1
|
Pesini A, Barriocanal-Casado E, Compagnoni GM, Hidalgo-Gutierrez A, Yanez G, Bakkali M, Chhonker YS, Kleiner G, Larrea D, Tadesse S, Lopez LC, Murry DJ, Di Fonzo A, Area-Gomez E, Quinzii CM. Coenzyme Q 10 deficiency disrupts lipid metabolism by altering cholesterol homeostasis in neurons. Free Radic Biol Med 2025; 229:441-457. [PMID: 39788391 DOI: 10.1016/j.freeradbiomed.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Coenzyme Q10 (CoQ10) is a critical component of the mitochondrial respiratory chain. CoQ10 deficiencies cause a variety of clinical syndromes, often involving encephalopathies. The heterogeneity of clinical manifestations implies different pathomechanisms, reflecting CoQ10 involvement in several biological processes. One such process is cholesterol homeostasis, since CoQ10 is synthesized through the mevalonate pathway, which also produces cholesterol. To elucidate the role of lipid dysfunction in the pathogenesis of CoQ10 deficiency, we investigated lipid metabolism in human CoQ10 deficient iPSCs-derived neurons, and in SH-SY5Y neurons after pharmacological manipulation of the mevalonate pathway. We show that CoQ10 deficiency causes alterations in cholesterol homeostasis, fatty acids oxidation, phospholipids and sphingolipids synthesis in neurons. These alterations depend on the molecular defect, and on the residual CoQ10 levels. Our results imply that CoQ10 deficiencies can induce pathology by altering lipid homeostasis and the composition of cellular membranes. These findings provide further understanding of the mechanisms underlying CoQ10 deficiency and point to potential novel therapeutic targets.
Collapse
Affiliation(s)
- Alba Pesini
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | | | | | | | - Giussepe Yanez
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Mohammed Bakkali
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Fuentenueva S/N, 18002, Granada, Spain
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Giulio Kleiner
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Saba Tadesse
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Luis Carlos Lopez
- Institute of Biotechnology, Biomedical Research Center (CIBM), Health Science Technological Park (PTS), University of Granada, Armilla, Granada, 18100, Spain
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Estela Area-Gomez
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Fernández-Del-Río L, Rodríguez-López S, Gutiérrez-Casado E, González-Reyes JA, Clarke CF, Burón MI, Villalba JM. Regulation of hepatic coenzyme Q biosynthesis by dietary omega-3 polyunsaturated fatty acids. Redox Biol 2021; 46:102061. [PMID: 34246922 PMCID: PMC8274332 DOI: 10.1016/j.redox.2021.102061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Dietary fats are important for human health, yet it is not fully understood how different fats affect various health problems. Although polyunsaturated fatty acids (PUFAs) are generally considered as highly oxidizable, those of the n-3 series can ameliorate the risk of many age-related disorders. Coenzyme Q (CoQ) is both an essential component of the mitochondrial electron transport chain and the only lipid-soluble antioxidant that animal cells can synthesize. Previous work has documented the protective antioxidant properties of CoQ against the autoxidation products of PUFAs. Here, we have explored in vitro and in vivo models to better understand the regulation of CoQ biosynthesis by dietary fats. In mouse liver, PUFAs increased CoQ content, and PUFAs of the n-3 series increased preferentially CoQ10. This response was recapitulated in hepatic cells cultured in the presence of lipid emulsions, where we additionally demonstrated a role for n-3 PUFAs as regulators of CoQ biosynthesis via the upregulation of several COQ proteins and farnesyl pyrophosphate levels. In both models, n-3 PUFAs altered the mitochondrial network without changing the overall mitochondrial mass. Furthermore, in cellular systems, n-3 PUFAs favored the synthesis of CoQ10 over CoQ9, thus altering the ratio between CoQ isoforms through a mechanism that involved downregulation of farnesyl diphosphate synthase activity. This effect was recapitulated by both siRNA silencing and by pharmacological inhibition of farnesyl diphosphate synthase with zoledronic acid. We highlight here the ability of n-3 PUFAs to regulate CoQ biosynthesis, CoQ content, and the ratio between its isoforms, which might be relevant to better understand the health benefits associated with this type of fat. Additionally, we identify for the first time zoledronic acid as a drug that inhibits CoQ biosynthesis, which must be also considered with respect to its biological effects on patients.
