1
|
Navrátilová A, Kovár M, Kopčeková J, Mrázová J, Trakovická A, Požgajová M. Protective effect of Aronia melanocarpa juice against acrylamide-induced cellular toxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:139-149. [PMID: 36734814 DOI: 10.1080/03601234.2023.2172287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Acrylamide (AA) a widely used industrial chemical is also formed during food processing by the Maillard reaction, which makes its exposure to humans almost unavoidable. In this study, we used Schizosaccharomyces pombe as a model organism to investigate AA toxicity (10 or 20 mM concentration) in eukaryotes. In S. pombe, AA delays cell growth causes oxidative stress by enhancement of ROS production and triggers excitement of the antioxidant defence system resulting in the division arrest. Aronia fruit contains a variety of health-promoting substances with considerable antioxidant potential. Therefore, Aronia juice supplementation was tested to evaluate its protective effect against AA-derived perturbations of the organism. Cell treatment with several Aronia juice concentrations ranging from 0 to 2% revealed the best protective effect of 1 or 2% Aronia juice solutions. Both chosen Aronia juice concentrations alleviated AA toxicity through the improvement of the antioxidant cell capacity and metabolic activity by their strong ROS scavenging property. Efficiency of Aronia juice cell protection is dose dependent as the 2% solution led to significantly higher cellular defence compared with 1%. Due to the high similarity of biological processes of S. pombe with higher eukaryotes, the protective effect of Aronia juice against AA toxicity might also apply to higher organisms.
Collapse
Affiliation(s)
- Alica Navrátilová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Marek Kovár
- Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Jana Kopčeková
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Jana Mrázová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Anna Trakovická
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
2
|
Todorova A, Todorova T. Apricot kernels' extract and amygdalin alter bleomycin-induced Ty1 retrotransposition, mitotic gene conversion in the trp-5 locus and reverse point mutations in ilv1-92 allele in Saccharomyces cerevisiae. Arch Microbiol 2022; 204:542. [PMID: 35932430 DOI: 10.1007/s00203-022-03155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
The present study aims to analyze the effect of apricot kernels' extract (AKE) and amygdalin (AMY) on bleomycin-induced genetic alternations. Five endpoints were analyzed: cell survival, Ty1 retrotransposition, mitotic gene conversion in the trp-5 locus, reverse point mutations in ilv1-92 allele, and mitotic crossing-over in the ade2 locus. The present work provides the first experimental evidence that bleomycin induces Ty1 retrotransposition in Saccharomyces cerevisiae. New data is obtained that the degree of DNA protection of AMY and AKE depends on the studied genetic event. AKE has been found to provide significant protection against bleomycin-induced Ty1 retrotransposition due to better-expressed antioxidant potential. On the other side, AMY better-expressed protection against bleomycin-induced mitotic gene conversion and reverse mutations may be attributed to the activation of the repair enzymes.
Collapse
Affiliation(s)
- Atanaska Todorova
- Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tsankov Blvd, 1164, Sofia, Bulgaria
| | - Teodora Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113, Sofia, Bulgaria.
| |
Collapse
|
3
|
Odoh CK, Guo X, Arnone JT, Wang X, Zhao ZK. The role of NAD and NAD precursors on longevity and lifespan modulation in the budding yeast, Saccharomyces cerevisiae. Biogerontology 2022; 23:169-199. [PMID: 35260986 PMCID: PMC8904166 DOI: 10.1007/s10522-022-09958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
Molecular causes of aging and longevity interventions have witnessed an upsurge in the last decade. The resurgent interests in the application of small molecules as potential geroprotectors and/or pharmacogenomics point to nicotinamide adenine dinucleotide (NAD) and its precursors, nicotinamide riboside, nicotinamide mononucleotide, nicotinamide, and nicotinic acid as potentially intriguing molecules. Upon supplementation, these compounds have shown to ameliorate aging related conditions and possibly prevent death in model organisms. Besides being a molecule essential in all living cells, our understanding of the mechanism of NAD metabolism and its regulation remain incomplete owing to its omnipresent nature. Here we discuss recent advances and techniques in the study of chronological lifespan (CLS) and replicative lifespan (RLS) in the model unicellular organism Saccharomyces cerevisiae. We then follow with the mechanism and biology of NAD precursors and their roles in aging and longevity. Finally, we review potential biotechnological applications through engineering of microbial lifespan, and laid perspective on the promising candidature of alternative redox compounds for extending lifespan.
