1
|
Hussain S, Gupta G, Shahwan M, Bansal P, Kaur H, Deorari M, Pant K, Ali H, Singh SK, Rama Raju Allam VS, Paudel KR, Dua K, Kumarasamy V, Subramaniyan V. Non-coding RNA: A key regulator in the Glutathione-GPX4 pathway of ferroptosis. Noncoding RNA Res 2024; 9:1222-1234. [PMID: 39036600 PMCID: PMC11259992 DOI: 10.1016/j.ncrna.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 07/23/2024] Open
Abstract
Ferroptosis, a form of regulated cell death, has emerged as a crucial process in diverse pathophysiological states, encompassing cancer, neurodegenerative ailments, and ischemia-reperfusion injury. The glutathione (GSH)-dependent lipid peroxidation pathway, chiefly governed by glutathione peroxidase 4 (GPX4), assumes an essential part in driving ferroptosis. GPX4, as the principal orchestrator of ferroptosis, has garnered significant attention across cancer, cardiovascular, and neuroscience domains over the past decade. Noteworthy investigations have elucidated the indispensable functions of ferroptosis in numerous diseases, including tumorigenesis, wherein robust ferroptosis within cells can impede tumor advancement. Recent research has underscored the complex regulatory role of non-coding RNAs (ncRNAs) in regulating the GSH-GPX4 network, thus influencing cellular susceptibility to ferroptosis. This exhaustive review endeavors to probe into the multifaceted processes by which ncRNAs control the GSH-GPX4 network in ferroptosis. Specifically, we delve into the functions of miRNAs, lncRNAs, and circRNAs in regulating GPX4 expression and impacting cellular susceptibility to ferroptosis. Moreover, we discuss the clinical implications of dysregulated interactions between ncRNAs and GPX4 in several conditions, underscoring their capacity as viable targets for therapeutic intervention. Additionally, the review explores emerging strategies aimed at targeting ncRNAs to modulate the GSH-GPX4 pathway and manipulate ferroptosis for therapeutic advantage. A comprehensive understanding of these intricate regulatory networks furnishes insights into innovative therapeutic avenues for diseases associated with perturbed ferroptosis, thereby laying the groundwork for therapeutic interventions targeting ncRNAs in ferroptosis-related pathological conditions.
Collapse
Affiliation(s)
- Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun, 248002, India
- Graphic Era Hill University, Clement Town, Dehradun, 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | | | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, Ultimo, NSW, 2007, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
2
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Ferroptosis-A Shared Mechanism for Parkinson's Disease and Type 2 Diabetes. Int J Mol Sci 2024; 25:8838. [PMID: 39201524 PMCID: PMC11354749 DOI: 10.3390/ijms25168838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are the two most frequent age-related chronic diseases. There are many similarities between the two diseases: both are chronic diseases; both are the result of a decrease in a specific substance-insulin in T2D and dopamine in PD; and both are caused by the destruction of specific cells-beta pancreatic cells in T2D and dopaminergic neurons in PD. Recent epidemiological and experimental studies have found that there are common underlying mechanisms in the pathophysiology of T2D and PD: chronic inflammation, mitochondrial dysfunction, impaired protein handling and ferroptosis. Epidemiological research has indicated that there is a higher risk of PD in individuals with T2D. Moreover, clinical studies have observed that the symptoms of Parkinson's disease worsen significantly after the onset of T2D. This article provides an up-to-date review on the intricate interplay between oxidative stress, reactive oxygen species (ROS) and ferroptosis in PD and T2D. By understanding the shared molecular pathways and how they can be modulated, we can develop more effective therapies, or we can repurpose existing drugs to improve patient outcomes in both disorders.
Collapse
|
3
|
Li B, Cheng K, Wang T, Peng X, Xu P, Liu G, Xue D, Jiao N, Wang C. Research progress on GPX4 targeted compounds. Eur J Med Chem 2024; 274:116548. [PMID: 38838547 DOI: 10.1016/j.ejmech.2024.116548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Blocking the System Xc-_ GSH_GPX4 pathway to induce ferroptosis in tumor cells is a novel strategy for cancer treatment. GPX4 serves as the core of the System Xc-/GSH/GPX4 pathway and is a predominant target for inducing ferroptosis in tumor cells. This article summarizes compounds identified in current research that directly target the GPX4 protein, including inhibitors, activators, small molecule degraders, chimeric degraders, and the application of combination therapies with other drugs, aiming to promote further research on the target and related diseases.
Collapse
Affiliation(s)
- Bingru Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Keguang Cheng
- School of Chemistry and Pharmaceutical Sciences, State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Tzumei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xing Peng
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ping Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China
| | - Chao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
4
|
Li W, Yu J, Wang J, Fan X, Xu X, Wang H, Xiong Y, Li X, Zhang X, Zhang Q, Qi X, Pigeon P, Gu Q, Bruno-Colmenarez J, Jaouen G, McGlinchey MJ, Qiu X, You SL, Li J, Wang Y. How does ferrocene correlate with ferroptosis? Multiple approaches to explore ferrocene-appended GPX4 inhibitors as anticancer agents. Chem Sci 2024; 15:10477-10490. [PMID: 38994406 PMCID: PMC11234876 DOI: 10.1039/d4sc02002b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Ferroptosis has emerged as a form of programmed cell death and exhibits remarkable promise for anticancer therapy. However, it is challenging to discover ferroptosis inducers with new chemotypes and high ferroptosis-inducing potency. Herein, we report a new series of ferrocenyl-appended GPX4 inhibitors rationally designed in a "one stone kills two birds" strategy. Ferroptosis selectivity assays, GPX4 inhibitory activity and CETSA experiments validated the inhibition of novel compounds on GPX4. In particular, the ROS-related bioactivity assays highlighted the ROS-inducing ability of 17 at the molecular level and their ferroptosis enhancement at the cellular level. These data confirmed the dual role of ferrocene as both the bioisostere motif maintaining the inhibition capacity of certain molecules with GPX4 and also as the ROS producer to enhance the vulnerability to ferroptosis of cancer cells, thereby attenuating tumor growth in vivo. This proof-of-concept study of ferrocenyl-appended ferroptosis inducers via rational design may not only advance the development of ferroptosis-based anticancer treatment, but also illuminate the multiple roles of the ferrocenyl component, thus opening the way to novel bioorganometallics for potential disease therapies.
Collapse
Affiliation(s)
- Wei Li
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Jing Yu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Jing Wang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Xuejing Fan
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Ximing Xu
- Marine Biomedical Research Institute of Qingdao, School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 266003 Shandong P. R. China
| | - Hui Wang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Ying Xiong
- School of Pharmacy, Fudan University Shanghai 201203 China
| | - Xinyu Li
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Xiaomin Zhang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Qianer Zhang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Xin Qi
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Pascal Pigeon
- PSL, Chimie ParisTech 11 Rue Pierre et Marie Curie F-75005 Paris France
- Sorbonne Université, UMR 8232 CNRS, IPCM 4 Place Jussieu F-75005 Paris France
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
| | | | - Gérard Jaouen
- PSL, Chimie ParisTech 11 Rue Pierre et Marie Curie F-75005 Paris France
- Sorbonne Université, UMR 8232 CNRS, IPCM 4 Place Jussieu F-75005 Paris France
| | | | - Xue Qiu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
| | - Jing Li
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| | - Yong Wang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China Qingdao 26003 Shandong P. R. China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology Qingdao 266200 P. R. China
| |
Collapse
|
5
|
Zhang M, Liu J, Gao Y, Zhao B, Xu ML, Zhang T. Se site targeted-two circles antioxidant in GPx4-like catalytic peroxide degradation by polyphenols (-)-epigallocatechin gallate and genistein using SERS. Food Chem X 2024; 22:101387. [PMID: 38665629 PMCID: PMC11043887 DOI: 10.1016/j.fochx.2024.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
A Se site targeted-two circles antioxidant of polyphenols EGCG and genistein in glutathione peroxidase 4 (GPx4)-like catalytic peroxide H2O2 and cumene hydroperoxide degradation was demonstrated by surface-enhanced Raman scattering (SERS). Se atom's active center is presenting a 'low-oxidation' and a 'high-oxidation' catalytic cycle. The former is oxidized to selenenic acid (SeO-) with a Raman bond at 619/ 610 cm-1 assigned to the νO - Se by the hydroperoxide substrate at 544/ 551 cm-1 assigned to ωHSeC decreased. Under oxidative stress, the enzyme shifted to 'high-oxidation' catalytic cycle, in which GPx4 shuttles between R-SeO- and R-SeOO- with a Raman intensity of bond at 840/ 860 cm-1 assigned to νO[bond, double bond]Se. EGCG could act as a reducing agent both in H2O2 and Cu-OOH degradation, while, genistein can only reduce Cu-OOH, because it binds more readily to the selenium site in GPx4 than EGCG with a closer proximity, therefore may affect its simultaneous binding to coenzymes.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/ College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/ College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Meng-Lei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/ College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/ College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| |
Collapse
|
6
|
Diao J, Jia Y, Dai E, Liu J, Kang R, Tang D, Han L, Zhong Y, Meng L. Ferroptotic therapy in cancer: benefits, side effects, and risks. Mol Cancer 2024; 23:89. [PMID: 38702722 PMCID: PMC11067110 DOI: 10.1186/s12943-024-01999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Originally investigated as a targeted therapy for cancer cells carrying oncogenic RAS mutations, ferroptosis induction now exhibits potential to complement chemotherapy, immunotherapy, and radiotherapy in various cancer types. However, it can lead to side effects, including immune cell death, bone marrow impairment, liver and kidney damage, cachexia (severe weight loss and muscle wasting), and secondary tumorigenesis. In this review, we discuss the advantages and offer an overview of the diverse range of documented side effects. Furthermore, we examine the underlying mechanisms and explore potential strategies for side effect mitigation.
