1
|
Festus ID, Spilberg J, Young ME, Cain S, Khoshnevis S, Smolensky MH, Zaheer F, Descalzi G, Martino TA. Pioneering new frontiers in circadian medicine chronotherapies for cardiovascular health. Trends Endocrinol Metab 2024; 35:607-623. [PMID: 38458859 DOI: 10.1016/j.tem.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
Cardiovascular disease (CVD) is a global health concern. Circadian medicine improves cardiovascular care by aligning treatments with our body's daily rhythms and their underlying cellular circadian mechanisms. Time-based therapies, or chronotherapies, show special promise in clinical cardiology. They optimize treatment schedules for better outcomes with fewer side effects by recognizing the profound influence of rhythmic body cycles. In this review, we focus on three chronotherapy areas (medication, light, and meal timing) with potential to enhance cardiovascular care. We also highlight pioneering research in the new field of rest, the gut microbiome, novel chronotherapies for hypertension, pain management, and small molecules that targeting the circadian mechanism.
Collapse
Affiliation(s)
- Ifene David Festus
- Centre for Cardiovascular Investigations, University of Guelph; Guelph, Ontario, Canada; Department of Biomedical Sciences, University of Guelph; Guelph, Ontario, Canada
| | - Jeri Spilberg
- Centre for Cardiovascular Investigations, University of Guelph; Guelph, Ontario, Canada; Department of Biomedical Sciences, University of Guelph; Guelph, Ontario, Canada
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sean Cain
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sepideh Khoshnevis
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Michael H Smolensky
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Internal Medicine, Division of Cardiology, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fariya Zaheer
- Department of Biomedical Sciences, University of Guelph; Guelph, Ontario, Canada
| | - Giannina Descalzi
- Department of Biomedical Sciences, University of Guelph; Guelph, Ontario, Canada
| | - Tami A Martino
- Centre for Cardiovascular Investigations, University of Guelph; Guelph, Ontario, Canada; Department of Biomedical Sciences, University of Guelph; Guelph, Ontario, Canada.
| |
Collapse
|
2
|
Eckle T, Bertazzo J, Khatua TN, Tabatabaei SRF, Bakhtiari NM, Walker LA, Martino TA. Circadian Influences on Myocardial Ischemia-Reperfusion Injury and Heart Failure. Circ Res 2024; 134:675-694. [PMID: 38484024 PMCID: PMC10947118 DOI: 10.1161/circresaha.123.323522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
The impact of circadian rhythms on cardiovascular function and disease development is well established, with numerous studies in genetically modified animals emphasizing the circadian molecular clock's significance in the pathogenesis and pathophysiology of myocardial ischemia and heart failure progression. However, translational preclinical studies targeting the heart's circadian biology are just now emerging and are leading to the development of a novel field of medicine termed circadian medicine. In this review, we explore circadian molecular mechanisms and novel therapies, including (1) intense light, (2) small molecules modulating the circadian mechanism, and (3) chronotherapies such as cardiovascular drugs and meal timings. These promise significant clinical translation in circadian medicine for cardiovascular disease. (4) Additionally, we address the differential functioning of the circadian mechanism in males versus females, emphasizing the consideration of biological sex, gender, and aging in circadian therapies for cardiovascular disease.
Collapse
Affiliation(s)
- Tobias Eckle
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Júlia Bertazzo
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tarak Nath Khatua
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Seyed Reza Fatemi Tabatabaei
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Naghmeh Moori Bakhtiari
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tami A. Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Lal H, Verma SK, Wang Y, Xie M, Young ME. Circadian Rhythms in Cardiovascular Metabolism. Circ Res 2024; 134:635-658. [PMID: 38484029 PMCID: PMC10947116 DOI: 10.1161/circresaha.123.323520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Energetic demand and nutrient supply fluctuate as a function of time-of-day, in alignment with sleep-wake and fasting-feeding cycles. These daily rhythms are mirrored by 24-hour oscillations in numerous cardiovascular functional parameters, including blood pressure, heart rate, and myocardial contractility. It is, therefore, not surprising that metabolic processes also fluctuate over the course of the day, to ensure temporal needs for ATP, building blocks, and metabolism-based signaling molecules are met. What has become increasingly clear is that in addition to classic signal-response coupling (termed reactionary mechanisms), cardiovascular-relevant cells use autonomous circadian clocks to temporally orchestrate metabolic pathways in preparation for predicted stimuli/stresses (termed anticipatory mechanisms). Here, we review current knowledge regarding circadian regulation of metabolism, how metabolic rhythms are synchronized with cardiovascular function, and whether circadian misalignment/disruption of metabolic processes contribute toward the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Hind Lal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Latimer MN, Williams LJ, Shanmugan G, Carpenter BJ, Lazar MA, Dierickx P, Young ME. Cardiomyocyte-specific disruption of the circadian BMAL1-REV-ERBα/β regulatory network impacts distinct miRNA species in the murine heart. Commun Biol 2023; 6:1149. [PMID: 37952007 PMCID: PMC10640639 DOI: 10.1038/s42003-023-05537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
Circadian disruption increases cardiovascular disease (CVD) risk, through poorly understood mechanisms. Given that small RNA species are critical modulators of cardiac physiology/pathology, we sought to determine the extent to which cardiomyocyte circadian clock (CCC) disruption impacts cardiac small RNA species. Accordingly, we collected hearts from cardiomyocyte-specific Bmal1 knockout (CBK; a model of CCC disruption) and littermate control (CON) mice at multiple times of the day, followed by small RNA-seq. The data reveal 47 differentially expressed miRNAs species in CBK hearts. Subsequent bioinformatic analyses predict that differentially expressed miRNA species in CBK hearts influence processes such as circadian rhythmicity, cellular signaling, and metabolism. Of the induced miRNAs in CBK hearts, 7 are predicted to be targeted by the transcriptional repressors REV-ERBα/β (integral circadian clock components that are directly regulated by BMAL1). Similar to CBK hearts, cardiomyocyte-specific Rev-erbα/β double knockout (CM-RevDKO) mouse hearts exhibit increased let-7c-1-3p, miR-23b-5p, miR-139-3p, miR-5123, and miR-7068-3p levels. Importantly, 19 putative targets of these 5 miRNAs are commonly repressed in CBK and CM-RevDKO heart (of which 16 are targeted by let-7c-1-3p). These observations suggest that disruption of the circadian BMAL1-REV-ERBα/β regulatory network in the heart induces distinct miRNAs, whose mRNA targets impact critical cellular functions.
