1
|
Zou LH, Zhu B, Chen Y, Lu Y, Ramkrishnan M, Xu C, Zhou X, Ding Y, Cho J, Zhou M. Genetic and epigenetic reprogramming in response to internal and external cues by induced transposon mobilization in Moso bamboo. THE NEW PHYTOLOGIST 2024; 244:1916-1930. [PMID: 39238152 DOI: 10.1111/nph.20107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
Long terminal repeat retroelements (LTR-REs) have profound effects on DNA methylation and gene regulation. Despite the vast abundance of LTR-REs in the genome of Moso bamboo (Phyllostachys edulis), an industrial crop in underdeveloped countries, their precise implication of the LTR-RE mobility in stress response and development remains unknown. We investigated the RNA and DNA products of LTR-REs in Moso bamboo under various developmental stages and stressful conditions. Surprisingly, our analyses identified thousands of active LTR-REs, particularly those located near genes involved in stress response and developmental regulation. These genes adjacent to active LTR-REs exhibited an increased expression under stress and are associated with reduced DNA methylation that is likely affected by the induced LTR-REs. Moreover, the analyses of simultaneous mapping of insertions and DNA methylation showed that the LTR-REs effectively alter the epigenetic status of the genomic regions where they inserted, and concomitantly their transcriptional competence which might impact the stress resilience and growth of the host. Our work unveils the unusually strong LTR-RE mobility in Moso bamboo and its close association with (epi)genetic changes, which supports the co-evolution of the parasitic DNAs and host genome in attaining stress tolerance and developmental robustness.
Collapse
Affiliation(s)
- Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Bailiang Zhu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yaxin Chen
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yaping Lu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Muthusamy Ramkrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Chao Xu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaohong Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yiqian Ding
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jungnam Cho
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| |
Collapse
|
2
|
Nandety RS, Oh S, Lee HK, Krom N, Gupta R, Mysore KS. Genome-wide methylation landscape during somatic embryogenesis in Medicago truncatula reveals correlation between Tnt1 retrotransposition and hyperactive methylation regions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:557-576. [PMID: 38627952 DOI: 10.1111/tpj.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 07/01/2024]
Abstract
Medicago truncatula is a model legume for fundamental research on legume biology and symbiotic nitrogen fixation. Tnt1, a retrotransposon from tobacco, was used to generate insertion mutants in M. truncatula R108. Approximately 21 000 insertion lines have been generated and publicly available. Tnt1 retro-transposition event occurs during somatic embryogenesis (SE), a pivotal process that triggers massive methylation changes. We studied the SE of M. truncatula R108 using leaf explants and explored the dynamic shifts in the methylation landscape from leaf explants to callus formation and finally embryogenesis. Higher cytosine methylation in all three contexts of CG, CHG, and CHH patterns was observed during SE compared to the controls. Higher methylation patterns were observed in assumed promoter regions (~2-kb upstream regions of transcription start site) of the genes, while lowest was recorded in the untranslated regions. Differentially methylated promoter region analysis showed a higher CHH methylation in embryogenesis tissue samples when compared to CG and CHG methylation. Strong correlation (89.71%) was identified between the differentially methylated regions (DMRs) and the site of Tnt1 insertions in M. truncatula R108 and stronger hypermethylation of genes correlated with higher number of Tnt1 insertions in all contexts of CG, CHG, and CHH methylation. Gene ontology enrichment and KEGG pathway enrichment analysis identified genes and pathways enriched in the signal peptide processing, ATP hydrolysis, RNA polymerase activity, transport, secondary metabolites, and nitrogen metabolism pathways. Combined gene expression analysis and methylation profiling showed an inverse relationship between methylation in the DMRs (regions spanning genes) and the expression of genes. Our results show that a dynamic shift in methylation happens during the SE process in the context of CG, CHH and CHG methylation, and the Tnt1 retrotransposition correlates with the hyperactive methylation regions.
Collapse
Affiliation(s)
- Raja Sekhar Nandety
- Noble Research Institute, Ardmore, Oklahoma, 73401, USA
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, 58102, USA
- Cereal Crops Research Unit, USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota, 58102, USA
| | - Sunhee Oh
- Noble Research Institute, Ardmore, Oklahoma, 73401, USA
| | - Hee-Kyung Lee
- Noble Research Institute, Ardmore, Oklahoma, 73401, USA
| | - Nick Krom
- Noble Research Institute, Ardmore, Oklahoma, 73401, USA
| | - Rajeev Gupta
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, 58102, USA
- Cereal Crops Research Unit, USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota, 58102, USA
| | - Kirankumar S Mysore
- Noble Research Institute, Ardmore, Oklahoma, 73401, USA
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| |
Collapse
|
3
|
Jin Y, Jia J, Yang Y, Zhu X, Yan H, Mao C, Najeeb A, Luo J, Sun M, Xie Z, Wang X, Huang L. DNAJ protein gene expansion mechanism in Panicoideae and PgDNAJ functional identification in pearl millet. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:149. [PMID: 38836874 DOI: 10.1007/s00122-024-04656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
KEY MESSAGE Analyze the evolutionary pattern of DNAJ protein genes in the Panicoideae, including pearl millet, to identify and characterize the biological function of PgDNAJ genes in pearl millet. Global warming has become a major factor threatening food security and human development. It is urgent to analyze the heat-tolerant mechanism of plants and cultivate crops that are adapted to high temperature conditions. The Panicoideae are the second largest subfamily of the Poaceae, widely distributed in warm temperate and tropical regions. Many of these species have been reported to have strong adaptability to high temperature stress, such as pearl millet, foxtail millet and sorghum. The evolutionary differences in DNAJ protein genes among 12 Panicoideae species and 10 other species were identified and analyzed. Among them, 79% of Panicoideae DNAJ protein genes were associated with retrotransposon insertion. Analysis of the DNAJ protein pan-gene family in six pearl millet accessions revealed that the non-core genes contained significantly more TEs than the core genes. By identifying and analyzing the distribution and types of TEs near the DNAJ protein genes, it was found that the insertion of Copia and Gypsy retrotransposons provided the source of expansion for the DNAJ protein genes in the Panicoideae. Based on the analysis of the evolutionary pattern of DNAJ protein genes in Panicoideae, the PgDNAJ was obtained from pearl millet through identification. PgDNAJ reduces the accumulation of reactive oxygen species caused by high temperature by activating ascorbate peroxidase (APX), thereby improving the heat resistance of plants. In summary, these data provide new ideas for mining potential heat-tolerant genes in Panicoideae, and help to improve the heat tolerance of other crops.
Collapse
Affiliation(s)
- Yarong Jin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiyuan Jia
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuchen Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin Zhu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haidong Yan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunli Mao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Atiqa Najeeb
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinchan Luo
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Sun
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zheni Xie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Garza AB, Lerat E, Girgis HZ. Look4LTRs: a Long terminal repeat retrotransposon detection tool capable of cross species studies and discovering recently nested repeats. Mob DNA 2024; 15:8. [PMID: 38627766 PMCID: PMC11020628 DOI: 10.1186/s13100-024-00317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
Plant genomes include large numbers of transposable elements. One particular type of these elements is flanked by two Long Terminal Repeats (LTRs) and can translocate using RNA. Such elements are known as LTR-retrotransposons; they are the most abundant type of transposons in plant genomes. They have many important functions involving gene regulation and the rise of new genes and pseudo genes in response to severe stress. Additionally, LTR-retrotransposons have several applications in biotechnology. Due to the abundance and the importance of LTR-retrotransposons, multiple computational tools have been developed for their detection. However, none of these tools take advantages of the availability of related genomes; they process one chromosome at a time. Further, recently nested LTR-retrotransposons (multiple elements of the same family are inserted into each other) cannot be annotated accurately - or cannot be annotated at all - by the currently available tools. Motivated to overcome these two limitations, we built Look4LTRs, which can annotate LTR-retrotransposons in multiple related genomes simultaneously and discover recently nested elements. The methodology of Look4LTRs depends on techniques imported from the signal-processing field, graph algorithms, and machine learning with a minimal use of alignment algorithms. Four plant genomes were used in developing Look4LTRs and eight plant genomes for evaluating it in contrast to three related tools. Look4LTRs is the fastest while maintaining better or comparable F1 scores (the harmonic average of recall and precision) to those obtained by the other tools. Our results demonstrate the added benefit of annotating LTR-retrotransposons in multiple related genomes simultaneously and the ability to discover recently nested elements. Expert human manual examination of six elements - not included in the ground truth - revealed that three elements belong to known families and two elements are likely from new families. With respect to examining recently nested LTR-retrotransposons, three out of five were confirmed to be valid elements. Look4LTRs - with its speed, accuracy, and novel features - represents a true advancement in the annotation of LTR-retrotransposons, opening the door to many studies focused on understanding their functions in plants.
Collapse
Affiliation(s)
- Anthony B Garza
- Bioinformatics Toolsmith Laboratory, Department of Electrical Engineering and Computer Science, Texas A &M University-Kingsville, Kingsville, Texas, USA
| | - Emmanuelle Lerat
- The Biometrics and Evolutionary Biology Laboratory, University Lyon 1, Lyon, France
| | - Hani Z Girgis
- Bioinformatics Toolsmith Laboratory, Department of Electrical Engineering and Computer Science, Texas A &M University-Kingsville, Kingsville, Texas, USA.
| |
Collapse
|
5
|
Thieme M, Minadakis N, Himber C, Keller B, Xu W, Rutowicz K, Matteoli C, Böhrer M, Rymen B, Laudencia-Chingcuanco D, Vogel JP, Sibout R, Stritt C, Blevins T, Roulin AC. Transposition of HOPPLA in siRNA-deficient plants suggests a limited effect of the environment on retrotransposon mobility in Brachypodium distachyon. PLoS Genet 2024; 20:e1011200. [PMID: 38470914 PMCID: PMC10959353 DOI: 10.1371/journal.pgen.1011200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Long terminal repeat retrotransposons (LTR-RTs) are powerful mutagens regarded as a major source of genetic novelty and important drivers of evolution. Yet, the uncontrolled and potentially selfish proliferation of LTR-RTs can lead to deleterious mutations and genome instability, with large fitness costs for their host. While population genomics data suggest that an ongoing LTR-RT mobility is common in many species, the understanding of their dual role in evolution is limited. Here, we harness the genetic diversity of 320 sequenced natural accessions of the Mediterranean grass Brachypodium distachyon to characterize how genetic and environmental factors influence plant LTR-RT dynamics in the wild. When combining a coverage-based approach to estimate global LTR-RT copy number variations with mobilome-sequencing of nine accessions exposed to eight different stresses, we find little evidence for a major role of environmental factors in LTR-RT accumulations in B. distachyon natural accessions. Instead, we show that loss of RNA polymerase IV (Pol IV), which mediates RNA-directed DNA methylation in plants, results in high transcriptional and transpositional activities of RLC_BdisC024 (HOPPLA) LTR-RT family elements, and that these effects are not stress-specific. This work supports findings indicating an ongoing mobility in B. distachyon and reveals that host RNA-directed DNA methylation rather than environmental factors controls their mobility in this wild grass model.
Collapse
Affiliation(s)
- Michael Thieme
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Nikolaos Minadakis
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christophe Himber
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Bettina Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Wenbo Xu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Kinga Rutowicz
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Calvin Matteoli
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Marcel Böhrer
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Bart Rymen
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Debbie Laudencia-Chingcuanco
- United States Department of Agriculture Agricultural Research Service Western Regional Research Center, Albany, California, United States of America
| | - John P. Vogel
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Richard Sibout
- Institut National de la Recherche Agronomique Unité BIA- 1268 Biopolymères Interactions Assemblages Equipe Paroi Végétale et Polymères Pariétaux (PVPP), Nantes, France
| | - Christoph Stritt
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
| | - Todd Blevins
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Anne C. Roulin
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Hassan AH, Mokhtar MM, El Allali A. Transposable elements: multifunctional players in the plant genome. FRONTIERS IN PLANT SCIENCE 2024; 14:1330127. [PMID: 38239225 PMCID: PMC10794571 DOI: 10.3389/fpls.2023.1330127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Transposable elements (TEs) are indispensable components of eukaryotic genomes that play diverse roles in gene regulation, recombination, and environmental adaptation. Their ability to mobilize within the genome leads to gene expression and DNA structure changes. TEs serve as valuable markers for genetic and evolutionary studies and facilitate genetic mapping and phylogenetic analysis. They also provide insight into how organisms adapt to a changing environment by promoting gene rearrangements that lead to new gene combinations. These repetitive sequences significantly impact genome structure, function and evolution. This review takes a comprehensive look at TEs and their applications in biotechnology, particularly in the context of plant biology, where they are now considered "genomic gold" due to their extensive functionalities. The article addresses various aspects of TEs in plant development, including their structure, epigenetic regulation, evolutionary patterns, and their use in gene editing and plant molecular markers. The goal is to systematically understand TEs and shed light on their diverse roles in plant biology.