Collapse
Affiliation(s)
- Jiandong Diao
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yuanyuan Jia
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Enyong Dai
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Jiao Liu
- DAMP laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Leng Han
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Yingjie Zhong
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Lingjun Meng
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| |
Collapse
|
7
|
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, Sun Y, Zeng F, Chen X, Deng G. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther 2024; 9:55. [PMID: 38453898 PMCID: PMC10920854 DOI: 10.1038/s41392-024-01769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by the lethal accumulation of iron-dependent membrane-localized lipid peroxides. It acts as an innate tumor suppressor mechanism and participates in the biological processes of tumors. Intriguingly, mesenchymal and dedifferentiated cancer cells, which are usually resistant to apoptosis and traditional therapies, are exquisitely vulnerable to ferroptosis, further underscoring its potential as a treatment approach for cancers, especially for refractory cancers. However, the impact of ferroptosis on cancer extends beyond its direct cytotoxic effect on tumor cells. Ferroptosis induction not only inhibits cancer but also promotes cancer development due to its potential negative impact on anticancer immunity. Thus, a comprehensive understanding of the role of ferroptosis in cancer is crucial for the successful translation of ferroptosis therapy from the laboratory to clinical applications. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms, biological functions, regulatory pathways, and interactions with the tumor microenvironment. We also summarize the potential applications of ferroptosis induction in immunotherapy, radiotherapy, and systemic therapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis markers, the current challenges and future directions of ferroptosis in the treatment of cancer.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
8
|
Dar NJ, John U, Bano N, Khan S, Bhat SA. Oxytosis/Ferroptosis in Neurodegeneration: the Underlying Role of Master Regulator Glutathione Peroxidase 4 (GPX4). Mol Neurobiol 2024; 61:1507-1526. [PMID: 37725216 DOI: 10.1007/s12035-023-03646-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Oxytosis/ferroptosis is an iron-dependent oxidative form of cell death triggered by lethal accumulation of phospholipid hydroperoxides (PLOOHs) in membranes. Failure of the intricate PLOOH repair system is a principle cause of ferroptotic cell death. Glutathione peroxidase 4 (GPX4) is distinctly vital for converting PLOOHs in membranes to non-toxic alcohols. As such, GPX4 is known as the master regulator of oxytosis/ferroptosis. Ferroptosis has been implicated in a number of disorders such as neurodegenerative diseases (amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), etc.), ischemia/reperfusion injury, and kidney degeneration. Reduced function of GPX4 is frequently observed in degenerative disorders. In this study, we examine how diminished GPX4 function may be a critical event in triggering oxytosis/ferroptosis to perpetuate or initiate the neurodegenerative diseases and assess the possible therapeutic importance of oxytosis/ferroptosis in neurodegenerative disorders. These discoveries are important for advancing our understanding of neurodegenerative diseases because oxytosis/ferroptosis may provide a new target to slow the course of the disease.
Collapse
Affiliation(s)
- Nawab John Dar
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
- School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nargis Bano
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India
| | - Sameera Khan
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India
| | - Shahnawaz Ali Bhat
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India.
| |
Collapse
|
9
|
Faraji P, Borchert A, Ahmadian S, Kuhn H. Butylated Hydroxytoluene (BHT) Protects SH-SY5Y Neuroblastoma Cells from Ferroptotic Cell Death: Insights from In Vitro and In Vivo Studies. Antioxidants (Basel) 2024; 13:242. [PMID: 38397840 PMCID: PMC10886092 DOI: 10.3390/antiox13020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Ferroptosis is a special kind of programmed cell death that has been implicated in the pathogenesis of a large number of human diseases. It involves dysregulated intracellular iron metabolism and uncontrolled lipid peroxidation, which together initiate intracellular ferroptotic signalling pathways leading to cellular suicide. Pharmacological interference with ferroptotic signal transduction may prevent cell death, and thus patients suffering from ferroptosis-related diseases may benefit from such treatment. Butylated hydroxytoluene (BHT) is an effective anti-oxidant that is frequently used in oil chemistry and in cosmetics to prevent free-radical-mediated lipid peroxidation. Since it functions as a radical scavenger, it has previously been reported to interfere with ferroptotic signalling. Here, we show that BHT prevents RSL3- and ML162-induced ferroptotic cell death in cultured human neuroblastoma cells (SH-SY5Y) in a dose-dependent manner. It prevents the RSL3-induced oxidation of membrane lipids and normalises the RSL3-induced inhibition of the intracellular catalytic activity of glutathione peroxidase 4. The systemic application of BHT in a rat Alzheimer's disease model prevented the upregulation of the expression of ferroptosis-related genes. Taken together, these data indicate that BHT interferes with ferroptotic signalling in cultured neuroblastoma cells and may prevent ferroptotic cell death in an animal Alzheimer's disease model.
Collapse
Affiliation(s)
- Parisa Faraji
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (P.F.); (A.B.)
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Astrid Borchert
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (P.F.); (A.B.)
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Hartmut Kuhn
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (P.F.); (A.B.)
| |
Collapse
|
10
|
Chhillar B, Kadian R, Kumar M, Yadav M, Sodhi N, Xavier da Silva TN, Friedmann Angeli JP, Singh VP. Aminic Organoselenium Compounds as Glutathione Peroxidase Mimics and Inhibitors of Ferroptosis. Chembiochem 2024; 25:e202400074. [PMID: 38293899 DOI: 10.1002/cbic.202400074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
The synthesis of diarylamine-based organoselenium compounds via the nucleophilic substitution reactions has been described. Symmetrical monoselenides and diselenides were conveniently synthesized by the reduction of their corresponding selenocyanates using sodium borohydride. Selenocyanates were obtained from 2-chloro acetamides by the nucleophilic displacement with potassium selenocyanate. Selenides were synthesized by treating the 2-chloro acetamides with in situ generated sodium butyl selenolate as nucleophile. Further, the newly synthesized organoselenium compounds were evaluated for their glutathione peroxidase (GPx)-like activity in thiophenol assay. This study revealed that the methoxy-substituted organoselenium compounds showed significant effect on the GPx-like activity. The catalytic parameters for the most efficient catalysts were also determined. The anti-ferroptotic activity for all GPx-mimics evaluated in a 4-OH-tamoxifen (TAM) inducible GPx4 knockout cell line using liproxstatin as standard.