Collapse
Affiliation(s)
- Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lamario J Williams
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gobinath Shanmugan
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bryce J Carpenter
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Pieterjan Dierickx
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Young ME, Latimer MN. Circadian rhythms in cardiac metabolic flexibility. Chronobiol Int 2023; 40:13-26. [PMID: 34162286 PMCID: PMC8695643 DOI: 10.1080/07420528.2021.1939366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022]
Abstract
Numerous aspects of cardiovascular physiology (e.g., heart rate, blood pressure) and pathology (e.g., myocardial infarction and sudden cardiac death) exhibit time-of-day-dependency. In association with day-night differences in energetic demand and substrate availability, the healthy heart displays remarkable metabolic flexibility through temporal partitioning of the metabolic fate of common substrates (glucose, lipid, amino acids). The purpose of this review is to highlight the contribution that circadian clocks provide toward 24-hr fluctuations in cardiac metabolism and to discuss whether attenuation and/or augmentation of these metabolic rhythms through adjustment of nutrient intake timing impacts cardiovascular disease development.
Collapse
Affiliation(s)
- Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Abstract
Circadian rhythm evolved to allow organisms to coordinate intrinsic physiological functions in anticipation of recurring environmental changes. The importance of this coordination is exemplified by the tight temporal control of cardiac metabolism. Levels of metabolites, metabolic flux, and response to nutrients all oscillate in a time-of-day-dependent fashion. While these rhythms are affected by oscillatory behavior (feeding/fasting, wake/sleep) and neurohormonal changes, recent data have unequivocally demonstrated an intrinsic circadian regulation at the tissue and cellular level. The circadian clock - through a network of a core clock, slave clock, and effectors - exerts intricate temporal control of cardiac metabolism, which is also integrated with environmental cues. The combined anticipation and adaptability that the circadian clock enables provide maximum advantage to cardiac function. Disruption of the circadian rhythm, or dyssynchrony, leads to cardiometabolic disorders seen not only in shift workers but in most individuals in modern society. In this Review, we describe current findings on rhythmic cardiac metabolism and discuss the intricate regulation of circadian rhythm and the consequences of rhythm disruption. An in-depth understanding of the circadian biology in cardiac metabolism is critical in translating preclinical findings from nocturnal-animal models as well as in developing novel chronotherapeutic strategies.
Collapse
Affiliation(s)
- Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Department of Medicine.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, and.,School of Medicine; Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Mia S, Sonkar R, Williams L, Latimer MN, Frayne Robillard I, Diwan A, Frank SJ, Des Rosiers C, Young ME. Impact of obesity on day-night differences in cardiac metabolism. FASEB J 2021; 35:e21298. [PMID: 33660366 PMCID: PMC7942981 DOI: 10.1096/fj.202001706rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
An intrinsic property of the heart is an ability to rapidly and coordinately adjust flux through metabolic pathways in response to physiologic stimuli (termed metabolic flexibility). Cardiac metabolism also fluctuates across the 24‐hours day, in association with diurnal sleep‐wake and fasting‐feeding cycles. Although loss of metabolic flexibility has been proposed to play a causal role in the pathogenesis of cardiac disease, it is currently unknown whether day‐night variations in cardiac metabolism are altered during disease states. Here, we tested the hypothesis that diet‐induced obesity disrupts cardiac “diurnal metabolic flexibility”, which is normalized by time‐of‐day‐restricted feeding. Chronic high fat feeding (20‐wk)‐induced obesity in mice, abolished diurnal rhythms in whole body metabolic flexibility, and increased markers of adverse cardiac remodeling (hypertrophy, fibrosis, and steatosis). RNAseq analysis revealed that 24‐hours rhythms in the cardiac transcriptome were dramatically altered during obesity; only 22% of rhythmic transcripts in control hearts were unaffected by obesity. However, day‐night differences in cardiac substrate oxidation were essentially identical in control and high fat fed mice. In contrast, day‐night differences in both cardiac triglyceride synthesis and lipidome were abolished during obesity. Next, a subset of obese mice (induced by 18‐wks ad libitum high fat feeding) were allowed access to the high fat diet only during the 12‐hours dark (active) phase, for a 2‐wk period. Dark phase restricted feeding partially restored whole body metabolic flexibility, as well as day‐night differences in cardiac triglyceride synthesis and lipidome. Moreover, this intervention partially reversed adverse cardiac remodeling in obese mice. Collectively, these studies reveal diurnal metabolic inflexibility of the heart during obesity specifically for nonoxidative lipid metabolism (but not for substrate oxidation), and that restricting food intake to the active period partially reverses obesity‐induced cardiac lipid metabolism abnormalities and adverse remodeling of the heart.