Collapse
Affiliation(s)
- Chuks Kenneth Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaojia Guo
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - James T Arnone
- Department of Biology, William Paterson University, Wayne, NJ, 07470, USA
| | - Xueying Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
| |
Collapse
|
4
|
Jeong JH, Kim SH, Kim J. CaBir1 functions as an inhibitor-of-apoptosis and affects caspase-like activitiy in Candida albicans. Fungal Genet Biol 2021; 154:103600. [PMID: 34197920 DOI: 10.1016/j.fgb.2021.103600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
CaMca1 is the only metacaspase in Candida albicans, which shows structural homology to the mammalian caspases. CaMca1 consists of the caspase domain, the P20 and P10 regions, and the conserved catalytic histidine-cysteine dyad that is required for executing apoptosis in C. albicans. However, little is known about the proteolytic processing of CaMca1 or its activation under apoptosis-inducing conditions. To understand the regulation of this process, we characterized CaBir1 which is the single IAP (inhibitor-of-apoptosis protein) in C. albicans. IAPs are a family of proteins whose members all harbor a BIR (baculovirus IAP repeat) domain and negatively regulate apoptosis by inhibiting caspases. We found that the Cabir1/Cabir1 deletion mutant exhibited increased apoptotic phenotypes, such as ROS accumulation, nuclear segmentation, and cell survival, under apoptosis-inducing conditions. Examination of CaMca1 cleavage patterns in response to various apoptotic stresses revealed that these cleavages were stress-specific and dependent on the catalytic histidine-cysteine residues of CaMca1. The Cabir1/Cabir1 mutation was not associated with altered CaMca1 processing with or without apoptotic stimuli, but the Cabir1/Cabir1 mutant exhibited significantly increased caspase-like activities. These results suggest that CaBir1 acts as an apoptosis inhibitor by regulating caspase-like activity, but not CaMca1 processing.
Collapse
Affiliation(s)
- Jeong-Hoon Jeong
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Se Hyeon Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jinmi Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
5
|
Chen L, Ma Y, Peng M, Chen W, Xia H, Zhao J, Zhang Y, Fan Z, Xing X, Li H. Analysis of Apoptosis-Related Genes Reveals that Apoptosis Functions in Conidiation and Pathogenesis of Fusarium pseudograminearum. mSphere 2021; 6:e01140-20. [PMID: 33408234 PMCID: PMC7845595 DOI: 10.1128/msphere.01140-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023] Open
Abstract
Apoptosis, a type of programmed cell death, plays crucial roles in various physiological processes, from development to adaptive responses. Key features of apoptosis have been verified in various fungal microbes but not yet in Fusarium species. Here, we identified 19 apoptosis-related genes in Fusarium pseudograminearum using a genome-wide survey. Expression profile analysis revealed that several apoptosis-related genes were significantly increased during conidiation and infection stages. Among these is FpBIR1, with two BIR (baculovirus inhibitor-of-apoptosis protein repeat) domains at the N-terminal end of the protein, a homolog of Saccharomyces cerevisiae BIR1, which is a unique apoptosis inhibitor. FpNUC1 is the ortholog of S. cerevisiae NUC1, which triggers AIF1- or YCA1-independent apoptosis. The functions of these two proteins were assessed by creating Δfpbir1 and Δfpnuc1 mutants via targeted gene deletion. The Δfpbir1 mutant had more cells with nuclear fragmentation and exhibited reduced conidiation, conidial formation, and infectivity. Correspondingly, the Δfpnuc1 mutant contained multiple nuclei, produced thicker and more branched hyphae, was reduced in conidiation, and exhibited faster conidial formation and higher infection rates. Taken together, our results indicate that the apoptosis-related genes FpBIR1 and FpNUC1 function in conidiation, conidial germination, and infection by F. pseudograminearumIMPORTANCE The plant-pathogenic fungus F. pseudograminearum is the causal agent of Fusarium crown rot (FCR) in wheat and barley, resulting in substantial yield losses worldwide. Particularly, in the Huanghuai wheat-growing region of China, F. pseudograminearum was reported as the dominant Fusarium species in FCR infections. Apoptosis is an evolutionarily conserved mechanism in eukaryotes, playing crucial roles in development and cell responses to biotic and abiotic stresses. However, few reports on apoptosis in plant fungal pathogens have been published. In this study, we identified 19 conserved apoptosis-related genes in F. pseudograminearum, several of which were significantly increased during conidiation and infection stages. Potential apoptosis functions were assessed by deletion of the putative apoptosis inhibitor gene FpBIR1 and apoptosis trigger gene FpNUC1 in F. pseudograminearum The FpBIR1 deletion mutant exhibited defects in conidial germination and pathogenicity, whereas the FpNUC1 deletion mutant experienced faster conidial formation and higher infection rates. Apoptosis appears to negatively regulate the conidial germination and pathogenicity of F. pseudograminearum To our knowledge, this study is the first report of apoptosis contributing to infection-related morphogenesis and pathogenesis in F. pseudograminearum.
