1
|
Wang Y, Wang J, Liu H, Zhang R, Zhang T, Gan X, Huang H, Chen D, Li L. Discovery, Characterization, and Functional Study of a Novel MEF2D CAG Repeat in Duck (Anas platyrhynchos). DNA Cell Biol 2016; 35:398-409. [PMID: 27064738 DOI: 10.1089/dna.2016.3222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Myocyte enhancer transcription factor 2D (MEF2D) is an important transcription factor for promoting the growth and development of muscle. CAG repeats have been found in the coding sequence (CDS) of avian MEF2D; however, their functions remain unknown and require further investigation. Here, we examined the characteristics and functional role of MEF2D CAG repeat in duck. The full-length CDS of duck MEF2D was cloned for the first time, and a novel CAG repeat was identified and located in exon 9. Sequence analysis indicated that the protein domains of duck MEF2D are highly conserved relative to other vertebrates, whereas MEF2D CAG repeats with variable repeat numbers are specific to avian species. Furthermore, sequencing has revealed polymorphisms in MEF2D CAG repeat at both DNA and mRNA levels. Four MEF2D CAG repeat genotypes and 10 MEF2D cDNA variants with different CAG repeat numbers were detected in two duck populations. A t-test showed that the expanded CAG repeat generated significantly longer transcription products (p < 0.05). Association analysis demonstrated positive correlations between the expansion of the CAG repeat and five muscle-related traits. By using protein structure prediction, we suggested that the polymorphisms of the CAG repeat affect protein structures within protein domains. Taken together, these findings reveal that duck MEF2D CAG repeat is a potential functional element with polymorphisms and may cause differences in MEF2D function between duck and other vertebrate species.
Collapse
Affiliation(s)
- Yushi Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Rongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Tao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Xiang Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Huilan Huang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Da Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, People's Republic of China
| |
Collapse
|
2
|
Muntean BS, Martemyanov KA. Association with the Plasma Membrane Is Sufficient for Potentiating Catalytic Activity of Regulators of G Protein Signaling (RGS) Proteins of the R7 Subfamily. J Biol Chem 2016; 291:7195-204. [PMID: 26811338 PMCID: PMC4807299 DOI: 10.1074/jbc.m115.713446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/21/2016] [Indexed: 12/23/2022] Open
Abstract
Regulators of G protein Signaling (RGS) promote deactivation of heterotrimeric G proteins thus controlling the magnitude and kinetics of responses mediated by G protein-coupled receptors (GPCR). In the nervous system, RGS7 and RGS9-2 play essential role in vision, reward processing, and movement control. Both RGS7 and RGS9-2 belong to the R7 subfamily of RGS proteins that form macromolecular complexes with R7-binding protein (R7BP). R7BP targets RGS proteins to the plasma membrane and augments their GTPase-accelerating protein (GAP) activity, ultimately accelerating deactivation of G protein signaling. However, it remains unclear if R7BP serves exclusively as a membrane anchoring subunit or further modulates RGS proteins to increase their GAP activity. To directly answer this question, we utilized a rapidly reversible chemically induced protein dimerization system that enabled us to control RGS localization independent from R7BP in living cells. To monitor kinetics of Gα deactivation, we coupled this strategy with measuring changes in the GAP activity by bioluminescence resonance energy transfer-based assay in a cellular system containing μ-opioid receptor. This approach was used to correlate changes in RGS localization and activity in the presence or absence of R7BP. Strikingly, we observed that RGS activity is augmented by membrane recruitment, in an orientation independent manner with no additional contributions provided by R7BP. These findings argue that the association of R7 RGS proteins with the membrane environment provides a major direct contribution to modulation of their GAP activity.
Collapse
Affiliation(s)
- Brian S Muntean
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Kirill A Martemyanov
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| |
Collapse
|
3
|
Ahlers KE, Chakravarti B, Fisher RA. RGS6 as a Novel Therapeutic Target in CNS Diseases and Cancer. AAPS JOURNAL 2016; 18:560-72. [PMID: 27002730 DOI: 10.1208/s12248-016-9899-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/25/2016] [Indexed: 12/17/2022]
Abstract
Regulator of G protein signaling (RGS) proteins are gatekeepers regulating the cellular responses induced by G protein-coupled receptor (GPCR)-mediated activation of heterotrimeric G proteins. Specifically, RGS proteins determine the magnitude and duration of GPCR signaling by acting as a GTPase-activating protein for Gα subunits, an activity facilitated by their semiconserved RGS domain. The R7 subfamily of RGS proteins is distinguished by two unique domains, DEP/DHEX and GGL, which mediate membrane targeting and stability of these proteins. RGS6, a member of the R7 subfamily, has been shown to specifically modulate Gαi/o protein activity which is critically important in the central nervous system (CNS) for neuronal responses to a wide array of neurotransmitters. As such, RGS6 has been implicated in several CNS pathologies associated with altered neurotransmission, including the following: alcoholism, anxiety/depression, and Parkinson's disease. In addition, unlike other members of the R7 subfamily, RGS6 has been shown to regulate G protein-independent signaling mechanisms which appear to promote both apoptotic and growth-suppressive pathways that are important in its tumor suppressor function in breast and possibly other tissues. Further highlighting the importance of RGS6 as a target in cancer, RGS6 mediates the chemotherapeutic actions of doxorubicin and blocks reticular activating system (Ras)-induced cellular transformation by promoting degradation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) to prevent its silencing of pro-apoptotic and tumor suppressor genes. Together, these findings demonstrate the critical role of RGS6 in regulating both G protein-dependent CNS pathology and G protein-independent cancer pathology implicating RGS6 as a novel therapeutic target.