Collapse
Affiliation(s)
- Sobuj Mia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ravi Sonkar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lamario Williams
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Abhinav Diwan
- Departments of Medicine, Cell Biology and Physiology, Washington University School of Medicine and John Cochran VA Medical Center, St. Louis, MO, USA
| | - Stuart J Frank
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Endocrinology Section, Birmingham VAMC Medical Service, Birmingham, AL, USA
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal and Montreal Heart Institute, Montréal, QC, Canada
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Xu W, Jain MK, Zhang L. Molecular link between circadian clocks and cardiac function: a network of core clock, slave clock, and effectors. Curr Opin Pharmacol 2020; 57:28-40. [PMID: 33189913 DOI: 10.1016/j.coph.2020.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/27/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
The circadian rhythm has a strong influence on both cardiac physiology and disease in humans. Preclinical studies primarily using tissue-specific transgenic mouse models have contributed to our understanding of the molecular mechanism of the circadian clock in the cardiovascular system. The core clock driven by CLOCK:BMAL1 complex functions as a universal timing machinery that primarily sets the pace in all mammalian cell types. In one specific cell or tissue type, core clock may control a secondary transcriptional oscillator, conceptualized as slave clock, which confers the oscillatory expression of tissue-specific effectors. Here, we discuss a core clock-slave clock-effectors network, which links the molecular clock to cardiac function.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, USA; School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Xu W, Li L, Zhang L. NAD + Metabolism as an Emerging Therapeutic Target for Cardiovascular Diseases Associated With Sudden Cardiac Death. Front Physiol 2020; 11:901. [PMID: 32903597 PMCID: PMC7438569 DOI: 10.3389/fphys.2020.00901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to its central role in mediating oxidation reduction in fuel metabolism and bioenergetics, nicotinamide adenine dinucleotide (NAD+) has emerged as a vital co-substrate for a number of proteins involved in diverse cellular processes, including sirtuins, poly(ADP-ribose) polymerases and cyclic ADP-ribose synthetases. The connection with aging and age-associated diseases has led to a new wave of research in the cardiovascular field. Here, we review the basics of NAD+ homeostasis, the molecular physiology and new advances in ischemic-reperfusion injury, heart failure, and arrhythmias, all of which are associated with increased risks for sudden cardiac death. Finally, we summarize the progress of NAD+-boosting therapy in human cardiovascular diseases and the challenges for future studies.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Le Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Mia S, Kane MS, Latimer MN, Reitz CJ, Sonkar R, Benavides GA, Smith SR, Frank SJ, Martino TA, Zhang J, Darley-Usmar VM, Young ME. Differential effects of REV-ERBα/β agonism on cardiac gene expression, metabolism, and contractile function in a mouse model of circadian disruption. Am J Physiol Heart Circ Physiol 2020; 318:H1487-H1508. [PMID: 32357113 PMCID: PMC7311693 DOI: 10.1152/ajpheart.00709.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cell-autonomous circadian clocks have emerged as temporal orchestrators of numerous biological processes. For example, the cardiomyocyte circadian clock modulates transcription, translation, posttranslational modifications, ion homeostasis, signaling cascades, metabolism, and contractility of the heart over the course of the day. Circadian clocks are composed of more than 10 interconnected transcriptional modulators, all of which have the potential to influence the cardiac transcriptome (and ultimately cardiac processes). These transcriptional modulators include BMAL1 and REV-ERBα/β; BMAL1 induces REV-ERBα/β, which in turn feeds back to inhibit BMAL1. Previous studies indicate that cardiomyocyte-specific BMAL1-knockout (CBK) mice exhibit a dysfunctional circadian clock (including decreased REV-ERBα/β expression) in the heart associated with abnormalities in cardiac mitochondrial function, metabolism, signaling, and contractile function. Here, we hypothesized that decreased REV-ERBα/β activity is responsible for distinct phenotypical alterations observed in CBK hearts. To test this hypothesis, CBK (and littermate control) mice were administered with the selective REV-ERBα/β agonist SR-9009 (100 mg·kg-1·day-1 for 8 days). SR-9009 administration was sufficient to normalize cardiac glycogen synthesis rates, cardiomyocyte size, interstitial fibrosis, and contractility in CBK hearts (without influencing mitochondrial complex activities, nor normalizing substrate oxidation and Akt/mTOR/GSK3β signaling). Collectively, these observations highlight a role for REV-ERBα/β as a mediator of a subset of circadian clock-controlled processes in the heart.