Collapse
Affiliation(s)
- Babli Chhillar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh, 160 014, India
| | - Rajni Kadian
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh, 160 014, India
| | - Manish Kumar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh, 160 014, India
| | - Manisha Yadav
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh, 160 014, India
| | - Nikhil Sodhi
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh, 160 014, India
| | - Thamara Nishida Xavier da Silva
- Rudolf Virchow Zentrum, Centre for Integrative and Translational Bioimaging, Julius-Maximillian, University of Wurzburg, 97080, Wurzburg, Germany
| | - Jose Pedro Friedmann Angeli
- Rudolf Virchow Zentrum, Centre for Integrative and Translational Bioimaging, Julius-Maximillian, University of Wurzburg, 97080, Wurzburg, Germany
| | - Vijay P Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh, 160 014, India
| |
Collapse
|
11
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
12
|
Korczowska-Łącka I, Słowikowski B, Piekut T, Hurła M, Banaszek N, Szymanowicz O, Jagodziński PP, Kozubski W, Permoda-Pachuta A, Dorszewska J. Disorders of Endogenous and Exogenous Antioxidants in Neurological Diseases. Antioxidants (Basel) 2023; 12:1811. [PMID: 37891890 PMCID: PMC10604347 DOI: 10.3390/antiox12101811] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
In diseases of the central nervous system, such as Alzheimer's disease (AD), Parkinson's disease (PD), stroke, amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and even epilepsy and migraine, oxidative stress load commonly surpasses endogenous antioxidative capacity. While oxidative processes have been robustly implicated in the pathogenesis of these diseases, the significance of particular antioxidants, both endogenous and especially exogenous, in maintaining redox homeostasis requires further research. Among endogenous antioxidants, enzymes such as catalase, superoxide dismutase, and glutathione peroxidase are central to disabling free radicals, thereby preventing oxidative damage to cellular lipids, proteins, and nucleic acids. Whether supplementation with endogenously occurring antioxidant compounds such as melatonin and glutathione carries any benefit, however, remains equivocal. Similarly, while the health benefits of certain exogenous antioxidants, including ascorbic acid (vitamin C), carotenoids, polyphenols, sulforaphanes, and anthocyanins are commonly touted, their clinical efficacy and effectiveness in particular neurological disease contexts need to be more robustly defined. Here, we review the current literature on the cellular mechanisms mitigating oxidative stress and comment on the possible benefit of the most common exogenous antioxidants in diseases such as AD, PD, ALS, HD, stroke, epilepsy, and migraine. We selected common neurological diseases of a basically neurodegenerative nature.
Collapse
Affiliation(s)
- Izabela Korczowska-Łącka
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Bartosz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Mikołaj Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Natalia Banaszek
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Agnieszka Permoda-Pachuta
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| |
Collapse
|
13
|
Randolph JT, O'Connor MJ, Han F, Hutchins CW, Siu YA, Cho M, Zheng Y, Hickson JA, Markley JL, Manaves V, Algire M, Baker KA, Chapman AM, Gopalakrishnan SM, Panchal SC, Foster-Duke K, Stolarik DF, Kempf-Grote A, Dammeier D, Fossey S, Sun Q, Sun C, Shen Y, Dart MJ, Kati WM, Lai A, Firestone AJ, Kort ME. Discovery of a Potent Chloroacetamide GPX4 Inhibitor with Bioavailability to Enable Target Engagement in Mice, a Potential Tool Compound for Inducing Ferroptosis In Vivo. J Med Chem 2023; 66:3852-3865. [PMID: 36877935 DOI: 10.1021/acs.jmedchem.2c01415] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Compounds that inhibit glutathione peroxidase 4 (GPX4) hold promise as cancer therapeutics in their ability to induce a form of nonapoptotic cell death called ferroptosis. Our research identified 24, a structural analog of the potent GPX4 inhibitor RSL3, that has much better plasma stability (t1/2 > 5 h in mouse plasma). The bioavailability of 24 provided efficacious plasma drug concentrations with IP dosing, thus enabling in vivo studies to assess tolerability and efficacy. An efficacy study in mouse using a GPX4-sensitive tumor model found that doses of 24 up to 50 mg/kg were tolerated for 20 days but had no effect on tumor growth, although partial target engagement was observed in tumor homogenate.
Collapse
Affiliation(s)
| | | | - Fei Han
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | | | - Y Amy Siu
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Min Cho
- Calico Life Sciences LLC, South San Francisco, California 94080, United States
| | - Yunan Zheng
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | | | - Jana L Markley
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | | | - Mikkel Algire
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Kenton A Baker
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Alex M Chapman
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | | | | | | | | | | | - Darby Dammeier
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Stacey Fossey
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Qi Sun
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Chaohong Sun
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Yu Shen
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Michael J Dart
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Warren M Kati
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Albert Lai
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Ari J Firestone
- Calico Life Sciences LLC, South San Francisco, California 94080, United States
| | - Michael E Kort
- Abbvie Inc., North Chicago, Illinois 60064, United States
| |
Collapse
|
14
|
Liu Y, Wan Y, Yi J, Zhang L, Cheng W. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer 2023; 1878:188890. [PMID: 37001616 DOI: 10.1016/j.bbcan.2023.188890] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Glutathione peroxidase 4 (GPx4) moonlights as structural protein and antioxidase that powerfully inhibits lipid oxidation. In the past years, it is considered as a key regulator of ferroptosis, which takes role in the lipid and amine acid metabolism and influences the cell aging, oncogenesis, and cell death. More and more evidences show that targeting GPX4-induced ferroptosis is a promising strategy for disease therapy, especially cancer treatment. In view of these, we generalize the function of GPX4 and regulatory mechanism between GPX4 and ferroptosis, discuss its roles in the disease pathology, and focus on the recent advances of disease therapeutic potential.
Collapse
|
15
|
Liu H, Forouhar F, Lin AJ, Wang Q, Polychronidou V, Soni RK, Xia X, Stockwell BR. Small-molecule allosteric inhibitors of GPX4. Cell Chem Biol 2022; 29:1680-1693.e9. [PMID: 36423641 PMCID: PMC9772252 DOI: 10.1016/j.chembiol.2022.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/27/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
Encouraged by the dependence of drug-resistant, metastatic cancers on GPX4, we examined biophysical mechanisms of GPX4 inhibition, which revealed an unexpected allosteric site. We found that this site was involved in native regeneration of GPX4 under low glutathione conditions. Covalent binding of inhibitors to this allosteric site caused a conformational change, inhibition of activity, and subsequent cellular GPX4 protein degradation. To verify this site in an unbiased manner, we screened a library of compounds and identified and validated that an additional compound can covalently bind in this allosteric site, inhibiting and degrading GPX4. We determined co-crystal structures of six different inhibitors bound in this site. We have thus identified an allosteric mechanism for small molecules targeting aggressive cancers dependent on GPX4.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Farhad Forouhar
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Annie J Lin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Qian Wang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Rajesh Kumar Soni
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Xin Xia
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
16
|
Dumoulin B, Heydeck D, Jähn D, Lassé M, Sofi S, Ufer C, Kuhn H. Male guanine-rich RNA sequence binding factor 1 knockout mice (Grsf1 -/-) gain less body weight during adolescence and adulthood. Cell Biosci 2022; 12:199. [PMID: 36494688 PMCID: PMC9733283 DOI: 10.1186/s13578-022-00922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
The guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein of the heterogenous nuclear ribonucleoprotein H/F (hnRNP H/F) family that binds to guanine-rich RNA sequences forming G-quadruplex structures. In mice and humans there are single copy GRSF1 genes, but multiple transcripts have been reported. GRSF1 has been implicated in a number of physiological processes (e.g. embryogenesis, erythropoiesis, redox homeostasis, RNA metabolism) but also in the pathogenesis of viral infections and hyperproliferative diseases. These postulated biological functions of GRSF1 originate from in vitro studies rather than complex in vivo systems. To assess the in vivo relevance of these findings, we created systemic Grsf1-/- knockout mice lacking exons 4 and 5 of the Grsf1 gene and compared the basic functional characteristics of these animals with those of wildtype controls. We found that Grsf1-deficient mice are viable, reproduce normally and have fully functional hematopoietic systems. Up to an age of 15 weeks they develop normally but when male individuals grow older, they gain significantly less body weight than wildtype controls in a gender-specific manner. Profiling Grsf1 mRNA expression in different mouse tissues we observed high concentrations in testis. Comparison of the testicular transcriptomes of Grsf1-/- mice and wildtype controls confirmed near complete knock-out of Grsf1 but otherwise subtle differences in transcript regulations. Comparative testicular proteome analyses suggested perturbed mitochondrial respiration in Grsf1-/- mice which may be related to compromised expression of complex I proteins. Here we present, for the first time, an in vivo complete Grsf1 knock-out mouse with comprehensive physiological, transcriptomic and proteomic characterization to improve our understanding of the GRSF1 beyond in vitro cell culture models.