Collapse
Affiliation(s)
- Linlin Chen
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuming Ma
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengya Peng
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wenbo Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Huiqing Xia
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jingya Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yake Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zhuo Fan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiaoping Xing
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
6
|
IAP-Mediated Protein Ubiquitination in Regulating Cell Signaling. Cells 2020; 9:cells9051118. [PMID: 32365919 PMCID: PMC7290580 DOI: 10.3390/cells9051118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, the E3-ubiquitine ligases from IAP (Inhibitor of Apoptosis) family have emerged as potent regulators of immune response. In immune cells, they control signaling pathways driving differentiation and inflammation in response to stimulation of tumor necrosis factor receptor (TNFR) family, pattern-recognition receptors (PRRs), and some cytokine receptors. They are able to control the activity, the cellular fate, or the stability of actors of signaling pathways, acting at different levels from components of receptor-associated multiprotein complexes to signaling effectors and transcription factors, as well as cytoskeleton regulators. Much less is known about ubiquitination substrates involved in non-immune signaling pathways. This review aimed to present IAP ubiquitination substrates and the role of IAP-mediated ubiquitination in regulating signaling pathways.
Collapse
|
7
|
Aliyu H, Gorte O, Zhou X, Neumann A, Ochsenreither K. In silico Proteomic Analysis Provides Insights Into Phylogenomics and Plant Biomass Deconstruction Potentials of the Tremelalles. Front Bioeng Biotechnol 2020; 8:226. [PMID: 32318549 PMCID: PMC7147457 DOI: 10.3389/fbioe.2020.00226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/05/2020] [Indexed: 01/27/2023] Open
Abstract
Basidiomycetes populate a wide range of ecological niches but unlike ascomycetes, their capabilities to decay plant polymers and their potential for biotechnological approaches receive less attention. Particularly, identification and isolation of CAZymes is of biotechnological relevance and has the potential to improve the cache of currently available commercial enzyme cocktails toward enhanced plant biomass utilization. The order Tremellales comprises phylogenetically diverse fungi living as human pathogens, mycoparasites, saprophytes or associated with insects. Here, we have employed comparative genomics approaches to highlight the phylogenomic relationships among thirty-five Tremellales and to identify putative enzymes of biotechnological interest encoded on their genomes. Evaluation of the predicted proteomes of the thirty-five Tremellales revealed 6,918 putative carbohydrate-active enzymes (CAZYmes) and 7,066 peptidases. Two soil isolates, Saitozyma podzolica DSM 27192 and Cryptococcus sp. JCM 24511, show higher numbers harboring an average of 317 compared to a range of 267-121 CAZYmes for the rest of the strains. Similarly, the proteomes of the two soil isolates along with two plant associated strains contain higher number of peptidases sharing an average of 234 peptidases compared to a range of 226-167 for the rest of the strains. Despite these huge differences and the apparent enrichment of these enzymes among the soil isolates, the data revealed a diversity of the various enzyme families that does not reflect specific habitat type. Growth experiment on various carbohydrates to validate the predictions provides support for this view. Overall, the data indicates that the Tremellales could serve as a rich source of both CAZYmes and peptidases with wide range of potential biotechnological relevance.
Collapse
Affiliation(s)
- Habibu Aliyu
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Olga Gorte
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Xinhai Zhou
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Anke Neumann
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
8
|
Baghban R, Farajnia S, Rajabibazl M, Ghasemi Y, Mafi A, Hoseinpoor R, Rahbarnia L, Aria M. Yeast Expression Systems: Overview and Recent Advances. Mol Biotechnol 2019; 61:365-384. [PMID: 30805909 DOI: 10.1007/s12033-019-00164-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yeasts are outstanding hosts for the production of functional recombinant proteins with industrial or medical applications. Great attention has been emerged on yeast due to the inherent advantages and new developments in this host cell. For the production of each specific product, the most appropriate expression system should be identified and optimized both on the genetic and fermentation levels, considering the features of the host, vector and expression strategies. Currently, several new systems are commercially available; some of them are private and need licensing. The potential for secretory expression of heterologous proteins in yeast proposed this system as a candidate for the production of complex eukaryotic proteins. The common yeast expression hosts used for recombinant proteins' expression include Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, Arxula adeninivorans, Kluyveromyces lactis, and Schizosaccharomyces pombe. This review is dedicated to discuss on significant characteristics of the most common methylotrophic and non-methylotrophic yeast expression systems with an emphasis on their advantages and new developments.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak, Arabi Ave, Tehran, Iran. .,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - AmirAli Mafi
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Hoseinpoor
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Aria
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran
| |
Collapse
|
9
|
Atalay PB, Çavuşoğlu EE, Aşci Ö, Aygüneş D. Examining the involvement of Slx5 in the apoptotic response to chronic activation of the spindle assembly checkpoint. ACTA ACUST UNITED AC 2019; 43:189-197. [PMID: 31320817 PMCID: PMC6620037 DOI: 10.3906/biy-1812-46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microtubule-targeting agents represent one of the most successful groups of anticancer drugs used in cancer therapy today. These drugs induce a prolonged mitotic arrest through chronic spindle assembly checkpoint (SAC) activation. Apoptosis, an outcome of the prolonged mitotic arrest, is the main mechanism by which these anticancer drugs kill cancer cells. However, not much is known about the mechanism that directs chronic SAC activation to apoptosis among other possible outcomes. The aim of this study is to investigate whether Slx5, a sumo-targeted ubiquitin E3 ligase, is involved in directing chronic SAC activation to apoptosis. We show that chronic SAC activation triggered by a 10-h nocodazole incubation leads to a prolonged mitotic arrest in the slx5Δ strain similar to wild type (WT). However, the proportion of cells displaying apoptotic features such as nuclear fragmentation, DNA fragmentation, and reactive oxygen species (ROS) production were increased more in the WT strain during the chronic SAC activation compared to slx5Δ, indicating that Slx5 may be involved in the chronic SAC-activation-apoptosis relation. We also showed that the possible role of Slx5 in the chronic SAC activation-apoptosis association was not through ubiquitin dependent degradation of 3 apoptosis-related and sumoylated candidate proteins.
