1
|
Pun R, Cavanaugh AM, Aldrich E, Tran O, Rudd JC, Hansen LA, North BJ. PKCμ promotes keratinocyte cell migration through Cx43 phosphorylation-mediated suppression of intercellular communication. iScience 2024; 27:109033. [PMID: 38375220 PMCID: PMC10875573 DOI: 10.1016/j.isci.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Downregulation of intercellular communication through suppression of gap junctional conductance is necessary during wound healing. Connexin 43 (Cx43), a prominent gap junction protein in skin, is downregulated following wounding to restrict communication between keratinocytes. Previous studies found that PKCμ, a novel PKC isozyme, regulates efficient cutaneous wound healing. However, the molecular mechanism by which PKCμ regulates wound healing remains unknown. We have identified that PKCμ suppresses intercellular communication and enhances cell migration in an in vitro wound healing model by regulating Cx43 containing gap junctions. PKCμ can directly interact with and phosphorylate Cx43 at S368, which leads to Cx43 internalization and downregulation. Finally, utilizing phosphomimetic and non-phosphorylatable S368 substitutions and gap junction inhibitors, we confirmed that PKCμ regulates intercellular communication and in vitro wound healing by controlling Cx43-S368 phosphorylation. These results define PKCμ as a critical regulator of Cx43 phosphorylation to control cell migration and wound healing in keratinocytes.
Collapse
Affiliation(s)
- Renju Pun
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Ann M. Cavanaugh
- Department of Biology, College of Arts and Sciences, Creighton University, Omaha, NE 68178, USA
| | - Emily Aldrich
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Olivia Tran
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Justin C. Rudd
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Laura A. Hansen
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
2
|
Pun R, Kim MH, North BJ. Role of Connexin 43 phosphorylation on Serine-368 by PKC in cardiac function and disease. Front Cardiovasc Med 2023; 9:1080131. [PMID: 36712244 PMCID: PMC9877470 DOI: 10.3389/fcvm.2022.1080131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Intercellular communication mediated by gap junction channels and hemichannels composed of Connexin 43 (Cx43) is vital for the propagation of electrical impulses through cardiomyocytes. The carboxyl terminal tail of Cx43 undergoes various post-translational modifications including phosphorylation of its Serine-368 (S368) residue. Protein Kinase C isozymes directly phosphorylate S368 to alter Cx43 function and stability through inducing conformational changes affecting channel permeability or promoting internalization and degradation to reduce intercellular communication between cardiomyocytes. Recent studies have implicated this PKC/Cx43-pS368 circuit in several cardiac-associated diseases. In this review, we describe the molecular and cellular basis of PKC-mediated Cx43 phosphorylation and discuss the implications of Cx43 S368 phosphorylation in the context of various cardiac diseases, such as cardiomyopathy, as well as the therapeutic potential of targeting this pathway.
Collapse
Affiliation(s)
- Renju Pun
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Michael H. Kim
- CHI Health Heart Institute, School of Medicine, Creighton University, Omaha, NE, United States
| | - Brian J. North
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States,*Correspondence: Brian J. North,
| |
Collapse
|
3
|
van Senten JR, Møller TC, Von Moo E, Seiersen SD, Bräuner-Osborne H. Use of CRISPR/Cas9-edited HEK293 cells reveals that both conventional and novel protein kinase C isozymes are involved in mGlu 5a receptor internalization. J Biol Chem 2022; 298:102466. [PMID: 36087841 PMCID: PMC9530845 DOI: 10.1016/j.jbc.2022.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
The internalization of G protein-coupled receptors (GPCRs) can be regulated by protein kinase C (PKC). However, most tools available to study the contribution of PKC isozymes have considerable limitations, including a lack of selectivity. In this study, we generated and characterized human embryonic kidney 293A (HEK293A) cell lines devoid of conventional or novel PKC isozymes (ΔcPKC and ΔnPKC) and employ these to investigate the contribution of PKC isozymes in the internalization of the metabotropic glutamate receptor 5 (mGlu5). Direct activation of PKC and mutation of rat mGlu5a Ser901, a PKC-dependent phosphorylation site in the receptor C-tail, both showed that PKC isozymes facilitate approximately 40% of the receptor internalization. Nonetheless, we determined that mGlu5a internalization was not altered upon the loss of cPKCs or nPKCs. This indicates that isozymes from both classes are involved, compensate for the absence of the other class, and thus fulfill dispensable functions. Additionally, using the Gαq/11 inhibitor YM-254890, GPCR kinase 2 and 3 (GRK2 and GRK3) knock-out cells and a receptor containing a mutated putative adaptor protein complex 2 (AP-2) interaction motif, we demonstrate that internalization of rat mGlu5a is mediated by Gαq/11 proteins (77% of the response), GRK2 (27%) and AP-2 (29%), but not GRK3. Our PKC knock-out cell lines expand the repertoire of knock-out HEK293A cell lines available to research GPCR pharmacology. Moreover, since pharmacological tools to study PKC isozymes generally lack specificity and/or potency, we present the PKC knock-out cell lines as more specific research tools to investigate PKC-mediated aspects of cell biology.
Collapse
Affiliation(s)
- Jeffrey R van Senten
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thor C Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ee Von Moo
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Sofie D Seiersen
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
4
|
Khan S. Wogonin and alleviation of hyperglycemia via inhibition of DAG mediated PKC expression. A brief insight. Protein Pept Lett 2021; 28:1365-1371. [PMID: 34711151 DOI: 10.2174/0929866528666211027113349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Protein kinase C (PKC) is a family of protein kinase enzymes that can phosphorylate other proteins and influence their functions, such as signal transduction, cell survival, and death. Increased diacylglycerol (DAG) concentrations, which are typically observed raised in hyperglycemic situations such as diabetes mellitus, can also activate PKC enzymes (DM). On the other hand, PKC isomers have been shown to play an essential role in diabetes and many hyperglycemic complications, most importantly atherosclerosis and diabetic cardiomyopathy (DCM). As a result, blocking PKC activation via DAG can prevent hyperglycemia and related consequences, such as DCM. Wogonin is a herbal medicine which has anti-inflammatory properties, and investigations show that it scavenge oxidative radicals, attenuate nuclear factor-kappa B (NF-κB) activity, inhibit several essential cell cycle regulatory genes, block nitric oxide (NO) and suppress cyclooxygenase-2 (COX-2). Furthermore, several investigations show that wogonin also attenuates diacylglycerol DAG levels in diabetic mice. Since the DAG-PKC pathway is linked with hyperglycemia and its complications, Wogonin-mediated DAG-PKC attenuation can help treat hyperglycemia and its complications.
Collapse
Affiliation(s)
- Shahzad Khan
- Department of Pathophysiology, Wuhan University School of Medicine, Hubei, Wuhan. China
| |
Collapse
|
5
|
Ausili A, Corbalán-García S, Gómez-Fernández JC. The binding of different model membranes with PKCε C2 domain is not dependent on membrane curvature but affects the sequence of events during unfolding. Arch Biochem Biophys 2021; 705:108910. [PMID: 33991498 DOI: 10.1016/j.abb.2021.108910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/12/2021] [Accepted: 05/01/2021] [Indexed: 11/28/2022]
Abstract
The C2 domain of novel protein kinases C (nPKC) binds to membranes in a Ca2+-independent way contributing to the activation of these enzymes. We have studied the C2 domain of one of these nPKCs, namely PKCε, and confirmed that it establishes a strong interaction with POPA, which is clearly visible through changes in chemical shifts detected through 31P-MAS-NMR and the protection that it exerts on the domain against thermal denaturation seen through DSC and FT-IR. In this study, using two-dimensional correlation analysis (2D-COS) applied to infrared spectra, we determined the sequence of events that occur during the thermal unfolding of the domain and highlighted some differences when phosphatidic acid or cardiolipin are present. Finally, by means of FRET and DLS experiments, we wanted to determine the effect of membrane curvature on the domain/membrane interaction by using lysophosphatidylcholine to introduce positive curvature as a control and we observed that the effect of these phospholipids on the protein binding is not exerted through the change of membrane curvature.
