1
|
Ullah I, Uddin S, Zhao L, Wang X, Li H. Autophagy and UPS pathway contribute to nicotine-induced protection effect in Parkinson's disease. Exp Brain Res 2024:10.1007/s00221-023-06765-9. [PMID: 38430248 DOI: 10.1007/s00221-023-06765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/11/2023] [Indexed: 03/03/2024]
Abstract
The gradual nature of age-related neurodegeneration causes Parkinson's disease (PD) and impairs movement, memory, intellectual ability, and social interaction. One of the most prevalent neurodegenerative conditions affecting the central nervous system (CNS) among the elderly is PD. PD affects both motor and cognitive functions. Degeneration of dopaminergic (DA) neurons and buildup of the protein α-synuclein (α-Syn) in the substantia nigra pars compacta (SNpc) are two major causes of this disorder. Both UPS and ALS systems serve to eliminate α-Syn. Autophagy and UPS deficits, shortened life duration, and lipofuscin buildup accelerate PD. This sickness has no cure. Innovative therapies are halting PD progression. Bioactive phytochemicals may provide older individuals with a natural substitute to help delay the onset of neurodegenerative illnesses. This study examines whether nicotine helps transgenic C. elegans PD models. According to numerous studies, nicotine enhances synaptic plasticity and dopaminergic neuronal survival. Upgrades UPS pathways, increases autophagy, and decreases oxidative stress and mitochondrial dysfunction. At 100, 150, and 200 µM nicotine levels, worms showed reduced α-Syn aggregation, repaired DA neurotoxicity after 6-OHDA intoxication, increased lifetime, and reduced lipofuscin accumulation. Furthermore, nicotine triggered autophagy and UPS. We revealed nicotine's potential as a UPS and autophagy activator to prevent PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shahab Uddin
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China.
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Maushe D, Ogi V, Divakaran K, Verdecia Mogena AM, Himmighofen PA, Machado RAR, Towbin BD, Ehlers RU, Molina C, Parisod C, Maud Robert CA. Stress tolerance in entomopathogenic nematodes: Engineering superior nematodes for precision agriculture. J Invertebr Pathol 2023:107953. [PMID: 37336478 DOI: 10.1016/j.jip.2023.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Entomopathogenic nematodes (EPNs) are soil-dwelling parasitic roundworms commonly used as biocontrol agents of insect pests in agriculture. EPN dauer juveniles locate and infect a host in which they will grow and multiply until resource depletion. During their free-living stage, EPNs face a series of internal and environmental stresses. Their ability to overcome these challenges is crucial to determine their infection success and survival. In this review, we provide a comprehensive overview of EPN response to stresses associated with starvation, low/elevated temperatures, desiccation, osmotic stress, hypoxia, and ultra-violet light. We further report EPN defense strategies to cope with biotic stressors such as viruses, bacteria, fungi, and predatory insects. By comparing the genetic and biochemical basis of these strategies to the nematode model Caenorhabditis elegans, we provide new avenues and targets to select and engineer precision nematodes adapted to specific field conditions.
Collapse
Affiliation(s)
- Dorothy Maushe
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Vera Ogi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Keerthi Divakaran
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | | | - Paul Anton Himmighofen
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Ricardo A R Machado
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Benjamin Daniel Towbin
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Ralf-Udo Ehlers
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Carlos Molina
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Christian Parisod
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Christelle Aurélie Maud Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland.
| |
Collapse
|
3
|
Zhang Y, Zhao C, Zhang H, Lu Q, Zhou J, Liu R, Wang S, Pu Y, Yin L. Trans-generational effects of copper on nerve damage in Caenorhabditis elegans. CHEMOSPHERE 2021; 284:131324. [PMID: 34225113 DOI: 10.1016/j.chemosphere.2021.131324] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 05/15/2023]
Abstract
The potential toxicity of copper has received great attention for a long time, however, trans-generational effects of copper have not been extensively investigated. Caenorhabditis elegans (C. elegans) was used to evaluate the trans-generational toxicities of copper several physiological endpoints: growth, head thrashes and body bends and degree of neuronal damage. Copper significantly inhibited growth, body bends, head thrashes and caused degeneration of dopaminergic neurons in a concentration-dependent manner in parental worms. Further we found oxidative damage was to underlying the onset of neuron degeneration. In our study copper promoted ROS accumulation, and led to an increased expression of the oxidative stress response-related genes sod-3 and a decreased expression of metal detoxification genes mtl-1 and mtl-2. Moreover, copper increased the fluorescence intensity of the transgenic strain that encodes the antioxidant enzyme SOD-3. Gradually decline in copper-induced impairments were observed in the filial generations without exposure. No growth impairment was shown in F3, the trend of head thrashes recovery gradually appeared in F2 and no growth impairment was shown in F3, the body bends impairment caused by the parental copper exposure was recovery until F4 and no growth impairment was shown in F5. Besides, dopamine neurons revealed damage related to neurobehavioral endpoints, with hereditary effects in the progeny together. In addition, sequencing results suggested that copper exposure could cause epigenetic changes. QRT-PCR results showed that differentially expressed genes can also be passed on to offspring.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Qiang Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Jingjing Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Sirtuins and Autophagy in Age-Associated Neurodegenerative Diseases: Lessons from the C. elegans Model. Int J Mol Sci 2021; 22:ijms222212263. [PMID: 34830158 PMCID: PMC8619060 DOI: 10.3390/ijms222212263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Age-associated neurodegenerative diseases are known to have "impaired protein clearance" as one of the key features causing their onset and progression. Hence, homeostasis is the key to maintaining balance throughout the cellular system as an organism ages. Any imbalance in the protein clearance machinery is responsible for accumulation of unwanted proteins, leading to pathological consequences-manifesting in neurodegeneration and associated debilitating outcomes. Multiple processes are involved in regulating this phenomenon; however, failure to regulate the autophagic machinery is a critical process that hampers the protein clearing pathway, leading to neurodegeneration. Another important and widely known component that plays a role in modulating neurodegeneration is a class of proteins called sirtuins. These are class III histone deacetylases (HDACs) that are known to regulate various vital processes such as longevity, genomic stability, transcription and DNA repair. These enzymes are also known to modulate neurodegeneration in an autophagy-dependent manner. Considering its genetic relevance and ease of studying disease-related endpoints in neurodegeneration, the model system Caenorhabditis elegans has been successfully employed in deciphering various functional outcomes related to critical protein molecules, cell death pathways and their association with ageing. This review summarizes the vital role of sirtuins and autophagy in ageing and neurodegeneration, in particular highlighting the knowledge obtained using the C. elegans model system.