Collapse
Affiliation(s)
- Asmaa H. Hassan
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Morad M. Mokhtar
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
7
|
Torres JR, Botto JF, Sanchez DH. Canonical transcriptional gene silencing may contribute to long-term heat response and recovery through MOM1. PLANT, CELL & ENVIRONMENT 2024; 47:372-382. [PMID: 37712454 DOI: 10.1111/pce.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Plant canonical transcriptional gene silencing (TGS) is involved in epigenetic mechanisms that mediate genomic imprinting and the suppression of transposable elements (TEs). It has been recognised that long-term heat disrupts epigenetic silencing, with the ensuing activation of TEs. However, the physiological involvement of the TGS machinery under prolonged high temperatures has not yet been established. Here, we performed non-lethal extended periodic heat stress and recovery treatments on Arabidopsis thaliana lines mutated on key TGS factors, analysing transcriptomic changes of coding-protein genes and TEs. Plants bearing MET1, DRM2 and CMT3, and MOM1 mutated alleles showed novel transcriptional properties compatible with functionalities concerning the induction/repression of partially shared or private heat-triggered transcriptome networks. Certain observations supported the idea that some responses are based on thermal de-silencing. TEs transcriptional activation uncovered the interaction with specific epigenetic layers, which may play dedicated suppressing roles under determinate physiological conditions such as heat. Furthermore, physiological experimentation suggested that MOM1 is required to resume growth after stress. Our data thus provide initial evidence that at least one canonical TGS factor may contribute to plant acclimation and recovery from non-lethal long-term heat despite the stress-induced epigenetic disturbance.
Collapse
Affiliation(s)
- José Roberto Torres
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier F Botto
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego H Sanchez
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Martin GT, Solares E, Guadardo-Mendez J, Muyle A, Bousios A, Gaut BS. miRNA-like secondary structures in maize ( Zea mays) genes and transposable elements correlate with small RNAs, methylation, and expression. Genome Res 2023; 33:1932-1946. [PMID: 37918960 PMCID: PMC10760457 DOI: 10.1101/gr.277459.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
RNA molecules carry information in their primary sequence and also their secondary structure. Secondary structure can confer important functional information, but it is also a signal for an RNAi-like host epigenetic response mediated by small RNAs (smRNAs). In this study, we used two bioinformatic methods to predict local secondary structures across features of the maize genome, focusing on small regions that had similar folding properties to pre-miRNA loci. We found miRNA-like secondary structures to be common in genes and most, but not all, superfamilies of RNA and DNA transposable elements (TEs). The miRNA-like regions map to a higher diversity of smRNAs than regions without miRNA-like structure, explaining up to 27% of variation in smRNA mapping for some TE superfamilies. This mapping bias is more pronounced among putatively autonomous TEs relative to nonautonomous TEs. Genome-wide, miRNA-like regions are also associated with elevated methylation levels, particularly in the CHH context. Among genes, those with miRNA-like secondary structure are 1.5-fold more highly expressed, on average, than other genes. However, these genes are also more variably expressed across the 26 nested association mapping founder lines, and this variability positively correlates with the number of mapping smRNAs. We conclude that local miRNA-like structures are a nearly ubiquitous feature of expressed regions of the maize genome, that they correlate with higher smRNA mapping and methylation, and that they may represent a trade-off between functional requirements and the potentially negative consequences of smRNA production.
Collapse
Affiliation(s)
- Galen T Martin
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617, USA
| | - Edwin Solares
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617, USA
- Department of Ecology and Evolutionary Biology, University of California, Davis, California 95616, USA
| | - Jeanelle Guadardo-Mendez
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617, USA
| | - Aline Muyle
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617, USA
- CEFE, University of Montpellier, CNRS, EPHE, IRD, 34090 Montpellier, France
| | - Alexandros Bousios
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617, USA;
| |
Collapse
|
9
|
Aubin E, Llauro C, Garrigue J, Mirouze M, Panaud O, El Baidouri M. Genome-wide analysis of horizontal transfer in non-model wild species from a natural ecosystem reveals new insights into genetic exchange in plants. PLoS Genet 2023; 19:e1010964. [PMID: 37856455 PMCID: PMC10586619 DOI: 10.1371/journal.pgen.1010964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Horizontal transfer (HT) refers to the exchange of genetic material between divergent species by mechanisms other than reproduction. In recent years, several studies have demonstrated HTs in eukaryotes, particularly in the context of parasitic relationships and in model species. However, very little is known about HT in natural ecosystems, especially those involving non-parasitic wild species, and the nature of the ecological relationships that promote these HTs. In this work, we conducted a pilot study investigating HTs by sequencing the genomes of 17 wild non-model species from a natural ecosystem, the Massane forest, located in southern France. To this end, we developed a new computational pipeline called INTERCHANGE that is able to characterize HTs at the whole genome level without prior annotation and directly in the raw sequencing reads. Using this pipeline, we identified 12 HT events, half of which occurred between lianas and trees. We found that mainly low copy number LTR-retrotransposons from the Copia superfamily were transferred between these wild plant species, especially those of the Ivana and Ale lineages. This study revealed a possible new route for HTs between non-parasitic plants and provides new insights into the genomic characteristics of horizontally transferred DNA in plant genomes.
Collapse
Affiliation(s)
- Emilie Aubin
- Laboratoire Génome et Développement des Plantes, Perpignan, Université de Perpignan Via Domitia, Perpignan, France
| | - Christel Llauro
- Laboratoire Génome et Développement des Plantes, Perpignan, Université de Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| | - Joseph Garrigue
- Réserve Naturelle Nationale de la forêt de la Massane, France
| | - Marie Mirouze
- Laboratoire Génome et Développement des Plantes, Perpignan, Université de Perpignan Via Domitia, Perpignan, France
- Diversité, Adaptation, Développement des Plantes, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, Perpignan, Université de Perpignan Via Domitia, Perpignan, France
- Institut Universitaire de France, Paris, France
| | - Moaine El Baidouri
- Laboratoire Génome et Développement des Plantes, Perpignan, Université de Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| |
Collapse
|
10
|
Mokhtar MM, Alsamman AM, El Allali A. PlantLTRdb: An interactive database for 195 plant species LTR-retrotransposons. FRONTIERS IN PLANT SCIENCE 2023; 14:1134627. [PMID: 36950350 PMCID: PMC10025401 DOI: 10.3389/fpls.2023.1134627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/16/2023] [Indexed: 05/29/2023]
Abstract
LTR-retrotransposons (LTR-RTs) are a large group of transposable elements that replicate through an RNA intermediate and alter genome structure. The activities of LTR-RTs in plant genomes provide helpful information about genome evolution and gene function. LTR-RTs near or within genes can directly alter gene function. This work introduces PlantLTRdb, an intact LTR-RT database for 195 plant species. Using homology- and de novo structure-based methods, a total of 150.18 Gbp representing 3,079,469 pseudomolecules/scaffolds were analyzed to identify, characterize, annotate LTR-RTs, estimate insertion ages, detect LTR-RT-gene chimeras, and determine nearby genes. Accordingly, 520,194 intact LTR-RTs were discovered, including 29,462 autonomous and 490,732 nonautonomous LTR-RTs. The autonomous LTR-RTs included 10,286 Gypsy and 19,176 Copia, while the nonautonomous were divided into 224,906 Gypsy, 218,414 Copia, 1,768 BARE-2, 3,147 TR-GAG and 4,2497 unknown. Analysis of the identified LTR-RTs located within genes showed that a total of 36,236 LTR-RTs were LTR-RT-gene chimeras and 11,619 LTR-RTs were within pseudo-genes. In addition, 50,026 genes are within 1 kbp of LTR-RTs, and 250,587 had a distance of 1 to 10 kbp from LTR-RTs. PlantLTRdb allows researchers to search, visualize, BLAST and analyze plant LTR-RTs. PlantLTRdb can contribute to the understanding of structural variations, genome organization, functional genomics, and the development of LTR-RT target markers for molecular plant breeding. PlantLTRdb is available at https://bioinformatics.um6p.ma/PlantLTRdb.
Collapse
|
11
|
Orozco-Arias S, Dupeyron M, Gutiérrez-Duque D, Tabares-Soto R, Guyot R. High nucleotide similarity of three Copia lineage LTR retrotransposons among plant genomes. Genome 2023; 66:51-61. [PMID: 36623262 DOI: 10.1139/gen-2022-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transposable elements (TEs) are mobile elements found in the majority of eukaryotic genomes. TEs deeply impact the structure and evolution of chromosomes and can induce mutations affecting coding genes. In plants, the major group of TEs is long terminal repeat retrotransposons (LTR-RTs). They are classified into superfamilies (Gypsy, Copia) and subclassified into lineages. Horizontal transfer (HT), defined as the nonsexual transmission of genetic material between species, is a process allowing LTR-RTs to invade a new genome. Although this phenomenon was considered rare, recent studies demonstrate numerous transfers of LTR-RTs. This study aims to determine which LTR-RT lineages are shared with high similarity among 69 plant genomes. We identified and classified 88 450 LTR-RTs and determined 143 cases of high similarities between pairs of genomes. Most of them involved three Copia lineages (Oryco/Ivana, Retrofit/Ale, and Tork/Tar/Ikeros). A detailed analysis of three cases of high similarities involving Tork/Tar/Ikeros group shows an uneven distribution in the phylogeny of the elements and incongruence with between phylogenetic trees topologies, indicating they could be originated from HTs. Overall, our results suggest that LTR-RT Copia lineages share outstanding similarity between distant species and may likely be involved in HT mechanisms more frequent than initially estimated.
Collapse
Affiliation(s)
- Simon Orozco-Arias
- Department of Computer Sciences, Universidad Autónoma de Manizales, Colombia.,Department of Systems and Informatics, Universidad de Caldas, Colombia
| | - Mathilde Dupeyron
- Institut de Recherche pour le Développement, IRD, CIRAD, Université de Montpellier, France
| | | | - Reinel Tabares-Soto
- Department of Systems and Informatics, Universidad de Caldas, Colombia.,Department of Electronics and Automatization, Universidad Autónoma de Manizales, Colombia
| | - Romain Guyot
- Institut de Recherche pour le Développement, IRD, CIRAD, Université de Montpellier, France.,Department of Electronics and Automatization, Universidad Autónoma de Manizales, Colombia
| |
Collapse
|
12
|
Yuan R, Zheng B, Li Z, Ma X, Shu X, Qu Q, Ye X, Li S, Tang P, Chen X. The chromosome-level genome of Chinese praying mantis Tenodera sinensis (Mantodea: Mantidae) reveals its biology as a predator. Gigascience 2022; 12:giad090. [PMID: 37882605 PMCID: PMC10600911 DOI: 10.1093/gigascience/giad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/17/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The Chinese praying mantis, Tenodera sinensis (Saussure), is a carnivorous insect that preys on a variety of arthropods and small vertebrates, including pest species. Several studies have been conducted to understand its behavior and physiology. However, there is limited knowledge about the genetic information underlying its genome evolution, digestive demands, and predatory behaviors. FINDINGS Here we have assembled the chromosome-level genome of T. sinensis, representing the first sequenced genome of the family Mantidae, with a genome size of 2.54 Gb and scaffold N50 of 174.78 Mb. Our analyses revealed that 98.6% of BUSCO genes are present, resulting in a well-annotated assembly compared to other insect genomes, containing 25,022 genes. The reconstructed phylogenetic analysis showed the expected topology placing the praying mantis in an appropriate position. Analysis of transposon elements suggested the Gypsy/Dirs family, which belongs to long terminal repeat (LTR) transposons, may be a key factor resulting in the larger genome size. The genome shows expansions in several digestion and detoxification associated gene families, including trypsin and glycosyl hydrolase (GH) genes, ATP-binding cassette (ABC) transporter, and carboxylesterase (CarE), reflecting the possible genomic basis of digestive demands. Furthermore, we have found 1 ultraviolet-sensitive opsin and 2 long-wavelength-sensitive (LWS) opsins, emphasizing the core role of LWS opsins in regulating predatory behaviors. CONCLUSIONS The high-quality genome assembly of the praying mantis provides a valuable repository for studying the evolutionary patterns of the mantis genomes and the gene expression profiles of insect predators.