Collapse
Affiliation(s)
- Pınar Buket Atalay
- Department of Medical Biology and Genetics, Faculty of Medicine, Maltepe University, İstanbul, Turkey
| | - Elif Ergin Çavuşoğlu
- Department of Clinical Embryology, Maltepe University Graduate School of Health Sciences, Maltepe University, İstanbul, Turkey
| | - Öykü Aşci
- Department of Clinical Embryology, Maltepe University Graduate School of Health Sciences, Maltepe University, İstanbul, Turkey
| | - Duygu Aygüneş
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir, Turkey
| |
Collapse
|
10
|
Tulha J, Lucas C. Saccharomyces cerevisiae mitochondrial Por1/yVDAC1 (voltage-dependent anion channel 1) interacts physically with the MBOAT O-acyltransferase Gup1/HHATL in the control of cell wall integrity and programmed cell death. FEMS Yeast Res 2019; 18:5089977. [PMID: 30184078 DOI: 10.1093/femsyr/foy097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023] Open
Abstract
Gup1 is the yeast counterpart of the high eukaryotes HHATL. This and the close homologue Gup2/HHAT regulate the Hedgehog morphogenic, developmental pathway. In yeasts, a similar paracrine pathway is not known though the Δgup1 mutant is associated with morphology and proliferation/death processes. As a first step toward identifying the actual molecular/enzymatic function of Gup1, this work identified by co-immunoprecipitation the yeast mitochondria membrane VDAC1/Por1 as a physical partner of Gup1. Gup1 locates in the ER and the plasma membrane. It was now confirmed to further locate, as Por1, in the mitochondrial sub-cellular fraction. The yeast Por1-Gup1 association was found important for (i) the sensitivity to cell wall perturbing agents and high temperature, (ii) the differentiation into structured colonies, (iii) the size achieved by multicellular aggregates/mats and (iv) acetic-acid-induced Programmed Cell Death. Moreover, the absence of Gup1 increased the levels of POR1 mRNA, while decreasing the amounts of intracellular Por1, which was concomitantly previously known to be secreted by the mutant but not by wt. Additionally, Por1 patchy distribution in the mitochondrial membrane was evened. Results suggest that Por1 and Gup1 collaborate in the control of colony morphology and mat development, but more importantly of cellular integrity and death.
Collapse
Affiliation(s)
- Joana Tulha
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, 4710-054 Braga, Portugal
| | - Cândida Lucas
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, 4710-054 Braga, Portugal.,Institute of Science and Innovation on Bio-sustainability (IB-S), University of Minho, 4710-054 Braga, Portugal
| |
Collapse
|
11
|
Lavaisse LM, Hollmann A, Nazareno MA, Disalvo EA. Zeta potential changes of Saccharomyces cerevisiae during fermentative and respiratory cycles. Colloids Surf B Biointerfaces 2018; 174:63-69. [PMID: 30439639 DOI: 10.1016/j.colsurfb.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/31/2023]
Abstract
Saccharomyces cerevisiae is a type of yeast, widely used in diverse biotechnological food-beverage processes. Although the performance of an industrial fermentation process depends largely on the number of cells, it is necessary to consider the physiological state of the cultures. In this context, the aim of this study was to determine in a yeast culture how factors such as growth conditions affect surface properties at the different growth stages. Our results show that, S. cerevisiae spp. exhibits different zeta potential mean values along the exponential, post-diauxic and stationary growth phases. In addition, there were differences depending on whether they are in aerobic or anaerobic conditions. When the effect of pH on the media was studied, a different dependence of zeta potential at each stage reveals that in the living cells the surface potential depends on the interaction between secreted acids and the constituents of the surfaces, according to the growth conditions. In order to have a view at the cellular level, the zeta potential on individual cells by optical microscopy has been determined at different stages of culture in aerobic and anaerobic conditions. This single-cell method allows for the identification and following of the development of different cell subpopulations during each growth stage. Furthermore, the behavior of the dead cells provided evidence to relate the large negatively charged population with cell wall damage. Overall, the results obtained in the present work represent an important milestone for a novel application of zeta potential technique on yeast.