Collapse
Affiliation(s)
- Alessio Ausili
- Departamento de Bioquímica y Biología Molecular (A), Facultad de Veterinaria, International Campus of Excellence Mare Nostrum, Universidad de Murcia, Apartado. 4021, E-30100, Murcia, Spain.
| | - Senena Corbalán-García
- Departamento de Bioquímica y Biología Molecular (A), Facultad de Veterinaria, International Campus of Excellence Mare Nostrum, Universidad de Murcia, Apartado. 4021, E-30100, Murcia, Spain
| | - Juan C Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular (A), Facultad de Veterinaria, International Campus of Excellence Mare Nostrum, Universidad de Murcia, Apartado. 4021, E-30100, Murcia, Spain
| |
Collapse
|
6
|
Serrano-López EM, López-Martínez D, Gómez-Fernández JC, Egea-Jiménez AL, Corbalán-García S. PKCε controls the fusion of secretory vesicles in mast cells in a phosphatidic acid-dependent mode. Int J Biol Macromol 2021; 185:377-389. [PMID: 34147527 DOI: 10.1016/j.ijbiomac.2021.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
PKCε is highly expressed in mast cells and plays a fundamental role in the antigen-triggered activation of the allergic reaction. Although its regulation by diacylglycerols has been described, its regulation by acidic phospholipids and how this regulation leads to the control of downstream vesicle secretion is barely known. Here, we used structural and evolutionary studies to find the molecular mechanism that explains the selectivity of the C1B domain of PKCε by Phosphatidic Acid (PA). This resided in a collection of Arg residues that form a specific rim on the outer surface of the C1B domain, around the diacylglycerol binding cleft. In RBL-2H3 cells, this basic rim allowed the kinase to respond specifically to phosphatidic acid signals that induced its translocation to the plasma membrane and subsequent activation. Further experiments in cells that overexpress PKCε and a mutant of the PA binding site, showed that PA-dependent PKCε activation increased vesicle degranulation in RBL-2H3 cells, and this correlated with increased SNAP23 phosphorylation. Over-expression of PKCε in these cells also induced an increase in the number of docked vesicles containing SNAP23, when stimulated with PA. This accumulation could be attributed to the stabilizing effect of phosphorylation on the formation of the SNARE complex, which ultimately led to increased release of content in the presence of Ca2+ during the fusion process. Therefore, these findings reinforce the importance of PA signaling in the activation of PKCε, which could be an important target to inhibit the exacerbated responses of these cells in the allergic reaction.
Collapse
Affiliation(s)
- Emilio M Serrano-López
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, IMIB, CEIR Campus Mare Nostrum (CMN), Campus Espinardo, 30100 Murcia, Spain
| | - David López-Martínez
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, IMIB, CEIR Campus Mare Nostrum (CMN), Campus Espinardo, 30100 Murcia, Spain
| | - Juan C Gómez-Fernández
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, IMIB, CEIR Campus Mare Nostrum (CMN), Campus Espinardo, 30100 Murcia, Spain.
| | - Antonio Luis Egea-Jiménez
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe labellisée LIGUE 2018, Aix-Marseille Université, Marseille F-13284, France; Inserm U1068, Institut Paoli-Calmettes, and CNRS UMR7258, Marseille F-13009, France.
| | - Senena Corbalán-García
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, IMIB, CEIR Campus Mare Nostrum (CMN), Campus Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
7
|
El-Sisi MG, Radwan SM, Saeed AM, El-Mesallamy HO. Serum levels of FAK and some of its effectors in adult AML: correlation with prognostic factors and survival. Mol Cell Biochem 2021; 476:1949-1963. [PMID: 33507464 DOI: 10.1007/s11010-020-04030-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
Focal adhesion kinase (FAK), human myofibrillogenesis regulator-1 (MR-1), ephrin receptor type A4 (EphA4), proto-oncogene tyrosine kinase Src (Src), and protein kinase C (PKC) are important markers in proliferation, survival, and migration in some cancers. However, the significance of each is still unclear in different malignancies, including acute myeloid leukemia (AML). Therefore, this study was conducted to investigate their serum levels in Egyptian adult de novo AML patients (n = 70) against healthy volunteers (n = 20). We managed to study the correlation between each pair and to investigate their association with diagnosis, prognosis, and survival. Serum levels were analyzed using enzyme-linked immunosorbent assay (ELISA). We found that FAK, MR-1, Src, and PKC serum levels were significantly higher in AML patients compared to control (p < 0.0001), and this was associated with significantly lower EphA4 level (p < 0.0001). Interestingly, we also observed a significant negative correlation of FAK (p = 0.027), MR-1 (p = 0.003), Src (p = 0.038), and PKC (p = 0.03) with patients' overall survival (OS) while there was a positive significant correlation between EphA4 and OS (p = 0.007). In conclusion, this study suggests that FAK, MR-1, EphA4, Src, and PKC may be used as early diagnostic and prognostic markers with high sensitivity and specificity in AML patients and thus may be incorporated into the patients' early diagnostic and prognostic panels.
Collapse
Affiliation(s)
- Mona G El-Sisi
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Alia M Saeed
- Department of Internal Medicine, Clinical Hematology and Oncology Division, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala O El-Mesallamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt. .,Faculty of Pharmacy, Sinai University, Sinai, Egypt.
| |
Collapse
|
8
|
Velnati S, Centonze S, Girivetto F, Capello D, Biondi RM, Bertoni A, Cantello R, Ragnoli B, Malerba M, Graziani A, Baldanzi G. Identification of Key Phospholipids That Bind and Activate Atypical PKCs. Biomedicines 2021; 9:biomedicines9010045. [PMID: 33419210 PMCID: PMC7825596 DOI: 10.3390/biomedicines9010045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 12/02/2022] Open
Abstract
PKCζ and PKCι/λ form the atypical protein kinase C subgroup, characterised by a lack of regulation by calcium and the neutral lipid diacylglycerol. To better understand the regulation of these kinases, we systematically explored their interactions with various purified phospholipids using the lipid overlay assays, followed by kinase activity assays to evaluate the lipid effects on their enzymatic activity. We observed that both PKCζ and PKCι interact with phosphatidic acid and phosphatidylserine. Conversely, PKCι is unique in binding also to phosphatidylinositol-monophosphates (e.g., phosphatidylinositol 3-phosphate, 4-phosphate, and 5-phosphate). Moreover, we observed that phosphatidylinositol 4-phosphate specifically activates PKCι, while both isoforms are responsive to phosphatidic acid and phosphatidylserine. Overall, our results suggest that atypical Protein kinase C (PKC) localisation and activity are regulated by membrane lipids distinct from those involved in conventional PKCs and unveil a specific regulation of PKCι by phosphatidylinositol-monophosphates.
Collapse
Affiliation(s)
- Suresh Velnati
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
- Correspondence:
| | - Sara Centonze
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Federico Girivetto
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Ricardo M. Biondi
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, 60590 Frankfurt, Germany;
- Biomedicine Research Institute of Buenos Aires—CONICET—Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Alessandra Bertoni
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
| | - Roberto Cantello
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
| | | | - Mario Malerba
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- Respiratory Unit, Sant’Andrea Hospital, 13100 Vercelli, Italy;
| | - Andrea Graziani
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy;
- Division of Oncology, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Gianluca Baldanzi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
9
|
Wright WS, Eshaq RS, Lee M, Kaur G, Harris NR. Retinal Physiology and Circulation: Effect of Diabetes. Compr Physiol 2020; 10:933-974. [PMID: 32941691 PMCID: PMC10088460 DOI: 10.1002/cphy.c190021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this article, we present a discussion of diabetes and its complications, including the macrovascular and microvascular effects, with the latter of consequence to the retina. We will discuss the anatomy and physiology of the retina, including aspects of metabolism and mechanisms of oxygenation, with the latter accomplished via a combination of the retinal and choroidal blood circulations. Both of these vasculatures are altered in diabetes, with the retinal circulation intimately involved in the pathology of diabetic retinopathy. The later stages of diabetic retinopathy involve poorly controlled angiogenesis that is of great concern, but in our discussion, we will focus more on several alterations in the retinal circulation occurring earlier in the progression of disease, including reductions in blood flow and a possible redistribution of perfusion that may leave some areas of the retina ischemic and hypoxic. Finally, we include in this article a more recent area of investigation regarding the diabetic retinal vasculature, that is, the alterations to the endothelial surface layer that normally plays a vital role in maintaining physiological functions. © 2020 American Physiological Society. Compr Physiol 10:933-974, 2020.
Collapse
Affiliation(s)
- William S Wright
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Minsup Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
10
|
Téllez-Arreola JL, Silva M, Martínez-Torres A. MCTP-1 modulates neurotransmitter release in C. elegans. Mol Cell Neurosci 2020; 107:103528. [PMID: 32650044 DOI: 10.1016/j.mcn.2020.103528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 11/30/2022] Open
Abstract
Multiple C2 and Transmembrane Domain Proteins (MCTPs) are putative calcium sensors. Proteins that contain C2 domains play essential roles in membrane trafficking and exocytosis; however, MCTPs functions in neurotransmitter release are not known. Here we report that in C. elegans mctp-1 is under the control of two promoters - one active in the nervous system and the second in the spermatheca. We generated and characterized a loss of function amt1 mutant and compared it to a previously published loss of function mutant (av112). Loss of mctp-1 function causes defects in egg-laying, crawling velocity, and thrashing rates. Both amt1 and av112 mutants are hyposensitive to the acetylcholinesterase blocker aldicarb, suggesting that MCTP-1 may play a role in synaptic vesicle release.
Collapse
Affiliation(s)
- José Luis Téllez-Arreola
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, C.P. 76215 Juriquilla, Querétaro, México; School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Malan Silva
- School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, C.P. 76215 Juriquilla, Querétaro, México.
| |
Collapse
|
11
|
Torres M, Rosselló CA, Fernández-García P, Lladó V, Kakhlon O, Escribá PV. The Implications for Cells of the Lipid Switches Driven by Protein-Membrane Interactions and the Development of Membrane Lipid Therapy. Int J Mol Sci 2020; 21:ijms21072322. [PMID: 32230887 PMCID: PMC7177374 DOI: 10.3390/ijms21072322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
The cell membrane contains a variety of receptors that interact with signaling molecules. However, agonist-receptor interactions not always activate a signaling cascade. Amphitropic membrane proteins are required for signal propagation upon ligand-induced receptor activation. These proteins localize to the plasma membrane or internal compartments; however, they are only activated by ligand-receptor complexes when both come into physical contact in membranes. These interactions enable signal propagation. Thus, signals may not propagate into the cell if peripheral proteins do not co-localize with receptors even in the presence of messengers. As the translocation of an amphitropic protein greatly depends on the membrane's lipid composition, regulation of the lipid bilayer emerges as a novel therapeutic strategy. Some of the signals controlled by proteins non-permanently bound to membranes produce dramatic changes in the cell's physiology. Indeed, changes in membrane lipids induce translocation of dozens of peripheral signaling proteins from or to the plasma membrane, which controls how cells behave. We called these changes "lipid switches", as they alter the cell's status (e.g., proliferation, differentiation, death, etc.) in response to the modulation of membrane lipids. Indeed, this discovery enables therapeutic interventions that modify the bilayer's lipids, an approach known as membrane-lipid therapy (MLT) or melitherapy.