Collapse
Affiliation(s)
- Katelin E Ahlers
- Department of Pharmacology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2-505 Bowen Science Building, Iowa City, Iowa, 52242, USA
| | - Bandana Chakravarti
- Department of Pharmacology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2-505 Bowen Science Building, Iowa City, Iowa, 52242, USA
| | - Rory A Fisher
- Department of Pharmacology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2-505 Bowen Science Building, Iowa City, Iowa, 52242, USA. .,Department of Internal Medicine, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
4
|
Walker PD, Jarosz PA, Bouhamdan M, MacKenzie RG. Effects of gender on locomotor sensitivity to amphetamine, body weight, and fat mass in regulator of G protein signaling 9 (RGS9) knockout mice. Physiol Behav 2014; 138:305-12. [PMID: 25455864 DOI: 10.1016/j.physbeh.2014.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 06/24/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
Regulator of G-protein signaling (RGS) protein 9-2 is enriched in the striatum where it modulates dopamine and opioid receptor-mediated signaling. RGS9 knockout (KO) mice show increased psychostimulant-induced behavioral sensitization, as well as exhibit higher body weights and greater fat accumulation compared to wild-type (WT) littermates. In the present study, we found gender influences on each of these phenotypic characteristics. Female RGS9 KO mice exhibited greater locomotor sensitization to amphetamine (1.0mg/kg) treatment as compared to male RGS9 KO mice. Male RGS9 KO mice showed increased body weights as compared to male WT littermates, while no such differences were detected in female mice. Quantitative magnetic resonance showed that male RGS9 KO mice accumulated greater fat mass vs. WT littermates at 5months of age. Such observations could not be explained by increased caloric consumption since male and female RGS9 KO mice demonstrated equivalent daily food intake as compared to their respective WT littermates. Although indirect calorimetry methods found decreased oxygen consumption and carbon dioxide production during the 12-hour dark phase in male RGS9 KO vs. WT mice which are indicative of less energy expenditure, male RGS9 KO mice exhibited lower levels of locomotor activity during this period. Genotype had no effect on metabolic activities when KO and WT groups were compared under fasting vs. feeding treatments. In summary, these results highlight the importance of factoring gender into the experimental design since many studies conducted in RGS9 KO mice utilize locomotor activity as a measured outcome.
Collapse
Affiliation(s)
- Paul D Walker
- Department of Anatomy & Cell Biology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | - Mohamad Bouhamdan
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Robert G MacKenzie
- Center for Integrative Metabolic and Endocrine Research, Department of Psychiatry & Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Celver J, Sharma M, Kovoor A. D(2)-Dopamine receptors target regulator of G protein signaling 9-2 to detergent-resistant membrane fractions. J Neurochem 2011; 120:56-69. [PMID: 22035199 DOI: 10.1111/j.1471-4159.2011.07559.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Detergent-resistant membranes (DRM) are thought to contain structures such as lipid rafts that are involved in compartmentalizing cell membranes. We report that the majority of D(2)-dopamine receptors (D(2)R) expressed endogenously in mouse striatum or expressed in immortalized cell-lines is found in DRM. In addition, exogenous co-expression of D(2)R in a cell line shifted the expression of regulator of G protein signaling 9-2 (RGS9-2) into DRM. RGS9-2 is a protein that is highly enriched in the striatum and specifically regulates striatal D(2)R. In the striatum, RGS9-2 is mostly associated with DRMs but when expressed in cell lines, RGS9-2 is present in the soluble cytoplasmic fraction. In contrast, the majority of mu opioid receptors and delta opioid receptors are found in detergent-soluble membrane and there was no shift of RGS9-2 into DRM after co-expression of mu opioid receptor. These data suggest that the targeting of RGS9-2 to DRM in the striatum is mediated by D(2)R and that DRM is involved in the formation of a D(2)R signaling complex. D(2)R-mediated targeting of RGS9-2 to DRM was blocked by the deletion of the RGS9-2 DEP domain or by a point mutation that abolishes the GTPase accelerating protein function of RGS9-2.