Collapse
Affiliation(s)
- Lucía M Lavaisse
- Laboratory of Applied Biophysics, CIBAAL - National University of Santiago del Estero and CONICET, 4206, RN 9 Km 1125, Santiago del Estero, Argentina; Laboratory of Antioxidants and Oxidative Process, Institute of Chemical Sciences, Faculty of Agronomy and Agroindustries, National University of Santiago del Estero and CONICET, 4206, RN 9 Km 1125, Santiago del Estero, Argentina
| | - Axel Hollmann
- Laboratory of Bioactive Compounds, CIBAAL - National University of Santiago del Estero and CONICET, 4206, RN 9 Km 1125, Santiago del Estero, Argentina; Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, B1876BXD Bernal, Argentina.
| | - Mónica A Nazareno
- Laboratory of Antioxidants and Oxidative Process, Institute of Chemical Sciences, Faculty of Agronomy and Agroindustries, National University of Santiago del Estero and CONICET, 4206, RN 9 Km 1125, Santiago del Estero, Argentina
| | - Edgardo A Disalvo
- Laboratory of Applied Biophysics, CIBAAL - National University of Santiago del Estero and CONICET, 4206, RN 9 Km 1125, Santiago del Estero, Argentina
| |
Collapse
|
12
|
Paci P, Colombo T, Fiscon G, Gurtner A, Pavesi G, Farina L. SWIM: a computational tool to unveiling crucial nodes in complex biological networks. Sci Rep 2017; 7:44797. [PMID: 28317894 PMCID: PMC5357943 DOI: 10.1038/srep44797] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/14/2017] [Indexed: 12/14/2022] Open
Abstract
SWItchMiner (SWIM) is a wizard-like software implementation of a procedure, previously described, able to extract information contained in complex networks. Specifically, SWIM allows unearthing the existence of a new class of hubs, called “fight-club hubs”, characterized by a marked negative correlation with their first nearest neighbors. Among them, a special subset of genes, called “switch genes”, appears to be characterized by an unusual pattern of intra- and inter-module connections that confers them a crucial topological role, interestingly mirrored by the evidence of their clinic-biological relevance. Here, we applied SWIM to a large panel of cancer datasets from The Cancer Genome Atlas, in order to highlight switch genes that could be critically associated with the drastic changes in the physiological state of cells or tissues induced by the cancer development. We discovered that switch genes are found in all cancers we studied and they encompass protein coding genes and non-coding RNAs, recovering many known key cancer players but also many new potential biomarkers not yet characterized in cancer context. Furthermore, SWIM is amenable to detect switch genes in different organisms and cell conditions, with the potential to uncover important players in biologically relevant scenarios, including but not limited to human cancer.
Collapse
Affiliation(s)
- Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy.,SysBio Centre for Systems Biology, Rome, 00185, Italy
| | - Teresa Colombo
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Giulia Fiscon
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Aymone Gurtner
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milan, Italy
| | - Lorenzo Farina
- Department of Computer, Control and Management Engineering, "Sapienza" University, Rome, Italy
| |
Collapse
|
13
|
Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae. Apoptosis 2016; 22:463-474. [DOI: 10.1007/s10495-016-1330-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Petitjean M, Teste MA, Léger-Silvestre I, François JM, Parrou JL. RETRACTED:A new function for the yeast trehalose-6P synthase (Tps1) protein, as key pro-survival factor during growth, chronological ageing, and apoptotic stress. Mech Ageing Dev 2016; 161:234-246. [PMID: 27507670 DOI: 10.1016/j.mad.2016.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 12/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of Marie-Ange Teste, Isabelle Léger-Silvestre, Jean M François and Jean-Luc Parrou. Marjorie Petitjean could not be reached.
The corresponding author identified major issues and brought them to the attention of the Journal.
These issues span from significant errors in the Material and Methods section of the article and major flaws in cytometry data analysis to data fabrication on the part of one of the authors.
Given these errors, the retracting authors state that the only responsible course of action would be to retract the article, to respect scientific integrity and maintain the standards and rigor of literature from the retracting authors' group as well as the Journal.
The retracting authors sincerely apologize to the readers and editors.
Collapse
Affiliation(s)
| | - Marie-Ange Teste
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Isabelle Léger-Silvestre
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS, Université de Toulouse, 118 route de Narbonne, F-31000 Toulouse, France
| | - Jean M François
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean-Luc Parrou
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| |
Collapse
|
15
|
Cell-cycle involvement in autophagy and apoptosis in yeast. Mech Ageing Dev 2016; 161:211-224. [PMID: 27450768 DOI: 10.1016/j.mad.2016.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/16/2016] [Accepted: 07/17/2016] [Indexed: 12/14/2022]
Abstract
Regulation of the cell cycle and apoptosis are two eukaryotic processes required to ensure maintenance of genomic integrity, especially in response to DNA damage. The ease with which yeast, amongst other eukaryotes, can switch from cellular proliferation to cell death may be the result of a common set of biochemical factors which play dual roles depending on the cell's physiological state. A wide variety of homologues are shared between different yeasts and metazoans and this conservation confirms their importance. This review gives an overview of key molecular players involved in yeast cell-cycle regulation, and those involved in mechanisms which are induced by cell-cycle dysregulation. One such mechanism is autophagy which, depending on the severity and type of DNA damage, may either contribute to the cell's survival or death. Cell-cycle dysregulation due to checkpoint deficiency leads to mitotic catastrophe which in turn leads to programmed cell death. Molecular players implicated in the yeast apoptotic pathway were shown to play important roles in the cell cycle. These include the metacaspase Yca1p, the caspase-like protein Esp1p, the cohesin subunit Mcd1p, as well as the inhibitor of apoptosis protein Bir1p. The roles of these molecular players are discussed.