Collapse
Affiliation(s)
- Bernhard Dumoulin
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany ,grid.13648.380000 0001 2180 3484Present Address: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dagmar Heydeck
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Desiree Jähn
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Moritz Lassé
- grid.13648.380000 0001 2180 3484Present Address: Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sajad Sofi
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany ,grid.5685.e0000 0004 1936 9668Present Address: Department of Biology, University of York, York, YO10 5DD UK
| | - Christoph Ufer
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Hartmut Kuhn
- grid.6363.00000 0001 2218 4662Department of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
17
|
Nguyen KA, Conilh L, Falson P, Dumontet C, Boumendjel A. The first ADC bearing the ferroptosis inducer RSL3 as a payload with conservation of the fragile electrophilic warhead. Eur J Med Chem 2022; 244:114863. [DOI: 10.1016/j.ejmech.2022.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
|
18
|
Wei Z, Xie Y, Wei M, Zhao H, Ren K, Feng Q, Xu Y. New insights in ferroptosis: Potential therapeutic targets for the treatment of ischemic stroke. Front Pharmacol 2022; 13:1020918. [PMID: 36425577 PMCID: PMC9679292 DOI: 10.3389/fphar.2022.1020918] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 10/22/2023] Open
Abstract
Stroke is a common disease in clinical practice, which seriously endangers people's physical and mental health. The neurovascular unit (NVU) plays a key role in the occurrence and development of ischemic stroke. Different from other classical types of cell death such as apoptosis, necrosis, autophagy, and pyroptosis, ferroptosis is an iron-dependent lipid peroxidation-driven new form of cell death. Interestingly, the function of NVU and stroke development can be regulated by activating or inhibiting ferroptosis. This review systematically describes the NVU in ischemic stroke, provides a comprehensive overview of the regulatory mechanisms and key regulators of ferroptosis, and uncovers the role of ferroptosis in the NVU and the progression of ischemic stroke. We further discuss the latest progress in the intervention of ferroptosis as a therapeutic target for ischemic stroke and summarize the research progress and regulatory mechanism of ferroptosis inhibitors on stroke. In conclusion, ferroptosis, as a new form of cell death, plays a key role in ischemic stroke and is expected to become a new therapeutic target for this disease.
Collapse
Affiliation(s)
- Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingze Wei
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Qi Feng
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Dai SM, Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG, Gao LC. Relationship between miRNA and ferroptosis in tumors. Front Pharmacol 2022; 13:977062. [PMID: 36408273 PMCID: PMC9672467 DOI: 10.3389/fphar.2022.977062] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/21/2022] [Indexed: 07/20/2023] Open
Abstract
Malignant tumor is a major killer that seriously endangers human health. At present, the methods of treating tumors include surgical resection, chemotherapy, radiotherapy and immunotherapy. However, the survival rate of patients is still very low due to the complicated mechanism of tumor occurrence and development and high recurrence rate. Individualized treatment will be the main direction of tumor treatment in the future. Because only by understanding the molecular mechanism of tumor development and differentially expressed genes can we carry out accurate treatment and improve the therapeutic effect. MicroRNA (miRNA) is a kind of small non coding RNA, which regulates gene expression at mRNA level and plays a key role in tumor regulation. Ferroptosis is a kind of programmed death caused by iron dependent lipid peroxidation, which is different from apoptosis, necrosis and other cell death modes. Now it has been found that ferroptosis plays an important role in the occurrence and development of tumors and drug resistance. More and more studies have found that miRNAs can regulate tumor development and drug resistance through ferroptosis. Therefore, in this review, the mechanism of ferroptosis is briefly outlined, and the relationship between miRNAs and ferroptosis in tumors is reviewed.
Collapse
Affiliation(s)
- Shang-Ming Dai
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Feng-Jiao Li
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hui-Zhi Long
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
20
|
Furuita K, Inomata K, Sugiki T, Kobayashi N, Fujiwara T, Kojima C. 1H, 13C, and 15N resonance assignments of human glutathione peroxidase 4. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:267-271. [PMID: 35616778 DOI: 10.1007/s12104-022-10090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Glutathione peroxidase 4 (GPx4) behaves as an antioxidant enzyme capable of directly reducing peroxidized phospholipids within cell membranes. Recently, GPx4 has attracted attention as a target molecule for cancer therapy because it induces the immortalization of cancer cells suppressing ferroptosis. In this study, to analyze the function and structure of GPx4 by solution NMR, we performed resonance assignments of GPx4 and assigned almost all backbone 1H, 13C, and 15N resonances and most of the side chain 1H and 13C resonances. Using these assignments, the secondary structure of GPx4 was analyzed by the TALOS + program. GPx4 has six helices and seven strands. Then, the backbone dynamics were examined by the {1H}-15N heteronuclear NOE experiment. GPx4 was found to be rigid except for a short loop region. These results will provide basis for functional analysis and the first solution structure determination of GPx4.
Collapse
Affiliation(s)
- Kyoko Furuita
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Kouki Inomata
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| | | | | | | | - Chojiro Kojima
- Institute for Protein Research, Osaka University, Suita, Japan.
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan.
| |
Collapse
|
21
|
Popa RA, Nicoară A, Arca M, Lippolis V, Pintus A, Silvestru A. Homo‐ and heteroleptic diorganoselenides containing pyrazole functionalities. Synthesis, characterization and antioxidant activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roxana A. Popa
- Centre of Supramolecular Organic and Organometallic Chemistry, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeș‐Bolyai University Cluj‐Napoca Romania
| | - Adrian Nicoară
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș‐Bolyai University Cluj‐Napoca Romania
| | - Massimiliano Arca
- Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di Cagliari Cagliari Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di Cagliari Cagliari Italy
| | - Anna Pintus
- Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di Cagliari Cagliari Italy
| | - Anca Silvestru
- Centre of Supramolecular Organic and Organometallic Chemistry, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeș‐Bolyai University Cluj‐Napoca Romania
| |
Collapse
|
22
|
Soria-Tiedemann M, Michel G, Urban I, Aldrovandi M, O’Donnell VB, Stehling S, Kuhn H, Borchert A. Unbalanced Expression of Glutathione Peroxidase 4 and Arachidonate 15-Lipoxygenase Affects Acrosome Reaction and In Vitro Fertilization. Int J Mol Sci 2022; 23:ijms23179907. [PMID: 36077303 PMCID: PMC9456195 DOI: 10.3390/ijms23179907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/25/2022] Open
Abstract
Glutathione peroxidase 4 (Gpx4) and arachidonic acid 15 lipoxygenase (Alox15) are counterplayers in oxidative lipid metabolism and both enzymes have been implicated in spermatogenesis. However, the roles of the two proteins in acrosomal exocytosis have not been explored in detail. Here we characterized Gpx4 distribution in mouse sperm and detected the enzyme not only in the midpiece of the resting sperm but also at the anterior region of the head, where the acrosome is localized. During sperm capacitation, Gpx4 translocated to the post-acrosomal compartment. Sperm from Gpx4+/Sec46Ala mice heterozygously expressing a catalytically silent enzyme displayed an increased expression of phosphotyrosyl proteins, impaired acrosomal exocytosis after in vitro capacitation and were not suitable for in vitro fertilization. Alox15-deficient sperm showed normal acrosome reactions but when crossed into a Gpx4-deficient background spontaneous acrosomal exocytosis was observed during capacitation and these cells were even less suitable for in vitro fertilization. Taken together, our data indicate that heterozygous expression of a catalytically silent Gpx4 variant impairs acrosomal exocytosis and in vitro fertilization. Alox15 deficiency hardly impacted the acrosome reaction but when crossed into the Gpx4-deficient background spontaneous acrosomal exocytosis was induced. The detailed molecular mechanisms for the observed effects may be related to the compromised redox homeostasis.
Collapse
Affiliation(s)
- Mariana Soria-Tiedemann
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Geert Michel
- Department of Transgenic Technologies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, D-13125 Berlin, Germany
| | - Iris Urban
- Department of Transgenic Technologies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, D-13125 Berlin, Germany
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Sabine Stehling
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Astrid Borchert
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-528-034
| |
Collapse
|
23
|
Ursini F, Bosello Travain V, Cozza G, Miotto G, Roveri A, Toppo S, Maiorino M. A white paper on Phospholipid Hydroperoxide Glutathione Peroxidase (GPx4) forty years later. Free Radic Biol Med 2022; 188:117-133. [PMID: 35718302 DOI: 10.1016/j.freeradbiomed.2022.06.227] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022]
Abstract
The purification of a protein inhibiting lipid peroxidation led to the discovery of the selenoperoxidase GPx4 forty years ago. Thus, the evidence of the enzymatic activity was reached after identifying the biological effect and unambiguously defined the relationship between the biological function and the enzymatic activity. In the syllogism where GPx4 inhibits lipid peroxidation and its inhibition is lethal, cell death is operated by lipid peroxidation. Based on this rationale, this form of cell death emerged as regulated iron-enforced oxygen toxicity and was named ferroptosis in 2012. In the last decades, we learned that reduction of lipid hydroperoxides is indispensable and, in cooperation with prooxidant systems, controls the critical steady state of lipid peroxidation. This concept defined the GPx4 reaction as both the target for possible anti-cancer therapy and if insufficient, as cause of degenerative diseases. We know the reaction mechanism, but the details of the interaction at the membrane cytosol interface are still poorly defined. We know the gene structure, but the knowledge about expression control is still limited. The same holds true for post-transcriptional modifications. Reverse genetics indicate that GPx4 has a role in inflammation, immunity, and differentiation, but the observations emerging from these studies need a more specifically addressed biochemical evidence. Finally, the role of GPx4 in spermatogenesis disclosed an area unconnected to lipid peroxidation. In its mitochondrial and nuclear form, the peroxidase catalyzes the oxidation of protein thiols in two specific aspects of sperm maturation: stabilization of the mid-piece and chromatin compaction. Thus, although available evidence converges to the notion that GPx4 activity is vital due to the inhibition of lipid peroxidation, it is reasonable to foresee other unknown aspects of the GPx4 reaction to be disclosed.
