1
|
Volk LM, Bruun JE, Trautmann S, Thomas D, Schwalm S, Pfeilschifter J, Zu Heringdorf DM. A role for plasma membrane Ca 2+ ATPases in regulation of cellular Ca 2+ homeostasis by sphingosine kinase-1. Pflugers Arch 2024:10.1007/s00424-024-03027-7. [PMID: 39392480 DOI: 10.1007/s00424-024-03027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Sphingosine-1-phosphate (S1P) is a ubiquitous lipid mediator, acting via specific G-protein-coupled receptors (GPCR) and intracellularly. Previous work has shown that deletion of S1P lyase caused a chronic elevation of cytosolic [Ca2+]i and enhanced Ca2+ storage in mouse embryonic fibroblasts. Here, we studied the role of sphingosine kinase (SphK)-1 in Ca2+ signaling, using two independently generated EA.hy926 cell lines with stable knockdown of SphK1 (SphK1-KD1/2). Resting [Ca2+]i and thapsigargin-induced [Ca2+]i increases were reduced in both SphK1-KD1 and -KD2 cells. Agonist-induced [Ca2+]i increases, measured in SphK1-KD1, were blunted. In the absence of extracellular Ca2+, thapsigargin-induced [Ca2+]i increases declined rapidly, indicating enhanced removal of Ca2+ from the cytosol. In agreement, plasma membrane Ca2+ ATPase (PMCA)-1 and -4 and their auxiliary subunit, basigin, were strongly upregulated. Activation of S1P-GPCR by specific agonists or extracellular S1P did not rescue the effects of SphK1 knockdown, indicating that S1P-GPCR were not involved. Lipid measurements indicated that not only S1P but also dihydro-sphingosine, ceramides, and lactosylceramides were markedly depleted in SphK1-KD2 cells. SphK2 and S1P lyase were upregulated, suggesting enhanced flux via the sphingolipid degradation pathway. Finally, histone acetylation was enhanced in SphK1-KD2 cells, and the histone deacetylase inhibitor, vorinostat, induced upregulation of PMCA1 and basigin on mRNA and protein levels in EA.hy926 cells. These data show for the first time a transcriptional regulation of PMCA1 and basigin by S1P metabolism. It is concluded that SphK1 knockdown in EA.hy926 cells caused long-term alterations in cellular Ca2+ homeostasis by upregulating PMCA via increased histone acetylation.
Collapse
Affiliation(s)
- Luisa Michelle Volk
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Jan-Erik Bruun
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Sandra Trautmann
- Institut Für Klinische Pharmakologie, Goethe-Universität Frankfurt, Universitätsklinikum, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Dominique Thomas
- Institut Für Klinische Pharmakologie, Goethe-Universität Frankfurt, Universitätsklinikum, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stephanie Schwalm
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Alam S, Afsar SY, Wolter MA, Volk LM, Mitroi DN, Meyer Zu Heringdorf D, van Echten-Deckert G. S1P Lyase Deficiency in the Brain Promotes Astrogliosis and NLRP3 Inflammasome Activation via Purinergic Signaling. Cells 2023; 12:1844. [PMID: 37508508 PMCID: PMC10378183 DOI: 10.3390/cells12141844] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Astrocytes are critical players in brain health and disease. Brain pathologies and lesions are usually accompanied by astroglial alterations known as reactive astrogliosis. Sphingosine 1-phosphate lyase (SGPL1) catalysis, the final step in sphingolipid catabolism, irreversibly cleaves its substrate sphingosine 1-phosphate (S1P). We have shown that neural ablation of SGPL1 causes accumulation of S1P and hence neuronal damage, cognitive deficits, as well as microglial activation. Moreover, the S1P/S1P-receptor signaling axis enhances ATP production in SGPL1-deficient astrocytes. Using immunohistochemical methods as well as RNA Seq and CUT&Tag we show how S1P signaling causes activation of the astrocytic purinoreceptor P2Y1 (P2Y1R). With specific pharmacological agonists and antagonists, we uncover the P2Y1R as the key player in S1P-induced astrogliosis, and DDX3X mediated the activation of the NLRP3 inflammasome, including caspase-1 and henceforward generation of interleukin-1ß (IL-1ß) and of other proinflammatory cytokines. Our results provide a novel route connecting S1P metabolism and signaling with astrogliosis and the activation of the NLRP3 inflammasome, a central player in neuroinflammation, known to be crucial for the pathogenesis of numerous brain illnesses. Thus, our study opens the door for new therapeutic strategies surrounding S1P metabolism and signaling in the brain.