Collapse
|
16
|
Single Cell Protein Production by Saccharomyces cerevisiae Using an Optimized Culture Medium Composition in a Batch Submerged Bioprocess. Appl Biochem Biotechnol 2016; 179:1336-45. [DOI: 10.1007/s12010-016-2069-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/30/2016] [Indexed: 10/21/2022]
|
17
|
Sukhanova EI, Rogov AG, Severin FF, Zvyagilskaya RA. Phenoptosis in yeasts. BIOCHEMISTRY (MOSCOW) 2014; 77:761-75. [PMID: 22817540 DOI: 10.1134/s0006297912070097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The current view on phenoptosis and apoptosis as genetic programs aimed at eliminating potentially dangerous organisms and cells, respectively, is given. Special emphasis is placed on apoptosis (phenoptosis) in yeasts: intracellular defects and a plethora of external stimuli inducing apoptosis in yeasts; distinctive morphological and biochemical hallmarks accompanying apoptosis in yeasts; pro- and antiapoptotic factors involved in yeast apoptosis signaling; consecutive stages of apoptosis from external stimulus to the cell death; a prominent role of mitochondria and other organelles in yeast apoptosis; possible pathways for release of apoptotic factors from the intermembrane mitochondrial space into the cytosol are described. Using some concrete examples, the obvious physiological importance and expediency of altruistic death of yeast cells is shown. Poorly known aspects of yeast apoptosis and prospects for yeast apoptosis study are defined.
Collapse
Affiliation(s)
- E I Sukhanova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | | | | | | |
Collapse
|
18
|
Guaragnella N, Palermo V, Galli A, Moro L, Mazzoni C, Giannattasio S. The expanding role of yeast in cancer research and diagnosis: insights into the function of the oncosuppressors p53 and BRCA1/2. FEMS Yeast Res 2013; 14:2-16. [PMID: 24103154 DOI: 10.1111/1567-1364.12094] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/26/2013] [Accepted: 09/12/2013] [Indexed: 12/16/2022] Open
Abstract
When the glucose supply is high, despite the presence of oxygen, Saccharomyces cerevisiae uses fermentation as its main metabolic pathway and switches to oxidative metabolism only when this carbon source is limited. There are similarities between glucose-induced repression of oxidative metabolism of yeast and metabolic reprogramming of tumor cells. The glucose-induced repression of oxidative metabolism is regulated by oncogene homologues in yeast, such as RAS and Sch9p, the yeast homologue of Akt. Yeast also undergoes an apoptosis-like programmed cell death process sharing several features with mammalian apoptosis, including oxidative stress and a major role played by mitochondria. Evasion of apoptosis and sustained proliferative signaling are hallmarks of cancer. This, together with the possibility of heterologous expression of human genes in yeast, has allowed new insights to be obtained into the function of mammalian oncogenes/oncosuppressors. Here, we elaborate on the similarities between tumor and yeast cells underpinning the use of this model organism in cancer research. We also review the achievements obtained through heterologous expression in yeast of p53, BRCA1, and BRCA2, which are among the best-known cancer-susceptibility genes, with the aim of understanding their role in tumorigenesis. Yeast-cell-based functional assays for cancer genetic testing will also be dealt with.
Collapse
|
19
|
McBride RC, Boucher N, Park DS, Turner PE, Townsend JP. Yeast response to LA virus indicates coadapted global gene expression during mycoviral infection. FEMS Yeast Res 2013; 13:162-79. [PMID: 23122216 DOI: 10.1111/1567-1364.12019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 11/29/2022] Open
Abstract
Viruses that infect fungi have a ubiquitous distribution and play an important role in structuring fungal communities. Most of these viruses have an unusual life history in that they are propagated exclusively via asexual reproduction or fission of fungal cells. This asexual mode of transmission intimately ties viral reproductive success to that of its fungal host and should select for viruses that have minimal deleterious impact on the fitness of their hosts. Accordingly, viral infections of fungi frequently do not measurably impact fungal growth, and in some instances, increase the fitness of the fungal host. Here we determine the impact of the loss of coinfection by LA virus and the virus-like particle M1 upon global gene expression of the fungal host Saccharomyces cerevisiae and provide evidence supporting the idea that coevolution has selected for viral infection minimally impacting host gene expression.