Collapse
Affiliation(s)
- Ruizhong Yuan
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Boying Zheng
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Zekai Li
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Xingzhou Ma
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Shu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qiuyu Qu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Xiqian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Pu Tang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
13
|
Orozco-Arias S, Humberto Lopez-Murillo L, Candamil-Cortés MS, Arias M, Jaimes PA, Rossi Paschoal A, Tabares-Soto R, Isaza G, Guyot R. Inpactor2: a software based on deep learning to identify and classify LTR-retrotransposons in plant genomes. Brief Bioinform 2022; 24:6887110. [PMID: 36502372 PMCID: PMC9851300 DOI: 10.1093/bib/bbac511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022] Open
Abstract
LTR-retrotransposons are the most abundant repeat sequences in plant genomes and play an important role in evolution and biodiversity. Their characterization is of great importance to understand their dynamics. However, the identification and classification of these elements remains a challenge today. Moreover, current software can be relatively slow (from hours to days), sometimes involve a lot of manual work and do not reach satisfactory levels in terms of precision and sensitivity. Here we present Inpactor2, an accurate and fast application that creates LTR-retrotransposon reference libraries in a very short time. Inpactor2 takes an assembled genome as input and follows a hybrid approach (deep learning and structure-based) to detect elements, filter partial sequences and finally classify intact sequences into superfamilies and, as very few tools do, into lineages. This tool takes advantage of multi-core and GPU architectures to decrease execution times. Using the rice genome, Inpactor2 showed a run time of 5 minutes (faster than other tools) and has the best accuracy and F1-Score of the tools tested here, also having the second best accuracy and specificity only surpassed by EDTA, but achieving 28% higher sensitivity. For large genomes, Inpactor2 is up to seven times faster than other available bioinformatics tools.
Collapse
Affiliation(s)
- Simon Orozco-Arias
- Corresponding authors. Simon Orozco-Arias, Computer Science Department, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarrill, Manizalez, Colombia. Tel.: +57(606)8727272 - 8727709 Ext 102; E-mail: ; Alexandre Rossi Paschoal, Department of Computer Science, Bioinformatics and Pattern Recognition Group, Graduation Program in Bioinformatics, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio, Paraná, 86300-000, Brazil. Tel.: +433133-3790; E-mail: ; Gustavo Isaza, Systems and Informatics Department, Center for Technology Development - Bioprocess and Agro-industry Plant, Universidad de Caldas, St 65 #26-10, Manizales, Colombia. Tel.: +57(606)8781500 ext 13146; E-mail: , Romain Guyot, IRD, 911 Av. Agropolis, 34394 Montpellier, France. Tel.: +334674160000; E-mail:
| | | | | | - Maradey Arias
- Department of Computer Science, Universidad Autónoma de Manizales, 170001, Caldas, Colombia
| | - Paula A Jaimes
- Department of Computer Science, Universidad Autónoma de Manizales, 170001, Caldas, Colombia
| | - Alexandre Rossi Paschoal
- Corresponding authors. Simon Orozco-Arias, Computer Science Department, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarrill, Manizalez, Colombia. Tel.: +57(606)8727272 - 8727709 Ext 102; E-mail: ; Alexandre Rossi Paschoal, Department of Computer Science, Bioinformatics and Pattern Recognition Group, Graduation Program in Bioinformatics, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio, Paraná, 86300-000, Brazil. Tel.: +433133-3790; E-mail: ; Gustavo Isaza, Systems and Informatics Department, Center for Technology Development - Bioprocess and Agro-industry Plant, Universidad de Caldas, St 65 #26-10, Manizales, Colombia. Tel.: +57(606)8781500 ext 13146; E-mail: , Romain Guyot, IRD, 911 Av. Agropolis, 34394 Montpellier, France. Tel.: +334674160000; E-mail:
| | - Reinel Tabares-Soto
- Department of Electronics and Automation, Universidad Autónoma de Manizales, 170001, Caldas, Colombia
| | - Gustavo Isaza
- Corresponding authors. Simon Orozco-Arias, Computer Science Department, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarrill, Manizalez, Colombia. Tel.: +57(606)8727272 - 8727709 Ext 102; E-mail: ; Alexandre Rossi Paschoal, Department of Computer Science, Bioinformatics and Pattern Recognition Group, Graduation Program in Bioinformatics, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio, Paraná, 86300-000, Brazil. Tel.: +433133-3790; E-mail: ; Gustavo Isaza, Systems and Informatics Department, Center for Technology Development - Bioprocess and Agro-industry Plant, Universidad de Caldas, St 65 #26-10, Manizales, Colombia. Tel.: +57(606)8781500 ext 13146; E-mail: , Romain Guyot, IRD, 911 Av. Agropolis, 34394 Montpellier, France. Tel.: +334674160000; E-mail:
| | - Romain Guyot
- Corresponding authors. Simon Orozco-Arias, Computer Science Department, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarrill, Manizalez, Colombia. Tel.: +57(606)8727272 - 8727709 Ext 102; E-mail: ; Alexandre Rossi Paschoal, Department of Computer Science, Bioinformatics and Pattern Recognition Group, Graduation Program in Bioinformatics, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio, Paraná, 86300-000, Brazil. Tel.: +433133-3790; E-mail: ; Gustavo Isaza, Systems and Informatics Department, Center for Technology Development - Bioprocess and Agro-industry Plant, Universidad de Caldas, St 65 #26-10, Manizales, Colombia. Tel.: +57(606)8781500 ext 13146; E-mail: , Romain Guyot, IRD, 911 Av. Agropolis, 34394 Montpellier, France. Tel.: +334674160000; E-mail:
| |
Collapse
|
14
|
Papolu PK, Ramakrishnan M, Mullasseri S, Kalendar R, Wei Q, Zou L, Ahmad Z, Vinod KK, Yang P, Zhou M. Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1064847. [PMID: 36570931 PMCID: PMC9780303 DOI: 10.3389/fpls.2022.1064847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 05/28/2023]
Abstract
Long terminal repeat retrotransposons (LTR retrotransposons) are the most abundant group of mobile genetic elements in eukaryotic genomes and are essential in organizing genomic architecture and phenotypic variations. The diverse families of retrotransposons are related to retroviruses. As retrotransposable elements are dispersed and ubiquitous, their "copy-out and paste-in" life cycle of replicative transposition leads to new genome insertions without the excision of the original element. The overall structure of retrotransposons and the domains responsible for the various phases of their replication is highly conserved in all eukaryotes. The two major superfamilies of LTR retrotransposons, Ty1/Copia and Ty3/Gypsy, are distinguished and dispersed across the chromosomes of higher plants. Members of these superfamilies can increase in copy number and are often activated by various biotic and abiotic stresses due to retrotransposition bursts. LTR retrotransposons are important drivers of species diversity and exhibit great variety in structure, size, and mechanisms of transposition, making them important putative actors in genome evolution. Additionally, LTR retrotransposons influence the gene expression patterns of adjacent genes by modulating potential small interfering RNA (siRNA) and RNA-directed DNA methylation (RdDM) pathways. Furthermore, comparative and evolutionary analysis of the most important crop genome sequences and advanced technologies have elucidated the epigenetics and structural and functional modifications driven by LTR retrotransposon during speciation. However, mechanistic insights into LTR retrotransposons remain obscure in plant development due to a lack of advancement in high throughput technologies. In this review, we focus on the key role of LTR retrotransposons response in plants during heat stress, the role of centromeric LTR retrotransposons, and the role of LTR retrotransposon markers in genome expression and evolution.
Collapse
Affiliation(s)
- Pradeep K. Papolu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi, Kerala, India
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Long−Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | | | - Ping Yang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Bajus M, Macko-Podgórni A, Grzebelus D, Baránek M. A review of strategies used to identify transposition events in plant genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1080993. [PMID: 36531345 PMCID: PMC9751208 DOI: 10.3389/fpls.2022.1080993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Transposable elements (TEs) were initially considered redundant and dubbed 'junk DNA'. However, more recently they were recognized as an essential element of genome plasticity. In nature, they frequently become active upon exposition of the host to stress conditions. Even though most transposition events are neutral or even deleterious, occasionally they may happen to be beneficial, resulting in genetic novelty providing better fitness to the host. Hence, TE mobilization may promote adaptability and, in the long run, act as a significant evolutionary force. There are many examples of TE insertions resulting in increased tolerance to stresses or in novel features of crops which are appealing to the consumer. Possibly, TE-driven de novo variability could be utilized for crop improvement. However, in order to systematically study the mechanisms of TE/host interactions, it is necessary to have suitable tools to globally monitor any ongoing TE mobilization. With the development of novel potent technologies, new high-throughput strategies for studying TE dynamics are emerging. Here, we present currently available methods applied to monitor the activity of TEs in plants. We divide them on the basis of their operational principles, the position of target molecules in the process of transposition and their ability to capture real cases of actively transposing elements. Their possible theoretical and practical drawbacks are also discussed. Finally, conceivable strategies and combinations of methods resulting in an improved performance are proposed.
Collapse
Affiliation(s)
- Marko Bajus
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Alicja Macko-Podgórni
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Miroslav Baránek
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| |
Collapse
|
16
|
Genome-Wide Comparison of Structural Variations and Transposon Alterations in Soybean Cultivars Induced by Spaceflight. Int J Mol Sci 2022; 23:ijms232213721. [PMID: 36430198 PMCID: PMC9696660 DOI: 10.3390/ijms232213721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Space mutation causes genetic and phenotypic changes in biological materials. Transposon activation is an adaptive mechanism for organisms to cope with changes in the external environment, such as space mutation. Although transposon alterations have been widely reported in diverse plant species, few studies have assessed the global transposon alterations in plants exposed to the space environment. In this study, for the first time, the effects of transposon alterations in soybean caused by space mutation were considered. A new vegetable soybean variety, 'Zhexian 9' (Z9), derived from space mutation treatment of 'Taiwan 75' (T75), was genetically analyzed. Comparative analyses of these two soybean genomes uncovered surprising structural differences, especially with respect to translocation breakends, deletions, and inversions. In total, 12,028 structural variations (SVs) and 29,063 transposable elements (TEs) between T75 and Z9 were detected. In addition, 1336 potential genes were variable between T75 and Z9 in terms of SVs and TEs. These differential genes were enriched in functions such as defense response, cell wall-related processes, epigenetics, auxin metabolism and transport, signal transduction, and especially methylation, which implied that regulation of epigenetic mechanisms and TE activity are important in the space environment. These results are helpful for understanding the role of TEs in response to the space environment and provide a theoretical basis for the selection of wild plant materials suitable for space breeding.
Collapse
|
17
|
Thieme M, Brêchet A, Bourgeois Y, Keller B, Bucher E, Roulin AC. Experimentally heat-induced transposition increases drought tolerance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 236:182-194. [PMID: 35715973 PMCID: PMC9544478 DOI: 10.1111/nph.18322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 05/14/2023]
Abstract
Eukaryotic genomes contain a vast diversity of transposable elements (TEs). Formerly often described as selfish and parasitic DNA sequences, TEs are now recognised as a source of genetic diversity and powerful drivers of evolution. However, because their mobility is tightly controlled by the host, studies experimentally assessing how fast TEs may mediate the emergence of adaptive traits are scarce. We exposed Arabidopsis thaliana high-copy TE lines (hcLines) with up to c. eight-fold increased copy numbers of the heat-responsive ONSEN TE to drought as a straightforward and ecologically highly relevant selection pressure. We provide evidence for increased drought tolerance in five out of the 23 tested hcLines and further pinpoint one of the causative mutations to an exonic insertion of ONSEN in the ribose-5-phosphate-isomerase 2 gene. The resulting loss-of-function mutation caused a decreased rate of photosynthesis, plant size and water consumption. Overall, we show that the heat-induced transposition of a low-copy TE increases phenotypic diversity and leads to the emergence of drought-tolerant individuals in A. thaliana. This is one of the rare empirical examples substantiating the adaptive potential of mobilised stress-responsive TEs in eukaryotes. Our work demonstrates the potential of TE-mediated loss-of-function mutations in stress adaptation.