Collapse
Affiliation(s)
- Fulvio Ursini
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | | | - Giorgio Cozza
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Giovanni Miotto
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Antonella Roveri
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
24
|
The Selenoprotein Glutathione Peroxidase 4: From Molecular Mechanisms to Novel Therapeutic Opportunities. Biomedicines 2022; 10:biomedicines10040891. [PMID: 35453641 PMCID: PMC9027222 DOI: 10.3390/biomedicines10040891] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 12/25/2022] Open
Abstract
The selenoprotein glutathione peroxidase 4 (GPX4) is one of the main antioxidant mediators in the human body. Its central function involves the reduction of complex hydroperoxides into their respective alcohols often using reduced Glutathione (GSH) as a reducing agent. GPX4 has become a hotspot therapeutic target in biomedical research following its characterization as a chief regulator of ferroptosis, and its subsequent recognition as a specific pharmacological target for the treatment of an extensive variety of human diseases including cancers and neurodegenerative disorders. Several recent studies have provided insights into how GPX4 is distinguished from the rest of the glutathione peroxidase family, the unique biochemical properties of GPX4, how GPX4 is related to lipid peroxidation and ferroptosis, and how the enzyme may be modulated as a potential therapeutic target. This current report aims to review the literature underlying all these insights and present an up-to-date perspective on the current understanding of GPX4 as a potential therapeutic target.
Collapse
|
25
|
A Glutathione Peroxidase Gene from Litopenaeus vannamei Is Involved in Oxidative Stress Responses and Pathogen Infection Resistance. Int J Mol Sci 2022; 23:ijms23010567. [PMID: 35008992 PMCID: PMC8745291 DOI: 10.3390/ijms23010567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 01/07/2023] Open
Abstract
In shrimp, several glutathione peroxidase (GPX) genes have been cloned and functionally studied. Increasing evidence suggests the genes’ involvement in white spot syndrome virus (WSSV)- or Vibrio alginolyticus-infection resistance. In the present study, a novel GXP gene (LvGPX3) was cloned in Litopenaeus vannamei. Promoter of LvGPX3 was activated by NF-E2-related factor 2. Further study showed that LvGPX3 expression was evidently accelerated by oxidative stress or WSSV or V. alginolyticus infection. Consistently, downregulated expression of LvGPX3 increased the cumulative mortality of WSSV- or V. alginolyticus-infected shrimp. Similar results occurred in shrimp suffering from oxidative stress. Moreover, LvGPX3 was important for enhancing Antimicrobial peptide (AMP) gene expression in S2 cells with lipopolysaccharide treatment. Further, knockdown of LvGPX3 expression significantly suppressed expression of AMPs, such as Penaeidins 2a, Penaeidins 3a and anti-lipopolysaccharide factor 1 in shrimp. AMPs have been proven to be engaged in shrimp WSSV- or V. alginolyticus-infection resistance; it was inferred that LvGPX3 might enhance shrimp immune response under immune challenges, such as increasing expression of AMPs. The regulation mechanism remains to be further studied.
Collapse
|
26
|
Characterization of a patient-derived variant of GPX4 for precision therapy. Nat Chem Biol 2021; 18:91-100. [PMID: 34931062 PMCID: PMC8712418 DOI: 10.1038/s41589-021-00915-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023]
Abstract
GPX4, as the only enzyme in mammals capable of reducing esterified phospholipid hydroperoxides within a cellular context, protects cells from ferroptosis. We identified a homozygous point mutation in the GPX4 gene, resulting in an R152H coding mutation, in three patients with Sedaghatian-type spondylometaphyseal dysplasia (SSMD). With structure-based analyses and cell models, including patient fibroblasts, of this variant, we found that the missense variant destabilized a critical loop, which disrupted the active site and caused a substantial loss of enzymatic function. We also found that the R152H variant of GPX4 is less susceptible to degradation, revealing the degradation mechanism of the GPX4 protein. Proof-of-concept therapeutic treatments, which overcome the impaired R152H GPX4 activity, including selenium supplementation, selective antioxidants, and a deuterated PUFA were identified. In addition to revealing a general approach to investigating rare genetic diseases, we demonstrate the biochemical foundations for therapeutic strategies targeting GPX4.
Collapse
|
27
|
Mohanta TK, Al-Harrasi A. Fungal genomes: suffering with functional annotation errors. IMA Fungus 2021; 12:32. [PMID: 34724975 PMCID: PMC8559351 DOI: 10.1186/s43008-021-00083-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background The genome sequence data of more than 65985 species are publicly available as of October 2021 within the National Center for Biotechnology Information (NCBI) database alone and additional genome sequences are available in other databases and also continue to accumulate at a rapid pace. However, an error-free functional annotation of these genome is essential for the research communities to fully utilize these data in an optimum and efficient manner. Results An analysis of proteome sequence data of 689 fungal species (7.15 million protein sequences) was conducted to identify the presence of functional annotation errors. Proteins associated with calcium signaling events, including calcium dependent protein kinases (CDPKs), calmodulins (CaM), calmodulin-like (CML) proteins, WRKY transcription factors, selenoproteins, and proteins associated with the terpene biosynthesis pathway, were targeted in the analysis. Gene associated with CDPKs and selenoproteins are known to be absent in fungal genomes. Our analysis, however, revealed the presence of proteins that were functionally annotated as CDPK proteins. However, InterproScan analysis indicated that none of the protein sequences annotated as “calcium dependent protein kinase” were found to encode calcium binding EF-hands at the regulatory domain. Similarly, none of a protein sequences annotated as a “selenocysteine” were found to contain a Sec (U) amino acid. Proteins annotated as CaM and CMLs also had significant discrepancies. CaM proteins should contain four calcium binding EF-hands, however, a range of 2–4 calcium binding EF-hands were present in the fungal proteins that were annotated as CaM proteins. Similarly, CMLs should possess four calcium binding EF-hands, but some of the CML annotated fungal proteins possessed either three or four calcium binding EF-hands. WRKY transcription factors are characterized by the presence of a WRKY domain and are confined to the plant kingdom. Several fungal proteins, however, were annotated as WRKY transcription factors, even though they did not contain a WRKY domain. Conclusion The presence of functional annotation errors in fungal genome and proteome databases is of considerable concern and needs to be addressed in a timely manner. Supplementary Information The online version contains supplementary material available at 10.1186/s43008-021-00083-x.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| |
Collapse
|
28
|
Labrecque CL, Fuglestad B. Electrostatic Drivers of GPx4 Interactions with Membrane, Lipids, and DNA. Biochemistry 2021; 60:2761-2772. [PMID: 34492183 DOI: 10.1021/acs.biochem.1c00492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glutathione peroxidase 4 (GPx4) serves as the only enzyme that protects membranes through the reduction of lipid hydroperoxides, preventing membrane oxidative damage and cell death through ferroptosis. Recently, GPx4 has gained attention as a therapeutic target for cancer through inhibition and as a target for inflammatory diseases through activation. In addition, GPx4 isoforms perform several distinct moonlighting functions including cysteine cross-linking of protamines during sperm cell chromatin remodeling, a function for which molecular and structural details are undefined. Despite the importance in biology, disease, and potential for drug development, little is known about GPx4 functional interactions at high resolution. This study presents the first NMR assignments of GPx4, and the electrostatic interaction of GPx4 with the membrane is characterized. Mutagenesis reveals the cationic patch residues that are key to membrane binding and stabilization. The cationic patch is observed to be important in binding headgroups of highly anionic cardiolipin. A novel lipid binding site is observed adjacent to the catalytic site and may enable protection of lipid-headgroups from oxidative damage. Arachidonic acid is also found to engage with GPx4, while cholesterol did not display any interaction. The cationic patch residues were also found to enable DNA binding, the first observation of this interaction. Electrostatic DNA binding explains a mechanism for the nuclear isoform of GPx4 to target DNA-bound protamines and to potentially reduce oxidatively damaged DNA. Together, these results highlight the importance of electrostatics in the function of GPx4 and illuminate how the multifunctional enzyme is able to fill multiple biological roles.