Collapse
Affiliation(s)
- Robert C McBride
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
20
|
Kazemzadeh L, Cvijovic M, Petranovic D. Boolean model of yeast apoptosis as a tool to study yeast and human apoptotic regulations. Front Physiol 2012; 3:446. [PMID: 23233838 PMCID: PMC3518040 DOI: 10.3389/fphys.2012.00446] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/07/2012] [Indexed: 01/14/2023] Open
Abstract
Programmed cell death (PCD) is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modeling is becoming promising approach to capture qualitative behavior and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD) in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP) are included in the model. We showed that accumulation of Bax in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behavior. Extended model of humanized yeast gives new insights of how complex human disease like neurodegeneration can initially be tested.
Collapse
Affiliation(s)
- Laleh Kazemzadeh
- Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden ; Digital Enterprise Research Institute, National University of Ireland Galway, Ireland
| | | | | |
Collapse
|
21
|
Shlezinger N, Goldfinger N, Sharon A. Apoptotic-like programed cell death in fungi: the benefits in filamentous species. Front Oncol 2012; 2:97. [PMID: 22891165 PMCID: PMC3412994 DOI: 10.3389/fonc.2012.00097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/23/2012] [Indexed: 11/13/2022] Open
Abstract
Studies conducted in the early 1990s showed for the first time that Saccharomyces cerevisiae can undergo cell death with hallmarks of animal apoptosis. These findings came as a surprise, since suicide machinery was unexpected in unicellular organisms. Today, apoptosis in yeast is well-documented. Apoptotic death of yeast cells has been described under various conditions and S. cerevisiae homologs of human apoptotic genes have been identified and characterized. These studies also revealed fundamental differences between yeast and animal apoptosis; in S. cerevisiae apoptosis is mainly associated with aging and stress adaptation, unlike animal apoptosis, which is essential for proper development. Further, many apoptosis regulatory genes are either missing, or highly divergent in S. cerevisiae. Therefore, in this review we will use the term apoptosis-like programed cell death (PCD) instead of apoptosis. Despite these significant differences, S. cerevisiae has been instrumental in promoting the study of heterologous apoptotic proteins, particularly from human. Work in fungi other than S. cerevisiae revealed differences in the manifestation of PCD in single cell (yeasts) and multicellular (filamentous) species. Such differences may reflect the higher complexity level of filamentous species, and hence the involvement of PCD in a wider range of processes and life styles. It is also expected that differences might be found in the apoptosis apparatus of yeast and filamentous species. In this review we focus on aspects of PCD that are unique or can be better studied in filamentous species. We will highlight the similarities and differences of the PCD machinery between yeast and filamentous species and show the value of using S. cerevisiae along with filamentous species to study apoptosis.
Collapse
Affiliation(s)
- Neta Shlezinger
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| | - Nir Goldfinger
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| |
Collapse
|
22
|
Clapp C, Portt L, Khoury C, Sheibani S, Eid R, Greenwood M, Vali H, Mandato CA, Greenwood MT. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells. Front Oncol 2012; 2:59. [PMID: 22708116 PMCID: PMC3374133 DOI: 10.3389/fonc.2012.00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 11/13/2022] Open
Abstract
Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti-apoptosis, we screened a human heart cDNA expression library in yeast cells undergoing PCD due to the conditional expression of a mammalian pro-apoptotic Bax cDNA. Analysis of the multiple Bax suppressors identified revealed several previously known as well as a large number of clones representing potential novel anti-apoptotic sequences. The focus of this review is to report on recent achievements in the use of humanized yeast in genetic screens to identify novel stress-induced PCD suppressors, supporting the use of yeast as a unicellular model organism to elucidate anti-apoptotic and cell survival mechanisms.
Collapse
Affiliation(s)
- Caitlin Clapp
- Department of Chemistry and Chemical Engineering, Royal Military College Kingston, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hwang B, Hwang JS, Lee J, Kim JK, Kim SR, Kim Y, Lee DG. Induction of yeast apoptosis by an antimicrobial peptide, Papiliocin. Biochem Biophys Res Commun 2011; 408:89-93. [DOI: 10.1016/j.bbrc.2011.03.125] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
|
24
|
Karathia H, Vilaprinyo E, Sorribas A, Alves R. Saccharomyces cerevisiae as a model organism: a comparative study. PLoS One 2011; 6:e16015. [PMID: 21311596 PMCID: PMC3032731 DOI: 10.1371/journal.pone.0016015] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 12/03/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Model organisms are used for research because they provide a framework on which to develop and optimize methods that facilitate and standardize analysis. Such organisms should be representative of the living beings for which they are to serve as proxy. However, in practice, a model organism is often selected ad hoc, and without considering its representativeness, because a systematic and rational method to include this consideration in the selection process is still lacking. METHODOLOGY/PRINCIPAL FINDINGS In this work we propose such a method and apply it in a pilot study of strengths and limitations of Saccharomyces cerevisiae as a model organism. The method relies on the functional classification of proteins into different biological pathways and processes and on full proteome comparisons between the putative model organism and other organisms for which we would like to extrapolate results. Here we compare S. cerevisiae to 704 other organisms from various phyla. For each organism, our results identify the pathways and processes for which S. cerevisiae is predicted to be a good model to extrapolate from. We find that animals in general and Homo sapiens in particular are some of the non-fungal organisms for which S. cerevisiae is likely to be a good model in which to study a significant fraction of common biological processes. We validate our approach by correctly predicting which organisms are phenotypically more distant from S. cerevisiae with respect to several different biological processes. CONCLUSIONS/SIGNIFICANCE The method we propose could be used to choose appropriate substitute model organisms for the study of biological processes in other species that are harder to study. For example, one could identify appropriate models to study either pathologies in humans or specific biological processes in species with a long development time, such as plants.