Collapse
Affiliation(s)
- Jeremy Celver
- Department of Biomedical and Pharmacological Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | | | | |
Collapse
|
6
|
Rivero G, Gabilondo AM, García-Sevilla JA, La Harpe R, Morentín B, Javier Meana J. Characterization of regulators of G-protein signaling RGS4 and RGS10 proteins in the postmortem human brain. Neurochem Int 2010; 57:722-9. [DOI: 10.1016/j.neuint.2010.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 07/29/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
|
7
|
Kolata S, Light K, Wass CD, Colas-Zelin D, Roy D, Matzel LD. A dopaminergic gene cluster in the prefrontal cortex predicts performance indicative of general intelligence in genetically heterogeneous mice. PLoS One 2010; 5:e14036. [PMID: 21103339 PMCID: PMC2984442 DOI: 10.1371/journal.pone.0014036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/17/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Genetically heterogeneous mice express a trait that is qualitatively and psychometrically analogous to general intelligence in humans, and as in humans, this trait co-varies with the processing efficacy of working memory (including its dependence on selective attention). Dopamine signaling in the prefrontal cortex (PFC) has been established to play a critical role in animals' performance in both working memory and selective attention tasks. Owing to this role of the PFC in the regulation of working memory, here we compared PFC gene expression profiles of 60 genetically diverse CD-1 mice that exhibited a wide range of general learning abilities (i.e., aggregate performance across five diverse learning tasks). METHODOLOGY/PRINCIPAL FINDINGS Animals' general cognitive abilities were first determined based on their aggregate performance across a battery of five diverse learning tasks. With a procedure designed to minimize false positive identifications, analysis of gene expression microarrays (comprised of ≈25,000 genes) identified a small number (<20) of genes that were differentially expressed across animals that exhibited fast and slow aggregate learning abilities. Of these genes, one functional cluster was identified, and this cluster (Darpp-32, Drd1a, and Rgs9) is an established modulator of dopamine signaling. Subsequent quantitative PCR found that expression of these dopaminergic genes plus one vascular gene (Nudt6) were significantly correlated with individual animal's general cognitive performance. CONCLUSIONS/SIGNIFICANCE These results indicate that D1-mediated dopamine signaling in the PFC, possibly through its modulation of working memory, is predictive of general cognitive abilities. Furthermore, these results provide the first direct evidence of specific molecular pathways that might potentially regulate general intelligence.
Collapse
Affiliation(s)
- Stefan Kolata
- Department of Psychology, Rutgers University, Piscataway, New Jersey, United States of America
| | - Kenneth Light
- Department of Psychology, Rutgers University, Piscataway, New Jersey, United States of America
| | - Christopher D. Wass
- Department of Psychology, Rutgers University, Piscataway, New Jersey, United States of America
| | - Danielle Colas-Zelin
- Department of Psychology, Rutgers University, Piscataway, New Jersey, United States of America
| | - Debasri Roy
- Department of Psychology, Rutgers University, Piscataway, New Jersey, United States of America
| | - Louis D. Matzel
- Department of Psychology, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
8
|
Sethakorn N, Yau DM, Dulin NO. Non-canonical functions of RGS proteins. Cell Signal 2010; 22:1274-81. [PMID: 20363320 PMCID: PMC2893250 DOI: 10.1016/j.cellsig.2010.03.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 03/25/2010] [Indexed: 11/23/2022]
Abstract
Regulators of G protein signalling (RGS) proteins are united into a family by the presence of the RGS domain which serves as a GTPase-activating protein (GAP) for various Galpha subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate signalling of numerous G protein-coupled receptors. In addition to the RGS domains, RGS proteins contain diverse regions of various lengths that regulate intracellular localization, GAP activity or receptor selectivity of RGS proteins, often through interaction with other partners. However, it is becoming increasingly appreciated that through these non-RGS regions, RGS proteins can serve non-canonical functions distinct from inactivation of Galpha subunits. This review summarizes the data implicating RGS proteins in the (i) regulation of G protein signalling by non-canonical mechanisms, (ii) regulation of non-G protein signalling, (iii) signal transduction from receptors not coupled to G proteins, (iv) activation of mitogen-activated protein kinases, and (v) non-canonical functions in the nucleus.
Collapse
Affiliation(s)
- Nan Sethakorn
- Department of Medicine, the University of Chicago, 5841 S. Maryland Ave, MC 6076, Chicago, IL 60637, USA
| | - Douglas M. Yau
- Department of Medicine, the University of Chicago, 5841 S. Maryland Ave, MC 6076, Chicago, IL 60637, USA
| | - Nickolai O. Dulin
- Department of Medicine, the University of Chicago, 5841 S. Maryland Ave, MC 6076, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Panicker LM, Zhang JH, Posokhova E, Gastinger MJ, Martemyanov KA, Simonds WF. Nuclear localization of the G protein beta 5/R7-regulator of G protein signaling protein complex is dependent on R7 binding protein. J Neurochem 2010; 113:1101-12. [PMID: 20100282 DOI: 10.1111/j.1471-4159.2010.06616.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neuronally expressed G beta(5) subunit is the most structurally divergent among heterotrimeric G beta isoforms and unique in its ability to heterodimerize with the R7 subfamily of regulator of G protein signaling (RGS) proteins. The complex between G beta(5) and R7-type RGS proteins targets the cell nucleus by an unknown mechanism. Although the nuclear targeting of the G beta(5)/R7-RGS complex is proposed to involve the binding of R7-binding protein (R7BP), this theory is challenged by the observations that endogenous R7BP is palmitoylated, co-localizes strongly with the plasma membrane, and has never been identified in the cytosol or nucleus of native neurons or untreated cultured cells. We show here mutant RGS7 lacking the N-terminal Disheveled, EGL-10, Pleckstrin homology domain is expressed in transfected cells but, unlike wild-type RGS7, is excluded from the cell nucleus. As the Disheveled, EGL-10, Pleckstrin homology domain is essential for R7BP binding to RGS7, we studied the subcellular localization of G beta(5) in primary neurons and brain from mice deficient in R7BP. The level of endogenous nuclear G beta(5) and RGS7 in neurons and brains from R7BP knockout mice is reduced by 50-70%. These results suggest that R7BP contributes significantly to the nuclear localization of endogenous G beta(5)/R7-RGS complex in brain.