Collapse
Affiliation(s)
- Manuel Torres
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Catalina Ana Rosselló
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Paula Fernández-García
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Victoria Lladó
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Or Kakhlon
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, 91120 Jerusalem, Israel;
| | - Pablo Vicente Escribá
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Correspondence:
| |
Collapse
|
12
|
A natural small molecule induces megakaryocytic differentiation and suppresses leukemogenesis through activation of PKCδ/ERK1/2 signaling pathway in erythroleukemia cells. Biomed Pharmacother 2019; 118:109265. [DOI: 10.1016/j.biopha.2019.109265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/10/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023] Open
|
13
|
Remy S, Litaudon M. Macrocyclic Diterpenoids from Euphorbiaceae as A Source of Potent and Selective Inhibitors of Chikungunya Virus Replication. Molecules 2019; 24:molecules24122336. [PMID: 31242603 PMCID: PMC6631467 DOI: 10.3390/molecules24122336] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022] Open
Abstract
Macrocyclic diterpenoids produced by plants of the Euphorbiaceae family are of considerable interest due to their high structural diversity; and their therapeutically relevant biological properties. Over the last decade many studies have reported the ability of macrocyclic diterpenoids to inhibit in cellulo the cytopathic effect induced by the chikungunya virus. This review; which covers the years 2011 to 2019; lists all macrocyclic diterpenoids that have been evaluated for their ability to inhibit viral replication. The structure-activity relationships and the probable involvement of protein kinase C in their mechanism of action are also detailed.
Collapse
Affiliation(s)
- Simon Remy
- Institut de Chimie des Substances Naturelles, CNRS ICSN, UPR 2301, Université Paris Saclay, 91198 Gif-sur-Yvette, France.
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS ICSN, UPR 2301, Université Paris Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
14
|
Gawden-Bone CM, Griffiths GM. Phospholipids: Pulling Back the Actin Curtain for Granule Delivery to the Immune Synapse. Front Immunol 2019; 10:700. [PMID: 31031745 PMCID: PMC6470250 DOI: 10.3389/fimmu.2019.00700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 12/29/2022] Open
Abstract
Phosphoinositides, together with the phospholipids phosphatidylserine and phosphatidic acid, are important components of the plasma membrane acting as second messengers that, with diacylglycerol, regulate a diverse range of signaling events converting extracellular changes into cellular responses. Local changes in their distribution and membrane charge on the inner leaflet of the plasma membrane play important roles in immune cell function. Here we discuss their distribution and regulators highlighting the importance of membrane changes across the immune synapse on the cytoskeleton and the impact on the function of cytotoxic T lymphocytes.
Collapse
Affiliation(s)
| | - Gillian M Griffiths
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Role of Zinc Signaling in the Regulation of Mast Cell-, Basophil-, and T Cell-Mediated Allergic Responses. J Immunol Res 2018; 2018:5749120. [PMID: 30596108 PMCID: PMC6286780 DOI: 10.1155/2018/5749120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/23/2018] [Indexed: 01/26/2023] Open
Abstract
Zinc is essential for maintaining normal structure and physiological function of cells. Its deficiency causes growth retardation, immunodeficiency, and neuronal degeneration. Zinc homeostasis is tightly regulated by zinc transporters and metallothioneins that control zinc concentration and its distribution in individual cells and contributes to zinc signaling. The intracellular zinc signaling regulates immune reactions. Although many molecules involved in these processes have zinc-binding motifs, the molecular mechanisms and the role of zinc in immune responses have not been elucidated. We and others have demonstrated that zinc signaling plays diverse and specific roles in vivo and in vitro in studies using knockout mice lacking zinc transporter function and metallothionein function. In this review, we discuss the impact of zinc signaling focusing particularly on mast cell-, basophil-, and T cell-mediated inflammatory and allergic responses. We also describe zinc signaling dysregulation as a leading health problem in inflammatory disease and allergy.
Collapse
|
16
|
PKC delta activation increases neonatal rat retinal cells survival in vitro: Involvement of neurotrophins and M1 muscarinic receptors. Biochem Biophys Res Commun 2018; 500:917-923. [PMID: 29705702 DOI: 10.1016/j.bbrc.2018.04.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/24/2018] [Indexed: 01/02/2023]
Abstract
Protein kinase C (PKC) is a family of serine/threonine kinases related to several phenomena as cell proliferation, differentiation and survival. Our previous data demonstrated that treatment of axotomized neonatal rat retinal cell cultures for 48 h with phorbol 12-myristate 13-acetate (PMA), a PKC activator, increases retinal ganglion cells (RGCs) survival. Moreover, this treatment decreases M1 receptors (M1R) and modulates BDNF levels. The aim of this work was to assess the possible involvement of neurotrophins BDNF and NGF in the modulation of M1R levels induced by PKC activation, and its involvement on RGCs survival. Our results show that PMA (50 ng/mL) treatment, via PKC delta activation, modulates NGF, BDNF and M1R levels. BDNF and NGF mediate the decrease of M1R levels induced by PMA treatment. M1R activation is essential to PMA neuroprotective effect on RGCs as telenzepine (M1R selective antagonist) abolished it. Based on our results we suggest that PKC delta activation modulates neurotrophins levels by a signaling pathway that involves M1R activation and ultimately leading to an increase in RGCs survival in vitro.
Collapse
|
17
|
Eshaq RS, Aldalati AMZ, Alexander JS, Harris NR. Diabetic retinopathy: Breaking the barrier. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2017; 24:229-241. [PMID: 28732591 PMCID: PMC5711541 DOI: 10.1016/j.pathophys.2017.07.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/26/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022]
Abstract
Diabetic retinopathy (DR) remains a major complication of diabetes and a leading cause of blindness among adults worldwide. DR is a progressive disease affecting both type I and type II diabetic patients at any stage of the disease, and targets the retinal microvasculature. DR results from multiple biochemical, molecular and pathophysiological changes to the retinal vasculature, which affect both microcirculatory functions and ultimately photoreceptor function. Several neural, endothelial, and support cell (e.g., pericyte) mechanisms are altered in a pathological fashion in the hyperglycemic environment during diabetes that can disturb important cell surface components in the vasculature producing the features of progressive DR pathophysiology. These include loss of the glycocalyx, blood-retinal barrier dysfunction, increased expression of inflammatory cell markers and adhesion of blood leukocytes and platelets. Included in this review is a discussion of modifications that occur at or near the surface of the retinal vascular endothelial cells, and the consequences of these alterations on the integrity of the retina.
Collapse
Affiliation(s)
- Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - Alaa M Z Aldalati
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States.
| |
Collapse
|
18
|
Zuidscherwoude M, Dunlock VME, van den Bogaart G, van Deventer SJ, van der Schaaf A, van Oostrum J, Goedhart J, In 't Hout J, Hämmerling GJ, Tanaka S, Nadler A, Schultz C, Wright MD, Adjobo-Hermans MJW, van Spriel AB. Tetraspanin microdomains control localized protein kinase C signaling in B cells. Sci Signal 2017; 10:eaag2755. [PMID: 28487417 DOI: 10.1126/scisignal.aag2755] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Activation of B cells by the binding of antigens to the B cell receptor (BCR) requires the protein kinase C (PKC) family member PKCβ. Because PKCs must translocate to the plasma membrane to become activated, we investigated the mechanisms regulating their spatial distribution in mouse and human B cells. Through live-cell imaging, we showed that BCR-stimulated production of the second messenger diacylglycerol (DAG) resulted in the translocation of PKCβ from the cytosol to plasma membrane regions containing the tetraspanin protein CD53. CD53 was specifically enriched at sites of BCR signaling, suggesting that BCR-dependent PKC signaling was initiated at these tetraspanin microdomains. Fluorescence lifetime imaging microscopy studies confirmed the molecular recruitment of PKC to CD53-containing microdomains, which required the amino terminus of CD53. Furthermore, we showed that Cd53-deficient B cells were defective in the phosphorylation of PKC substrates. Consistent with this finding, PKC recruitment to the plasma membrane was impaired in both mouse and human CD53-deficient B cells compared to that in their wild-type counterparts. These data suggest that CD53 promotes BCR-dependent PKC signaling by recruiting PKC to the plasma membrane so that it can phosphorylate its substrates and that tetraspanin-containing microdomains can act as signaling hotspots in the plasma membrane.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Vera-Marie E Dunlock
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Sjoerd J van Deventer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Alie van der Schaaf
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Jenny van Oostrum
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Joanna In 't Hout
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Günter J Hämmerling
- Department of Molecular Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Satoshi Tanaka
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Japan
| | - André Nadler
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Carsten Schultz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Mark D Wright
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia
| | - Merel J W Adjobo-Hermans
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Annemiek B van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands.