Collapse
Affiliation(s)
- Hiren Karathia
- Departament Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
| | - Ester Vilaprinyo
- Evaluation and Clinical Epidemiology Department, Hospital del Mar-IMIM, Barcelona, Spain
| | - Albert Sorribas
- Departament Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
| | - Rui Alves
- Departament Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
- * E-mail:
| |
Collapse
|
25
|
Kovaleva MV, Sukhanova EI, Trendeleva TA, Popova KM, Zylkova MV, Uralskaya LA, Zvyagilskaya RA. Induction of permeability of the inner membrane of yeast mitochondria. BIOCHEMISTRY (MOSCOW) 2010; 75:297-303. [PMID: 20370607 DOI: 10.1134/s0006297910030053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The current view on apoptosis is given, with a special emphasis placed on apoptosis in yeasts. Induction of a nonspecific permeability transition pore (mPTP) in mammalian and yeast mitochondria is described, particularly in mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, which are aerobes possessing the fully competent respiratory chain with all three points of energy conservation and well-structured mitochondria. They were examined for their ability to induce an elevated permeability transition of the inner mitochondrial membrane, being subjected to virtually all conditions known to induce the mPTP in animal mitochondria. Yeast mitochondria do not form Ca2+-dependent pores, neither the classical Ca2+/P(i)-dependent, cyclosporin A-sensitive pore even under de-energization of mitochondria or depletion of the intramitochondrial nucleotide pools, nor a pore induced in mammalian mitochondria upon concerted action of moderate Ca2+ concentrations (in the presence of the Ca2+ ionophore ETH129) and saturated fatty acids. No pore formation was found in yeast mitochondria in the presence of elevated phosphate concentrations at acidic pH values. It is concluded that the permeability transition in yeast mitochondria is not coupled with Ca2+ uptake and is differently regulated compared to the mPTP of animal mitochondria.
Collapse
Affiliation(s)
- M V Kovaleva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
26
|
White-Gilbertson SJ, Kasman L, McKillop J, Tirodkar T, Lu P, Voelkel-Johnson C. Oxidative stress sensitizes bladder cancer cells to TRAIL mediated apoptosis by down-regulating anti-apoptotic proteins. J Urol 2009; 182:1178-85. [PMID: 19625063 DOI: 10.1016/j.juro.2009.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Indexed: 01/01/2023]
Abstract
PURPOSE TRAIL, an endogenous protein involved in immunosurveillance and a novel drug in clinical trials, is of particular interest as cancer therapy because it can induce apoptosis in cancer cells but not in normal cells. Since some cancers develop resistance to TRAIL, safe and effective methods of TRAIL sensitization are of clinical interest. We explored how chemotherapy and oxidative stress affect TRAIL sensitivity and expression of proteins in the apoptotic pathway. MATERIALS AND METHODS Sensitivity to TRAIL was assessed in viability assays. Apoptosis was measured by caspase-3/7 activity and/or nuclear condensation using Hoechst staining. Western blotting was used to determine cleavage, phosphorylation or alterations in protein expression. RESULTS TRAIL decreased the viability of 5637 but not of J82 or T24 bladder carcinoma cells (ATCC(R)). Chemotherapy with doxorubicin or cisplatin (Ben Venue Laboratories, Bedford, Ohio) decreased the expression of the anti-apoptotic protein cFLIP(S) and increased caspase-8 cleavage, reversing TRAIL resistance in T24 cells. Specific targeting of cFLIP(S) by siRNA was insufficient for sensitization to TRAIL in T24 cells. However, chemotherapy mediated TRAIL sensitization was mimicked by low concentrations of H(2)O(2), which resulted in the phosphorylation of translation EF2 and decreased the expression of several short half-life, anti-apoptotic proteins, including FLIP(S), XIAP and survivin. CONCLUSIONS Inducing oxidative stress by low H(2)O(2) concentrations may reverse TRAIL resistance. This warrants the further exploration of H(2)O(2) as an adjuvant intravesical treatment to lower the apoptotic threshold of bladder cancer cells.
Collapse
Affiliation(s)
- Shai J White-Gilbertson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | | | | | | | | | |
Collapse
|
27
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|