Collapse
Affiliation(s)
- Michael Thieme
- Department of Plant and Microbial BiologyUniversity of Zurich8008ZürichSwitzerland
| | - Arthur Brêchet
- Department of Environmental Sciences – BotanyUniversity of Basel4056BaselSwitzerland
| | - Yann Bourgeois
- School of Biological SciencesUniversity of PortsmouthPO1 2DTPortsmouthUK
| | - Bettina Keller
- Department of Plant and Microbial BiologyUniversity of Zurich8008ZürichSwitzerland
| | | | - Anne C. Roulin
- Department of Plant and Microbial BiologyUniversity of Zurich8008ZürichSwitzerland
| |
Collapse
|
18
|
Transposable Elements in the Revealing of Polymorphism-Based Differences in the Seeds of Flax Varieties Grown in Remediated Chernobyl Area. PLANTS 2022; 11:plants11192567. [PMID: 36235434 PMCID: PMC9571286 DOI: 10.3390/plants11192567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
The nuclear reactor accident in Chernobyl, Ukraine, resulted in effects both locally and farther away. Most of the contaminated areas were the agricultural fields and forests. Experimental fields were established near Chernobyl—radioactively contaminated fields localized 5 km from Chernobyl Nuclear Power Plant as well as the remediated soil that is localized directly in the Chernobyl town. Two flax varieties growing under chronic exposition to ionizing radiation were used for this study—the local Ukrainian variety Kyivskyi and a commercial variety Bethune. The screening of the length polymorphism generated by transposable elements insertions were performed. All known types of common flax transposon, retrotransposons and iPBS approach were used. In the iPBS multiplex analyze, for the Kyivskyi variety, a unique addition was found in the seeds from the radioactive contaminated field and for the Bethune variety, a total of five amplicon additions were obtained and one deletion. For the TRIM Cassandra fingerprints, two amplicon additions were generated in the seeds from radioactive contaminated fields for the Bethune variety. In summary, the obtained data represent the genetic diversity between control and irradiated subgroups of flax seeds from Chernobyl area and the presence of activated transposable elements due to the irradiation stress.
Collapse
|
19
|
Jia KH, Wang ZX, Wang L, Li GY, Zhang W, Wang XL, Xu FJ, Jiao SQ, Zhou SS, Liu H, Ma Y, Bi G, Zhao W, El-Kassaby YA, Porth I, Li G, Zhang RG, Mao JF. SubPhaser: a robust allopolyploid subgenome phasing method based on subgenome-specific k-mers. THE NEW PHYTOLOGIST 2022; 235:801-809. [PMID: 35460274 DOI: 10.1111/nph.18173] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/04/2022] [Indexed: 05/02/2023]
Abstract
With advanced sequencing technology, dozens of complex polyploid plant genomes have been characterized. However, for many polyploid species, their diploid ancestors are unknown or extinct, making it impossible to unravel the subgenomes and genome evolution directly. We developed a novel subgenome-phasing algorithm, SubPhaser, specifically designed for a neoallopolyploid or a homoploid hybrid. SubPhaser first searches for the subgenome-specific sequence (k-mer), then assigns homoeologous chromosomes into subgenomes, and further provides tools to annotate and investigate specific sequences. SubPhaser works well on neoallopolyploids and homoploid hybrids containing subgenome-specific sequences like wheat, but fails on autopolyploids lacking subgenome-specific sequences like alfalfa, indicating that SubPhaser can phase neoallopolyploid/homoploid hybrids with high accuracy, sensitivity and performance. This highly accurate, highly sensitive, ancestral data free chromosome phasing algorithm, SubPhaser, offers significant application value for subgenome phasing in neoallopolyploids and homoploid hybrids, and for the subsequent exploration of genome evolution and related genetic/epigenetic mechanisms.
Collapse
Affiliation(s)
- Kai-Hua Jia
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center of Tree Breeding and Ecological Restoration, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Zhao-Xuan Wang
- Shijiazhuang People's Medical College, Shijiazhuang, 050091, China
| | - Longxin Wang
- School of Biological Science and Technology, University of Jinan, Ji'nan, 250022, China
| | - Guang-Yuan Li
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co. Ltd, Weifang, 261322, China
| | - Wei Zhang
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co. Ltd, Weifang, 261322, China
| | - Xiao-Ling Wang
- BGI Shenzhen, Shenzhen, 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Fang-Ji Xu
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, China
| | - Si-Qian Jiao
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center of Tree Breeding and Ecological Restoration, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Shan-Shan Zhou
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center of Tree Breeding and Ecological Restoration, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Hui Liu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center of Tree Breeding and Ecological Restoration, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guiqi Bi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Wei Zhao
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center of Tree Breeding and Ecological Restoration, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Guowei Li
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, China
| | - Ren-Gang Zhang
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co. Ltd, Weifang, 261322, China
| | - Jian-Feng Mao
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center of Tree Breeding and Ecological Restoration, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
20
|
Specificities and Dynamics of Transposable Elements in Land Plants. BIOLOGY 2022; 11:biology11040488. [PMID: 35453688 PMCID: PMC9033089 DOI: 10.3390/biology11040488] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Transposable elements are dynamic components of plant genomes, and display a high diversity of lineages and distribution as the result of evolutionary driving forces and overlapping mechanisms of genetic and epigenetic regulation. They are now regarded as main contributors for genome evolution and function, and important regulators of endogenous gene expression. In this review, we survey recent progress and current challenges in the identification and classification of transposon lineages in complex plant genomes, highlighting the molecular specificities that may explain the expansion and diversification of mobile genetic elements in land plants. Abstract Transposable elements (TEs) are important components of most plant genomes. These mobile repetitive sequences are highly diverse in terms of abundance, structure, transposition mechanisms, activity and insertion specificities across plant species. This review will survey the different mechanisms that may explain the variability of TE patterns in land plants, highlighting the tight connection between TE dynamics and host genome specificities, and their co-evolution to face and adapt to a changing environment. We present the current TE classification in land plants, and describe the different levels of genetic and epigenetic controls originating from the plant, the TE itself, or external environmental factors. Such overlapping mechanisms of TE regulation might be responsible for the high diversity and dynamics of plant TEs observed in nature.
Collapse
|
21
|
Fan W, Wang L, Chu J, Li H, Kim EY, Cho J. Tracing Mobile DNAs: From Molecular to Population Scales. FRONTIERS IN PLANT SCIENCE 2022; 13:837378. [PMID: 35178063 PMCID: PMC8843828 DOI: 10.3389/fpls.2022.837378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Transposable elements (TEs, transposons) are mobile DNAs that are prevalent in most eukaryotic genomes. In plants, their mobility has vastly contributed to genetic diversity which is essential for adaptive changes and evolution of a species. Such mobile nature of transposon has been also actively exploited in plant science research by generating genetic mutants in non-model plant systems. On the other hand, transposon mobilization can bring about detrimental effects to host genomes and they are therefore mostly silenced by the epigenetic mechanisms. TEs have been studied as major silencing targets and acted a main feature in the remarkable growth of the plant epigenetics field. Despite the importance of transposon in plant biology and biotechnology, their mobilization and the underlying mechanisms are largely left unanswered. This is mainly because of the sequence repetitiveness of transposons, which makes their detection and analyses difficult and complicated. Recently, some attempts have been made to develop new experimental methods detecting active transposons and their mobilization behavior. These techniques reveal TE mobility in various levels, including the molecular, cellular, organismal and population scales. In this review, we will highlight the novel technical approaches in the study of mobile genetic elements and discuss how these techniques impacted on the advancement of transposon research and broadened our understanding of plant genome plasticity.
Collapse
Affiliation(s)
- Wenwen Fan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Chu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Eun Yu Kim
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
22
|
Conart C, Saclier N, Foucher F, Goubert C, Rius-Bony A, Paramita SN, Moja S, Thouroude T, Douady C, Sun P, Nairaud B, Saint-Marcoux D, Bahut M, Jeauffre J, Hibrand Saint-Oyant L, Schuurink RC, Magnard JL, Boachon B, Dudareva N, Baudino S, Caissard JC. Duplication and specialization of NUDX1 in Rosaceae led to geraniol production in rose petals. Mol Biol Evol 2022; 39:6505224. [PMID: 35022771 PMCID: PMC8857926 DOI: 10.1093/molbev/msac002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nudix hydrolases are conserved enzymes ubiquitously present in all kingdoms of life. Recent research revealed that several Nudix hydrolases are involved in terpenoid metabolism in plants. In modern roses, RhNUDX1 is responsible for formation of geraniol, a major compound of rose scent. Nevertheless, this compound is produced by monoterpene synthases in many geraniol-producing plants. As a consequence, this raised the question about the origin of RhNUDX1 function and the NUDX1 gene evolution in Rosaceae, in wild roses or/and during the domestication process. Here, we showed that three distinct clades of NUDX1 emerged in the Rosoidae subfamily (Nudx1-1 to Nudx1-3 clades), and two subclades evolved in the Rosa genus (Nudx1-1a and Nudx1-1b subclades). We also showed that the Nudx1-1b subclade was more ancient than the Nudx1-1a subclade, and that the NUDX1-1a gene emerged by a trans-duplication of the more ancient NUDX1-1b gene. After the transposition, NUDX1-1a was cis-duplicated, leading to a gene dosage effect on the production of geraniol in different species. Furthermore, the NUDX1-1a appearance was accompanied by the evolution of its promoter, most likely from a Copia retrotransposon origin, leading to its petal-specific expression. Thus, our data strongly suggest that the unique function of NUDX1-1a in geraniol formation was evolved naturally in the genus Rosa before domestication.
Collapse
Affiliation(s)
- Corentin Conart
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Nathanaelle Saclier
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, F-69622, France
| | - Fabrice Foucher
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | - Clément Goubert
- Department of Human Genetics, McGill University Genome Center, 740 Dr Penfield Ave, Montreal, Quebec, H3A 0G1, Canada
| | - Aurélie Rius-Bony
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Saretta N Paramita
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Sandrine Moja
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Tatiana Thouroude
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | - Christophe Douady
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5023, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, F-69622, France.,Institut Universitaire de France, Paris, F-75005, France
| | - Pulu Sun
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Baptiste Nairaud
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Denis Saint-Marcoux
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Muriel Bahut
- Univ Angers, SFR QUASAV, Angers, F-49000, France
| | - Julien Jeauffre
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | | | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Jean-Louis Magnard
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Benoît Boachon
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sylvie Baudino
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| | - Jean-Claude Caissard
- Université Lyon, Université Saint-Etienne, CNRS, UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Saint-Etienne, F-42023, France
| |
Collapse
|
23
|
Taming, Domestication and Exaptation: Trajectories of Transposable Elements in Genomes. Cells 2021; 10:cells10123590. [PMID: 34944100 PMCID: PMC8700633 DOI: 10.3390/cells10123590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
During evolution, several types of sequences pass through genomes. Along with mutations and internal genetic tinkering, they are a useful source of genetic variability for adaptation and evolution. Most of these sequences are acquired by horizontal transfers (HT), but some of them may come from the genomes themselves. If they are not lost or eliminated quickly, they can be tamed, domesticated, or even exapted. Each of these processes results from a series of events, depending on the interactions between these sequences and the host genomes, but also on environmental constraints, through their impact on individuals or population fitness. After a brief reminder of the characteristics of each of these states (taming, domestication, exaptation), the evolutionary trajectories of these new or acquired sequences will be presented and discussed, emphasizing that they are not totally independent insofar as the first can constitute a step towards the second, and the second is another step towards the third.
Collapse
|
24
|
Papolu PK, Ramakrishnan M, Wei Q, Vinod KK, Zou LH, Yrjala K, Kalendar R, Zhou M. Long terminal repeats (LTR) and transcription factors regulate PHRE1 and PHRE2 activity in Moso bamboo under heat stress. BMC PLANT BIOLOGY 2021; 21:585. [PMID: 34886797 PMCID: PMC8656106 DOI: 10.1186/s12870-021-03339-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND LTR retrotransposons play a significant role in plant growth, genome evolution, and environmental stress response, but their regulatory response to heat stress remains unclear. We have investigated the activities of two LTR retrotransposons, PHRE1 and PHRE2, of moso bamboo (Phyllostachys edulis) in response to heat stress. RESULTS The differential overexpression of PHRE1 and PHRE2 with or without CaMV35s promoter showed enhanced expression under heat stress in transgenic plants. The transcriptional activity studies showed an increase in transposition activity and copy number among moso bamboo wild type and Arabidopsis transgenic plants under heat stress. Comparison of promoter activity in transgenic plants indicated that 5'LTR promoter activity was higher than CaMV35s promoter. Additionally, yeast one-hybrid (Y1H) system and in planta biomolecular fluorescence complementation (BiFC) assay revealed interactions of heat-dependent transcription factors (TFs) with 5'LTR sequence and direct interactions of TFs with pol and gag. CONCLUSIONS Our results conclude that the 5'LTR acts as a promoter and could regulate the LTR retrotransposons in moso bamboo under heat stress.