| |
Collapse
|
19
|
Nomura W, Ito Y, Inoue Y. Role of phosphatidylserine in the activation of Rho1-related Pkc1 signaling in Saccharomyces cerevisiae. Cell Signal 2017; 31:146-153. [DOI: 10.1016/j.cellsig.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
20
|
Abdelnabi R, Amrun SN, Ng LFP, Leyssen P, Neyts J, Delang L. Protein kinases C as potential host targets for the inhibition of chikungunya virus replication. Antiviral Res 2016; 139:79-87. [PMID: 28039020 DOI: 10.1016/j.antiviral.2016.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/10/2016] [Accepted: 12/26/2016] [Indexed: 02/07/2023]
Abstract
We have shown previously that prostratin, a non-tumor promoting phorbol ester, inhibits chikungunya virus (CHIKV)-induced cytopathic effects in vitro. Prostratin is a potent activator of protein kinases C (PKC), a family of related serine/threonine kinases that regulate many cellular processes such as proliferation and apoptosis. The objective of this study was to explore the mechanism of the anti-CHIKV activity of prostratin. Prostratin reduced the production of infectious virus particles and viral protein accumulation in a dose-dependent manner at a post-entry step during virus replication. The antiviral effect of the compound was cell-dependent, with potent antiviral activity observed in human skin fibroblasts cells, the primary target cells of CHIKV infection. The antiviral activity of prostratin was markedly reduced in the presence of PKC inhibitors, therefore confirming that the antiviral effect results from an activation of PKCs. Together these results showed that PKCs are potential host targets for the inhibition of CHIKV replication.
Collapse
Affiliation(s)
- Rana Abdelnabi
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Siti Naqiah Amrun
- Laboratory of Microbial Immunity, Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Lisa F P Ng
- Laboratory of Microbial Immunity, Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Pieter Leyssen
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| | - Leen Delang
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
21
|
Alwarawrah M, Wereszczynski J. Investigation of the Effect of Bilayer Composition on PKCα-C2 Domain Docking Using Molecular Dynamics Simulations. J Phys Chem B 2016; 121:78-88. [PMID: 27997184 DOI: 10.1021/acs.jpcb.6b10188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protein kinase Cα (PKCα) enzyme is a member of a broad family of serine/threonine kinases, which are involved in varied cellular signaling pathways. The initial step of PKCα activation involves the C2 subunit docking with the cell membrane, which is followed by interactions of the C1 domains with diacylglycerol (DAG) in the membrane. Notably, the molecular mechanisms of these interactions remain poorly understood, especially what effects, if any, DAG may have on the initial C2 docking. To further understand this process, we have performed a series of conventional molecular dynamics simulations to systematically investigate the interaction between PKCα-C2 domains and lipid bilayers with different compositions to examine the effects of POPS, PIP2, and 1-palmitoyl-2-oleoyl-sn-glycerol (POG) on domain docking. Our results show that the PKCα-C2 domain does not interact with the bilayer surface in the absence of POPS and PIP2. In contrast, the inclusion of POPS and PIP2 to the bilayer resulted in strong domain docking in both perpendicular and parallel orientations, whereas the further inclusion of POG resulted in only parallel domain docking. In addition, lysine residues in the C2 domain formed hydrogen bonds with PIP2 molecule bilayers containing POG. These effects were further explored with umbrella sampling calculations to estimate the free energy of domain docking to the lipid bilayer in the presence of one or two PIP2 molecules. The results show that the binding of one or two PIP2 molecules is thermodynamically favorable, although stronger in bilayers lacking POG. However, in POG-containing bilayers, the binding mode of the C2 domain appears to be more flexible, which may have implications for activation of full-length PKCα. Together, our results shed new insights into the process of C2 bilayer binding and suggest new mechanisms for the roles of different phospholipids in the activation process of PKCα.
Collapse
Affiliation(s)
- Mohammad Alwarawrah
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology , Chicago 60616, Illinois, United States
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology , Chicago 60616, Illinois, United States
| |
Collapse
|
22
|
Taylor KA, Pugh N. The contribution of zinc to platelet behaviour during haemostasis and thrombosis. Metallomics 2016; 8:144-55. [PMID: 26727074 DOI: 10.1039/c5mt00251f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelets are the primary cellular determinants of haemostasis and pathological thrombus formation leading to myocardial infarction and stroke. Following vascular injury or atherosclerotic plaque rupture, platelets are recruited to sites of damage and undergo activation induced by a variety of soluble and/or insoluble agonists. Platelet activation is a multi-step process culminating in the formation of thrombi, which contribute to the haemostatic process. Zinc (Zn(2+)) is acknowledged as an important signalling molecule in a diverse range of cellular systems, however there is limited understanding of the influence of Zn(2+) on platelet behaviour during thrombus formation. This review evaluates the contributions of exogenous and intracellular Zn(2+) to platelet function and assesses the potential pathophysiological implications of Zn(2+) signalling. We also provide a speculative assessment of the mechanisms by which platelets could respond to changes in extracellular and intracellular Zn(2+) concentration.
Collapse
Affiliation(s)
- K A Taylor
- Department of Biomedical and Forensic Sciences, Faculty of Science and Technology, Anglia Ruskin University, Cambridge, CB1 1PT, UK.
| | - N Pugh
- Department of Biomedical and Forensic Sciences, Faculty of Science and Technology, Anglia Ruskin University, Cambridge, CB1 1PT, UK.
| |
Collapse
|
23
|
Comparative analysis of the anti-chikungunya virus activity of novel bryostatin analogs confirms the existence of a PKC-independent mechanism. Biochem Pharmacol 2016; 120:15-21. [PMID: 27664855 DOI: 10.1016/j.bcp.2016.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 11/22/2022]
Abstract
Previously, we reported that salicylate-based analogs of bryostatin protect cells from chikungunya virus (CHIKV)-induced cell death. Interestingly, 'capping' the hydroxyl group at C26 of a lead bryostatin analog, a position known to be crucial for binding to and modulation of protein kinase C (PKC), did not abrogate the anti-CHIKV activity of the scaffold, putatively indicating the involvement of a pathway independent of PKC. The work detailed in this study demonstrates that salicylate-derived analog 1 and two capped analogs (2 and 3) are not merely cytoprotective compounds, but act as selective and specific inhibitors of CHIKV replication. Further, a detailed comparative analysis of the effect of the non-capped versus the two capped analogs revealed that compound 1 acts both at early and late stages in the chikungunya virus replication cycle, while the capped analogs only interfere with a later stage process. Co-dosing with the PKC inhibitors sotrastaurin and Gö6976 counteracts the antiviral activity of compound 1 without affecting that of capped analogs 2 and 3, providing further evidence that the latter elicit their anti-CHIKV activity independently of PKC. Remarkably, treatment of CHIKV-infected cells with a combination of compound 1 and a capped analog resulted in a pronounced synergistic antiviral effect. Thus, these salicylate-based bryostatin analogs can inhibit CHIKV replication through a novel, yet still elusive, non-PKC dependent pathway.
Collapse
|
24
|
Frank JA, Yushchenko DA, Hodson DJ, Lipstein N, Nagpal J, Rutter GA, Rhee JS, Gottschalk A, Brose N, Schultz C, Trauner D. Photoswitchable diacylglycerols enable optical control of protein kinase C. Nat Chem Biol 2016; 12:755-62. [PMID: 27454932 PMCID: PMC6101201 DOI: 10.1038/nchembio.2141] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/16/2016] [Indexed: 01/02/2023]
Abstract
Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling.
Collapse
Affiliation(s)
- James Allen Frank
- Department of Chemistry and Center for Integrated Protein Science, Ludwig Maximilians University Munich, Munich, Germany
| | - Dmytro A Yushchenko
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - David J Hodson
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, ICTEM, Hammersmith Hospital, London, UK
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Jatin Nagpal
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biochemistry, Department for Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, ICTEM, Hammersmith Hospital, London, UK
| | - Jeong-Seop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biochemistry, Department for Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Carsten Schultz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dirk Trauner
- Department of Chemistry and Center for Integrated Protein Science, Ludwig Maximilians University Munich, Munich, Germany
| |
Collapse
|
25
|
Wuttke A, Yu Q, Tengholm A. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells. J Biol Chem 2016; 291:14986-95. [PMID: 27226533 PMCID: PMC4946917 DOI: 10.1074/jbc.m115.698456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 01/08/2023] Open
Abstract
PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca2+- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations (“spiking”) at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K+ depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca2+ concentration ([Ca2+]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca2+]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca2+]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function.