Collapse
Affiliation(s)
- Courtney L Labrecque
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States.,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
29
|
Protective Effects and Mechanisms of Recombinant Human Glutathione Peroxidase 4 on Isoproterenol-Induced Myocardial Ischemia Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6632813. [PMID: 34539971 PMCID: PMC8443360 DOI: 10.1155/2021/6632813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 01/15/2023]
Abstract
Ischemic heart disease (IHD) is a cardiovascular disease with high fatality rate, and its pathogenesis is closely related to oxidative stress. Reactive oxygen species (ROS) in oxidative stress can lead to myocardial ischemia (MI) injury in many ways. Therefore, the application of antioxidants may be an effective way to prevent IHD. In recent years, glutathione peroxidase 4 (GPx4) has received increasing attention due to its antioxidant effect. In a previous study, we used the new chimeric tRNAUTuT6 to express highly active recombinant human GPx4 (rhGPx4) in amber-less Escherichia coli. In this study, we established an isoproterenol- (ISO-) induced MI injury model in rats and an in vitro model to research the protective effect and mechanism of rhGPx4 on MI injury. The results showed that rhGPx4 could reduce the area of myocardial infarction and ameliorate the pathological injury of heart tissue, significantly reduce ISO-induced abnormalities on electrocardiogram (ECG) and cardiac serum biomarkers, protect mitochondrial function, and attenuate cardiac oxidative stress injury. In an in vitro model, the results also confirmed that rhGPx4 could inhibit ISO-induced oxidative stress injury and cardiomyocyte apoptosis. The mechanism of action of rhGPx4 involves not only the inhibition of lipid peroxidation by eliminating ROS but also keeping a normal level of endogenous antioxidant enzymes by eliminating ROS, thereby preventing oxidative stress injury in cardiomyocytes. Additionally, rhGPx4 could inhibit cardiomyocyte apoptosis through a mitochondria-dependent pathway. In short, rhGPx4, a recombinant antioxidant enzyme, can play an important role in the prevention of IHD and may have great potential for application.
Collapse
|
30
|
Tripathi A, Daolio A, Pizzi A, Guo Z, Turner DR, Baggioli A, Famulari A, Deacon GB, Resnati G, Singh HB. Chalcogen Bonds in Selenocysteine Seleninic Acid, a Functional GPx Constituent, and in Other Seleninic or Sulfinic Acid Derivatives. Chem Asian J 2021; 16:2351-2360. [PMID: 34214252 PMCID: PMC8456948 DOI: 10.1002/asia.202100545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/01/2021] [Indexed: 11/24/2022]
Abstract
The controlled oxidation reaction of L-selenocystine under neutral pH conditions affords selenocysteine seleninic acid (3-selenino-L-alanine) which is characterized also by means of single-crystal X-ray diffraction. This technique shows that selenium forms three chalcogen bonds (ChBs), one of them being outstandingly short. A survey of seleninic acid derivatives in the Cambridge Structural Database (CSD) confirms that the C-Se(=O)O- functionality tends to act as a ChB donor robust enough to systematically influence the interactional landscape in the solid. Quantum Theory of Atom in Molecules (QTAIM) analysis proves the attractive nature of the short contacts observed in crystals containing the seleninic functionality and calculation of surface molecular electrostatic potential (MEP) reveals that remarkably positive σ-holes can frequently be found opposite to the covalent bonds at selenium. Both CSD searches and QTAIM and MEP approaches show that also the sulfinic acid moiety can function as a ChB donor, albeit less frequently than the seleninic acid one. These findings may contribute to a better understanding, at the atomic level, of the mechanism of action of the enzymes that control oxidative stress and ROS deactivation and that contain selenocysteine seleninic acid and cysteine sulfinic acid in the active site.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Department of ChemistryIndian Institute of Technology BombayMumbai400076India
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
- IITB-Monash Research AcademyMonash UniversityPowai, Mumbai400076India
| | - Andrea Daolio
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Andrea Pizzi
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Zhifang Guo
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
| | - David R. Turner
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
- IITB-Monash Research AcademyMonash UniversityPowai, Mumbai400076India
| | - Alberto Baggioli
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Antonino Famulari
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Glen B. Deacon
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
- IITB-Monash Research AcademyMonash UniversityPowai, Mumbai400076India
| | - Giuseppe Resnati
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Harkesh B. Singh
- Department of ChemistryIndian Institute of Technology BombayMumbai400076India
- IITB-Monash Research AcademyMonash UniversityPowai, Mumbai400076India
| |
Collapse
|
31
|
Zang S, Kong X, Cui J, Su S, Shu W, Jing J, Zhang X. Revealing the redox status in endoplasmic reticulum by a selenium fluorescence probe. J Mater Chem B 2021; 8:2660-2665. [PMID: 32140692 DOI: 10.1039/c9tb02919b] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As an important organelle, the endoplasmic reticulum (ER) participates in the synthesis and secretion of various proteins, glycogen, lipids and cholesterol in eukaryotic cells. In this work, an endoplasmic reticulum-targeted reversible fluorescent probe (ER-Se) was designed and synthesized. The probe, based on a selenide group, shows high sensitivity and good selectivity toward HClO (LOD = 0.85 μM). In addition, the probe has reversible capability towards HClO/GSH. Most importantly, co-location experiment results indicated that the probe exhibited a great ability to target the endoplasmic reticulum. Furthermore, the probe was successfully applied to detect exogenous and endogenous HClO in ER and monitored the redox status changes during ER stress.
Collapse
Affiliation(s)
- Shunping Zang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Xiangxue Kong
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jie Cui
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Sa Su
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Wei Shu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
32
|
Moosmayer D, Hilpmann A, Hoffmann J, Schnirch L, Zimmermann K, Badock V, Furst L, Eaton JK, Viswanathan VS, Schreiber SL, Gradl S, Hillig RC. Crystal structures of the selenoprotein glutathione peroxidase 4 in its apo form and in complex with the covalently bound inhibitor ML162. Acta Crystallogr D Struct Biol 2021; 77:237-248. [PMID: 33559612 PMCID: PMC7869902 DOI: 10.1107/s2059798320016125] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/11/2020] [Indexed: 01/04/2023] Open
Abstract
Wild-type human glutathione peroxidase 4 (GPX4) was co-expressed with SBP2 (selenocysteine insertion sequence-binding protein 2) in human HEK cells to achieve efficient production of this selenocysteine-containing enzyme on a preparative scale for structural biology. The protein was purified and crystallized, and the crystal structure of the wild-type form of GPX4 was determined at 1.0 Å resolution. The overall fold and the active site are conserved compared with previously determined crystal structures of mutated forms of GPX4. A mass-spectrometry-based approach was developed to monitor the reaction of the active-site selenocysteine Sec46 with covalent inhibitors. This, together with the introduction of a surface mutant (Cys66Ser), enabled the crystal structure determination of GPX4 in complex with the covalent inhibitor ML162 [(S)-enantiomer]. The mass-spectrometry-based approach described here opens the path to further co-complex crystal structures of this potential cancer drug target in complex with covalent inhibitors.
Collapse
Affiliation(s)
- Dieter Moosmayer
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - André Hilpmann
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Jutta Hoffmann
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Lennart Schnirch
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Katja Zimmermann
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Volker Badock
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Laura Furst
- Broad Institute, Cambridge, Massachusetts, USA
| | | | | | | | - Stefan Gradl
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Roman C. Hillig
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| |
Collapse
|
33
|
Common modifications of selenocysteine in selenoproteins. Essays Biochem 2020; 64:45-53. [PMID: 31867620 DOI: 10.1042/ebc20190051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023]
Abstract
Selenocysteine (Sec), the sulfur-to-selenium substituted variant of cysteine (Cys), is the defining entity of selenoproteins. These are naturally expressed in many diverse organisms and constitute a unique class of proteins. As a result of the physicochemical characteristics of selenium when compared with sulfur, Sec is typically more reactive than Cys while participating in similar reactions, and there are also some qualitative differences in the reactivities between the two amino acids. This minireview discusses the types of modifications of Sec in selenoproteins that have thus far been experimentally validated. These modifications include direct covalent binding through the Se atom of Sec to other chalcogen atoms (S, O and Se) as present in redox active molecular motifs, derivatization of Sec via the direct covalent binding to non-chalcogen elements (Ni, Mb, N, Au and C), and the loss of Se from Sec resulting in formation of dehydroalanine. To understand the nature of these Sec modifications is crucial for an understanding of selenoprotein reactivities in biological, physiological and pathophysiological contexts.
