP expression were decreased by the silencing of MCPIP induction. Our results demonstrate that the expression of MCPIP by 38-kDa Ag stimulation is increased through a TLR-MAPK-dependent signaling pathway, and leads to ER stress-induced apoptosis. In conclusion, MCPIP is important for host defense mechanisms in mycobacterial pathogenesis.
Collapse
|
47
|
Kovarik P, Ebner F, Sedlyarov V. Posttranscriptional regulation of cytokine expression. Cytokine 2015; 89:21-26. [PMID: 26586165 DOI: 10.1016/j.cyto.2015.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 01/20/2023]
Abstract
Expression of cytokines and chemokines is regulated at multiple steps during the transfer of the genetic information from DNA sequence to the functional protein. The multilayered control of cytokine expression reflects the need of the immune system to precisely and rapidly adjust the magnitude and duration of immune responses to external cues. Common features of the regulation of cytokine expression are temporal and highly dynamic changes in cytokine mRNA stability. Failures in the timing and extent of mRNA decay can result in disease. Recent advances in transcriptome-wide approaches began to shed light into the complex network of cis-acting sequence elements and trans-acting factors controlling mRNA stability. These approaches led to the discovery of novel unexpected paradigms but they also revealed new questions. This review will discuss the control of cytokine mRNA stability both in the context of high content approaches as well as focused mechanistic studies and animal models. The article highlights the need for systems biology approaches as important means to understand how cytokine mRNA decay helps maintain the immune and tissue homeostasis, and to explore options for therapeutical exploitation of mRNA stability regulation.
Collapse
Affiliation(s)
- Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| | - Florian Ebner
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Vitaly Sedlyarov
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| |
Collapse
|
48
|
Makki MS, Haqqi TM. miR-139 modulates MCPIP1/IL-6 expression and induces apoptosis in human OA chondrocytes. Exp Mol Med 2015; 47:e189. [PMID: 26450708 PMCID: PMC4673474 DOI: 10.1038/emm.2015.66] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/22/2015] [Accepted: 06/09/2015] [Indexed: 12/27/2022] Open
Abstract
IL-6 is an inflammatory cytokine and its overexpression plays an important role in osteoarthritis (OA) pathogenesis. Expression of IL-6 is regulated post-transcriptionally by MCPIP1. The 3' untranslated region (UTR) of MCPIP1 mRNA harbors a miR-139 'seed sequence', therefore we examined the post-transcriptional regulation of MCPIP1 by miR-139 and its impact on IL-6 expression in OA chondrocytes. Expression of miR-139 was found to be high in the damaged portion of the OA cartilage compared with unaffected cartilage from the same patient and was also induced by IL-1β in OA chondrocytes. Inhibition of miR-139 decreased the expression of IL-6 mRNA by 38% and of secreted IL-6 protein by 40%. However, overexpression of miR-139 increased the expression of IL-6 mRNA by 36% and of secreted IL-6 protein by 56%. These data correlated with altered expression profile of MCPIP1 in transfected chondrocytes. Studies with a luciferase reporter construct confirmed the interactions of miR-139 with the 'seed sequence' located in the 3' UTR of MCPIP mRNA. Furthermore, miR-139 overexpression increased the catabolic gene expression but expression of anabolic markers remained unchanged. Overexpression of miR-139 also induced apoptosis in OA chondrocytes. Importantly, we also discovered that IL-6 is a potent inducer of miR-139 expression in OA chondrocytes. These findings indicate that miR-139 functions as a post-transcriptional regulator of MCPIP1 expression and enhances IL-6 expression, which further upregulates miR-139 expression in OA chondrocytes. These results support our hypothesis that miR-139-mediated downregulation of MCPIP1 promotes IL-6 expression in OA. Therefore, targeting miR-139 could be therapeutically beneficial in the management of OA.