Collapse
Affiliation(s)
- Lucía Fernández-Del-Río
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain; Department of Chemistry & Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Sandra Rodríguez-López
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain
| | - Elena Gutiérrez-Casado
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain
| | - José Antonio González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain
| | - Catherine F Clarke
- Department of Chemistry & Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - María Isabel Burón
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain
| | - José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain.
| |
Collapse
|
3
|
Villalba JM, Navas P. Regulation of coenzyme Q biosynthesis pathway in eukaryotes. Free Radic Biol Med 2021; 165:312-323. [PMID: 33549646 DOI: 10.1016/j.freeradbiomed.2021.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
Coenzyme Q (CoQ, ubiquinone/ubiquinol) is a ubiquitous and unique molecule that drives electrons in mitochondrial respiratory chain and an obligatory step for multiple metabolic pathways in aerobic metabolism. Alteration of CoQ biosynthesis or its redox stage are causing mitochondrial dysfunctions as hallmark of heterogeneous disorders as mitochondrial/metabolic, cardiovascular, and age-associated diseases. Regulation of CoQ biosynthesis pathway is demonstrated to affect all steps of proteins production of this pathway, posttranslational modifications and protein-protein-lipid interactions inside mitochondria. There is a bi-directional relationship between CoQ and the epigenome in which not only the CoQ status determines the epigenetic regulation of many genes, but CoQ biosynthesis is also a target for epigenetic regulation, which adds another layer of complexity to the many pathways by which CoQ levels are regulated by environmental and developmental signals to fulfill its functions in eukaryotic aerobic metabolism.
Collapse
Affiliation(s)
- José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla, 41013, Spain.
| |
Collapse
|
4
|
Yu W, Sun K, Zhang L, Wan X, Chen C, Su R, Liu Y, Wang H, Yang H. Investigation of the Effects of Squalene and Squalene Epoxides on the Homeostasis of Coenzyme Q10 in Rats by UPLC‐Orbitrap MS. Chem Biodivers 2020; 17:e2000243. [DOI: 10.1002/cbdv.202000243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/29/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Wenjing Yu
- Changchun University of Chinese Medicine 1035 Boshuo Road Changchun 130117 P. R. China
| | - Kaiju Sun
- Changchun University of Chinese Medicine 1035 Boshuo Road Changchun 130117 P. R. China
| | - Liying Zhang
- Changchun University of Chinese Medicine 1035 Boshuo Road Changchun 130117 P. R. China
| | - Xilin Wan
- Changchun University of Chinese Medicine 1035 Boshuo Road Changchun 130117 P. R. China
| | - Changbao Chen
- Changchun University of Chinese Medicine 1035 Boshuo Road Changchun 130117 P. R. China
| | - Rui Su
- Changchun University of Chinese Medicine 1035 Boshuo Road Changchun 130117 P. R. China
| | - Yifei Liu
- Anhui Pujia Medical Technology Co.Ltd. 2800 Chuangxin Road Hefei 230000 P. R. China
| | - Hongfeng Wang
- Changchun University of Chinese Medicine 1035 Boshuo Road Changchun 130117 P. R. China
| | - Hongmei Yang
- Changchun University of Chinese Medicine 1035 Boshuo Road Changchun 130117 P. R. China
| |
Collapse
|
5
|
Wong SK, Kamisah Y, Mohamed N, Muhammad N, Masbah N, Mohd Fahami NA, Mohamed IN, Shuid AN, Mohd Saad Q, Abdullah A, Mohamad NV, Ibrahim NI, Pang KL, Chow YY, Thong BKS, Subramaniam S, Chan CY, Ima-Nirwana S, Chin KY. Potential Role of Tocotrienols on Non-Communicable Diseases: A Review of Current Evidence. Nutrients 2020; 12:E259. [PMID: 31963885 PMCID: PMC7019837 DOI: 10.3390/nu12010259] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Tocotrienol (T3) is a subfamily of vitamin E known for its wide array of medicinal properties. This review aimed to summarize the health benefits of T3, particularly in prevention or treatment of non-communicable diseases (NCDs), including cardiovascular, musculoskeletal, metabolic, gastric, and skin disorders, as well as cancers. Studies showed that T3 could prevent various NCDs, by suppressing 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) in the mevalonate pathway, inflammatory response, oxidative stress, and alternating hormones. The efficacy of T3 in preventing/treating these NCDs is similar or greater compared to tocopherol (TF). TF may lower the efficacy of T3 because the efficacy of the combination of TF and T3 was lower than T3 alone in some studies. Data investigating the effects of T3 on osteoporosis, arthritis, and peptic ulcers in human are limited. The positive outcomes of T3 treatment obtained from the preclinical studies warrant further validation from clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.K.W.); (Y.K.); (N.M.); (N.M.); (N.M.); (N.A.M.F.); (I.N.M.); (A.N.S.); (Q.M.S.); (A.A.); (N.-V.M.); (N.I.I.); (K.-L.P.); (Y.Y.C.); (B.K.S.T.); (S.S.); (C.Y.C.); (S.I.-N.)