Collapse
Affiliation(s)
- Leelamma M Panicker
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| | | | | | | | | | | |
Collapse
|
10
|
Mancuso JJ, Qian Y, Long C, Wu GY, Wensel TG. Distribution of RGS9-2 in neurons of the mouse striatum. J Neurochem 2009; 112:651-61. [PMID: 19912469 DOI: 10.1111/j.1471-4159.2009.06488.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Regulators of G protein signaling (RGS) proteins negatively modulate G protein-coupled receptor (GPCR) signaling activity by accelerating G protein hydrolysis of GTP, hastening pathway shutoff. A wealth of data from cell culture experiments using exogenously expressed proteins indicates that RGS9 and other RGS proteins have the potential to down-regulate a significant number of pathways. We have used an array of biochemical and tissue staining techniques to examine the subcellular localization and membrane binding characteristics of endogenous RGS9-2 and known binding partners in rodent striatum and tissue homogenates. A small fraction of RGS9-2 is present in the soluble cytoplasmic fraction, whereas the majority is present primarily associated with the plasma membrane and structures insoluble in non-ionic detergents that efficiently extract the vast majority of its binding partners, R7BP and G(beta5). It is specifically excluded from the cell nucleus in mouse striatal tissue. In cultured striatal neurons, RGS9-2 is found at extrasynaptic sites primarily along the dendritic shaft near the spine neck. Heterogeneity in RGS9-2 detergent solubility along with its unique subcellular localization suggests that its mechanism of membrane anchoring and localization is complex and likely involves additional proteins beside R7BP. An important nuclear function for RGS9-2 seems unlikely.
Collapse
Affiliation(s)
- James J Mancuso
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
11
|
Slepak VZ. Structure, function, and localization of Gβ5-RGS complexes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:157-203. [PMID: 20374716 DOI: 10.1016/s1877-1173(09)86006-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Members of the R7 subfamily of regulator of G protein signaling (RGS) proteins (RGS6, 7, 9, and 11) exist as heterodimers with the G protein beta subunit Gβ5. These protein complexes are only found in neurons and are defined by the presence of three domains: DEP/DHEX, Gβ5/GGL, and RGS. This article summarizes published work in the following areas: (1) the functional significance of structural organization of Gβ5-R7 complexes, (2) regional distribution of Gβ5-R7 in the nervous system and regulation of R7 family expression, (3) subcellular localization of Gβ5-R7 complexes, and (4) novel binding partners of Gβ5-R7 proteins. The review points out some contradictions between observations made by different research groups and highlights the importance of using alternative experimental approaches to obtain conclusive information about Gβ5-R7 function in vivo.
Collapse
Affiliation(s)
- Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology and the Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
12
|
The R7 RGS protein family: multi-subunit regulators of neuronal G protein signaling. Cell Biochem Biophys 2009; 54:33-46. [PMID: 19521673 DOI: 10.1007/s12013-009-9052-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/27/2009] [Indexed: 01/09/2023]
Abstract
G protein-coupled receptor signaling pathways mediate the transmission of signals from the extracellular environment to the generation of cellular responses, a process that is critically important for neurons and neurotransmitter action. The ability to promptly respond to rapidly changing stimulation requires timely inactivation of G proteins, a process controlled by a family of specialized proteins known as regulators of G protein signaling (RGS). The R7 group of RGS proteins (R7 RGS) has received special attention due to their pivotal roles in the regulation of a range of crucial neuronal processes such as vision, motor control, reward behavior, and nociception in mammals. Four proteins in this group, RGS6, RGS7, RGS9, and RGS11, share a common molecular organization of three modules: (i) the catalytic RGS domain, (ii) a GGL domain that recruits G beta(5), an outlying member of the G protein beta subunit family, and (iii) a DEP/DHEX domain that mediates interactions with the membrane anchor proteins R7BP and R9AP. As heterotrimeric complexes, R7 RGS proteins not only associate with and regulate a number of G protein signaling pathway components, but have also been found to form complexes with proteins that are not traditionally associated with G protein signaling. This review summarizes our current understanding of the biology of the R7 RGS complexes including their structure/functional organization, protein-protein interactions, and physiological roles.