Collapse
Affiliation(s)
- Anne Wuttke
- From the Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, 75123 Uppsala, Sweden
| | - Qian Yu
- From the Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, 75123 Uppsala, Sweden
| | - Anders Tengholm
- From the Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, 75123 Uppsala, Sweden
| |
Collapse
|
26
|
Carubbi C, Masselli E, Martini S, Galli D, Aversa F, Mirandola P, Italiano JE, Gobbi G, Vitale M. Human thrombopoiesis depends on Protein kinase Cδ/protein kinase Cε functional couple. Haematologica 2016; 101:812-20. [PMID: 27081176 DOI: 10.3324/haematol.2015.137984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/12/2016] [Indexed: 01/12/2023] Open
Abstract
A deeper understanding of the molecular events driving megakaryocytopoiesis and thrombopoiesis is essential to regulate in vitro and in vivo platelet production for clinical applications. We previously documented the crucial role of PKCε in the regulation of human and mouse megakaryocyte maturation and platelet release. However, since several data show that different PKC isoforms fulfill complementary functions, we targeted PKCε and PKCδ, which show functional and phenotypical reciprocity, at the same time as boosting platelet production in vitro. Results show that PKCδ, contrary to PKCε, is persistently expressed during megakaryocytic differentiation, and a forced PKCδ down-modulation impairs megakaryocyte maturation and platelet production. PKCδ and PKCε work as a functional couple with opposite roles on thrombopoiesis, and the modulation of their balance strongly impacts platelet production. Indeed, we show an imbalance of PKCδ/PKCε ratio both in primary myelofibrosis and essential thrombocythemia, featured by impaired megakaryocyte differentiation and increased platelet production, respectively. Finally, we demonstrate that concurrent molecular targeting of both PKCδ and PKCε represents a strategy for in vitro platelet factories.
Collapse
Affiliation(s)
- Cecilia Carubbi
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Elena Masselli
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Silvia Martini
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Daniela Galli
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Franco Aversa
- Department of Clinical and Experimental Medicine, University of Parma, Italy
| | - Prisco Mirandola
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Joseph E Italiano
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Giuliana Gobbi
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Marco Vitale
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| |
Collapse
|
27
|
La Colla A, Boland R, Vasconsuelo A. 17β-Estradiol Abrogates Apoptosis Inhibiting PKCδ, JNK, and p66Shc Activation in C2C12 Cells. J Cell Biochem 2016; 116:1454-65. [PMID: 25649128 DOI: 10.1002/jcb.25107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/26/2015] [Indexed: 12/17/2022]
Abstract
17β-Estradiol (E2) protects several non-reproductive tissues from apoptosis, including skeletal muscle. Previously, we showed that E2 at physiological concentrations prevented apoptosis induced by H2O2 in skeletal myoblasts. As we have also demonstrated a clear beneficial action of this hormone on skeletal muscle mitochondria, the present work further characterizes the signaling mechanisms modulated by E2 that are involved in mitochondria protection, which ultimately result in antiapoptosis. Here, we report that E2 through estrogen receptors (ERs) inhibited the H2O2-induced PKCδ and JNK activation, which results in the inhibition of phosphorylation and translocation to mitochondria of the adaptor protein p66Shc. In conjunction, the inhibition by the hormone of this H2O2-triggered signaling pathway results in protection of mitochondrial potential membrane. Our results provide basis for a putative mechanism by which E2 exerts beneficial effects on mitochondria, against oxidative stress, in skeletal muscle cells.
Collapse
|
28
|
Sinha DK, Chandran P, Timm AE, Aguirre-Rojas L, Smith CM. Virulent Diuraphis noxia Aphids Over-Express Calcium Signaling Proteins to Overcome Defenses of Aphid-Resistant Wheat Plants. PLoS One 2016; 11:e0146809. [PMID: 26815857 PMCID: PMC4729530 DOI: 10.1371/journal.pone.0146809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
The Russian wheat aphid, Diuraphis noxia, an invasive phytotoxic pest of wheat, Triticum aestivum, and barley, Hordeum vulgare, causes huge economic losses in Africa, South America, and North America. Most acceptable and ecologically beneficial aphid management strategies include selection and breeding of D. noxia-resistant varieties, and numerous D. noxia resistance genes have been identified in T. aestivum and H. vulgare. North American D. noxia biotype 1 is avirulent to T. aestivum varieties possessing Dn4 or Dn7 genes, while biotype 2 is virulent to Dn4 and avirulent to Dn7. The current investigation utilized next-generation RNAseq technology to reveal that biotype 2 over expresses proteins involved in calcium signaling, which activates phosphoinositide (PI) metabolism. Calcium signaling proteins comprised 36% of all transcripts identified in the two D. noxia biotypes. Depending on plant resistance gene-aphid biotype interaction, additional transcript groups included those involved in tissue growth; defense and stress response; zinc ion and related cofactor binding; and apoptosis. Activation of enzymes involved in PI metabolism by D. noxia biotype 2 aphids allows depletion of plant calcium that normally blocks aphid feeding sites in phloem sieve elements and enables successful, continuous feeding on plants resistant to avirulent biotype 1. Inhibition of the key enzyme phospholipase C significantly reduced biotype 2 salivation into phloem and phloem sap ingestion.
Collapse
Affiliation(s)
- Deepak K. Sinha
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506–4004, United States of America
| | - Predeesh Chandran
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506–4004, United States of America
| | - Alicia E. Timm
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506–4004, United States of America
| | - Lina Aguirre-Rojas
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506–4004, United States of America
| | - C. Michael Smith
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506–4004, United States of America
- * E-mail:
| |
Collapse
|
29
|
Córcoles-Sáez I, Hernández ML, Martínez-Rivas JM, Prieto JA, Randez-Gil F. Characterization of the S. cerevisiae inp51 mutant links phosphatidylinositol 4,5-bisphosphate levels with lipid content, membrane fluidity and cold growth. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:213-26. [PMID: 26724696 DOI: 10.1016/j.bbalip.2015.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 11/30/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its derivatives diphosphoinositol phosphates (DPIPs) play key signaling and regulatory roles. However, a direct function of these molecules in lipid and membrane homeostasis remains obscure. Here, we have studied the cold tolerance phenotype of yeast cells lacking the Inp51-mediated phosphoinositide-5-phosphatase. Genetic and biochemical approaches showed that increased metabolism of PI(4,5)P2 reduces the activity of the Pho85 kinase by increasing the levels of the DPIP isomer 1-IP7. This effect was key in the cold tolerance phenotype. Indeed, pho85 mutant cells grew better than the wild-type at 15 °C, and lack of this kinase abolished the inp51-mediated cold phenotype. Remarkably, reduced Pho85 function by loss of Inp51 affected the activity of the Pho85-regulated target Pah1, the yeast phosphatidate phosphatase. Cells lacking Inp51 showed reduced Pah1 abundance, derepression of an INO1-lacZ reporter, decreased content of triacylglycerides and elevated levels of phosphatidate, hallmarks of the pah1 mutant. However, the inp51 phenotype was not associated to low Pah1 activity since deletion of PAH1 caused cold sensitivity. In addition, the inp51 mutant exhibited features not shared by pah1, including a 40%-reduction in total lipid content and decreased membrane fluidity. These changes may influence the activity of membrane-anchored and/or associated proteins since deletion of INP51 slows down the transit to the vacuole of the fluorescent dye FM4-64. In conclusion, our work supports a model in which changes in the PI(4,5)P2 pool affect the 1-IP7 levels modulating the activity of Pho85, Pah1 and likely additional Pho85-controlled targets, and regulate lipid composition and membrane properties.
Collapse
Affiliation(s)
- Isaac Córcoles-Sáez
- Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Maria Luisa Hernández
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | | | - Jose A Prieto
- Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Francisca Randez-Gil
- Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
30
|
Das J. Novel N-pyrimidin-4-yl-3-amino-pyrrolo [3, 4-C] pyrazole derivatives as PKC kinase inhibitors: a patent evaluation of US2015099743 (A1). Expert Opin Ther Pat 2015; 26:523-8. [PMID: 26593678 DOI: 10.1517/13543776.2015.1124088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Protein kinase Cβ (PKCβ) is a member of the PKC family of serine/threonine kinases that has been implicated in the pathophysiology of diabetic complications. Developing small molecule drugs targeting this PKC isozyme is a rational approach for treating these disease states. PKCβ belongs to the conventional class of PKC and contains both regulatory and kinase domain. Numerous compounds of different chemical classes were designed targeting the kinase domain, but achieved very limited success in clinical trials. AREAS COVERED This patent application reports the synthesis of about 100 new N-pyrimidin-4-yl-3-amino-pyrolo [3, 4-C] pyrazole derivatives and their competitive inhibition constant (Ki) for protein kinase C βII (PKCβII), one of the two splice variants of PKCβ. The compounds compete with ATP at the kinase domain of PKCβII, and inhibit with high potency having Ki values in the 0.1-181 nM range. The compounds are claimed to be selective towards PKCβI, PKCβII and PKCα over other protein kinases. Several routes of administration of these compounds are discussed for possible treatment of diabetes and related diseases. EXPERT OPINION This is an important effort toward developing PKC-based drugs for diabetic complications. Further biological evaluations of these compounds are required before proceeding toward clinical trails.