| |
Collapse
|
6
|
Suárez-Rivero JM, de la Mata M, Pavón AD, Villanueva-Paz M, Povea-Cabello S, Cotán D, Álvarez-Córdoba M, Villalón-García I, Ybot-González P, Salas JJ, Muñiz O, Cordero MD, Sánchez-Alcázar JA. Intracellular cholesterol accumulation and coenzyme Q 10 deficiency in Familial Hypercholesterolemia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3697-3713. [PMID: 30292637 DOI: 10.1016/j.bbadis.2018.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/07/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Familial Hypercholesterolemia (FH) is an autosomal co-dominant genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol levels and increased risk for premature cardiovascular disease. Here, we examined FH pathophysiology in skin fibroblasts derived from FH patients harboring heterozygous mutations in the LDL-receptor. Fibroblasts from FH patients showed a reduced LDL-uptake associated with increased intracellular cholesterol levels and coenzyme Q10 (CoQ10) deficiency, suggesting dysregulation of the mevalonate pathway. Secondary CoQ10 deficiency was associated with mitochondrial depolarization and mitophagy activation in FH fibroblasts. Persistent mitophagy altered autophagy flux and induced inflammasome activation accompanied by increased production of cytokines by mutant cells. All the pathological alterations in FH fibroblasts were also reproduced in a human endothelial cell line by LDL-receptor gene silencing. Both increased intracellular cholesterol and mitochondrial dysfunction in FH fibroblasts were partially restored by CoQ10 supplementation. Dysregulated mevalonate pathway in FH, including increased expression of cholesterogenic enzymes and decreased expression of CoQ10 biosynthetic enzymes, was also corrected by CoQ10 treatment. Reduced CoQ10 content and mitochondrial dysfunction may play an important role in the pathophysiology of early atherosclerosis in FH. The diagnosis of CoQ10 deficiency and mitochondrial impairment in FH patients may also be important to establish early treatment with CoQ10.