Collapse
Affiliation(s)
- Sobuj Mia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mariame S Kane
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cristine J Reitz
- Centre for Cardiovascular Investigations, Department of Biomedical Science, University of Guelph, Guelph, Ontario, Canada
| | - Ravi Sonkar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gloria A Benavides
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Samuel R Smith
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stuart J Frank
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Endocrinology Section, Birmingham Veterans Affairs Medical Center Medical Service, Birmingham, Alabama
| | - Tami A Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Science, University of Guelph, Guelph, Ontario, Canada
| | - Jianhua Zhang
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor M Darley-Usmar
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
11
|
Zhang J, Chatham JC, Young ME. Circadian Regulation of Cardiac Physiology: Rhythms That Keep the Heart Beating. Annu Rev Physiol 2019; 82:79-101. [PMID: 31589825 DOI: 10.1146/annurev-physiol-020518-114349] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
On Earth, all life is exposed to dramatic changes in the environment over the course of the day; consequently, organisms have evolved strategies to both adapt to and anticipate these 24-h oscillations. As a result, time of day is a major regulator of mammalian physiology and processes, including transcription, signaling, metabolism, and muscle contraction, all of which oscillate over the course of the day. In particular, the heart is subject to wide fluctuations in energetic demand throughout the day as a result of waking, physical activity, and food intake patterns. Daily rhythms in cardiovascular function ensure that increased delivery of oxygen, nutrients, and endocrine factors to organs during the active period and the removal of metabolic by-products are in balance. Failure to maintain these physiologic rhythms invariably has pathologic consequences. This review highlights rhythms that underpin cardiac physiology. More specifically, we summarize the key aspects of cardiac physiology that oscillate over the course of the day and discuss potential mechanisms that regulate these 24-h rhythms.
Collapse
Affiliation(s)
- Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA;
| |
Collapse
|
12
|
Xu Y, Pi W, Rudic RD. Old and New Roles and Evolving Complexities of Cardiovascular Clocks. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:283-290. [PMID: 31249489 PMCID: PMC6585526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cardiovascular (CV) system has been established to be significantly influenced by the molecular components of circadian rhythm. Oscillations of circadian rhythm occur within the circulation to affect thrombosis and blood pressure and within CV tissues including arteries, heart, and kidney to control function. Physiologic and molecular oscillations of circadian rhythm have been well connected via global, tissue-specific, and transgenic reporter mouse models of key core clock signals such as Bmal1, Period, and Clock, which can produce both pathology and protection with their mutation. With different nuances of CV clock action continuing to emerge in studies of the cardiovascular system, new questions are raised in both new and old mouse model system observations that underscore the importance, complexity, and continued study of the circadian clock mechanism in cardiovascular disease.
Collapse
Affiliation(s)
| | | | - R. D. Rudic
- To whom all correspondence should be addressed: Dan Rudic, Augusta University, 1120 15th Street, Augusta, GA, 30912, CB3620; Tel:706 721-7649, Fax 706 721-2347, E-mail:
| |
Collapse
|
13
|
Collins HE, Pat BM, Zou L, Litovsky SH, Wende AR, Young ME, Chatham JC. Novel role of the ER/SR Ca 2+ sensor STIM1 in the regulation of cardiac metabolism. Am J Physiol Heart Circ Physiol 2018; 316:H1014-H1026. [PMID: 30575437 PMCID: PMC6580390 DOI: 10.1152/ajpheart.00544.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum/sarcoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1), a key mediator of store-operated Ca2+ entry, is expressed in cardiomyocytes and has been implicated in regulating multiple cardiac processes, including hypertrophic signaling. Interestingly, cardiomyocyte-restricted deletion of STIM1 (crSTIM1-KO) results in age-dependent endoplasmic reticulum stress, altered mitochondrial morphology, and dilated cardiomyopathy in mice. Here, we tested the hypothesis that STIM1 deficiency may also impact cardiac metabolism. Hearts isolated from 20-wk-old crSTIM1-KO mice exhibited a significant reduction in both oxidative and nonoxidative glucose utilization. Consistent with the reduction in glucose utilization, expression of glucose transporter 4 and AMP-activated protein kinase phosphorylation were all reduced, whereas pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase phosphorylation were increased, in crSTIM1-KO hearts. Despite similar rates of fatty acid oxidation in control and crSTIM1-KO hearts ex vivo, crSTIM1-KO hearts contained increased lipid/triglyceride content as well as increased fatty acid-binding protein 4, fatty acid synthase, acyl-CoA thioesterase 1, hormone-sensitive lipase, and adipose triglyceride lipase expression compared with control hearts, suggestive of a possible imbalance between fatty acid uptake and oxidation. Insulin-mediated alterations in AKT phosphorylation were observed in crSTIM1-KO hearts, consistent with cardiac insulin resistance. Interestingly, we observed abnormal mitochondria and increased lipid accumulation in 12-wk crSTIM1-KO hearts, suggesting that these changes may initiate the subsequent metabolic dysfunction. These results demonstrate, for the first time, that cardiomyocyte STIM1 may play a key role in regulating cardiac metabolism. NEW & NOTEWORTHY Little is known of the physiological role of stromal interaction molecule 1 (STIM1) in the heart. Here, we demonstrate, for the first time, that hearts lacking cardiomyocyte STIM1 exhibit dysregulation of both cardiac glucose and lipid metabolism. Consequently, these results suggest a potentially novel role for STIM1 in regulating cardiac metabolism.