Collapse
|
13
|
Chapter 7 Biology and Functions of the RGS9 Isoforms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:205-27. [DOI: 10.1016/s1877-1173(09)86007-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Huang J, Fisher RA. Chapter 5 Nuclear Trafficking of Regulator of G Protein Signaling Proteins and Their Roles in the Nucleus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:115-56. [DOI: 10.1016/s1877-1173(09)86005-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Jayaraman M, Zhou H, Jia L, Cain MD, Blumer KJ. R9AP and R7BP: traffic cops for the RGS7 family in phototransduction and neuronal GPCR signaling. Trends Pharmacol Sci 2008; 30:17-24. [PMID: 19042037 DOI: 10.1016/j.tips.2008.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/07/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
Abstract
RGS (regulator of G protein signaling) proteins have emerged as crucial regulators, effectors and integrators in G-protein-coupled receptor (GPCR) signaling networks. Many RGS proteins accelerate GTP hydrolysis by Galpha subunits, thereby regulating G protein activity, whereas certain RGS proteins also transduce Galpha signals to downstream targets. Particularly intriguing are members of the RGS7 (R7) family (RGS6, RGS7, RGS9 and RGS11), which heterodimerize with Gbeta5. In Caenorhabditis elegans, R7-Gbeta5 heterodimers regulate synaptic transmission, anesthetic action and behavior. In vertebrates, they regulate vision, postnatal development, working memory and the action of psychostimulants or morphine. Here we highlight R9AP and R7BP, a related pair of recently identified SNARE-like R7-family binding proteins, which regulate intracellular trafficking, expression and function of R7-Gbeta5 heterodimers in retina and brain. Emerging understanding of R7BP and R9AP promises to provide new insights into neuronal GPCR signaling mechanisms relevant to the causes and treatment of neurological disorders.
Collapse
Affiliation(s)
- Muralidharan Jayaraman
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
16
|
MPTP administration in mice changes the ratio of splice isoforms of fosB and rgs9. Brain Res 2007; 1182:1-10. [PMID: 17936734 DOI: 10.1016/j.brainres.2007.08.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 08/20/2007] [Accepted: 08/30/2007] [Indexed: 11/22/2022]
Abstract
Most cases of Parkinson's disease (PD) are sporadic, suggesting an environmental influence on individuals affected by this neurodegenerative disorder. Environmental stresses often lead to changes in the regulation of splicing of pre-mRNA transcripts and this may lead to the pathogenesis of the disease. A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/probenecid mouse model was used to examine the changes in the splicing of the fosB and rgs9 transcripts. The ratio of DeltafosB/fosB transcript was decreased in the substantia nigra and unchanged in the striatum after acute MPTP treatment. The DeltafosB/fosB transcript ratio decreased initially and then increased in the striatum of chronically MPTP-treated animals due to different degrees of reduction for the splice variants over time, whereas the ratio was unchanged in the substantia nigra. The ratio of rgs9-2/rgs9-1 transcript decreased in the substantia nigra of mice after acute MPTP treatment and increased temporarily in the striatum after chronic MPTP treatment. There was an increase in the DeltaFosB/FosB and RGS9-2/RGS9-1 protein ratios 3 weeks and 3 days post-treatment, respectively, in chronically treated mice. The data indicate that the pattern of splice isoforms of fosB and rgs9 reflects the brain's immediate and long-term responses to the physiological stress associated with Parkinsonism.
Collapse
|
17
|
Chen DM, Xiao L, Cai X, Zeng R, Zhu XZ. Involvement of multitargets in paeoniflorin-induced preconditioning. J Pharmacol Exp Ther 2006; 319:165-80. [PMID: 16840647 DOI: 10.1124/jpet.106.104380] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paeoniflorin (PF) is the principal component of Paeoniae radix prescribed in traditional Chinese medicine. The delayed neuroprotection induced by PF preconditioning and its underlying mechanisms were investigated in rat middle cerebral artery occlusion (MCAO) and reperfusion model. At a dosage of 20 or 40 mg/kg, PF preconditioning 48 h before MCAO followed by 24-h reperfusion significantly reduced the mortality and infarct volume and reversed the neurological deficits caused by ischemia. Likewise, the ameliorative effects on mortality, infarct size, and neurological impairment induced by MCAO emerged as well when PF was administered 24 h, 48 h, or 5 days before MCAO at the dose of 20 mg/kg. Furthermore, comparative proteomics analysis was adopted to identify the differentially expressed proteins induced by PF preconditioning itself. The relative levels of 42 proteins were altered after PF preconditioning, among which 20 were elevated and 22 reduced. In summary, A(1) receptor-regulator of G protein signaling-K(ATP) signaling, arachidonic acid cascade, nitric oxide system, markers of neuronal damage, mitochondrial damage-related molecules, and the mitogen-activated protein kinase and nuclear factor-kappaB pathway are associated with the mechanisms of PF preconditioning.