Collapse
Affiliation(s)
- Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | | | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Kim Yrjala
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, Viikinkaari 1, FI-00014 University of Helsinki, Helsinki, Finland
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
25
|
Long Terminal Repeat Retrotransposon Afut4 Promotes Azole Resistance of Aspergillus fumigatus by Enhancing the Expression of sac1 Gene. Antimicrob Agents Chemother 2021; 65:e0029121. [PMID: 34516252 DOI: 10.1128/aac.00291-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus causes a series of invasive diseases, including the high-mortality invasive aspergillosis, and has been a serious global health threat because of its increased resistance to the first-line clinical triazoles. We analyzed the whole-genome sequence of 15 A. fumigatus strains from China and found that long terminal repeat retrotransposons (LTR-RTs), including Afut1, Afut2, Afut3, and Afut4, are most common and have the largest total nucleotide length among all transposable elements in A. fumigatus. Deleting one of the most enriched Afut4977-sac1 in azole-resistant strains decreased azole resistance and downregulated its nearby gene, sac1, but it did not significantly affect the expression of genes of the ergosterol synthesis pathway. We then discovered that 5'LTR of Afut4977-sac1 had promoter activity and enhanced the adjacent sac1 gene expression. We found that sac1 is important to A. fumigatus, and the upregulated sac1 caused elevated resistance of A. fumigatus to azoles. Finally, we showed that Afut4977-sac1 has an evolution pattern similar to that of the whole genome of azole-resistant strains due to azoles; phylogenetic analysis of both the whole genome and Afut4977-sac1 suggests that the insertion of Afut4977-sac1 might have preceded the emergence of azole-resistant strains. Taking these data together, we found that the Afut4977-sac1 LTR-RT might be involved in the regulation of azole resistance of A. fumigatus by upregulating its nearby sac1 gene.
Collapse
|
26
|
Lee G, Ahmadi H, Quintana J, Syllwasschy L, Janina N, Preite V, Anderson JE, Pietzenuk B, Krämer U. Constitutively enhanced genome integrity maintenance and direct stress mitigation characterize transcriptome of extreme stress-adapted Arabidopsis halleri. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:896-911. [PMID: 34669984 DOI: 10.1111/tpj.15544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal-rich toxic soils and ordinary soils are both natural habitats of Arabidopsis halleri, a diploid perennial and obligate outcrosser in the sister clade of the genetic model plant Arabidopsis thaliana. The molecular divergence underlying survival in sharply contrasting environments is unknown. Here we comparatively address metal physiology and transcriptomes of A. halleri originating from the most highly heavy metal-contaminated soil in Europe, Ponte Nossa, Italy (Noss), and from non-metalliferous (NM) soils. Plants from Noss exhibit enhanced hypertolerance and attenuated accumulation of cadmium (Cd), and their transcriptomic Cd responsiveness is decreased, compared to plants of NM soil origin. Among the condition-independent transcriptome characteristics of Noss, the most highly overrepresented functional class of 'meiotic cell cycle' comprises 21 transcripts with elevated abundance in vegetative tissues, in particular Argonaute 9 (AGO9) and the synaptonemal complex transverse filament protein-encoding ZYP1a/b. Increased AGO9 transcript levels in Noss are accompanied by decreased long terminal repeat retrotransposon expression. Similar to Noss, plants from other highly metalliferous sites in Poland and Germany share elevated somatic AGO9 transcript levels in comparison to plants originating from NM soils in their respective geographic regions. Transcript levels of Iron-Regulated Transporter 1 (IRT1) are very low and transcript levels of Heavy Metal ATPase 2 (HMA2) are strongly elevated in Noss, which can account for its altered Cd handling. We conclude that in plants adapted to the most extreme abiotic stress, broadly enhanced functions comprise genes with likely roles in somatic genome integrity maintenance, accompanied by few alterations in stress-specific functional networks.
Collapse
Affiliation(s)
- Gwonjin Lee
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| | - Hassan Ahmadi
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| | - Julia Quintana
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| | - Lara Syllwasschy
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| | - Nadežda Janina
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| | - Veronica Preite
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| | - Justin E Anderson
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| | - Björn Pietzenuk
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
27
|
Verhage L. How to become a metalhead - Understanding heavy metal tolerance in Arabidopsis halleri. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:894-895. [PMID: 34813670 DOI: 10.1111/tpj.15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
28
|
Roquis D, Robertson M, Yu L, Thieme M, Julkowska M, Bucher E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res 2021; 49:10431-10447. [PMID: 34551439 PMCID: PMC8501995 DOI: 10.1093/nar/gkab828] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) have long been known to be major contributors to plant evolution, adaptation and crop domestication. Stress-induced TE mobilization is of particular interest because it may result in novel gene regulatory pathways responding to stresses and thereby contribute to stress adaptation. Here, we investigated the genomic impacts of stress induced TE mobilization in wild type Arabidopsis plants. We find that the heat-stress responsive ONSEN TE displays an insertion site preference that is associated with specific chromatin states, especially those rich in H2A.Z histone variant and H3K27me3 histone mark. In order to better understand how novel ONSEN insertions affect the plant's response to heat stress, we carried out an in-depth transcriptomic analysis. We find that in addition to simple gene knockouts, ONSEN can produce a plethora of gene expression changes such as: constitutive activation of gene expression, alternative splicing, acquisition of heat-responsiveness, exonisation and genesis of novel non-coding and antisense RNAs. This report shows how the mobilization of a single TE-family can lead to a rapid rise of its copy number increasing the host's genome size and contribute to a broad range of transcriptomic novelty on which natural selection can then act.
Collapse
Affiliation(s)
- David Roquis
- Plant Breeding and Genetic Resources, Agroscope, 1260 Nyon, Switzerland
| | - Marta Robertson
- Plant Breeding and Genetic Resources, Agroscope, 1260 Nyon, Switzerland
| | - Liang Yu
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA
| | - Michael Thieme
- Institute for Plant and Microbial Biology, University of Zurich, Switzerland
| | | | - Etienne Bucher
- Plant Breeding and Genetic Resources, Agroscope, 1260 Nyon, Switzerland
| |
Collapse
|
29
|
Lizamore D, Bicknell R, Winefield C. Elevated transcription of transposable elements is accompanied by het-siRNA-driven de novo DNA methylation in grapevine embryogenic callus. BMC Genomics 2021; 22:676. [PMID: 34544372 PMCID: PMC8454084 DOI: 10.1186/s12864-021-07973-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Somatic variation is a valuable source of trait diversity in clonally propagated crops. In grapevine, which has been clonally propagated worldwide for centuries, important phenotypes such as white berry colour are the result of genetic changes caused by transposable elements. Additionally, epiallele formation may play a role in determining geo-specific (‘terroir’) differences in grapes and thus ultimately in wine. This genomic plasticity might be co-opted for crop improvement via somatic embryogenesis, but that depends on a species-specific understanding of the epigenetic regulation of transposable element (TE) expression and silencing in these cultures. For this reason, we used whole-genome bisulphite sequencing, mRNA sequencing and small RNA sequencing to study the epigenetic status and expression of TEs in embryogenic callus, in comparison with leaf tissue. Results We found that compared with leaf tissue, grapevine embryogenic callus cultures accumulate relatively high genome-wide CHH methylation, particularly across heterochromatic regions. This de novo methylation is associated with an abundance of transcripts from highly replicated TE families, as well as corresponding 24 nt heterochromatic siRNAs. Methylation in the TE-specific CHG context was relatively low over TEs located within genes, and the expression of TE loci within genes was highly correlated with the expression of those genes. Conclusions This multi-‘omics analysis of grapevine embryogenic callus in comparison with leaf tissues reveals a high level of genome-wide transcription of TEs accompanied by RNA-dependent DNA methylation of these sequences in trans. This provides insight into the genomic conditions underlying somaclonal variation and epiallele formation in plants regenerated from embryogenic cultures, which is an important consideration when using these tissues for plant propagation and genetic improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07973-9.
Collapse
Affiliation(s)
| | - Ross Bicknell
- Plant and Food Research Ltd, Lincoln, Canterbury, New Zealand
| | - Chris Winefield
- Department Wine, Food and Molecular Biosciences, Lincoln University, Canterbury, New Zealand.
| |
Collapse
|
30
|
Comparative Analysis of Transposable Elements in Genus Calliptamus Grasshoppers Revealed That Satellite DNA Contributes to Genome Size Variation. INSECTS 2021; 12:insects12090837. [PMID: 34564277 PMCID: PMC8466570 DOI: 10.3390/insects12090837] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Calliptamus is a genus of grasshoppers belonging to the family Acrididae. The genus Calliptamus includes approximately 17 recognized species. Calliptamus abbreviatus, Calliptamus italicus, and Calliptamus barbarus are three species that are widely found in northern China. These species are polyphagous, feeding on a variety of wild plants as well as crops, particularly legumes. The genome sizes, phylogenetic position, and transcriptome analysis of the genus Calliptamus were already known previous to this research. The repeatome analysis of these species was missing, which is directly linked to the larger genome sizes of the grasshoppers. Here, we classified repetitive DNA sequences at the level of superfamilies and sub-families, and found that LINE, TcMar-Tc1 and Ty3-gypsy LTR retrotransposons dominated the repeatomes of all genomes, accounting for 16–34% of the total genomes of these species. Satellite DNA dynamic evolutionary changes in all three genomes played a role in genome size evolution. This study would be a valuable source for future genome assemblies. Abstract Transposable elements (TEs) play a significant role in both eukaryotes and prokaryotes genome size evolution, structural changes, duplication, and functional variabilities. However, the large number of different repetitive DNA has hindered the process of assembling reference genomes, and the genus level TEs diversification of the grasshopper massive genomes is still under investigation. The genus Calliptamus diverged from Peripolus around 17 mya and its species divergence dated back about 8.5 mya, but their genome size shows rather large differences. Here, we used low-coverage Illumina unassembled short reads to investigate the effects of evolutionary dynamics of satDNAs and TEs on genome size variations. The Repeatexplorer2 analysis with 0.5X data resulted in 52%, 56%, and 55% as repetitive elements in the genomes of Calliptamus barbarus, Calliptamus italicus, and Calliptamus abbreviatus, respectively. The LINE and Ty3-gypsy LTR retrotransposons and TcMar-Tc1 dominated the repeatomes of all genomes, accounting for 16–35% of the total genomes of these species. Comparative analysis unveiled that most of the transposable elements (TEs) except satDNAs were highly conserved across three genomes in the genus Calliptamus grasshoppers. Out of a total of 20 satDNA families, 17 satDNA families were commonly shared with minor variations in abundance and divergence between three genomes, and 3 were Calliptamus barbarus specific. Our findings suggest that there is a significant amplification or contraction of satDNAs at genus phylogeny which is the main cause that made genome size different.
Collapse
|
31
|
Garai S, Citu, Singla-Pareek SL, Sopory SK, Kaur C, Yadav G. Complex Networks of Prion-Like Proteins Reveal Cross Talk Between Stress and Memory Pathways in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:707286. [PMID: 34381483 PMCID: PMC8350573 DOI: 10.3389/fpls.2021.707286] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/29/2021] [Indexed: 08/01/2023]
Abstract
Prions are often considered as molecular memory devices, generating reproducible memory of a conformational change. Prion-like proteins (PrLPs) have been widely demonstrated to be present in plants, but their role in plant stress and memory remains unexplored. In this work, we report the widespread presence of PrLPs in plants through a comprehensive meta-analysis of 39 genomes representing major taxonomic groups. We find diverse functional roles associated with these proteins in various species and term the full complement of PrLPs in a genome as its "prionome." In particular, we found the rice prionome being significantly enriched in transposons/retrotransposons (Ts/RTRs) and identified over 60 rice PrLPs that were differentially regulated in stress and developmental responses. This prompted us to explore whether and to what extent PrLPs may build stress memory. By integrating the available rice interactome, transcriptome, and regulome data sets, we could find links between stress and memory pathways that would not have otherwise been discernible. Regulatory inferences derived from the superimposition of these data sets revealed a complex network and cross talk between PrLPs, transcription factors (TFs), and the genes involved in stress priming. This integrative meta-analysis connects transient and transgenerational memory mechanisms in plants with PrLPs, suggesting that plant memory may rely upon protein-based signals in addition to chromatin-based epigenetic signals. Taken together, our work provides important insights into the anticipated role of prion-like candidates in stress and memory, paving the way for more focused studies for validating the role of the identified PrLPs in memory acclimation.