Collapse
Affiliation(s)
- Shah Alam
- LIMES Institute for Membrane Biology and Lipid Biochemistry, Kekulé-Institute, University of Bonn, 53115 Bonn, Germany
| | - Sumaiya Yasmeen Afsar
- LIMES Institute for Membrane Biology and Lipid Biochemistry, Kekulé-Institute, University of Bonn, 53115 Bonn, Germany
| | - Maya Anik Wolter
- LIMES Institute for Membrane Biology and Lipid Biochemistry, Kekulé-Institute, University of Bonn, 53115 Bonn, Germany
| | - Luisa Michelle Volk
- Institute for General Pharmacology and Toxicology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Daniel Nicolae Mitroi
- LIMES Institute for Membrane Biology and Lipid Biochemistry, Kekulé-Institute, University of Bonn, 53115 Bonn, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institute for General Pharmacology and Toxicology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Gerhild van Echten-Deckert
- LIMES Institute for Membrane Biology and Lipid Biochemistry, Kekulé-Institute, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
3
|
An S, Yao D, Zhang W, Sun H, Yu T, Jia R, Yang Y. WDR36 Safeguards Self-Renewal and Pluripotency of Human Extended Pluripotent Stem Cells. Front Genet 2022; 13:905395. [PMID: 35937980 PMCID: PMC9353684 DOI: 10.3389/fgene.2022.905395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Extended pluripotent stem cells (EPS cells) have unlimited self-renewal ability and the potential to differentiate into mesodermal, ectodermal, and endodermal cells. Notably, in addition to developing the embryonic (Em) lineages, it can also make an effective contribution to extraembryonic (ExEm) lineages both in vitro and in vivo. However, multiple mysteries still remain about the underlying molecular mechanism of EPS cells’ maintenance and developmental potential. WDR36 (WD Repeat Domain 36), a protein of 105 kDa with 14 WD40 repeats, which may fold into two β-propellers, participates in 18sRNA synthesis and P53 stress response. Though WDR36 safeguards mouse early embryonic development, that is, homozygous knockout of WDR36 can result in embryonic lethality, what role does WDR36 plays in self-renewal and differentiation developmental potential of human EPS cells is still a subject of concern. Here, our findings suggested that the expression of WDR36 was downregulated during human hEPS cells lost self-renewal. Through constructing inducible knockdown or overexpressing WDR36-human EPS cell lines, we found that WDR36 knockdown disrupted self-renewal but promoted the mesodermal differentiation of human EPS cells; however, overexpressing of WDR36 had little effect. Additionally, P53 inhibition could reverse the effects of WDR36 knockdown, on both self-renewal maintenance and differentiation potential of human EPS cells. These data implied that WDR36 safeguards self-renewal and pluripotency of human EPS cells, which would extend our understanding of the molecular mechanisms of human EPS cells’ self-renewal and differentiation.