Collapse
Affiliation(s)
- Dong-Mei Chen
- Department of Pharmacology, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong Shanghai 201203, China
| | | | | | | | | |
Collapse
|
18
|
Bouhamdan M, Yan HD, Yan XH, Bannon MJ, Andrade R. Brain-specific regulator of G-protein signaling 9-2 selectively interacts with alpha-actinin-2 to regulate calcium-dependent inactivation of NMDA receptors. J Neurosci 2006; 26:2522-30. [PMID: 16510730 PMCID: PMC6793664 DOI: 10.1523/jneurosci.4083-05.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Regulator of G-protein signaling 9-1 (RGS9-1) and RGS9-2 are highly related RGS proteins with distinctive C termini arising from alternative splicing of RGS9 gene transcripts. RGS9-1 is expressed in photoreceptors where it functions as a regulator of transducin. In contrast, RGS9-2 is abundantly expressed in the brain, especially in basal ganglia, where its specific function remains poorly understood. To gain insight into the function of RGS9-2, we screened a human cDNA library for potential interacting proteins. This screen identified a strong interaction between RGS9-2 and alpha-actinin-2, suggesting a possible functional relationship between these proteins. Consistent with this idea, RGS9-2 and alpha-actinin-2 coimmunoprecipitated after coexpression in human embryonic kidney 293 (HEK-293) cells. Furthermore, endogenous RGS9-2 and alpha-actinin-2 could also be coimmunoprecipitated from extracts of rat striatum, an area highly enriched in both these proteins. These results supported the idea that RGS9-2 and alpha-actinin-2 could act in concert in central neurons. Like alpha-actinin-2, RGS9-2 coimmunoprecipitated NMDA receptors from striatal extracts, suggesting an interaction between RGS9-2, alpha-actinin-2, and NMDA receptors. Previous studies have shown that alpha-actinin mediates calcium-dependent inactivation of NMDA receptors. In HEK-293 cells expressing NMDA receptors, expression of RGS9-2 significantly modulated this form of NMDA receptor inactivation. Furthermore, this modulation showed remarkable preference for NMDA receptor inactivation mediated by alpha-actinin-2. Using a series of deletion constructs, we localized this effect to the RGS domain of the protein. These results identify an unexpected functional interaction between RGS9-2 and alpha-actinin-2 and suggest a potential novel role for RGS9-2 in the regulation of NMDA receptor function.
Collapse
|
19
|
Nunn C, Mao H, Chidiac P, Albert PR. RGS17/RGSZ2 and the RZ/A family of regulators of G-protein signaling. Semin Cell Dev Biol 2006; 17:390-9. [PMID: 16765607 DOI: 10.1016/j.semcdb.2006.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Regulators of G-protein signaling (RGS proteins) comprise over 20 different proteins that have been classified into subfamilies on the basis of structural homology. The RZ/A family includes RGSZ2/RGS17 (the most recently discovered member of this family), GAIP/RGS19, RGSZ1/RGS20, and the RGSZ1 variant Ret-RGS. The RGS proteins are GTPase activating proteins (GAPs) that turn off G-proteins and thus negatively regulate the signaling of G-protein coupled receptors (GPCRs). In addition, some RZ/A family RGS proteins are able to modify signaling through interactions with adapter proteins (such as GIPC and GIPN). The RZ/A proteins have a simple structure that includes a conserved amino-terminal cysteine string motif, RGS box and short carboxyl-terminal, which confer GAP activity (RGS box) and the ability to undergo covalent modification and interact with other proteins (amino-terminal). This review focuses on RGS17 and its RZ/A sibling proteins and discusses the similarities and differences among these proteins in terms of their palmitoylation, phosphorylation, intracellular localization and interactions with GPCRs and adapter proteins. The specificity of these RGS protein for different Galpha proteins and receptors, and the consequences for signaling are discussed. The tissue and brain distribution, and the evolving understanding of the roles of this family of RGS proteins in receptor signaling and brain function are highlighted.
Collapse
Affiliation(s)
- Caroline Nunn
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ont., Canada, N6A 5C1
| | | | | | | |
Collapse
|
20
|
Song JH, Waataja JJ, Martemyanov KA. Subcellular targeting of RGS9-2 is controlled by multiple molecular determinants on its membrane anchor, R7BP. J Biol Chem 2006; 281:15361-9. [PMID: 16574655 DOI: 10.1074/jbc.m600749200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS9-2, a member of the R7 regulators of G protein signaling (RGS) protein family of neuronal RGS, is a critical regulator of G protein signaling. In striatal neurons, RGS9-2 is tightly associated with a novel palmitoylated protein, R7BP (R7 family binding protein). Here we report that R7BP acts to target the localization of RGS9-2 to the plasma membrane. Examination of the subcellular distribution in native striatal neurons revealed that both R7BP and RGS9-2 are almost entirely associated with the neuronal membranes. In addition to the plasma membrane, a large portion of RGS9-2 was found in the neuronal specializations, the postsynaptic densities, where it forms complexes with R7BP and its constitutive partner Gbeta5. Using site-directed mutagenesis we found that the molecular determinants that specify the subcellular targeting of RGS9-2.Gbeta5.R7BP complex are contained within the 21 C-terminal amino acids of R7BP. This function of the C terminus was found to require the synergistic contributions of its two distinct elements, a polybasic motif and palmitoylated cysteines, which when combined are sufficient for directing the intracellular localization of the constituent protein. In differentiated neurons, the C-terminal targeting motif of R7BP was found to be essential for mediating its postsynaptic localization. In addition to the plasma membrane targeting elements, we identified two functional nuclear localization sequences that can mediate the import of R7BP into the nucleus upon depalmitoylation. These findings provide a mechanism for the subcellular targeting of RGS9-2 in neurons.