Collapse
Affiliation(s)
- Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Ana Delgado Pavón
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Patricia Ybot-González
- Grupo de Neurodesarrollo, Unidad de Gestión de Pediatría, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Spain
| | - Joaquín J Salas
- Departamento de Bioquímica y Biología Molecular de Productos Vegetales, Instituto de la Grasa (CSIC), Spain
| | - Ovidio Muñiz
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Mario D Cordero
- Instituto de Nutrición y Tecnología de los Alimentos "José Mataix Verdú", Departamento de Fisiología, Centro de Investigación Biomédica, Universidad de Granada, 18100 Granada, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| |
Collapse
|
7
|
Gutierrez-Mariscal FM, Yubero-Serrano EM, Villalba JM, Lopez-Miranda J. Coenzyme Q10: From bench to clinic in aging diseases, a translational review. Crit Rev Food Sci Nutr 2018; 59:2240-2257. [DOI: 10.1080/10408398.2018.1442316] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Francisco M. Gutierrez-Mariscal
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena M. Yubero-Serrano
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M. Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Córdoba, Spain
| | - Jose Lopez-Miranda
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Casado-Díaz A, Túnez-Fiñana I, Mata-Granados JM, Ruiz-Méndez MV, Dorado G, Romero-Sánchez MC, Navarro-Valverde C, Quesada-Gómez JM. Serum from postmenopausal women treated with a by-product of olive-oil extraction process stimulates osteoblastogenesis and inhibits adipogenesis in human mesenchymal stem-cells (MSC). Exp Gerontol 2017; 90:71-78. [PMID: 28167238 DOI: 10.1016/j.exger.2017.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/23/2022]
Abstract
Aging may enhance both oxidative stress and bone-marrow mesenchymal stem-cell (MSC) differentiation into adipocytes. That reduces osteoblastogenesis, thus favoring bone-mass loss and fracture, representing an important worldwide health-issue, mainly in countries with aging populations. Intake of antioxidant products may help to retain bone-mass density. Interestingly, a novel olive-pomace physical treatment to generate olive oil also yields by-products rich in functional antioxidants. Thus, diet of postmenopausal women was supplemented for two months with one of such by-products (distillate 6; D6), being rich in squalene. After treatment, serum from such women showed reduced both lipidic peroxidation and oxidized low-density lipoprotein (LDL). Besides, vitamin E and coenzyme Q10 levels increased. Furthermore, culture medium containing 10% of such serum both increased osteoblastogenesis and reduced adipogenesis in human MSC from bone marrow. Therefore, highly antioxidant by-products like D6 may represent a relevant source for development of functional products, for both prevention and treatment of degenerative pathologies associated with aging, like osteoporosis.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; RETICEF & CIBER de Fragilidad y Envejecimento Saludable (CIBERFES), Spain
| | - Isaac Túnez-Fiñana
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; Dep. Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - José María Mata-Granados
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - María Victoria Ruiz-Méndez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide E46, Ctra. de Utrera km 1, 41013 Sevilla, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario (ceiA3), Campus Rabanales C6-1-E17, 14071 Córdoba, Spain; RETICEF & CIBER de Fragilidad y Envejecimento Saludable (CIBERFES), Spain
| | - María Concepción Romero-Sánchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; RETICEF & CIBER de Fragilidad y Envejecimento Saludable (CIBERFES), Spain
| | | | - José Manuel Quesada-Gómez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; RETICEF & CIBER de Fragilidad y Envejecimento Saludable (CIBERFES), Spain.
| |
Collapse
|
9
|
Xu C, Bentinger M, Savu O, Moshfegh A, Sunkari V, Dallner G, Swiezewska E, Catrina SB, Brismar K, Tekle M. Mono-epoxy-tocotrienol-α enhances wound healing in diabetic mice and stimulates in vitro angiogenesis and cell migration. J Diabetes Complications 2017; 31:4-12. [PMID: 27839658 DOI: 10.1016/j.jdiacomp.2016.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/24/2016] [Accepted: 10/09/2016] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus is characterized by hyperglycemia and capillary hypoxia that causes excessive production of free radicals and impaired antioxidant defense, resulting in oxidative stress and diabetes complications such as impaired wound healing. We have previously shown that modified forms of tocotrienols possess beneficial effects on the biosynthesis of the mevalonate pathway lipids including increase in mitochondrial CoQ. The aim of this study is to investigate the effects of mono-epoxy-tocotrienol-α on in vitro and in vivo wound healing models as well as its effects on mitochondrial function. Gene profiling analysis and gene expression studies on HepG2 cells and human dermal fibroblasts were performed by microarray and qPCR, respectively. In vitro wound healing using human fibroblasts was studied by scratch assay and in vitro angiogenesis using human dermal microvascular endothelial cells was studied by the tube formation assay. In vivo wound healing was performed in the diabetic db/db mouse model. For the study of mitochondrial functions and oxygen consumption rate Seahorse XF-24 was employed. In vitro, significant increase in wound closure and cell migration (p<0.05) both in normal and high glucose and in endothelial tube formation (angiogenesis) (p<0.005) were observed. Microarray profiling analysis showed a 20-fold increase of KIF26A gene expression and 11-fold decrease of lanosterol synthase expression. Expression analysis by qPCR showed significant increase of the growth factors VEGFA and PDGFB. The epoxidated compound induced a significantly higher basal and reserve mitochondrial capacity in both HDF and HepG2 cells. Additionally, in vivo wound healing in db/db mice, demonstrated a small but significant enhancement on wound healing upon local application of the compound compared to treatment with vehicle alone. Mono-epoxy-tocotrienol-α seems to possess beneficial effects on wound healing by increasing the expression of genes involved in cell growth, motility and angiogenes as well as on mitochondrial function.