Collapse
Affiliation(s)
- Joydip Das
- a Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy , University of Houston , Houston , TX , USA
| |
Collapse
|
31
|
Rocha MC, de Godoy KF, de Castro PA, Hori JI, Bom VLP, Brown NA, da Cunha AF, Goldman GH, Malavazi I. The Aspergillus fumigatus pkcA G579R Mutant Is Defective in the Activation of the Cell Wall Integrity Pathway but Is Dispensable for Virulence in a Neutropenic Mouse Infection Model. PLoS One 2015; 10:e0135195. [PMID: 26295576 PMCID: PMC4546635 DOI: 10.1371/journal.pone.0135195] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/19/2015] [Indexed: 12/03/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic human pathogen, which causes the life-threatening disease, invasive pulmonary aspergillosis. In fungi, cell wall homeostasis is controlled by the conserved Cell Wall Integrity (CWI) pathway. In A. fumigatus this signaling cascade is partially characterized, but the mechanisms by which it is activated are not fully elucidated. In this study we investigated the role of protein kinase C (PkcA) in this signaling cascade. Our results suggest that pkcA is an essential gene and is activated in response to cell wall stress. Subsequently, we constructed and analyzed a non-essential A. fumigatus pkcAG579R mutant, carrying a Gly579Arg substitution in the PkcA C1B regulatory domain. The pkcAG579R mutation has a reduced activation of the downstream Mitogen-Activated Protein Kinase, MpkA, resulting in the altered expression of genes encoding cell wall-related proteins, markers of endoplasmic reticulum stress and the unfolded protein response. Furthermore, PkcAG579R is involved in the formation of proper conidial architecture and protection to oxidative damage. The pkcAG579R mutant elicits increased production of TNF-α and phagocytosis but it has no impact on virulence in a murine model of invasive pulmonary aspergillosis. These results highlight the importance of PkcA to the CWI pathway but also indicated that additional regulatory circuits may be involved in the biosynthesis and/or reinforcement of the A. fumigatus cell wall during infection.
Collapse
Affiliation(s)
- Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Krissia Franco de Godoy
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Issa Hori
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vinícius Leite Pedro Bom
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Neil Andrew Brown
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Campinas, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
32
|
Abstract
BACKGROUND Alcohol regulates the expression and function of protein kinase C epsilon (PKCε). In a previous study we identified an alcohol binding site in the C1B, one of the twin C1 subdomains of PKCε (Das et al., Biochem. J., 421, 405-13, 2009). METHODS In this study, we investigated alcohol binding in the entire C1 domain (combined C1A and C1B) of PKCε. Fluorescent phorbol ester, SAPD and fluorescent diacylglycerol (DAG) analog, dansyl-DAG were used to study the effect of ethanol, butanol, and octanol on the ligand binding using fluorescence resonance energy transfer (FRET). To identify alcohol binding site(s), PKCεC1 was photolabeled with 3-azibutanol and 3-azioctanol, and analyzed by mass spectrometry. The effects of alcohols and the azialcohols on PKCε were studied in NG108-15 cells. RESULTS In the presence of alcohol, SAPD and dansyl-DAG showed different extent of FRET, indicating differential effects of alcohol on the C1A and C1B subdomains. Effects of alcohols and azialcohols on PKCε in NG108-15 cells were comparable. Azialcohols labeled Tyr-176 of C1A and Tyr-250 of C1B. Inspection of the model structure of PKCεC1 reveals that these residues are 40Å apart from each other indicating that these residues form two different alcohol binding sites. CONCLUSIONS The present results provide evidence for the presence of multiple alcohol-binding sites on PKCε and underscore the importance of targeting this PKC isoform in developing alcohol antagonists.
Collapse
Affiliation(s)
- Satyabrata Pany
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
33
|
Escribá PV, Busquets X, Inokuchi JI, Balogh G, Török Z, Horváth I, Harwood JL, Vígh L. Membrane lipid therapy: Modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Prog Lipid Res 2015; 59:38-53. [PMID: 25969421 DOI: 10.1016/j.plipres.2015.04.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/10/2015] [Accepted: 04/29/2015] [Indexed: 01/17/2023]
Abstract
Nowadays we understand cell membranes not as a simple double lipid layer but as a collection of complex and dynamic protein-lipid structures and microdomains that serve as functional platforms for interacting signaling lipids and proteins. Membrane lipids and lipid structures participate directly as messengers or regulators of signal transduction. In addition, protein-lipid interactions participate in the localization of signaling protein partners to specific membrane microdomains. Thus, lipid alterations change cell signaling that are associated with a variety of diseases including cancer, obesity, neurodegenerative disorders, cardiovascular pathologies, etc. This article reviews the newly emerging field of membrane lipid therapy which involves the pharmacological regulation of membrane lipid composition and structure for the treatment of diseases. Membrane lipid therapy proposes the use of new molecules specifically designed to modify membrane lipid structures and microdomains as pharmaceutical disease-modifying agents by reversing the malfunction or altering the expression of disease-specific protein or lipid signal cascades. Here, we provide an in-depth analysis of this emerging field, especially its molecular bases and its relevance to the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Pablo V Escribá
- Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Xavier Busquets
- Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK.
| | - László Vígh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|
34
|
Glushko AA, Voronkov AV, Chernikov MV. [Molecular targets for searching of endothelial-protective substances]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 40:515-27. [PMID: 25895347 DOI: 10.1134/s1068162014050069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endothelial dysfunction underlies the development of many cardiovascular diseases. Thus endothelium becomes an independent therapeutic target, and the search of new substances with endothelial-protective action to date is one of the promising tasks for pharmacotherapy and medicinal chemistry. Molecular modeling is an effective tool for solving this problem. Computer chemistry methods use is only possible in combination with detailed information on three dimensional structure and functions of molecular targets: receptors and enzymes, involved in signal transduction inside and outside of endothelial cells. Information on structure and function of various macromolecules involved in vascular tone regulation is collected in the review. The structure of endothelial NO-synthase (EC 1.14.13.39) (eNOS)--enzyme, responsible for the nitric oxide synthesis and involved in vascular tone regulation process is reviewed. The importance of eNOS substrate--L-arginine is underlined in the review in terms of this enzyme activity, regulation, the information on structure and functions of L-arginine transport system is provided. Also different ways of eNOS activity regulation are reviewed, among which are enzyme activation and concurrent inhibition by substances interaction with active center of enzyme, inhibition by caveoline binding with oxigenase domain, and also regulation by phosphorylation of certain amino acids of eNOS by proteinkinase and dephoshphorylation of them by phosphatases. The importance of membrane receptors of endothelial cells as targets for endothelial-protective substances is underlined. Among them are receptors of endothelin, platelet activation factor, prostanoids, bradykinin, histamine, serotonin and protease activated receptors. The important role of potassium and calcium ion channels of vascular cells in endothelial-protective activity is underlined. Macromolecules presented in the review finally are considered as targets for searching for medicinal substances with endothelial-protective activity using proposed ways and methods of molecular modeling.
Collapse
|
35
|
Carnicelli V, Lizzi AR, Gualtieri G, Bozzi A, Franceschini N, Di Giulio A. Effects of azidothymidine on protein kinase C activity and expression in erythroleukemic cell K562 and acute lymphoblastic leukemia cell HSB-2. Acta Biochim Biophys Sin (Shanghai) 2015; 47:278-84. [PMID: 25693686 DOI: 10.1093/abbs/gmv003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Azidothymidine (AZT) is one of the anti-retroviral drugs currently used for the treatment of HIV-infected patients. Several other effects of the drug have been studied in vitro, such as the alterations of some enzymes, the inhibition of cell proliferation, and the increase of transferrin receptor expression. In this study, we investigated the alterations of protein kinase C (PKC) activity, PKCα and PKCβII expressions and plasmatic membrane fluidity induced by AZT in two cancer cell lines, human chronic myeloid (K562) and human acute lymphoblastic (HSB-2) leukemia cells, respectively. The results showed that both PKC activity and membrane fluidity in HSB-2 cells increased after 24 h of drug incubation. PKCα expression in HSB-2 cells decreased after 48 h of AZT exposure, when the cell growth also decreased. However, in K562 cells, the PKCα and PKCβII expressions enhanced in the presence of the drug when the growth was inhibited. The results indicate that AZT is less effective in inhibiting the growth of acute lymphoblastic HSB-2 leukemia cells than inhibiting that of chronic myeloid K562 cells. In fact, after 24 h exposure, the HSB-2 cell growth decreased less than K562 cell growth.
Collapse
Affiliation(s)
- Veronica Carnicelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila I-67100, Italy
| | - Anna Rita Lizzi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila I-67100, Italy
| | - Giancaterino Gualtieri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila I-67100, Italy
| | - Argante Bozzi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila I-67100, Italy
| | - Nicola Franceschini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila I-67100, Italy
| | - Antonio Di Giulio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila I-67100, Italy
| |
Collapse
|
36
|
de Sá MM, Rangel-Yagui CO. Molecular Determinants for the Binding Mode of Alkylphosphocholines in the C2 Domain of PKCα. Mol Inform 2015; 34:84-96. [PMID: 27490031 DOI: 10.1002/minf.201400104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/14/2014] [Indexed: 11/10/2022]
Abstract
Alkylphosphocholines (APCs) and alkyl-lysophosphocholines (ALPs) are antineoplastic agents that interfere with cellular membranes and signaling proteins. Protein kinase Cα (PKCα) is a signaling protein composed by catalytic (C3, C4) and regulatory domains (C1, C2). The C2 needs calcium (Ca(2+) ) and phosphatidylserine (PS) for activation. Miltefosine inhibits PKCα competitively with regard to PS and non-competitively with regard to Ca(2+) , however, the mechanism of action is unknown. We employed molecular docking, molecular dynamics and chemometric methods to verify how 7 APCs and ALPs derivatives and PS interact with the C2 domain. All ligands except PS were grouped in 2 clusters according to their interactions inside the enzyme. The findings showed that PS's phosphoryl oxygens interact with Ca(2+) , the serine moiety interacts with Asn189, and the carbonyl oxygen of the alkylic chain interacts with Arg249 and Thr251. On the other hand, ligands' phosphoryl oxygens interact with Asn189, Arg249, Thr250, and one water molecule instead of Ca(2+) . Because of the different binding mode, we hypothesize that the ligands cause conformational changes in the calcium binding region. Moreover, the packing mismatch between bilayer-forming lipids and ALP/APC chain impedes the C2 domain from docking to the internal leaflet of cellular membranes, interrupting PKCα activation.