Collapse
Affiliation(s)
- Shiyu An
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Dan Yao
- Department of Obstetrics, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Institute, Nanjing, China
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, China
| | - Wenyi Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Sun
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Tianyi Yu
- Department of Gynecology and Obstetrics, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Ruizhe Jia
- Department of Obstetrics, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Institute, Nanjing, China
- *Correspondence: Yang Yang, ; Ruizhe Jia,
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Yang Yang, ; Ruizhe Jia,
| |
Collapse
|
4
|
WDR36-Associated Neurodegeneration: A Case Report Highlights Possible Mechanisms of Normal Tension Glaucoma. Genes (Basel) 2021; 12:genes12101624. [PMID: 34681019 PMCID: PMC8536154 DOI: 10.3390/genes12101624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
WDR36 is one of a number of genes implicated in the pathogenesis of adult-onset primary open angle glaucoma (POAG). Here we describe in detail the phenotype of a patient with pathogenic variation in WDR36 who presented with a protracted history of central vision loss. On exam visual acuities were at 20/100 level, had a tritan color defect and showed central arcuate visual field defects on visual field testing. Enlarged cup-to-disk ratios with normal intraocular pressures were associated with severe thinning of the ganglion cell layer (GCL) and retinal nerve fiber layer consistent with a clinical diagnosis of normal tension glaucoma. Full-field electroretinograms revealed a severe inner retinal dysfunction with reduced amplitudes and remarkably delayed timings of the b-wave, but preserved photoreceptor (a-wave) function. The pattern described herein recapitulates some of the findings of an animal model of WDR36-associated POAG and suggests a mechanism of disease that involves a retina-wide inner retinal dysfunction and neurodegeneration beyond the GCL. Further detailed structural and functional characterizations of patients with a pathogenic variant in the WDR36 gene are required to confirm these findings.
Collapse
|
5
|
Laulajainen‐Hongisto A, Lyly A, Hanif T, Dhaygude K, Kankainen M, Renkonen R, Donner K, Mattila P, Jartti T, Bousquet J, Kauppi P, Toppila‐Salmi S. Genomics of asthma, allergy and chronic rhinosinusitis: novel concepts and relevance in airway mucosa. Clin Transl Allergy 2020; 10:45. [PMID: 33133517 PMCID: PMC7592594 DOI: 10.1186/s13601-020-00347-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Genome wide association studies (GWASs) have revealed several airway disease-associated risk loci. Their role in the onset of asthma, allergic rhinitis (AR) or chronic rhinosinusitis (CRS), however, is not yet fully understood. The aim of this review is to evaluate the airway relevance of loci and genes identified in GWAS studies. GWASs were searched from databases, and a list of loci associating significantly (p < 10-8) with asthma, AR and CRS was created. This yielded a total of 267 significantly asthma/AR-associated loci from 31 GWASs. No significant CRS -associated loci were found in this search. A total of 170 protein coding genes were connected to these loci. Of these, 76/170 (44%) showed bronchial epithelial protein expression in stained microscopic figures of Human Protein Atlas (HPA), and 61/170 (36%) had a literature report of having airway epithelial function. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses were performed, and 19 functional protein categories were found as significantly (p < 0.05) enriched among these genes. These were related to cytokine production, cell activation and adaptive immune response, and all were strongly connected in network analysis. We also identified 15 protein pathways that were significantly (p < 0.05) enriched in these genes, related to T-helper cell differentiation, virus infection, JAK-STAT signaling pathway, and asthma. A third of GWAS-level risk loci genes of asthma or AR seemed to have airway epithelial functions according to our database and literature searches. In addition, many of the risk loci genes were immunity related. Some risk loci genes also related to metabolism, neuro-musculoskeletal or other functions. Functions overlapped and formed a strong network in our pathway analyses and are worth future studies of biomarker and therapeutics.