Collapse
Affiliation(s)
- Mohammad Shahidul Makki
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| | - Tariq M Haqqi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| |
Collapse
|
49
|
Garg AV, Amatya N, Chen K, Cruz JA, Grover P, Whibley N, Conti HR, Hernandez Mir G, Sirakova T, Childs EC, Smithgall TE, Biswas PS, Kolls JK, McGeachy MJ, Kolattukudy PE, Gaffen SL. MCPIP1 Endoribonuclease Activity Negatively Regulates Interleukin-17-Mediated Signaling and Inflammation. Immunity 2015; 43:475-87. [PMID: 26320658 DOI: 10.1016/j.immuni.2015.07.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 05/31/2015] [Accepted: 06/16/2015] [Indexed: 01/13/2023]
Abstract
Interleukin-17 (IL-17) induces pathology in autoimmunity and infections; therefore, constraint of this pathway is an essential component of its regulation. We demonstrate that the signaling intermediate MCPIP1 (also termed Regnase-1, encoded by Zc3h12a) is a feedback inhibitor of IL-17 receptor signal transduction. MCPIP1 knockdown enhanced IL-17-mediated signaling, requiring MCPIP1's endoribonuclease but not deubiquitinase domain. MCPIP1 haploinsufficient mice showed enhanced resistance to disseminated Candida albicans infection, which was reversed in an Il17ra(-/-) background. Conversely, IL-17-dependent pathology in Zc3h12a(+/-) mice was exacerbated in both EAE and pulmonary inflammation. MCPIP1 degraded Il6 mRNA directly but only modestly downregulated the IL-6 promoter. However, MCPIP1 strongly inhibited the Lcn2 promoter by regulating the mRNA stability of Nfkbiz, encoding the IκBζ transcription factor. Unexpectedly, MCPIP1 degraded Il17ra and Il17rc mRNA, independently of the 3' UTR. The cumulative impact of MCPIP1 on IL-6, IκBζ, and possibly IL-17R subunits results in a biologically relevant inhibition of IL-17 signaling.
Collapse
Affiliation(s)
- Abhishek V Garg
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nilesh Amatya
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kong Chen
- Department of Pediatrics & Immunology, Richard King Mellon Institute for Pediatric Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - J Agustin Cruz
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Prerna Grover
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Natasha Whibley
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Heather R Conti
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gerard Hernandez Mir
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tatiana Sirakova
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Erin C Childs
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thomas E Smithgall
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Partha S Biswas
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jay K Kolls
- Department of Pediatrics & Immunology, Richard King Mellon Institute for Pediatric Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Mandy J McGeachy
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pappachan E Kolattukudy
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
50
|
Lyu JH, Park DW, Huang B, Kang SH, Lee SJ, Lee C, Bae YS, Lee JG, Baek SH. RGS2 suppresses breast cancer cell growth via a MCPIP1-dependent pathway. J Cell Biochem 2015; 116:260-7. [PMID: 25187114 DOI: 10.1002/jcb.24964] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/29/2014] [Indexed: 01/22/2023]
Abstract
Regulator of G protein signaling 2 (RGS2) is a member of a family of proteins that functions as a GTPase-activating protein (GAP) for Gα subunits. RGS2 mRNA expression is lower in breast cancerous tissues than in normal tissues. In addition, expression of RGS2 is also lower in MCF7 (cancerous breast cells) than in MCF10A (normal breast cells). Here we investigated whether RGS2 inhibits growth of breast cancer cells. RGS2 overexpression in MCF7 cells inhibited epidermal growth factor- or serum-induced proliferation. In HEK293T cells expressing RGS2, cell growth was also significantly suppressed (In addition, exogenous expression of RGS2 in HEK293T cells resulted in the significant suppression of cell growth). These results suggest that RGS2 may have a tumor suppressor function. MG-132 treatment of MCF7 cells increased endogenous or exogenous RGS2 levels, suggesting a post-transcriptional regulatory mechanism that controls RGS2 protein levels. RGS2 protein was degraded polyubiquitinated the K71 residue, but stabilized by deubiquitinase monocyte chemotactic protein-induced protein 1 (MCPIP1), and not affected by dominant negative mutant (C157A) of MCPIP1. Gene expression profiling study showed that overexpression of RGS2 decreased levels of testis specific Y encoded like protein 5 (TSPYL5), which plays a causal role in breast oncogenesis. TSPYL5 protein expression was low in MCF10A and high in MCF7 cells, showing the opposite aspect to RGS2 expression. Additionally, RGS2 or MCPIP1 overexpression in MCF7 cells decreased TSPYL5 protein level, indicating that RGS2 stabilized by MCPIP1 have diminished TSPYL5 protein levels, thereby exerting an inhibitory effect of breast cancer cell growth.
Collapse
Affiliation(s)
- Ji Hyo Lyu
- Department of Biochemistry and Molecular Biology, Aging-Associated Vascular Disease Research Center, Daegu, 705-802, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|