Collapse
Affiliation(s)
- Helen E Collins
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Betty M Pat
- Division of Cardiovascular Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Luyun Zou
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Silvio H Litovsky
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Martin E Young
- Division of Cardiovascular Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
14
|
Mani K, Javaheri A, Diwan A. Lysosomes Mediate Benefits of Intermittent Fasting in Cardiometabolic Disease: The Janitor Is the Undercover Boss. Compr Physiol 2018; 8:1639-1667. [PMID: 30215867 DOI: 10.1002/cphy.c180005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adaptive responses that counter starvation have evolved over millennia to permit organismal survival, including changes at the level of individual organelles, cells, tissues, and organ systems. In the past century, a shift has occurred away from disease caused by insufficient nutrient supply toward overnutrition, leading to obesity and diabetes, atherosclerosis, and cardiometabolic disease. The burden of these diseases has spurred interest in fasting strategies that harness physiological responses to starvation, thus limiting tissue injury during metabolic stress. Insights gained from animal and human studies suggest that intermittent fasting and chronic caloric restriction extend lifespan, decrease risk factors for cardiometabolic and inflammatory disease, limit tissue injury during myocardial stress, and activate a cardioprotective metabolic program. Acute fasting activates autophagy, an intricately orchestrated lysosomal degradative process that sequesters cellular constituents for degradation, and is critical for cardiac homeostasis during fasting. Lysosomes are dynamic cellular organelles that function as incinerators to permit autophagy, as well as degradation of extracellular material internalized by endocytosis, macropinocytosis, and phagocytosis. The last decade has witnessed an explosion of knowledge that has shaped our understanding of lysosomes as central regulators of cellular metabolism and the fasting response. Intriguingly, lysosomes also store nutrients for release during starvation; and function as a nutrient sensing organelle to couple activation of mammalian target of rapamycin to nutrient availability. This article reviews the evidence for how the lysosome, in the guise of a janitor, may be the "undercover boss" directing cellular processes for beneficial effects of intermittent fasting and restoring homeostasis during feast and famine. © 2018 American Physiological Society. Compr Physiol 8:1639-1667, 2018.
Collapse
Affiliation(s)
- Kartik Mani
- John Cochran VA Medical Center, St. Louis, Missouri, USA.,Center for Cardiovascular Research and Division of Cardiology in Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ali Javaheri
- Center for Cardiovascular Research and Division of Cardiology in Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Abhinav Diwan
- Center for Cardiovascular Research and Division of Cardiology in Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Peliciari-Garcia RA, Darley-Usmar V, Young ME. An overview of the emerging interface between cardiac metabolism, redox biology and the circadian clock. Free Radic Biol Med 2018; 119:75-84. [PMID: 29432800 PMCID: PMC6314011 DOI: 10.1016/j.freeradbiomed.2018.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/17/2023]
Abstract
At various biological levels, mammals must integrate with 24-hr rhythms in their environment. Daily fluctuations in stimuli/stressors of cardiac metabolism and oxidation-reduction (redox) status have been reported over the course of the day. It is therefore not surprising that the heart exhibits dramatic oscillations in various cellular processes over the course of the day, including transcription, translation, ion homeostasis, metabolism, and redox signaling. This temporal partitioning of cardiac processes is governed by a complex interplay between intracellular (e.g., circadian clocks) and extracellular (e.g., neurohumoral factors) influences, thus ensuring appropriate responses to daily stimuli/stresses. The purpose of the current article is to review knowledge regarding control of metabolism and redox biology in the heart over the course of the day, and to highlight whether disruption of these daily rhythms contribute towards cardiac dysfunction observed in various disease states.