Collapse
|
34
|
Structural and functional characterization of the glutathione peroxidase-like thioredoxin peroxidase from the fungus Trichoderma reesei. Int J Biol Macromol 2020; 167:93-100. [PMID: 33259843 DOI: 10.1016/j.ijbiomac.2020.11.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 11/22/2022]
Abstract
Glutathione peroxidases (GPx) are a family of enzymes with the ability to reduce organic and inorganic hydroperoxides to the corresponding alcohols using glutathione or thioredoxin as an electron donor. Here, we report the functional and structural characterization of a GPx identified in Trichoderma reesei (TrGPx). TrGPx was recombinantly expressed in a bacterial host and purified using affinity. Using a thioredoxin coupled assay, TrGPx exhibited activity of 28 U and 12.5 U in the presence of the substrates H2O2 and t-BOOH, respectively, and no activity was observed when glutathione was used. These results indicated that TrGPx is a thioredoxin peroxidase and hydrolyses H2O2 better than t-BOOH. TrGPx kinetic parameters using a pyrogallol assay resulted at Kmapp = 11.7 mM, Vmaxapp = 10.9 IU/μg TrGPx, kcat = 19 s-1 and a catalytic efficiency of 1.6 mM-1 s-1 to H2O2 as substrate. Besides that, TrGPx demonstrated an optimum pH ranging from 9.0-12.0 and a half-life of 36 min at 80 °C. TrGPx 3D-structure was obtained in a reduced state and non-catalytic conformation. The overall fold is similar to the other phospholipid-hydroperoxide glutathione peroxidases. These data contribute to understand the antioxidant mechanism in fungi and provide information for using antioxidant enzymes in biotechnological applications.
Collapse
|
35
|
Ferroptosis Mechanisms Involved in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21228765. [PMID: 33233496 PMCID: PMC7699575 DOI: 10.3390/ijms21228765] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Ferroptosis is a type of cell death that was described less than a decade ago. It is caused by the excess of free intracellular iron that leads to lipid (hydro) peroxidation. Iron is essential as a redox metal in several physiological functions. The brain is one of the organs known to be affected by iron homeostatic balance disruption. Since the 1960s, increased concentration of iron in the central nervous system has been associated with oxidative stress, oxidation of proteins and lipids, and cell death. Here, we review the main mechanisms involved in the process of ferroptosis such as lipid peroxidation, glutathione peroxidase 4 enzyme activity, and iron metabolism. Moreover, the association of ferroptosis with the pathophysiology of some neurodegenerative diseases, namely Alzheimer’s, Parkinson’s, and Huntington’s diseases, has also been addressed.
Collapse
|
36
|
Sha W, Hu F, Bu S. Mitochondrial dysfunction and pancreatic islet β-cell failure (Review). Exp Ther Med 2020; 20:266. [PMID: 33199991 PMCID: PMC7664595 DOI: 10.3892/etm.2020.9396] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic β-cells are the only source of insulin in humans. Mitochondria uses pyruvate to produce ATP as an intermediate link between glucose intake and insulin secretion in β-cells, in a process known as glucose-stimulated insulin secretion (GSIS). Previous studies have demonstrated that GSIS is negatively regulated by various factors in the mitochondria, including tRNALeu mutations, high p58 expression, reduced nicotinamide nucleotide transhydrogenase activity, abnormal levels of uncoupling proteins and reduced expression levels of transcription factors A, B1 and B2. Additionally, oxidative stress damages mitochondria and impairs antioxidant defense mechanisms, leading to the increased production of reactive oxygen species, which induces β-cell dysfunction. Inflammation in islets can also damage β-cell physiology. Inflammatory cytokines trigger the release of cytochrome c from the mitochondria via the NF-κB pathway. The present review examined the potential factors underlying mitochondrial dysfunction and their association with islet β-cell failure, which may offer novel insights regarding future strategies for the preservation of mitochondrial function and enhancement of antioxidant activity for individuals with diabetes mellitus.
Collapse
Affiliation(s)
- Wenxin Sha
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Fei Hu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shizhong Bu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
37
|
Aguiñiga-Sánchez I, Soto-Hernández M, Cadena-Iñiguez J, Suwalsky M, Colina JR, Castillo I, Rosado-Pérez J, Mendoza-Núñez VM, Santiago-Osorio E. Phytochemical Analysis and Antioxidant and Anti-Inflammatory Capacity of the Extracts of Fruits of the Sechium Hybrid. Molecules 2020; 25:molecules25204637. [PMID: 33053734 PMCID: PMC7587193 DOI: 10.3390/molecules25204637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
In addition to their own antioxidants, human cells feed on external antioxidants, such as the phenolic compounds of fruits and vegetables, which work together to keep oxidative stress in check. Sechium edule, an edible species of chayote, has phenolic compounds with antioxidant activity and antineoplastic activity. A Sechium hybrid shows one thousand times greater antineoplastic activity than edible species, but its antioxidant and anti-inflammatory activities and the content of phenolic compounds are unknown. The aim of this study was to determine the antioxidant and anti-inflammatory capacity of the extract of fruits of the Sechium hybrid in vitro and in vivo. Phytochemical analysis using HPLC showed that the extract of the Sechium hybrid has at least 16 phenolic compounds; galangin, naringenin, phloretin and chlorogenic acid are the most abundant. In an in vitro assay, this extract inhibited 2,2-diphenyl-L-picrylhydrazyl (DPPH) activity and protected the dimyristoylphosphatidylethanolamine (DMPE) phospholipid model cell membrane from oxidation mediated by hypochlorous acid (HClO). In vivo, it was identified that the most abundant metabolites in the extract enter the bloodstream of the treated mice. On the other hand, the extract reduces the levels of tumor necrosis factor alpha (TNFα), interferon gamma (IFNγ), and interleukin-6 (IL-6) but increases interleukin-10 (IL-10) and glutathione peroxidase levels. Our findings indicate that intake of the fruits of the Sechium hybrid leads to antioxidant and anti-inflammatory effects in a mouse model. Therefore, these results support the possibility of exploring the clinical effect of this hybrid in humans.
Collapse
Affiliation(s)
- Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico;
- Interdisciplinary Research Group of Sechium edule in Mexico (GISeM), Texcoco, Agustín Melgar 10 Street, 56153 Texcoco, Mexico; (M.S.-H.); (J.C.-I.)
| | - Marcos Soto-Hernández
- Interdisciplinary Research Group of Sechium edule in Mexico (GISeM), Texcoco, Agustín Melgar 10 Street, 56153 Texcoco, Mexico; (M.S.-H.); (J.C.-I.)
- Postgraduate College, Campus Montecillo, Km 36.5 Mexico-Texcoco Highway, 56230 Texcoco, Mexico
| | - Jorge Cadena-Iñiguez
- Interdisciplinary Research Group of Sechium edule in Mexico (GISeM), Texcoco, Agustín Melgar 10 Street, 56153 Texcoco, Mexico; (M.S.-H.); (J.C.-I.)
- Postgraduate College, Campus San Luis Potosí, Iturbide No. 73 Street, Salinas de Hidalgo, 78600 San Luis Potosí, Mexico
| | - Mario Suwalsky
- Facultad de Medicina, Universidad Católica de la Santísima Concepción, 4090541 Concepción, Chile;
| | - José R. Colina
- Facultad de Ciencias Químicas, Universidad de Concepción, 4070386 Concepción, Chile;
| | - Ivan Castillo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico;
| | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico;
| | - Víctor M. Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico;
- Correspondence: (V.M.M.-N.); (E.S.-O.)
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico;
- Interdisciplinary Research Group of Sechium edule in Mexico (GISeM), Texcoco, Agustín Melgar 10 Street, 56153 Texcoco, Mexico; (M.S.-H.); (J.C.-I.)