Collapse
Affiliation(s)
- Sampurna Garai
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Citu
- Computational Biology Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sudhir K. Sopory
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Charanpreet Kaur
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Gitanjali Yadav
- Computational Biology Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
32
|
Zhou SS, Yan XM, Zhang KF, Liu H, Xu J, Nie S, Jia KH, Jiao SQ, Zhao W, Zhao YJ, Porth I, El Kassaby YA, Wang T, Mao JF. A comprehensive annotation dataset of intact LTR retrotransposons of 300 plant genomes. Sci Data 2021; 8:174. [PMID: 34267227 PMCID: PMC8282616 DOI: 10.1038/s41597-021-00968-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
LTR retrotransposons (LTR-RTs) are ubiquitous and represent the dominant repeat element in plant genomes, playing important roles in functional variation, genome plasticity and evolution. With the advent of new sequencing technologies, a growing number of whole-genome sequences have been made publicly available, making it possible to carry out systematic analyses of LTR-RTs. However, a comprehensive and unified annotation of LTR-RTs in plant groups is still lacking. Here, we constructed a plant intact LTR-RTs dataset, which is designed to classify and annotate intact LTR-RTs with a standardized procedure. The dataset currently comprises a total of 2,593,685 intact LTR-RTs from genomes of 300 plant species representing 93 families of 46 orders. The dataset is accompanied by sequence, diverse structural and functional annotation, age determination and classification information associated with the LTR-RTs. This dataset will contribute valuable resources for investigating the evolutionary dynamics and functional implications of LTR-RTs in plant genomes.
Collapse
Affiliation(s)
- Shan-Shan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xue-Mei Yan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Kai-Fu Zhang
- College of Big data and Intelligent Engineering, Southwest Forestry University, Yunnan, 650224, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jie Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuai Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Kai-Hua Jia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Si-Qian Jiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - You-Jie Zhao
- College of Big data and Intelligent Engineering, Southwest Forestry University, Yunnan, 650224, China
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval Québec, Québec, QC, G1V 0A6, Canada
| | - Yousry A El Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Tongli Wang
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
33
|
Orłowska R, Pachota KA, Dynkowska WM, Niedziela A, Bednarek PT. Androgenic-Induced Transposable Elements Dependent Sequence Variation in Barley. Int J Mol Sci 2021; 22:ijms22136783. [PMID: 34202586 PMCID: PMC8268840 DOI: 10.3390/ijms22136783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/10/2023] Open
Abstract
A plant genome usually encompasses different families of transposable elements (TEs) that may constitute up to 85% of nuclear DNA. Under stressful conditions, some of them may activate, leading to sequence variation. In vitro plant regeneration may induce either phenotypic or genetic and epigenetic changes. While DNA methylation alternations might be related, i.e., to the Yang cycle problems, DNA pattern changes, especially DNA demethylation, may activate TEs that could result in point mutations in DNA sequence changes. Thus, TEs have the highest input into sequence variation (SV). A set of barley regenerants were derived via in vitro anther culture. High Performance Liquid Chromatography (RP-HPLC), used to study the global DNA methylation of donor plants and their regenerants, showed that the level of DNA methylation increased in regenerants by 1.45% compared to the donors. The Methyl-Sensitive Transposon Display (MSTD) based on methylation-sensitive Amplified Fragment Length Polymorphism (metAFLP) approach demonstrated that, depending on the selected elements belonging to the TEs family analyzed, varying levels of sequence variation were evaluated. DNA sequence contexts may have a different impact on SV generated by distinct mobile elements belonged to various TE families. Based on the presented study, some of the selected mobile elements contribute differently to TE-related SV. The surrounding context of the TEs DNA sequence is possibly important here, and the study explained some part of SV related to those contexts.
Collapse
|
34
|
RNA-directed DNA methylation prevents rapid and heritable reversal of transposon silencing under heat stress in Zea mays. PLoS Genet 2021; 17:e1009326. [PMID: 34125827 PMCID: PMC8224964 DOI: 10.1371/journal.pgen.1009326] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/24/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
In large complex plant genomes, RNA-directed DNA methylation (RdDM) ensures that epigenetic silencing is maintained at the boundary between genes and flanking transposable elements. In maize, RdDM is dependent on Mediator of Paramutation1 (Mop1), a gene encoding a putative RNA dependent RNA polymerase. Here we show that although RdDM is essential for the maintenance of DNA methylation of a silenced MuDR transposon in maize, a loss of that methylation does not result in a restoration of activity. Instead, heritable maintenance of silencing is maintained by histone modifications. At one terminal inverted repeat (TIR) of this element, heritable silencing is mediated via histone H3 lysine 9 dimethylation (H3K9me2), and histone H3 lysine 27 dimethylation (H3K27me2), even in the absence of DNA methylation. At the second TIR, heritable silencing is mediated by histone H3 lysine 27 trimethylation (H3K27me3), a mark normally associated with somatically inherited gene silencing. We find that a brief exposure of high temperature in a mop1 mutant rapidly reverses both of these modifications in conjunction with a loss of transcriptional silencing. These reversals are heritable, even in mop1 wild-type progeny in which methylation is restored at both TIRs. These observations suggest that DNA methylation is neither necessary to maintain silencing, nor is it sufficient to initiate silencing once has been reversed. However, given that heritable reactivation only occurs in a mop1 mutant background, these observations suggest that DNA methylation is required to buffer the effects of environmental stress on transposable elements. Most plant genomes are mostly transposable elements (TEs), most of which are held in check by modifications of both DNA and histones. The bulk of silenced TEs are associated with methylated DNA and histone H3 lysine 9 dimethylation (H3K9me2). In contrast, epigenetically silenced genes are often associated with histone lysine 27 trimethylation (H3K27me3). Although stress can affect each of these modifications, plants are generally competent to rapidly reset them following that stress. Here we demonstrate that although DNA methylation is not required to maintain silencing of the MuDR element, it is essential for preventing heat-induced, stable and heritable changes in both H3K9me2 and H3K27me3 at this element, and for concomitant changes in transcriptional activity. These finding suggest that RdDM acts to buffer the effects of heat on silenced transposable elements, and that a loss of DNA methylation under conditions of stress can have profound and long-lasting effects on epigenetic silencing in maize.
Collapse
|
35
|
Orozco-Arias S, Candamil-Cortés MS, Jaimes PA, Piña JS, Tabares-Soto R, Guyot R, Isaza G. K-mer-based machine learning method to classify LTR-retrotransposons in plant genomes. PeerJ 2021; 9:e11456. [PMID: 34055489 PMCID: PMC8140598 DOI: 10.7717/peerj.11456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/24/2021] [Indexed: 12/15/2022] Open
Abstract
Every day more plant genomes are available in public databases and additional massive sequencing projects (i.e., that aim to sequence thousands of individuals) are formulated and released. Nevertheless, there are not enough automatic tools to analyze this large amount of genomic information. LTR retrotransposons are the most frequent repetitive sequences in plant genomes; however, their detection and classification are commonly performed using semi-automatic and time-consuming programs. Despite the availability of several bioinformatic tools that follow different approaches to detect and classify them, none of these tools can individually obtain accurate results. Here, we used Machine Learning algorithms based on k-mer counts to classify LTR retrotransposons from other genomic sequences and into lineages/families with an F1-Score of 95%, contributing to develop a free-alignment and automatic method to analyze these sequences.
Collapse
Affiliation(s)
- Simon Orozco-Arias
- Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.,Department of Systems and Informatics, Universidad de Caldas, Manizales, Caldas, Colombia
| | | | - Paula A Jaimes
- Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia
| | - Johan S Piña
- Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia
| | - Reinel Tabares-Soto
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia
| | - Romain Guyot
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.,Institut de Recherche pour le Développement, CIRAD, Univ. Montpellier, Montpellier, France
| | - Gustavo Isaza
- Department of Systems and Informatics, Universidad de Caldas, Manizales, Caldas, Colombia
| |
Collapse
|
36
|
Baduel P, Quadrana L. Jumpstarting evolution: How transposition can facilitate adaptation to rapid environmental changes. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102043. [PMID: 33932785 DOI: 10.1016/j.pbi.2021.102043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Because of their ability to replicate across genomes, transposable elements (TEs) represent major generators of large-effect mutations. As a result, chromatin-based mechanisms have evolved to control the mutational potential of TEs at multiple levels, from the epigenetic silencing of TE sequences, through the modulation of their integration space, up to the alleviation of the impact of new insertions. Although most TE insertions are highly deleterious, some can provide key adaptive variation. Together with their remarkable sensitivity to the environment and precise integration preferences, the unique characteristics of TEs place them as potent genomic engines of adaptive innovation. Herein, we review recent works exploring the regulation and impact of transposition in nature and discuss their implications for the evolutionary response of species to drastic environmental changes.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'École Normale Supérieure, ENS, 46 rue d'Ulm, 75005, Paris, France
| | - Leandro Quadrana
- Institut de Biologie de l'École Normale Supérieure, ENS, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
37
|
Thieme M, Roulin AC. Identification of Active Transposable Elements in Plants: The Mobilome-Seq Approach. Methods Mol Biol 2021; 2250:95-102. [PMID: 33900595 DOI: 10.1007/978-1-0716-1134-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Transposable elements (TEs) are the main component of eukaryotic genomes. Besides their impact on genome size, TEs are also functionally important as they can alter gene expression and influence phenotypic variation. In plants, most top-down studies focus on extremely clear phenotypes such as the shape or the color of individuals and do not explore fully the role of TEs in evolution. Assessing the impact of TEs in a more systematic manner, however, requires identifying active TEs to further study their impact on phenotypes. In this chapter, we describe an in planta approach that consists in activating TEs by interfering with pathways involved in their silencing. It enables to directly investigate the functional impact of single TE families at low cost.
Collapse
Affiliation(s)
- Michael Thieme
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Anne C Roulin
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Liu J, Rasing M, Zeng T, Klein J, Kulikova O, Bisseling T. NIN is essential for development of symbiosomes, suppression of defence and premature senescence in Medicago truncatula nodules. THE NEW PHYTOLOGIST 2021; 230:290-303. [PMID: 33471433 PMCID: PMC7986424 DOI: 10.1111/nph.17215] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/30/2020] [Indexed: 05/29/2023]
Abstract
NIN (NODULE INCEPTION) is a transcription factor that plays a key role during root nodule initiation. However, its role in later nodule developmental stages is unclear. Both NIN mRNA and protein accumulated at the highest level in the proximal part of the infection zone in Medicago truncatula nodules. Two nin weak allele mutants, nin-13/16, form a rather normal nodule infection zone, whereas a fixation zone is not formed. Instead, a zone with defence responses and premature senescence occurred and symbiosome development gets arrested. Mutations in nin-13/16 resulted in a truncated NIN lacking the conserved PB1 domain. However, this did not cause the nodule phenotype as nin mutants expressing NINΔPB1 formed wild-type-like nodule. The phenotype is likely to be caused by reduced NIN mRNA levels in the cytoplasm. Transcriptome analyses of nin-16 nodules showed that expression levels of defence/senescence-related genes are markedly increased, whereas the levels of defence suppressing genes are reduced. Although defence/senescence seems well suppressed in the infection zone, the transcriptome is already markedly changed in the proximal part of infection zone. In addition to its function in infection and nodule organogenesis, NIN also plays a major role at the transition from infection to fixation zone in establishing a functional symbiosis.
Collapse
Affiliation(s)
- Jieyu Liu
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Menno Rasing
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Tian Zeng
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Joël Klein
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Olga Kulikova
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Ton Bisseling
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing University of AgricultureBeijing102206China
| |
Collapse
|
39
|
Recent advancement of NGS technologies to detect active transposable elements in plants. Genes Genomics 2021; 43:289-294. [PMID: 33555503 DOI: 10.1007/s13258-021-01040-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Unlike peoples' belief that transposable elements (TEs) are "junk DNAs" or "genomic parasites", TEs are essential genomic elements that bring about genetic diversity and enable evolution of a species. In fact, transposons are major constituent of chromosome in crop genomes, particularly in major cereal crops, the primary type of which is long terminal repeat (LTR) retrotransposon. Since TE mobilization can be controlled by specific environmental stimulation and as the result can generate novel genetic variations, it has been suggested that controlled mobilization of TEs can be a plausible method for crop breeding. To achieve this goal, series of sequencing techniques have been recently established to identify TEs that are active in mobility. These methods target and detect extrachromosomal DNAs (ecDNAs), which are final products of integration. The newly identified TEs by these methods exhibit strong transpositional activity which can generate novel genetic diversity and provide useful breeding resources. CONCLUSIONS In this mini review, we summarize and introduce ALE-seq, mobilome-seq, and VLP DNA-seq techniques employed to detect active TEs in plants.