Collapse
Affiliation(s)
- Rodrigo A Peliciari-Garcia
- Morphophysiology & Pathology Sector, Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Victor Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
16
|
Brewer RA, Collins HE, Berry RD, Brahma MK, Tirado BA, Peliciari-Garcia RA, Stanley HL, Wende AR, Taegtmeyer H, Rajasekaran NS, Darley-Usmar V, Zhang J, Frank SJ, Chatham JC, Young ME. Temporal partitioning of adaptive responses of the murine heart to fasting. Life Sci 2018; 197:30-39. [PMID: 29410090 DOI: 10.1016/j.lfs.2018.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
Abstract
Recent studies suggest that the time of day at which food is consumed dramatically influences clinically-relevant cardiometabolic parameters (e.g., adiposity, insulin sensitivity, and cardiac function). Meal feeding benefits may be the result of daily periods of feeding and/or fasting, highlighting the need for improved understanding of the temporal adaptation of cardiometabolic tissues (e.g., heart) to fasting. Such studies may provide mechanistic insight regarding how time-of-day-dependent feeding/fasting cycles influence cardiac function. We hypothesized that fasting during the sleep period elicits beneficial adaptation of the heart at transcriptional, translational, and metabolic levels. To test this hypothesis, temporal adaptation was investigated in wild-type mice fasted for 24-h, or for either the 12-h light/sleep phase or the 12-h dark/awake phase. Fasting maximally induced fatty acid responsive genes (e.g., Pdk4) during the dark/active phase; transcriptional changes were mirrored at translational (e.g., PDK4) and metabolic flux (e.g., glucose/oleate oxidation) levels. Similarly, maximal repression of myocardial p-mTOR and protein synthesis rates occurred during the dark phase; both parameters remained elevated in the heart of fasted mice during the light phase. In contrast, markers of autophagy (e.g., LC3II) exhibited peak responses to fasting during the light phase. Collectively, these data show that responsiveness of the heart to fasting is temporally partitioned. Autophagy peaks during the light/sleep phase, while repression of glucose utilization and protein synthesis is maximized during the dark/active phase. We speculate that sleep phase fasting may benefit cardiac function through augmentation of protein/cellular constituent turnover.
Collapse
Affiliation(s)
- Rachel A Brewer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Helen E Collins
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ryan D Berry
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Manoja K Brahma
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian A Tirado
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rodrigo A Peliciari-Garcia
- Morphophysiology & Pathology Sector, Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Haley L Stanley
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam R Wende
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School UT Health Science Center, Houston, TX, USA
| | - Namakkal Soorappan Rajasekaran
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor Darley-Usmar
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianhua Zhang
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stuart J Frank
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Endocrinology Section, Birmingham VAMC Medical Service, Birmingham, AL, USA
| | - John C Chatham
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
17
|
Seron-Ferre M, Torres-Farfan C, Valenzuela FJ, Castillo-Galan S, Rojas A, Mendez N, Reynolds H, Valenzuela GJ, Llanos AJ. Deciphering the Function of the Blunt Circadian Rhythm of Melatonin in the Newborn Lamb: Impact on Adrenal and Heart. Endocrinology 2017; 158:2895-2905. [PMID: 28911179 DOI: 10.1210/en.2017-00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022]
Abstract
Neonatal lambs, as with human and other neonates, have low arrhythmic endogenous levels of melatonin for several weeks until they start their own pineal rhythm of melatonin production at approximately 2 weeks of life. During pregnancy, daily rhythmic transfer of maternal melatonin to the fetus has important physiological roles in sheep, nonhuman primates, and rats. This melatonin rhythm provides a circadian signal and also participates in adjusting the physiology of several organs in preparation for extrauterine life. We propose that the ensuing absence of a melatonin rhythm plays a role in neonatal adaptation. To test this hypothesis, we studied the effects of imposing a high-amplitude melatonin rhythm in the newborn lamb on (1) clock time-related changes in cortisol and plasma variables and (2) clock time-related changes of gene expression of clock genes and selected functional genes in the adrenal gland and heart. We treated newborn lambs with a daily oral dose of melatonin (0.25 mg/kg) from birth to 5 days of age, recreating a high-amplitude melatonin rhythm. This treatment suppressed clock time-related changes of plasma adrenocorticotropic hormone, cortisol, clock gene expression, and functional genes in the newborn adrenal gland. In the heart, it decreased heart/body weight ratio, increased expression of Anp and Bnp, and resulted in different heart gene expression from control newborns. The interference of this postnatal melatonin treatment with the normal postnatal pattern of adrenocortical function and heart development support a physiological role for the window of flat postnatal melatonin levels during the neonatal transition.