Collapse
Affiliation(s)
- Joseph H Song
- Department of Pharmacology, University of Minnesota, and Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
21
|
Burchett SA. Psychostimulants, madness, memory... and RGS proteins? Neuromolecular Med 2005; 7:101-27. [PMID: 16052041 DOI: 10.1385/nmm:7:1-2:101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 01/29/2005] [Indexed: 01/25/2023]
Abstract
The ingestion of psychostimulant drugs by humans imparts a profound sense of alertness and well-being. However, repeated use of these drugs in some individuals will induce a physiological state of dependence, characterized by compulsive behavior directed toward the acquisition and ingestion of the drug, at the expense of customary social obligations. Drugs of abuse and many other types of experiences share the ability to alter the morphology and density of neuronal dendrites and spines. Dopaminergic modulation of corticostriatal synaptic plasticity is necessary for these morphological changes. Changes in the density of dendritic spines on striatal neurons may underlie the development of this pathological pattern of drug-seeking behavior. Identifying proteins that regulate dopaminergic signaling are of value. A family of proteins, the regulators of G protein signaling (RGS) proteins, which regulate signaling from G protein-coupled receptors, such as dopamine and glutamate, may be important in this regard. By regulating corticostriatal synaptic plasticity, RGS proteins can influence presynaptic activity, neurotransmitter release, and postsynaptic depolarization and thereby play a key role in the development of this plasticity. Pharmacological agents that modify RGS activity in humans could be efficacious in ameliorating the dependence on psychostimulant drugs.
Collapse
Affiliation(s)
- Scott A Burchett
- University of California at San Francisco, Department of Psychiatry, Langley-Porter Psychiatric Institute, Nina Ireland Laboratory of Developmental Neurobiology, CA, USA.
| |
Collapse
|
22
|
Hepler JR. R7BP: A Surprising New Link Between G Proteins, RGS Proteins, and Nuclear Signaling in the Brain. Sci Signal 2005; 2005:pe38. [PMID: 16046666 DOI: 10.1126/stke.2942005pe38] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The regulators of G protein signaling (RGS proteins) bind directly to G protein alpha (Galpha) subunits in brain and other tissues to determine the strength, duration, and fidelity of neurotransmitter receptor signaling. A recent study shows, quite unexpectedly, that one class of RGS proteins [the R7 subfamily bound to Gbeta(5) (R7-Gbeta(5))] shuttles between the plasma membrane and the nucleus with assistance from a novel shuttle protein, R7BP. R7BP binds directly to R7-Gbeta(5) and the protein complex is tethered to the plasma membrane by addition of a lipid, palmitate, on R7BP. Removal of palmitate results in the translocation of the R7BP-R7-Gbeta(5) complex to the nucleus, presumably for nontraditional signaling functions. These findings suggest an entirely novel mechanism for regulating neurotransmitter signaling. That is, R7BP transduces signals directly from receptors and G proteins at the plasma membrane to the nucleus, and this plasma membrane-nuclear shuttling is controlled by reversible palmitoylation of R7BP.
Collapse
Affiliation(s)
- John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322-3090, USA.
| |
Collapse
|
23
|
Drenan RM, Doupnik CA, Boyle MP, Muglia LJ, Huettner JE, Linder ME, Blumer KJ. Palmitoylation regulates plasma membrane-nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family. ACTA ACUST UNITED AC 2005; 169:623-33. [PMID: 15897264 PMCID: PMC2171691 DOI: 10.1083/jcb.200502007] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RGS7 (R7) family of RGS proteins bound to the divergent Gβ subunit Gβ5 is a crucial regulator of G protein–coupled receptor (GPCR) signaling in the visual and nervous systems. Here, we identify R7BP, a novel neuronally expressed protein that binds R7–Gβ5 complexes and shuttles them between the plasma membrane and nucleus. Regional expression of R7BP, Gβ5, and R7 isoforms in brain is highly coincident. R7BP is palmitoylated near its COOH terminus, which targets the protein to the plasma membrane. Depalmitoylation of R7BP translocates R7BP–R7–Gβ5 complexes from the plasma membrane to the nucleus. Compared with nonpalmitoylated R7BP, palmitoylated R7BP greatly augments the ability of RGS7 to attenuate GPCR-mediated G protein–regulated inward rectifying potassium channel activation. Thus, by controlling plasma membrane nuclear–shuttling of R7BP–R7–Gβ5 complexes, reversible palmitoylation of R7BP provides a novel mechanism that regulates GPCR signaling and potentially transduces signals directly from the plasma membrane to the nucleus.