Collapse
Affiliation(s)
- Anu Laulajainen‐Hongisto
- Department of Otorhinolaryngology–Head and Neck SurgeryUniversity of Helsinki and Helsinki University HospitalP.O.Box 263Kasarmikatu 11‐1300029 HUSHelsinkiFinland
- Laboratory of Cellular and Molecular ImmunologyInstitute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Annina Lyly
- Department of Otorhinolaryngology–Head and Neck SurgeryUniversity of Helsinki and Helsinki University HospitalP.O.Box 263Kasarmikatu 11‐1300029 HUSHelsinkiFinland
- Skin and Allergy HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | | | | | - Matti Kankainen
- HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
- Hematology Research Unit HelsinkiDepartment of HematologyHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
- Translational Immunology Research Program and Department of Clinical ChemistryUniversity of HelsinkiHelsinkiFinland
| | - Risto Renkonen
- Haartman InstituteUniversity of HelsinkiHelsinkiFinland
- HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
| | - Kati Donner
- Hematology Research Unit HelsinkiDepartment of HematologyHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
| | - Pirkko Mattila
- Haartman InstituteUniversity of HelsinkiHelsinkiFinland
- Hematology Research Unit HelsinkiDepartment of HematologyHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent MedicineTurku University Hospital and University of TurkuTurkuFinland
| | - Jean Bousquet
- Université MontpellierMontpellierFrance
- MACVIA‐FranceMontpellierFrance
- Corporate Member of Freie Universität BerlinHumboldt‐Universität Zu BerlinBerlin Institute of HealthComprehensive Allergy CenterDepartment of Dermatology and AllergyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Paula Kauppi
- Skin and Allergy HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Sanna Toppila‐Salmi
- Skin and Allergy HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Haartman InstituteUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
6
|
Blankenbach KV, Claas RF, Aster NJ, Spohner AK, Trautmann S, Ferreirós N, Black JL, Tesmer JJG, Offermanns S, Wieland T, Meyer zu Heringdorf D. Dissecting G q/11-Mediated Plasma Membrane Translocation of Sphingosine Kinase-1. Cells 2020; 9:cells9102201. [PMID: 33003441 PMCID: PMC7599897 DOI: 10.3390/cells9102201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/24/2022] Open
Abstract
Diverse extracellular signals induce plasma membrane translocation of sphingosine kinase-1 (SphK1), thereby enabling inside-out signaling of sphingosine-1-phosphate. We have shown before that Gq-coupled receptors and constitutively active Gαq/11 specifically induced a rapid and long-lasting SphK1 translocation, independently of canonical Gq/phospholipase C (PLC) signaling. Here, we further characterized Gq/11 regulation of SphK1. SphK1 translocation by the M3 receptor in HEK-293 cells was delayed by expression of catalytically inactive G-protein-coupled receptor kinase-2, p63Rho guanine nucleotide exchange factor (p63RhoGEF), and catalytically inactive PLCβ3, but accelerated by wild-type PLCβ3 and the PLCδ PH domain. Both wild-type SphK1 and catalytically inactive SphK1-G82D reduced M3 receptor-stimulated inositol phosphate production, suggesting competition at Gαq. Embryonic fibroblasts from Gαq/11 double-deficient mice were used to show that amino acids W263 and T257 of Gαq, which interact directly with PLCβ3 and p63RhoGEF, were important for bradykinin B2 receptor-induced SphK1 translocation. Finally, an AIXXPL motif was identified in vertebrate SphK1 (positions 100–105 in human SphK1a), which resembles the Gαq binding motif, ALXXPI, in PLCβ and p63RhoGEF. After M3 receptor stimulation, SphK1-A100E-I101E and SphK1-P104A-L105A translocated in only 25% and 56% of cells, respectively, and translocation efficiency was significantly reduced. The data suggest that both the AIXXPL motif and currently unknown consequences of PLCβ/PLCδ(PH) expression are important for regulation of SphK1 by Gq/11.
Collapse
Affiliation(s)
- Kira Vanessa Blankenbach
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Ralf Frederik Claas
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Natalie Judith Aster
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Anna Katharina Spohner
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Sandra Trautmann
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (N.F.)
| | - Nerea Ferreirós
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (N.F.)
| | - Justin L. Black
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - John J. G. Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette, West Lafayette, IN 47907-2054, USA;
| | - Stefan Offermanns
- Abteilung für Pharmakologie, Max-Planck-Institut für Herz- und Lungenforschung, 61231 Bad Nauheim, Germany;
| | - Thomas Wieland
- Experimentelle Pharmakologie Mannheim, European Center for Angioscience, Universität Heidelberg, 68167 Mannheim, Germany;
| | - Dagmar Meyer zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
- Correspondence: ; Tel.: +49-69-6301-3906
| |
Collapse
|