Collapse
Affiliation(s)
- Maria Seron-Ferre
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Universidad Austral de Chile, Valdivia 7500922, Chile
| | - Francisco J Valenzuela
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Sebastian Castillo-Galan
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Auristela Rojas
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Natalia Mendez
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Universidad Austral de Chile, Valdivia 7500922, Chile
| | - Henry Reynolds
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Guillermo J Valenzuela
- Department of Women's Health, Arrowhead Regional Medical Center, San Bernardino, California 92324
| | - Anibal J Llanos
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
- International Center for Andean Studies, Universidad de Chile, Santiago 16038, Chile
| |
Collapse
|
18
|
Kessler K, Hornemann S, Petzke KJ, Kemper M, Kramer A, Pfeiffer AFH, Pivovarova O, Rudovich N. The effect of diurnal distribution of carbohydrates and fat on glycaemic control in humans: a randomized controlled trial. Sci Rep 2017; 7:44170. [PMID: 28272464 PMCID: PMC5341154 DOI: 10.1038/srep44170] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/02/2017] [Indexed: 12/17/2022] Open
Abstract
Diurnal carbohydrate and fat distribution modulates glycaemic control in rodents. In humans, the optimal timing of both macronutrients and its effects on glycaemic control after prolonged consumption are not studied in detail. In this cross-over trial, 29 non-obese men were randomized to two four-week diets: (1) carbohydrate-rich meals until 13.30 and fat-rich meals between 16.30 and 22.00 (HC/HF) versus (2) inverse sequence of meals (HF/HC). After each trial period two meal tolerance tests were performed, at 09.00 and 15.40, respectively, according to the previous intervention. On the HF/HC diet, whole-day glucose level was increased by 7.9% (p = 0.026) in subjects with impaired fasting glucose and/or impaired glucose tolerance (IFG/IGT, n = 11), and GLP-1 by 10.2% (p = 0.041) in normal glucose-tolerant subjects (NGT, n = 18). Diet effects on fasting GLP-1 (p = 0.009) and PYY (p = 0.034) levels were observed in IFG/IGT, but not in NGT. Afternoon decline of glucose tolerance was more pronounced in IFG/IGT and associated with a stronger decrease of postprandial GLP-1 and PYY levels, but not with changes of cortisol rhythm. In conclusion, the HF/HC diet shows an unfavourable effect on glycaemic control in IFG/IGT, but not in NGT subjects. Consequently, large, carbohydrate-rich dinners should be avoided, primarily by subjects with impaired glucose metabolism.
Collapse
Affiliation(s)
- Katharina Kessler
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.,Dept. of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University of Medicine, 12203 Berlin, Germany
| | - Silke Hornemann
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Klaus J Petzke
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Margrit Kemper
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.,Dept. of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University of Medicine, 12203 Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Institute for Medical Immunology, Charité University of Medicine, 10117 Berlin, Germany
| | - Andreas F H Pfeiffer
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.,Dept. of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University of Medicine, 12203 Berlin, Germany
| | - Olga Pivovarova
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.,Dept. of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University of Medicine, 12203 Berlin, Germany
| | - Natalia Rudovich
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.,Dept. of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University of Medicine, 12203 Berlin, Germany.,Division of Endocrinology and Diabetes, Department of Internal Medicine, Spital Bülach, 8180 Bülach, Switzerland
| |
Collapse
|
19
|
Shang X, Pati P, Anea CB, Fulton DJ, Rudic RD. Differential Regulation of BMAL1, CLOCK, and Endothelial Signaling in the Aortic Arch and Ligated Common Carotid Artery. J Vasc Res 2016; 53:269-278. [PMID: 27923220 PMCID: PMC5765856 DOI: 10.1159/000452410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/08/2016] [Indexed: 12/13/2022] Open
Abstract
The circadian clock is rhythmically expressed in blood vessels, but the interaction between the circadian clock and disturbed blood flow remains unclear. We examined the relationships between BMAL1 and CLOCK and 2 regulators of endothelial function, AKT1 and endothelial nitric oxide synthase (eNOS), in vascular regions of altered blood flow. We found that the aortic arch from WT mice exhibited reduced sensitivity to acetylcholine (Ach)-mediated relaxation relative to the thoracic aorta. In Clock-mutant (mut) mice the aorta exhibited a reduced sensitivity to Ach. In WT mice, the phosphorylated forms of eNOS and AKT were decreased in the aortic arch, while BMAL1 and CLOCK expression followed a similar pattern of reduction in the arch. In conditions of surgically induced flow reduction, phosphorylated-eNOS (serine 1177) increased, as did p-AKT in the ipsilateral left common carotid artery (LC) of WT mice. Similarly, BMAL1 and CLOCK exhibited increased expression after 5 days in the remodeled LC. eNOS expression was increased at 8 p.m. versus 8 a.m. in WT mice, and this pattern was abolished in mut and Bmal1-KO mice. These data suggest that the circadian clock may be a biomechanical and temporal sensor that acts to coordinate timing, flow dynamics, and endothelial function.