Collapse
|
40
|
Liu S, de Jonge J, Trejo‐Arellano MS, Santos‐González J, Köhler C, Hennig L. Role of H1 and DNA methylation in selective regulation of transposable elements during heat stress. THE NEW PHYTOLOGIST 2021; 229:2238-2250. [PMID: 33091182 PMCID: PMC7894476 DOI: 10.1111/nph.17018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 05/03/2023]
Abstract
Heat-stressed Arabidopsis plants release heterochromatin-associated transposable element (TE) silencing, yet it is not accompanied by major reductions of epigenetic repressive modifications. In this study, we explored the functional role of histone H1 in repressing heterochromatic TEs in response to heat stress. We generated and analyzed RNA and bisulfite-sequencing data of wild-type and h1 mutant seedlings before and after heat stress. Loss of H1 caused activation of pericentromeric Gypsy elements upon heat treatment, despite these elements remaining highly methylated. By contrast, nonpericentromeric Copia elements became activated concomitantly with loss of DNA methylation. The same Copia elements became activated in heat-treated chromomethylase 2 (cmt2) mutants, indicating that H1 represses Copia elements through maintaining DNA methylation under heat. We discovered that H1 is required for TE repression in response to heat stress, but its functional role differs depending on TE location. Strikingly, H1-deficient plants treated with the DNA methyltransferase inhibitor zebularine were highly tolerant to heat stress, suggesting that both H1 and DNA methylation redundantly suppress the plant response to heat stress.
Collapse
Affiliation(s)
- Shujing Liu
- Department of Plant BiologySwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala75007Sweden
| | - Jennifer de Jonge
- Department of Plant BiologySwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala75007Sweden
| | - Minerva S. Trejo‐Arellano
- Department of Plant BiologySwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala75007Sweden
| | - Juan Santos‐González
- Department of Plant BiologySwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala75007Sweden
| | - Claudia Köhler
- Department of Plant BiologySwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala75007Sweden
| | - Lars Hennig
- Department of Plant BiologySwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala75007Sweden
| |
Collapse
|
41
|
Orozco-Arias S, Jaimes PA, Candamil MS, Jiménez-Varón CF, Tabares-Soto R, Isaza G, Guyot R. InpactorDB: A Classified Lineage-Level Plant LTR Retrotransposon Reference Library for Free-Alignment Methods Based on Machine Learning. Genes (Basel) 2021; 12:genes12020190. [PMID: 33525408 PMCID: PMC7910972 DOI: 10.3390/genes12020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/04/2022] Open
Abstract
Long terminal repeat (LTR) retrotransposons are mobile elements that constitute the major fraction of most plant genomes. The identification and annotation of these elements via bioinformatics approaches represent a major challenge in the era of massive plant genome sequencing. In addition to their involvement in genome size variation, LTR retrotransposons are also associated with the function and structure of different chromosomal regions and can alter the function of coding regions, among others. Several sequence databases of plant LTR retrotransposons are available for public access, such as PGSB and RepetDB, or restricted access such as Repbase. Although these databases are useful to identify LTR-RTs in new genomes by similarity, the elements of these databases are not fully classified to the lineage (also called family) level. Here, we present InpactorDB, a semi-curated dataset composed of 130,439 elements from 195 plant genomes (belonging to 108 plant species) classified to the lineage level. This dataset has been used to train two deep neural networks (i.e., one fully connected and one convolutional) for the rapid classification of these elements. In lineage-level classification approaches, we obtain up to 98% performance, indicated by the F1-score, precision and recall scores.
Collapse
Affiliation(s)
- Simon Orozco-Arias
- Department of Computer Science, Universidad Autónoma de Manizales, 170002 Manizales, Colombia; (P.A.J.); (M.S.C.)
- Department of Systems and Informatics, Universidad de Caldas, 170002 Manizales, Colombia;
- Correspondence: (S.O.-A.); (R.G.)
| | - Paula A. Jaimes
- Department of Computer Science, Universidad Autónoma de Manizales, 170002 Manizales, Colombia; (P.A.J.); (M.S.C.)
| | - Mariana S. Candamil
- Department of Computer Science, Universidad Autónoma de Manizales, 170002 Manizales, Colombia; (P.A.J.); (M.S.C.)
| | | | - Reinel Tabares-Soto
- Department of Electronics and Automation, Universidad Autónoma de Manizales, 170002 Manizales, Colombia;
| | - Gustavo Isaza
- Department of Systems and Informatics, Universidad de Caldas, 170002 Manizales, Colombia;
| | - Romain Guyot
- Department of Electronics and Automation, Universidad Autónoma de Manizales, 170002 Manizales, Colombia;
- Institut de Recherche pour le Développement, CIRAD, University of Montpellier, 34394 Montpellier, France
- Correspondence: (S.O.-A.); (R.G.)
| |
Collapse
|
42
|
Wang Y, Dai A, Tang T. Weak Effect of Gypsy Retrotransposon Bursts on Sonneratia alba Salt Stress Gene Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:830079. [PMID: 35111190 PMCID: PMC8801733 DOI: 10.3389/fpls.2021.830079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 05/07/2023]
Abstract
Transposable elements (TEs) are an important source of genetic diversity and can be co-opted for the regulation of host genes. However, to what extent the pervasive TE colonization of plant genomes has contributed to stress adaptation remains controversial. Plants inhabiting harsh environments in nature provide a unique opportunity to answer this question. We compared TE compositions and their evolutionary dynamics in the genomes of two mangrove species: the pioneer Sonneratia alba and its less salt-tolerant relative S. caseolaris. Age distribution, strength of purifying selection and the removal rate of LTR (long terminal repeat) retrotransposons were estimated. Phylogenetic analysis of LTR retrotransposons and their distribution in the genome of S. alba were surveyed. Small RNA sequencing and whole-genome bisulfite sequencing was conducted using leaves of S. alba. Expression pattern of LTR retrotransposons and their nearby genes were examined using RNA-seq data of S. alba under different salt treatments. S. alba possesses more TEs than S. caseolaris. Particularly, many more young Gypsy LTR retrotransposons have accumulated in S. alba than in S. caseolaris despite an increase in purifying selection against TE insertions. The top two most abundant Gypsy families in S. alba preferentially insert in gene-poor regions. They are under relaxed epigenetic repression, probably due to the presence of CHROMO domains in their 3'-ends. Although a considerable number of TEs in S. alba showed differential expression under salt stress, only four copies were significantly correlated with their nearby genes in expression levels. One such TE-gene pair involves Abscisic acid 8'-hydroxylase 3 functioning in abscisic acid catabolism. This study sheds light on the evolutionary dynamics and potential function of TEs in an extremophile. Our results suggest that the conclusion on co-option of TEs should be cautious even though activation of TEs by stress might be prevalent.
Collapse
|
43
|
Giraud D, Lima O, Huteau V, Coriton O, Boutte J, Kovarik A, Leitch AR, Leitch IJ, Aïnouche M, Salmon A. Evolutionary dynamics of transposable elements and satellite DNAs in polyploid Spartina species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110671. [PMID: 33288000 DOI: 10.1016/j.plantsci.2020.110671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
Repeated sequences and polyploidy play a central role in plant genome dynamics. Here, we analyze the evolutionary dynamics of repeats in tetraploid and hexaploid Spartina species that diverged during the last 10 million years within the Chloridoideae, one of the poorest investigated grass lineages. From high-throughput genome sequencing, we annotated Spartina repeats and determined what sequence types account for the genome size variation among species. We examined whether differential genome size evolution correlated with ploidy levels and phylogenetic relationships. We also examined the tempo of repeat sequence dynamics associated with allopatric speciation over the last 3-6 million years between hexaploid species that diverged on the American and European Atlantic coasts and tetraploid species from North and South America. The tetraploid S. spartinae, whose phylogenetic placement has been debated, exhibits a similar repeat content as hexaploid species, suggesting common ancestry. Genome expansion or contraction resulting from repeat dynamics seems to be explained mostly by the contrasting divergence times between species, rather than by genome changes triggered by ploidy level change per se. One 370 bp satellite may be exhibiting 'meiotic drive' and driving chromosome evolution in S. alterniflora. Our results provide crucial insights for investigating the genetic and epigenetic consequences of such differential repeat dynamics on the ecology and distribution of the meso- and neopolyploid Spartina species.
Collapse
Affiliation(s)
- Delphine Giraud
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Oscar Lima
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Virginie Huteau
- Plateforme de cytogénétique moléculaire végétale, INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Olivier Coriton
- Plateforme de cytogénétique moléculaire végétale, INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Julien Boutte
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic.
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK.
| | - Malika Aïnouche
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Armel Salmon
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| |
Collapse
|
44
|
Chen P, Wei F, Cheng S, Ma L, Wang H, Zhang M, Mao G, Lu J, Hao P, Ahmad A, Gu L, Ma Q, Wu A, Wei H, Yu S. A comprehensive analysis of cotton VQ gene superfamily reveals their potential and extensive roles in regulating cotton abiotic stress. BMC Genomics 2020; 21:795. [PMID: 33198654 PMCID: PMC7667805 DOI: 10.1186/s12864-020-07171-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/21/2020] [Indexed: 01/03/2023] Open
Abstract
Background Valine-glutamine (VQ) motif-containing proteins play important roles in plant growth, development and abiotic stress response. For many plant species, the VQ genes have been identified and their functions have been described. However, little is known about the origin, evolution, and functions (and underlying mechanisms) of the VQ family genes in cotton. Results In this study, we comprehensively analyzed the characteristics of 268 VQ genes from four Gossypium genomes and found that the VQ proteins evolved into 10 clades, and each clade had a similar structural and conservative motif. The expansion of the VQ gene was mainly through segmental duplication, followed by dispersal. Expression analysis revealed that many GhVQs might play important roles in response to salt and drought stress, and GhVQ18 and GhVQ84 were highly expressed under PEG and salt stress. Further analysis showed that GhVQs were co-expressed with GhWRKY transcription factors (TFs), and microRNAs (miRNAs) could hybridize to their cis-regulatory elements. Conclusions The results in this study broaden our understanding of the VQ gene family in plants, and the analysis of the structure, conserved elements, and expression patterns of the VQs provide a solid foundation for exploring their specific functions in cotton responding to abiotic stresses. Our study provides significant insight into the potential functions of VQ genes in cotton. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12864-020-07171-z.
Collapse
Affiliation(s)
- Pengyun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Fei Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.,School of Life Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Shuaishuai Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.,College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Guangzhi Mao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.,College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Adeel Ahmad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qiang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
45
|
Comparative Study of Pine Reference Genomes Reveals Transposable Element Interconnected Gene Networks. Genes (Basel) 2020; 11:genes11101216. [PMID: 33081418 PMCID: PMC7602945 DOI: 10.3390/genes11101216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sequencing the giga-genomes of several pine species has enabled comparative genomic analyses of these outcrossing tree species. Previous studies have revealed the wide distribution and extraordinary diversity of transposable elements (TEs) that occupy the large intergenic spaces in conifer genomes. In this study, we analyzed the distribution of TEs in gene regions of the assembled genomes of Pinus taeda and Pinus lambertiana using high-performance computing resources. The quality of draft genomes and the genome annotation have significant consequences for the investigation of TEs and these aspects are discussed. Several TE families frequently inserted into genes or their flanks were identified in both species’ genomes. Potentially important sequence motifs were identified in TEs that could bind additional regulatory factors, promoting gene network formation with faster or enhanced transcription initiation. Node genes that contain many TEs were observed in multiple potential transposable element-associated networks. This study demonstrated the increased accumulation of TEs in the introns of stress-responsive genes of pines and suggests the possibility of rewiring them into responsive networks and sub-networks interconnected with node genes containing multiple TEs. Many such regulatory influences could lead to the adaptive environmental response clines that are characteristic of naturally spread pine populations.