Collapse
Affiliation(s)
- Cheng Xu
- The Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institutet and Department of Endocrinology, Diabetes and Metabolism Karolinska Hospital, SE-171 76 Stockholm, Sweden
| | - Magnus Bentinger
- The Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institutet and Department of Endocrinology, Diabetes and Metabolism Karolinska Hospital, SE-171 76 Stockholm, Sweden
| | - Octavian Savu
- The Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institutet and Department of Endocrinology, Diabetes and Metabolism Karolinska Hospital, SE-171 76 Stockholm, Sweden
| | - Ali Moshfegh
- Department of Oncology-Pathology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Vivekananda Sunkari
- The Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institutet and Department of Endocrinology, Diabetes and Metabolism Karolinska Hospital, SE-171 76 Stockholm, Sweden
| | - Gustav Dallner
- The Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institutet and Department of Endocrinology, Diabetes and Metabolism Karolinska Hospital, SE-171 76 Stockholm, Sweden
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Sergiu-Bogdan Catrina
- The Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institutet and Department of Endocrinology, Diabetes and Metabolism Karolinska Hospital, SE-171 76 Stockholm, Sweden
| | - Kerstin Brismar
- The Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institutet and Department of Endocrinology, Diabetes and Metabolism Karolinska Hospital, SE-171 76 Stockholm, Sweden
| | - Michael Tekle
- The Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institutet and Department of Endocrinology, Diabetes and Metabolism Karolinska Hospital, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
10
|
Molińska nee Sosińska E, Klimczak U, Komaszyło J, Derewiaka D, Obiedziński M, Kania M, Danikiewicz W, Swiezewska E. Double bond stereochemistry influences the susceptibility of short-chain isoprenoids and polyprenols to decomposition by thermo-oxidation. Lipids 2015; 50:359-70. [PMID: 25739731 PMCID: PMC4365272 DOI: 10.1007/s11745-015-3998-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/04/2015] [Indexed: 11/26/2022]
Abstract
Isoprenoid alcohols are common constituents of living cells. They are usually assigned a role in the adaptation of the cell to environmental stimuli, and this process might give rise to their oxidation by reactive oxygen species. Moreover, cellular isoprenoids may also undergo various chemical modifications resulting from the physico-chemical treatment of the tissues, e.g., heating during food processing. Susceptibility of isoprenoid alcohols to heat treatment has not been studied in detail so far. In this study, isoprenoid alcohols differing in the number of isoprene units and geometry of the double bonds, β-citronellol, geraniol, nerol, farnesol, solanesol and Pren-9, were subjected to thermo-oxidation at 80 °C. Thermo-oxidation resulted in the decomposition of the tested short-chain isoprenoids as well as medium-chain polyprenols with simultaneous formation of oxidized derivatives, such as hydroperoxides, monoepoxides, diepoxides and aldehydes, and possible formation of oligomeric derivatives. Oxidation products were monitored by GC-FID, GC-MS, ESI-MS and spectrophotometric methods. Interestingly, nerol, a short-chain isoprenoid with a double bond in the cis (Z) configuration, was more oxidatively stable than its trans (E) isomer, geraniol. However, the opposite effect was observed for medium-chain polyprenols, since Pren-9 (di-trans-poly-cis-prenol) was more susceptible to thermo-oxidation than its all-trans isomer, solanesol. Taken together, these results experimentally confirm that both short- and long-chain polyisoprenoid alcohols are prone to thermo-oxidation.
Collapse
Affiliation(s)
- Ewa Molińska nee Sosińska
- Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland,
| | | | | | | | | | | | | | | |
Collapse
|