Collapse
MESH Headings
- ARNTL Transcription Factors/deficiency
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- CLOCK Proteins/genetics
- CLOCK Proteins/metabolism
- Carotid Artery Diseases/genetics
- Carotid Artery Diseases/metabolism
- Carotid Artery Diseases/physiopathology
- Carotid Artery, External/metabolism
- Carotid Artery, External/physiopathology
- Carotid Artery, External/surgery
- Circadian Rhythm
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Gene Expression Regulation
- Genotype
- Ligation
- Male
- Mechanotransduction, Cellular
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mutation
- Nitric Oxide Synthase Type III/metabolism
- Phenotype
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Regional Blood Flow
- Stress, Mechanical
- Time Factors
- Vasodilation
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Xia Shang
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Paramita Pati
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Ciprian B. Anea
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - David J.R. Fulton
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - R. Daniel Rudic
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
20
|
He L, Hamm JA, Reddy A, Sams D, Peliciari-Garcia RA, McGinnis GR, Bailey SM, Chow CW, Rowe GC, Chatham JC, Young ME. Biotinylation: a novel posttranslational modification linking cell autonomous circadian clocks with metabolism. Am J Physiol Heart Circ Physiol 2016; 310:H1520-32. [PMID: 27084392 PMCID: PMC4935513 DOI: 10.1152/ajpheart.00959.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/08/2016] [Indexed: 01/07/2023]
Abstract
Circadian clocks are critical modulators of metabolism. However, mechanistic links between cell autonomous clocks and metabolic processes remain largely unknown. Here, we report that expression of the biotin transporter slc5a6 gene is decreased in hearts of two distinct genetic mouse models of cardiomyocyte-specific circadian clock disruption [i.e., cardiomyocyte-specific CLOCK mutant (CCM) and cardiomyocyte-specific BMAL1 knockout (CBK) mice]. Biotinylation is an obligate posttranslational modification for five mammalian carboxylases: acetyl-CoA carboxylase α (ACCα), ACCβ, pyruvate carboxylase (PC), methylcrotonyl-CoA carboxylase (MCC), and propionyl-CoA carboxylase (PCC). We therefore hypothesized that the cardiomyocyte circadian clock impacts metabolism through biotinylation. Consistent with decreased slc5a6 expression, biotinylation of all carboxylases is significantly decreased (10-46%) in CCM and CBK hearts. In association with decreased biotinylated ACC, oleate oxidation rates are increased in both CCM and CBK hearts. Consistent with decreased biotinylated MCC, leucine oxidation rates are significantly decreased in both CCM and CBK hearts, whereas rates of protein synthesis are increased. Importantly, feeding CBK mice with a biotin-enriched diet for 6 wk normalized myocardial 1) ACC biotinylation and oleate oxidation rates; 2) PCC/MCC biotinylation (and partially restored leucine oxidation rates); and 3) net protein synthesis rates. Furthermore, data suggest that the RRAGD/mTOR/4E-BP1 signaling axis is chronically activated in CBK and CCM hearts. Finally we report that the hepatocyte circadian clock also regulates both slc5a6 expression and protein biotinylation in the liver. Collectively, these findings suggest that biotinylation is a novel mechanism by which cell autonomous circadian clocks influence metabolic pathways.
Collapse
Affiliation(s)
- Lan He
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - J Austin Hamm
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alex Reddy
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David Sams
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Graham R McGinnis
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shannon M Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Chi-Wing Chow
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Glenn C Rowe
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
21
|
Lopaschuk GD. Preface to the BBA special issue "heart lipid metabolism". Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1423-4. [PMID: 27208401 DOI: 10.1016/j.bbalip.2016.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Nutrigenetics and Nutrimiromics of the Circadian System: The Time for Human Health. Int J Mol Sci 2016; 17:299. [PMID: 26927084 PMCID: PMC4813163 DOI: 10.3390/ijms17030299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 12/15/2022] Open
Abstract
Even though the rhythmic oscillations of life have long been known, the precise molecular mechanisms of the biological clock are only recently being explored. Circadian rhythms are found in virtually all organisms and affect our lives. Thus, it is not surprising that the correct running of this clock is essential for cellular functions and health. The circadian system is composed of an intricate network of genes interwined in an intrincated transcriptional/translational feedback loop. The precise oscillation of this clock is controlled by the circadian genes that, in turn, regulate the circadian oscillations of many cellular pathways. Consequently, variations in these genes have been associated with human diseases and metabolic disorders. From a nutrigenetics point of view, some of these variations modify the individual response to the diet and interact with nutrients to modulate such response. This circadian feedback loop is also epigenetically modulated. Among the epigenetic mechanisms that control circadian rhythms, microRNAs are the least studied ones. In this paper, we review the variants of circadian-related genes associated to human disease and nutritional response and discuss the current knowledge about circadian microRNAs. Accumulated evidence on the genetics and epigenetics of the circadian system points to important implications of chronotherapy in the clinical practice, not only in terms of pharmacotherapy, but also for dietary interventions. However, interventional studies (especially nutritional trials) that include chronotherapy are scarce. Given the importance of chronobiology in human health such studies are warranted in the near future.
Collapse
|
23
|
Abstract
Robust circadian rhythms in metabolic processes have been described in both humans and animal models, at the whole body, individual organ, and even cellular level. Classically, these time-of-day-dependent rhythms have been considered secondary to fluctuations in energy/nutrient supply/demand associated with feeding/fasting and wake/sleep cycles. Renewed interest in this field has been fueled by studies revealing that these rhythms are driven, at least in part, by intrinsic mechanisms and that disruption of metabolic synchrony invariably increases the risk of cardiometabolic disease. The objectives of this paper are to provide a comprehensive review regarding rhythms in glucose, lipid, and protein/amino acid metabolism, the relative influence of extrinsic (eg, neurohumoral factors) versus intrinsic (eg, cell autonomous circadian clocks) mediators, the physiologic roles of these rhythms in terms of daily fluctuations in nutrient availability and activity status, as well as the pathologic consequences of dyssynchrony.
Collapse
Affiliation(s)
- Graham R McGinnis
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|