Collapse
Affiliation(s)
- Matheus M de Sá
- Department of Pharmacy, University of São Paulo, Avenida Professor Lineu Prestes, 580, 05508-900, São Paulo, SP, Brazil. , .,Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, Avenida Dr Eneas de Carvalho Aguiar, 44, 10th floor, 05403-000, São Paulo, SP, Brazil phone:+55 11 2661 5511. ,
| | - Carlota O Rangel-Yagui
- Department of Pharmaceutical and Biochemical Technology, University of São Paulo, Avenida Professor Lineu Prestes, 580, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
37
|
Tepekoy F, Ustunel I, Akkoyunlu G. Protein kinase C isoforms α, δ and ε are differentially expressed in mouse ovaries at different stages of postnatal development. J Ovarian Res 2014; 7:117. [PMID: 25491605 PMCID: PMC4271327 DOI: 10.1186/s13048-014-0117-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/29/2014] [Indexed: 11/11/2022] Open
Abstract
Background The protein kinase C (PKC) is a family of serine/threonine kinases that consists of 12 different isoforms. Since PKC isoform expressions are known to be specific for different cell types and postnatal developmental stages, we aimed to determine immunolocalizations and protein expression levels of different PKC isoforms in pre-pubertal, pubertal and adult mouse ovaries. Methods Ovaries were obtained from postnatal day 1 (PND1) and PND7 of pre-pubertal, PND21 of pubertal and PND60 of adult mice. Immunolocalizations of PKCα, PKCδ and PKCε isoforms were determined and immunostainings in different cellular components of all follicular stages were evaluated by H-Score. PKCα, PKCδ and PKCε protein expression levels were determined by Western blot. The bands were quantified via ImageJ software. The data obtained from H-Score and ImageJ evaluations were analyzed by ANOVA statistical test. Results PKCα immunostainings were more intense in oocytes when compared to granulosa and theca cells at different follicular stages of all groups. The Western blot analysis revealed that PKCα expression was significantly higher in PND60 adult ovaries. Conversely, PKCδ immunostainings were more intense in granulosa cells. According to the Western blot analysis, PKCδ protein expression was also higher in PND60 and significantly lower in PND1 ovaries. PKCε immunostaining was more apparent in oocytes. PKCε protein expression was significantly higher in adult PND60 and pubertal PND21 ovaries when compared to pre-pubertal PND7 and PND1 ovaries. Interestingly, PKCε immunostaining was significantly higher in primordial follicles, though PKCα and PKCδ immunostainings were more apparent in larger follicles. PKCα immunostainings of corpora lutea (CL) were significantly higher when compared to follicles in PND60 ovaries. Conclusions This study demonstrates that PKCα, PKCδ and PKCε isoforms are differentially expressed in particular cellular components of pre-pubertal, pubertal and adult mouse ovarian follicles. Therefore, we suggest that each PKC isoform has unique functions that are controlled by gonadotropin dependent mechanisms during follicular growth, oocyte maturation, ovulation and luteinization.
Collapse
|
38
|
Affiliation(s)
- Joydip Das
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 521 Science and Research Building 2, Houston, Texas 77204, United States
| | - Ghazi M. Rahman
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 521 Science and Research Building 2, Houston, Texas 77204, United States
| |
Collapse
|
39
|
Egea-Jiménez AL, Corbalán-García S, Gómez-Fernández JC. The C1B domains of novel PKCε and PKCη have a higher membrane binding affinity than those of the also novel PKCδ and PKCθ. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1898-909. [DOI: 10.1016/j.bbamem.2014.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
40
|
Egea-Jiménez AL, Fernández-Martínez AM, Pérez-Lara Á, de Godos A, Corbalán-García S, Gómez-Fernández JC. Phosphatidylinositol-4,5-bisphosphate enhances anionic lipid demixing by the C2 domain of PKCα. PLoS One 2014; 9:e95973. [PMID: 24763383 PMCID: PMC3999146 DOI: 10.1371/journal.pone.0095973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/31/2014] [Indexed: 11/19/2022] Open
Abstract
The C2 domain of PKCα (C2α) induces fluorescence self-quenching of NBD-PS in the presence of Ca2+, which is interpreted as the demixing of phosphatidylserine from a mixture of this phospholipid with phosphatidylcholine. Self-quenching of NBD-PS was considerably increased when phosphatidylinositol-4,5-bisphosphate (PIP2) was present in the membrane. When PIP2 was the labeled phospholipid, in the form of TopFluor-PIP2, fluorescence self-quenching induced by the C2 domain was also observed, but this was dependent on the presence of phosphatidylserine. An independent indication of the phospholipid demixing effect given by the C2α domain was obtained by using 2H-NMR, since a shift of the transition temperature of deuterated phosphatidylcholine was observed as a consequence of the addition of the C2α domain, but only in the presence of PIP2. The demixing induced by the C2α domain may have a physiological significance since it means that the binding of PKCα to membranes is accompanied by the formation of domains enriched in activating lipids, like phosphatidylserine and PIP2. The formation of these domains may enhance the activation of the enzyme when it binds to membranes containing phosphatidylserine and PIP2.
Collapse
Affiliation(s)
- Antonio L. Egea-Jiménez
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - Ana M. Fernández-Martínez
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - Ángel Pérez-Lara
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - Ana de Godos
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - Senena Corbalán-García
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - Juan C. Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
41
|
Rahman GM, Das J. Modeling studies on the structural determinants for the DAG/phorbol ester binding to C1 domain. J Biomol Struct Dyn 2014; 33:219-32. [DOI: 10.1080/07391102.2014.895679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Signaling through C2 domains: more than one lipid target. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1536-47. [PMID: 24440424 DOI: 10.1016/j.bbamem.2014.01.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/30/2013] [Accepted: 01/07/2014] [Indexed: 02/05/2023]
Abstract
C2 domains are membrane-binding modules that share a common overall fold: a single compact Greek-key motif organized as an eight-stranded anti-parallel β-sandwich consisting of a pair of four-stranded β-sheets. A myriad of studies have demonstrated that in spite of sharing the common structural β-sandwich core, slight variations in the residues located in the interconnecting loops confer C2 domains with functional abilities to respond to different Ca(2+) concentrations and lipids, and to signal through protein-protein interactions as well. This review summarizes the main structural and functional findings on Ca(2+) and lipid interactions by C2 domains, including the discovery of the phosphoinositide-binding site located in the β3-β4 strands. The wide variety of functions, together with the different Ca(2+) and lipid affinities of these domains, converts this superfamily into a crucial player in many functions in the cell and more to be discovered. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
|
43
|
Guillén J, Ferrer-Orta C, Buxaderas M, Pérez-Sánchez D, Guerrero-Valero M, Luengo-Gil G, Pous J, Guerra P, Gómez-Fernández JC, Verdaguer N, Corbalán-García S. Structural insights into the Ca2+ and PI(4,5)P2 binding modes of the C2 domains of rabphilin 3A and synaptotagmin 1. Proc Natl Acad Sci U S A 2013; 110:20503-8. [PMID: 24302762 PMCID: PMC3870689 DOI: 10.1073/pnas.1316179110] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins containing C2 domains are the sensors for Ca(2+) and PI(4,5)P2 in a myriad of secretory pathways. Here, the use of a free-mounting system has enabled us to capture an intermediate state of Ca(2+) binding to the C2A domain of rabphilin 3A that suggests a different mechanism of ion interaction. We have also determined the structure of this domain in complex with PI(4,5)P2 and IP3 at resolutions of 1.75 and 1.9 Å, respectively, unveiling that the polybasic cluster formed by strands β3-β4 is involved in the interaction with the phosphoinositides. A comparative study demonstrates that the C2A domain is highly specific for PI(4,5)P2/PI(3,4,5)P3, whereas the C2B domain cannot discriminate among any of the diphosphorylated forms. Structural comparisons between C2A domains of rabphilin 3A and synaptotagmin 1 indicated the presence of a key glutamic residue in the polybasic cluster of synaptotagmin 1 that abolishes the interaction with PI(4,5)P2. Together, these results provide a structural explanation for the ability of different C2 domains to pull plasma and vesicle membranes close together in a Ca(2+)-dependent manner and reveal how this family of proteins can use subtle structural changes to modulate their sensitivity and specificity to various cellular signals.