Collapse
|
46
|
Lai Y, Lu XM, Daron J, Pan S, Wang J, Wang W, Tsuchiya T, Holub E, McDowell JM, Slotkin RK, Le Roch KG, Eulgem T. The Arabidopsis PHD-finger protein EDM2 has multiple roles in balancing NLR immune receptor gene expression. PLoS Genet 2020; 16:e1008993. [PMID: 32925902 PMCID: PMC7529245 DOI: 10.1371/journal.pgen.1008993] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/01/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Plant NLR-type receptors serve as sensitive triggers of host immunity. Their expression has to be well-balanced, due to their interference with various cellular processes and dose-dependency of their defense-inducing activity. A genetic “arms race” with fast-evolving pathogenic microbes requires plants to constantly innovate their NLR repertoires. We previously showed that insertion of the COPIA-R7 retrotransposon into RPP7 co-opted the epigenetic transposon silencing signal H3K9me2 to a new function promoting expression of this Arabidopsis thaliana NLR gene. Recruitment of the histone binding protein EDM2 to COPIA-R7-associated H3K9me2 is required for optimal expression of RPP7. By profiling of genome-wide effects of EDM2, we now uncovered additional examples illustrating effects of transposons on NLR gene expression, strongly suggesting that these mobile elements can play critical roles in the rapid evolution of plant NLR genes by providing the “raw material” for gene expression mechanisms. We further found EDM2 to have a global role in NLR expression control. Besides serving as a positive regulator of RPP7 and a small number of other NLR genes, EDM2 acts as a suppressor of a multitude of additional NLR genes. We speculate that the dual functionality of EDM2 in NLR expression control arose from the need to compensate for fitness penalties caused by high expression of some NLR genes by suppression of others. Moreover, we are providing new insights into functional relationships of EDM2 with its interaction partner, the RNA binding protein EDM3/AIPP1, and its target gene IBM1, encoding an H3K9-demethylase. We previously found the Arabidopsis thaliana PHD-finger protein EDM2 to serve as a chromatin-associated factor controlling expression of the NLR-type immune receptor gene RPP7. EDM2 binds to the transposon-silencing signal H3K9me2 and affects levels of this epigenetic mark at various loci. By genome-wide profiling of transcript- and H3K9me2-levels we now found EDM2 to have a broader role in controlling NLR gene expression. In order to mitigate fitness costs caused by its promoting effects on RPP7 expression and that of several other NLR genes, EDM2 seems to suppress expression of many additional members of this gene family. This observation is in line with multiple reports demonstrating the need for balanced expression of NLRs, which can substantially reduce overall plant fitness, but need to be present at certain minimal levels to confer sufficient immune protection. Our previous results demonstrated that the influence of EDM2 on RPP7 expression was co-opted to this immune receptor gene by the insertion of an EDM2-controlled transposon. Here, we are providing additional examples for transposon-associated effects on NLR gene expression, suggesting that these mobile elements play an important role for NLR genes by equipping members of this rapidly evolving gene family with regulatory mechanisms needed for balanced expression.
Collapse
Affiliation(s)
- Yan Lai
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plan Sciences, University of California at Riverside, Riverside, CA, United States of America
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
| | - Xueqing Maggie Lu
- Center for Infectious Disease and Vector Research, Institute of Integrative Genome Biology, Department of Molecular, Cell and Systems Biology, University of California at Riverside, Riverside, CA, United States of America
| | - Josquin Daron
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Songqin Pan
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plan Sciences, University of California at Riverside, Riverside, CA, United States of America
| | - Jianqiang Wang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plan Sciences, University of California at Riverside, Riverside, CA, United States of America
| | - Wei Wang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Tokuji Tsuchiya
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Eric Holub
- School of Life Sciences, University of Warwick, Wellesbourne campus, United Kingdom
| | - John M. McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States of America
| | - R. Keith Slotkin
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Karine G. Le Roch
- Center for Infectious Disease and Vector Research, Institute of Integrative Genome Biology, Department of Molecular, Cell and Systems Biology, University of California at Riverside, Riverside, CA, United States of America
- * E-mail: (KGLR); (TE)
| | - Thomas Eulgem
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plan Sciences, University of California at Riverside, Riverside, CA, United States of America
- * E-mail: (KGLR); (TE)
| |
Collapse
|
47
|
Orozco-Arias S, Tobon-Orozco N, Piña JS, Jiménez-Varón CF, Tabares-Soto R, Guyot R. TIP_finder: An HPC Software to Detect Transposable Element Insertion Polymorphisms in Large Genomic Datasets. BIOLOGY 2020; 9:E281. [PMID: 32917036 PMCID: PMC7563458 DOI: 10.3390/biology9090281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Transposable elements (TEs) are non-static genomic units capable of moving indistinctly from one chromosomal location to another. Their insertion polymorphisms may cause beneficial mutations, such as the creation of new gene function, or deleterious in eukaryotes, e.g., different types of cancer in humans. A particular type of TE called LTR-retrotransposons comprises almost 8% of the human genome. Among LTR retrotransposons, human endogenous retroviruses (HERVs) bear structural and functional similarities to retroviruses. Several tools allow the detection of transposon insertion polymorphisms (TIPs) but fail to efficiently analyze large genomes or large datasets. Here, we developed a computational tool, named TIP_finder, able to detect mobile element insertions in very large genomes, through high-performance computing (HPC) and parallel programming, using the inference of discordant read pair analysis. TIP_finder inputs are (i) short pair reads such as those obtained by Illumina, (ii) a chromosome-level reference genome sequence, and (iii) a database of consensus TE sequences. The HPC strategy we propose adds scalability and provides a useful tool to analyze huge genomic datasets in a decent running time. TIP_finder accelerates the detection of transposon insertion polymorphisms (TIPs) by up to 55 times in breast cancer datasets and 46 times in cancer-free datasets compared to the fastest available algorithms. TIP_finder applies a validated strategy to find TIPs, accelerates the process through HPC, and addresses the issues of runtime for large-scale analyses in the post-genomic era. TIP_finder version 1.0 is available at https://github.com/simonorozcoarias/TIP_finder.
Collapse
Affiliation(s)
- Simon Orozco-Arias
- Department of Computer Science, Universidad Autónoma de Manizales, Manizales 170002, Colombia; (N.T.-O.); (J.S.P.)
- Department of Systems and Informatics, Universidad de Caldas, Manizales 170002, Colombia
| | - Nicolas Tobon-Orozco
- Department of Computer Science, Universidad Autónoma de Manizales, Manizales 170002, Colombia; (N.T.-O.); (J.S.P.)
| | - Johan S. Piña
- Department of Computer Science, Universidad Autónoma de Manizales, Manizales 170002, Colombia; (N.T.-O.); (J.S.P.)
| | | | - Reinel Tabares-Soto
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales 170002, Colombia;
| | - Romain Guyot
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales 170002, Colombia;
- Institut de Recherche pour le Développement (IRD), CIRAD, Université de Montpellier, 34394 Montpellier, France
| |
Collapse
|
48
|
Nandety RS, Serrani‐Yarce JC, Gill US, Oh S, Lee H, Zhang X, Dai X, Zhang W, Krom N, Wen J, Zhao PX, Mysore KS. Insertional mutagenesis of Brachypodium distachyon using the Tnt1 retrotransposable element. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1924-1936. [PMID: 32410353 PMCID: PMC7496502 DOI: 10.1111/tpj.14813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Brachypodium distachyon is an annual C3 grass used as a monocot model system in functional genomics research. Insertional mutagenesis is a powerful tool for both forward and reverse genetics studies. In this study, we explored the possibility of using the tobacco retrotransposon Tnt1 to create a transposon-based insertion mutant population in B. distachyon. We developed transgenic B. distachyon plants expressing Tnt1 (R0) and in the subsequent regenerants (R1) we observed that Tnt1 actively transposed during somatic embryogenesis, generating an average of 6.37 insertions per line in a population of 19 independent R1 regenerant plants analyzed. In seed-derived progeny of R1 plants, Tnt1 segregated in a Mendelian ratio of 3:1 and no new Tnt1 transposition was observed. A total of 126 flanking sequence tags (FSTs) were recovered from the analyzed R0 and R1 lines. Analysis of the FSTs showed a uniform pattern of insertion in all the chromosomes (1-5) without any preference for a particular chromosome region. Considering the average length of a gene transcript to be 3.37 kb, we estimated that 29 613 lines are required to achieve a 90% possibility of tagging a given gene in the B. distachyon genome using the Tnt1-based mutagenesis approach. Our results show the possibility of using Tnt1 to achieve near-saturation mutagenesis in B. distachyon, which will aid in functional genomics studies of other C3 grasses.
Collapse
Affiliation(s)
| | - Juan C. Serrani‐Yarce
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
- Present address:
Department of Biological SciencesUniversity of North TexasDentonTX76203USA
| | - Upinder S. Gill
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
- Present address:
Department of Plant PathologyNorth Dakota State UniversityFargoND58102USA
| | - Sunhee Oh
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Hee‐Kyung Lee
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Xinji Zhang
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Xinbin Dai
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Wenchao Zhang
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Nick Krom
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Jiangqi Wen
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Patrick X. Zhao
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | | |
Collapse
|
49
|
Van Dooren TJM, Silveira AB, Gilbault E, Jiménez-Gómez JM, Martin A, Bach L, Tisné S, Quadrana L, Loudet O, Colot V. Mild drought in the vegetative stage induces phenotypic, gene expression, and DNA methylation plasticity in Arabidopsis but no transgenerational effects. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3588-3602. [PMID: 32166321 DOI: 10.1101/370320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/09/2020] [Indexed: 05/27/2023]
Abstract
There is renewed interest in whether environmentally induced changes in phenotypes can be heritable. In plants, heritable trait variation can occur without DNA sequence mutations through epigenetic mechanisms involving DNA methylation. However, it remains unknown whether this alternative system of inheritance responds to environmental changes and if it can provide a rapid way for plants to generate adaptive heritable phenotypic variation. To assess potential transgenerational effects induced by the environment, we subjected four natural accessions of Arabidopsis thaliana together with the reference accession Col-0 to mild drought in a multi-generational experiment. As expected, plastic responses to drought were observed in each accession, as well as a number of intergenerational effects of the parental environments. However, after an intervening generation without stress, except for a very few trait-based parental effects, descendants of stressed and non-stressed plants were phenotypically indistinguishable irrespective of whether they were grown in control conditions or under water deficit. In addition, genome-wide analysis of DNA methylation and gene expression in Col-0 demonstrated that, while mild drought induced changes in the DNA methylome of exposed plants, these variants were not inherited. We conclude that mild drought stress does not induce transgenerational epigenetic effects.
Collapse
Affiliation(s)
- Tom J M Van Dooren
- CNRS - UMR 7618 Institute of Ecology and Environmental Sciences (iEES) Paris, Sorbonne University, Case 237, 4, place Jussieu, 75005 Paris, France
| | - Amanda Bortolini Silveira
- Institut de Biologie de l'Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Elodie Gilbault
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Antoine Martin
- Institut de Biologie de l'Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Liên Bach
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Sébastien Tisné
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Leandro Quadrana
- Institut de Biologie de l'Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Olivier Loudet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| |
Collapse
|
50
|
Van Dooren TJM, Silveira AB, Gilbault E, Jiménez-Gómez JM, Martin A, Bach L, Tisné S, Quadrana L, Loudet O, Colot V. Mild drought in the vegetative stage induces phenotypic, gene expression, and DNA methylation plasticity in Arabidopsis but no transgenerational effects. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3588-3602. [PMID: 32166321 PMCID: PMC7307858 DOI: 10.1093/jxb/eraa132] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/09/2020] [Indexed: 05/25/2023]
Abstract
There is renewed interest in whether environmentally induced changes in phenotypes can be heritable. In plants, heritable trait variation can occur without DNA sequence mutations through epigenetic mechanisms involving DNA methylation. However, it remains unknown whether this alternative system of inheritance responds to environmental changes and if it can provide a rapid way for plants to generate adaptive heritable phenotypic variation. To assess potential transgenerational effects induced by the environment, we subjected four natural accessions of Arabidopsis thaliana together with the reference accession Col-0 to mild drought in a multi-generational experiment. As expected, plastic responses to drought were observed in each accession, as well as a number of intergenerational effects of the parental environments. However, after an intervening generation without stress, except for a very few trait-based parental effects, descendants of stressed and non-stressed plants were phenotypically indistinguishable irrespective of whether they were grown in control conditions or under water deficit. In addition, genome-wide analysis of DNA methylation and gene expression in Col-0 demonstrated that, while mild drought induced changes in the DNA methylome of exposed plants, these variants were not inherited. We conclude that mild drought stress does not induce transgenerational epigenetic effects.
Collapse
Affiliation(s)
- Tom J M Van Dooren
- CNRS - UMR 7618 Institute of Ecology and Environmental Sciences (iEES) Paris, Sorbonne University, Case 237, 4, place Jussieu, 75005 Paris, France
| | - Amanda Bortolini Silveira
- Institut de Biologie de l’Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Elodie Gilbault
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Antoine Martin
- Institut de Biologie de l’Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Liên Bach
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Sébastien Tisné
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Leandro Quadrana
- Institut de Biologie de l’Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Olivier Loudet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Vincent Colot
- Institut de Biologie de l’Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| |
Collapse
|