- Correspondence: (V.M.M.-N.); (E.S.-O.)
| |
Collapse
|
38
|
Eaton JK, Furst L, Cai LL, Viswanathan VS, Schreiber SL. Structure-activity relationships of GPX4 inhibitor warheads. Bioorg Med Chem Lett 2020; 30:127538. [PMID: 32920142 DOI: 10.1016/j.bmcl.2020.127538] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/18/2023]
Abstract
Direct inhibition of GPX4 requires covalent modification of the active-site selenocysteine. While phenotypic screening has revealed that activated alkyl chlorides and masked nitrile oxides can inhibit GPX4 covalently, a systematic assessment of potential electrophilic warheads with the capacity to inhibit cellular GPX4 has been lacking. Here, we survey more than 25 electrophilic warheads across several distinct GPX4-targeting scaffolds. We find that electrophiles with attenuated reactivity compared to chloroacetamides are unable to inhibit GPX4 despite the expected nucleophilicity of the selenocysteine residue. However, highly reactive propiolamides we uncover in this study can substitute for chloroacetamide and nitroisoxazole warheads in GPX4 inhibitors. Our observations suggest that electrophile masking strategies, including those we describe for propiolamide- and nitrile-oxide-based warheads, may be promising for the development of improved covalent GPX4 inhibitors.
Collapse
Affiliation(s)
- John K Eaton
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States.
| | - Laura Furst
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Luke L Cai
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | | | - Stuart L Schreiber
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
39
|
Eaton JK, Furst L, Ruberto RA, Moosmayer D, Hilpmann A, Ryan MJ, Zimmermann K, Cai LL, Niehues M, Badock V, Kramm A, Chen S, Hillig RC, Clemons PA, Gradl S, Montagnon C, Lazarski KE, Christian S, Bajrami B, Neuhaus R, Eheim AL, Viswanathan VS, Schreiber SL. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat Chem Biol 2020; 16:497-506. [PMID: 32231343 DOI: 10.1038/s41589-020-0501-5] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022]
Abstract
We recently described glutathione peroxidase 4 (GPX4) as a promising target for killing therapy-resistant cancer cells via ferroptosis. The onset of therapy resistance by multiple types of treatment results in a stable cell state marked by high levels of polyunsaturated lipids and an acquired dependency on GPX4. Unfortunately, all existing inhibitors of GPX4 act covalently via a reactive alkyl chloride moiety that confers poor selectivity and pharmacokinetic properties. Here, we report our discovery that masked nitrile-oxide electrophiles, which have not been explored previously as covalent cellular probes, undergo remarkable chemical transformations in cells and provide an effective strategy for selective targeting of GPX4. The new GPX4-inhibiting compounds we describe exhibit unexpected proteome-wide selectivity and, in some instances, vastly improved physiochemical and pharmacokinetic properties compared to existing chloroacetamide-based GPX4 inhibitors. These features make them superior tool compounds for biological interrogation of ferroptosis and constitute starting points for development of improved inhibitors of GPX4.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Stuart L Schreiber
- Broad Institute, Cambridge, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
40
|
Eaton JK, Ruberto RA, Kramm A, Viswanathan VS, Schreiber SL. Diacylfuroxans Are Masked Nitrile Oxides That Inhibit GPX4 Covalently. J Am Chem Soc 2019; 141:20407-20415. [DOI: 10.1021/jacs.9b10769] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- John K. Eaton
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Richard A. Ruberto
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Anneke Kramm
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | | | - Stuart L. Schreiber
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
41
|
Zeida A, Trujillo M, Ferrer-Sueta G, Denicola A, Estrin DA, Radi R. Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols. Chem Rev 2019; 119:10829-10855. [PMID: 31498605 DOI: 10.1021/acs.chemrev.9b00371] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs. To finish, we describe and discuss the current views on the activities of thiol-based peroxidases in peroxide-mediated redox signaling processes.
Collapse
Affiliation(s)
| | | | | | | | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , 2160 Buenos Aires , Argentina
| | | |
Collapse
|
42
|
Forcina GC, Dixon SJ. GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis. Proteomics 2019; 19:e1800311. [PMID: 30888116 DOI: 10.1002/pmic.201800311] [Citation(s) in RCA: 504] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/27/2019] [Indexed: 12/16/2022]
Abstract
Oxygen is necessary for aerobic metabolism but can cause the harmful oxidation of lipids and other macromolecules. Oxidation of cholesterol and phospholipids containing polyunsaturated fatty acyl chains can lead to lipid peroxidation, membrane damage, and cell death. Lipid hydroperoxides are key intermediates in the process of lipid peroxidation. The lipid hydroperoxidase glutathione peroxidase 4 (GPX4) converts lipid hydroperoxides to lipid alcohols, and this process prevents the iron (Fe2+ )-dependent formation of toxic lipid reactive oxygen species (ROS). Inhibition of GPX4 function leads to lipid peroxidation and can result in the induction of ferroptosis, an iron-dependent, non-apoptotic form of cell death. This review describes the formation of reactive lipid species, the function of GPX4 in preventing oxidative lipid damage, and the link between GPX4 dysfunction, lipid oxidation, and the induction of ferroptosis.
Collapse
Affiliation(s)
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
43
|
Ungati H, Govindaraj V, Narayanan M, Mugesh G. Probing the Formation of a Seleninic Acid in Living Cells by the Fluorescence Switching of a Glutathione Peroxidase Mimetic. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Harinarayana Ungati
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Vijayakumar Govindaraj
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Megha Narayanan
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
44
|
Ungati H, Govindaraj V, Narayanan M, Mugesh G. Probing the Formation of a Seleninic Acid in Living Cells by the Fluorescence Switching of a Glutathione Peroxidase Mimetic. Angew Chem Int Ed Engl 2019; 58:8156-8160. [PMID: 31021048 DOI: 10.1002/anie.201903958] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 01/06/2023]
Abstract
Glutathione peroxidase (GPx) is a selenoenzyme that protects cells against oxidative damage. Although the formation of a seleninic acid (-SeO2 H) by this enzyme during oxidative stress has been proposed, a selenic acid has not been identified in cells. Herein, we report that the formation of a seleninic acid can be monitored in living cells by using a redox-active ebselen analogue with a naphthalimide fluorophore. The probe reacts with H2 O2 to generate the highly fluorescent seleninic acid. The electron withdrawing nature of the -SeO2 H moiety and strong Se⋅⋅⋅O interactions, which prevent the photoinduced electron transfer, are responsible for the fluorescence.
Collapse
Affiliation(s)
- Harinarayana Ungati
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Vijayakumar Govindaraj
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Megha Narayanan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
45
|
Zhang M, Huang LL, Teng CH, Wu FF, Ge LY, Shi YJ, He ZL, Liu L, Jiang CJ, Hou RN, Xiao J, Zhang HY, Chen DQ. Isoliquiritigenin Provides Protection and Attenuates Oxidative Stress-Induced Injuries via the Nrf2-ARE Signaling Pathway After Traumatic Brain Injury. Neurochem Res 2018; 43:2435-2445. [PMID: 30446968 DOI: 10.1007/s11064-018-2671-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/14/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is a serious public health and medical problem worldwide. Oxidative stress plays a vital role in the pathogenesis of TBI. Nuclear factor erythroid 2-related factor 2 (Nrf2), an important factor in the cellular defense against oxidative stress, is activated following TBI. In this study, the protective effects of Isoliquiritigenin (ILG), a promising antioxidant stress drug, was evaluated as a protective agent against TBI. In a mouse model of controlled cortical impact Injury, we found that the ILG administration reduced the Garcia neuroscore, injury histopathology, brain water content, cerebral vascular permeability, the expression of cleaved caspase3, aquaporin-4, glial fibrillary acidic protein and the increased the expression of neurofilament light chain protein, indicating the protective effects against TBI in vivo. ILG treatment after TBI also restored the oxidative stress and promoted the Nrf2 protein transfer from the cytoplasm to the nucleus. We then used Nrf2-/- mice to test the protective effect of Nrf2 during ILG treatment of TBI. Our findings indicated that Nrf2-/- mice had greater brain injury and oxidative stress than wild-type (WT) mice and ILG was less effective at inhibiting oxidative stress and repairing the brain injury than in the WT mice. In vitro studies in SY5Y cells under oxygen glucose deprivation/re-oxygenation stimulation yielded results that were consistent with those obtained in vivo showing that ILG promotes Nrf2 protein transfer from the cytoplasm to the nucleus. Taken together, our findings demonstrate that Nrf2 is an important protective factor against TBI-induced injuries, which indicates that the protective effects of ILG are mediated by inhibiting oxidative stress after TBI via a mechanism that involves the promotion of Nrf2 protein transfer from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Man Zhang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li-Li Huang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen-Huai Teng
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang-Fang Wu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li-Yun Ge
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu-Juan Shi
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheng-Le He
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Liu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng-Jie Jiang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruo-Nan Hou
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Da-Qing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|