Collapse
Affiliation(s)
- Jaime Guillén
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| | - Cristina Ferrer-Orta
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, 08028 Barcelona, Spain; and
| | - Mònica Buxaderas
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, 08028 Barcelona, Spain; and
| | - Dolores Pérez-Sánchez
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| | - Marta Guerrero-Valero
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| | - Ginés Luengo-Gil
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| | - Joan Pous
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, 08028 Barcelona, Spain; and
- Institute for Research in Biomedicine, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Pablo Guerra
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, 08028 Barcelona, Spain; and
| | - Juan C. Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| | - Nuria Verdaguer
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, 08028 Barcelona, Spain; and
| | - Senena Corbalán-García
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
44
|
Classical protein kinases C are regulated by concerted interaction with lipids: the importance of phosphatidylinositol-4,5-bisphosphate. Biophys Rev 2013; 6:3-14. [PMID: 28509956 DOI: 10.1007/s12551-013-0125-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022] Open
Abstract
Classical protein kinase C (PKC) enzymes are known to be important factors in cell physiology both in terms of health and disease. They are activated by triggering signals that induce their translocation to membranes. The consensus view is that several secondary messengers are involved in this activation, such as cytosolic Ca2+ and diacylglycerol. Cytosolic Ca2+ bridges the C2 domain to anionic phospholipids as phosphatidylserine in the membrane, and diacylglycerol binds to the C1 domain. Both diacylglycerol and the increase in Ca2+ concentration are assumed to arise from the extracellular signal that triggers the hydrolysis of phosphatidylinositol-4,5-bisphosphate. However, results obtained during the last decade indicate that this phosphoinositide itself is also responsible for modulating classical PKC activity and its localization in the plasma membrane.
Collapse
|
45
|
Xiao H, Liu M. Atypical protein kinase C in cell motility. Cell Mol Life Sci 2013; 70:3057-66. [PMID: 23096778 PMCID: PMC11113714 DOI: 10.1007/s00018-012-1192-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 09/03/2012] [Accepted: 10/08/2012] [Indexed: 01/01/2023]
Abstract
Cell motility is defined as cell movement in the three-dimensional space leading to repositioning of the cell. Atypical protein kinase C (aPKC, including ζ and λ/ι) are a subfamily of PKC. Different from classic PKC and novel PKC, the activation of atypical PKC is not dependent on diacylglycerol or calcium. PKCζ can be activated by lipid components, such as phosphatidylinositols, phosphatidic acid, arachidonic acid, and ceramide. Both phosphatidylinositol (3,4,5)-trisphosphate and PDK1 are necessary for the complete and stable activation of PKCζ. Atypical PKC is involved in the regulation of cell polarization, directional sensing, formation of filopodia, and cell motility. It is essential for migration and invasion of multiple cancer cell types. Particularly, atypical PKC has been found in the regulation of the motility of hematopoietic cells. It also participates in the regulation of proteolytic activity of podosomes and invadopodia. It has been found that atypical PKC can work coordinately with other PKC subfamily members and other signaling pathways. Research on the roles of atypical PKC in cell motility may lead to new therapeutic strategies for cancer and other diseases.
Collapse
Affiliation(s)
- Helan Xiao
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON, Canada.
| | | |
Collapse
|
46
|
Egea-Jiménez AL, Pérez-Lara Á, Corbalán-García S, Gómez-Fernández JC. Phosphatidylinositol 4,5-bisphosphate decreases the concentration of Ca2+, phosphatidylserine and diacylglycerol required for protein kinase C α to reach maximum activity. PLoS One 2013; 8:e69041. [PMID: 23874859 PMCID: PMC3707892 DOI: 10.1371/journal.pone.0069041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/05/2013] [Indexed: 11/18/2022] Open
Abstract
The C2 domain of PKCα possesses two different binding sites, one for Ca(2+) and phosphatidylserine and a second one that binds PIP2 with very high affinity. The enzymatic activity of PKCα was studied by activating it with large unilamellar lipid vesicles, varying the concentration of Ca(2+) and the contents of dioleylglycerol (DOG), phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphadidylserine (POPS) in these model membranes. The results showed that PIP2 increased the Vmax of PKCα and, when the PIP2 concentration was 5 mol% of the total lipid in the membrane, the addition of 2 mol% of DOG did not increase the activity. In addition PIP2 decreases K0.5 of Ca(2+) more than 3-fold, that of DOG almost 5-fold and that of POPS by a half. The K0.5 values of PIP2 amounted to only 0.11 µM in the presence of DOG and 0.39 in its absence, which is within the expected physiological range for the inner monolayer of a mammalian plasma membrane. As a consequence, PKCα may be expected to operate near its maximum capacity even in the absence of a cell signal producing diacylglycerol. Nevertheless, we have shown that the presence of DOG may also help, since the K0.5 for PIP2 notably decreases in its presence. Taken together, these results underline the great importance of PIP2 in the activation of PKCα and demonstrate that in its presence, the most important cell signal for triggering the activity of this enzyme is the increase in the concentration of cytoplasmic Ca(2+).
Collapse
Affiliation(s)
- Antonio L. Egea-Jiménez
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Ángel Pérez-Lara
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Senena Corbalán-García
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Juan C. Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
47
|
PMA increases M3 muscarinic receptor levels and decreases retinal cells proliferation through a change in the levels of cell-cycle regulatory proteins. Neurosci Lett 2013; 550:29-34. [PMID: 23827230 DOI: 10.1016/j.neulet.2013.06.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/06/2013] [Accepted: 06/20/2013] [Indexed: 11/21/2022]
Abstract
Protein kinase C (PKC) pathway plays important roles in different phenomena in nervous system development. Our previous data demonstrated that phorbol 12-myristate 13-acetate (PMA) treatment, a PKC activator, for 48 h decreases retinal cells proliferation by a mechanism mediated by muscarinic receptor activation, involving a decrease in M1 receptors levels. The aim of this work was to analyze how PMA interferes in the levels of cell cycle control proteins p53, p21 and cyclin D1 and also to investigate its influence on M3 receptor levels. Our results show that PMA (50 ng/mL) produces a significant increase in p21 and p53 levels, decreases cyclin D1 levels, and also enhances M3 receptors levels in cell cultures. Evaluating the postnatal retinal tissue development until 30 days, we observed that tissue differentiation is accompanied by an increase in M3 and p21 levels. Based on our results we suggest that PMA treatment is promoting a change in muscarinic receptors expression mimicking the pattern observed during tissue differentiation, indicating that PMA is probably accelerating the cholinergic differentiation in rat retinal cell cultures.
Collapse
|
48
|
Wood TR, Chow RY, Hanes CM, Zhang X, Kashiwagi K, Shirai Y, Trebak M, Loegering DJ, Saito N, Lennartz MR. PKC-ε pseudosubstrate and catalytic activity are necessary for membrane delivery during IgG-mediated phagocytosis. J Leukoc Biol 2013; 94:109-22. [PMID: 23670290 DOI: 10.1189/jlb.1212634] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In RAW 264.7 cells, PKC-ε regulates FcγR-mediated phagocytosis. BMDM behave similarly; PKC-ε concentrates at phagosomes and internalization are reduced in PKC-ε⁻/⁻ cells. Two questions were asked: what is the role of PKC-ε? and what domains are necessary for PKC-ε concentration? Function was studied using BMDM and frustrated phagocytosis. On IgG surfaces, PKC-ε⁻/⁻ macrophages spread less than WT. Patch-clamping revealed that the spreading defect is a result of the failure of PKC-ε⁻/⁻ macrophages to add membrane. The defect is specific for FcγR ligation and can be reversed by expression of full-length (but not the isolated RD) PKC-ε in PKC-ε⁻/⁻ BMDM. Thus, PKC-ε function in phagocytosis requires translocation to phagosomes and the catalytic domain. The expression of chimeric PKC molecules in RAW cells identified the εPS as necessary for PKC-ε targeting. When placed into (nonlocalizing) PKC-δ, εPS was sufficient for concentration, albeit to a lesser degree than intact PKC-ε. In contrast, translocation of δ(εPSC1B) resembled that of WT PKC-ε. Thus, εPS and εC1B cooperate for optimal phagosome targeting. Finally, cells expressing εK437W were significantly less phagocytic than their PKC-ε-expressing counterparts, blocked at the pseudopod-extension phase. In summary, we have shown that εPS and εC1B are necessary and sufficient for targeting PKC-ε to phagosomes, where its catalytic activity is required for membrane delivery and pseudopod extension.
Collapse
Affiliation(s)
- Tiffany R Wood
- Centers for Cell Biology and Cancer Researchnces, Albany Medical College, Albany, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Santinha DR, Luísa Dória M, Neves BM, Maciel EA, Martins J, Helguero L, Domingues P, Teresa Cruz M, Rosário Domingues M. Prospective phospholipid markers for skin sensitization prediction in keratinocytes: A phospholipidomic approach. Arch Biochem Biophys 2013; 533:33-41. [DOI: 10.1016/j.abb.2013.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/28/2013] [Accepted: 02/20/2013] [Indexed: 11/27/2022]
|
50
|
Ausili A, Berglin M, Elwing H, Egea-Jiménez AL, Corbalán-García S, Gómez-Fernández JC. Membrane docking mode of the C2 domain of PKCε: An infrared spectroscopy and FRET study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:552-60. [DOI: 10.1016/j.bbamem.2012.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 01/31/2023]
|