Collapse
Affiliation(s)
- Ryan M Drenan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Martemyanov KA, Yoo PJ, Skiba NP, Arshavsky VY. R7BP, a novel neuronal protein interacting with RGS proteins of the R7 family. J Biol Chem 2005; 280:5133-6. [PMID: 15632198 DOI: 10.1074/jbc.c400596200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The R7 subfamily of the regulators of G protein signaling (RGS) proteins is represented by four members broadly expressed in the mammalian nervous system. Here we report that in the brain all four R7 proteins form tight complexes with a previously unidentified protein, which we call the R7-binding protein or R7BP. We initially identified R7BP as a protein co-precipitating with the R7 protein, RGS9, from extracts obtained from the striatal region of the brain. We further showed that R7BP forms a tight complex with RGS9 in vitro and that this binding occurs via the N-terminal DEP domain of RGS9. R7BP is expressed throughout the entire central nervous system but not in any of the tested non-neuronal tissues. All four R7 RGS proteins co-precipitate with R7BP from brain extracts and recombinant R7 proteins bind recombinant R7BP with high efficiency. The closest homolog of R7BP is R9AP which was previously found to interact with RGS9 in photoreceptors. Both R7BP and R9AP are related to the syntaxin subfamily of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins involved in vesicular trafficking and exocytosis. In photoreceptors R9AP regulates several critical properties of RGS9 including its intracellular targeting, stability and catalytic activity. This suggests that R7BP interactions with R7 proteins in the brain may also bear major functional significance.
Collapse
Affiliation(s)
- Kirill A Martemyanov
- Department of Ophthalmology, Harvard Medical School and the Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA
| | | | | | | |
Collapse
|
25
|
Cho H, Kim DU, Kehrl JH. RGS14 is a centrosomal and nuclear cytoplasmic shuttling protein that traffics to promyelocytic leukemia nuclear bodies following heat shock. J Biol Chem 2004; 280:805-14. [PMID: 15520006 DOI: 10.1074/jbc.m408163200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
RGS14, a member of the regulator of G-protein signaling (RGS) protein family, possesses an N-terminal RGS domain, two Raf-like Ras-binding domains, and a GoLoco motif, which has GDP dissociation inhibitor activity. In this study we show that unique among the known mammalian RGS proteins, RGS14 localizes in centrosomes. Its first Ras-binding domain is sufficient to target RGS14 to centrosomes. RGS14 also shuttles between the cytoplasm and nucleus, and its nuclear export depends on the CRM-1 nuclear export receptor. Mutation of a nuclear export signal or treatment with leptomycin B causes nuclear accumulation of RGS14 and its association with promyelocytic leukemia protein nuclear bodies. Furthermore, a point mutant defective in nuclear export fails to target to centrosomes, suggesting that nuclear cytoplasmic shuttling is necessary for its proper localization. Mild heat stress, but not proteotoxic or transcription-linked stresses, re-localizes the RGS14 from the cytoplasm to promyelocytic leukemia nuclear bodies. Expression of RGS14, but not point mutants that disrupt the functional activity of its RGS domain or GoLoco motif, enhances the reporter gene activity. The multifunctional domains and the dynamic subcellular localization of RGS14 implicate it in a diverse set of cellular processes including centrosome and nuclear functions and stress-induced signaling pathways.
Collapse
Affiliation(s)
- Hyeseon Cho
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland 20892-1876, USA
| | | | | |
Collapse
|
26
|
Waugh JL, Lou AC, Eisch AJ, Monteggia LM, Muly EC, Gold SJ. Regional, cellular, and subcellular localization of RGS10 in rodent brain. J Comp Neurol 2004; 481:299-313. [PMID: 15593368 DOI: 10.1002/cne.20372] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The regulator of G protein signaling type 10 (RGS10) modulates Galphai/o signaling by means of its GTPase accelerating activity and is abundantly expressed in brain and in immune tissues. To elucidate RGS10 function in the nervous system, we mapped RGS10 protein in rat and mouse brain using light microscopic (LM) and electron microscopic (EM) immunohistochemical techniques. The LM showed that RGS10-like immunoreactivity (LIR) labels all cellular subcompartments of neurons and microglia, including their nuclei. There were several differences between RGS10-LIR distributions in rat and mouse, the most striking of which were the far denser immunoreactivity in rat dentate gyrus and dorsal raphe. The EM analysis corroborated and extended our findings from LM. Thus, EM confirmed the presence of dense RGS10-LIR in the euchromatin compartment of nuclei. The EM analysis also resolved dense staining on terminals at symmetric synapses onto pyramidal cell somata. Dual immunofluorescence showed that forebrain interneurons densely labeled with RGS10-LIR partially colocalized with parvalbumin-LIR. Dual-labeling histochemistry in caudoputamen demonstrated that densely labeled striatal cells were biased to the indirect-projecting output pathway. Dual-labeling immunofluorescence also showed that densely labeled RGS10-LIR cells in the dentate gyrus subgranular zone were not proliferating but that newly born cells could differentiate to express RGS10-LIR. Taken together, these data support a role for RGS10 in diverse processes that include modulation of pre- and postsynaptic G-protein signaling. Moreover, enrichment of RGS10 in transcriptionally active regions of the nucleus suggests an unforeseen role of RGS10 in modulating gene expression.
Collapse
Affiliation(s)
- Jeff L Waugh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA
| | | | | | | | | | | |
Collapse
|