Collapse
|
5
|
Host-commensal interaction promotes health and lifespan in Caenorhabditis elegans through the activation of HLH-30/TFEB-mediated autophagy. Aging (Albany NY) 2021; 13:8040-8054. [PMID: 33770762 PMCID: PMC8034897 DOI: 10.18632/aging.202885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/13/2021] [Indexed: 11/25/2022]
Abstract
Gut homeostasis is maintained by the close interaction between commensal intestinal microbiota and the host, affecting the most complex physiological processes, such as aging. Some commensal bacteria with the potential to promote healthy aging arise as attractive candidates for the development of pro-longevity probiotics. Here, we showed that heat-inactivated human commensal Lactobacillus fermentum BGHV110 (BGHV110) extends the lifespan of Caenorhabditis elegans and improves age-related physiological features, including locomotor function and lipid metabolism. Mechanistically, we found that BGHV110 promotes HLH-30/TFEB-dependent autophagy to delay aging, as longevity assurance was completely abolished in the mutant lacking HLH-30, a major autophagy regulator in C. elegans. Moreover, we observed that BGHV110 partially decreased the content of lipid droplets in an HLH-30-dependent manner and, at the same time, slightly increased mitochondrial activity. In summary, this study demonstrates that specific factors from commensal bacteria can be used to exploit HLH-30/TFEB-mediated autophagy in order to promote longevity and fitness of the host.
Collapse
|
6
|
Gong J, Zheng X, Zhao S, Yang L, Xue Z, Fan Z, Tang M. Early Molecular Events during Onset of Diapause in Silkworm Eggs Revealed by Transcriptome Analysis. Int J Mol Sci 2020; 21:ijms21176180. [PMID: 32867045 PMCID: PMC7503879 DOI: 10.3390/ijms21176180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023] Open
Abstract
Diapause is a form of dormancy, and Bombyx mori silkworm embryos are ideal models for studying diapause in insects. However, molecular events in eggs during the onset of diapause remain unclear. In this study, transcriptome analyses were performed on silkworm diapause eggs via RNA sequencing at 20 and 48 h after oviposition. A total of 6402 differentially expressed genes (DEGs) were detected in diapause eggs at 48 h versus that at 20 h after oviposition. Gene ontology enrichment analysis showed that DEGs in diapause eggs at 48 h versus that at 20 h after oviposition were involved in ribosome-related metabolism and hydrogen transport. Kyoto Encyclopedia of Genes and Genomes analysis revealed several significantly enriched biological pathways, namely the oxidative phosphorylation, Forkhead box protein O3 (FoxO) signaling, ribosome, endoplasmic reticular protein processing, and autophagy pathways. Fifteen DEGs from the FoxO signaling pathway were selected, and their expression profiles were consistent with the transcriptome results from real-time quantitative reverse transcription polymerase chain reaction. Our results can improve understanding of the diapause mechanism in silkworm eggs and identified key pathways for future studies.
Collapse
Affiliation(s)
- Jing Gong
- Correspondence: ; Tel.: +86-1521-316-8560
| | | | | | | | | | | | | |
Collapse
|
7
|
Multilayered Reprogramming in Response to Persistent DNA Damage in C. elegans. Cell Rep 2018; 20:2026-2043. [PMID: 28854356 PMCID: PMC5583510 DOI: 10.1016/j.celrep.2017.08.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/30/2017] [Accepted: 08/04/2017] [Indexed: 11/23/2022] Open
Abstract
DNA damage causally contributes to aging and age-related diseases. Mutations in nucleotide excision repair (NER) genes cause highly complex congenital syndromes characterized by growth retardation, cancer susceptibility, and accelerated aging in humans. Orthologous mutations in Caenorhabditis elegans lead to growth delay, genome instability, and accelerated functional decline, thus allowing investigation of the consequences of persistent DNA damage during development and aging in a simple metazoan model. Here, we conducted proteome, lipidome, and phosphoproteome analysis of NER-deficient animals in response to UV treatment to gain comprehensive insights into the full range of physiological adaptations to unrepaired DNA damage. We derive metabolic changes indicative of a tissue maintenance program and implicate an autophagy-mediated proteostatic response. We assign central roles for the insulin-, EGF-, and AMPK-like signaling pathways in orchestrating the adaptive response to DNA damage. Our results provide insights into the DNA damage responses in the organismal context.
Collapse
|
8
|
Wei CC, Chang CH, Liao VHC. Anti-Parkinsonian effects of β-amyrin are regulated via LGG-1 involved autophagy pathway in Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:118-125. [PMID: 29157804 DOI: 10.1016/j.phymed.2017.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/11/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease that is associated with aging and is characterized as a movement disorder. Currently, there is still no complete therapy for PD. In recent years, the identification and characterization of medicinal plants to cure or treat PD has gained increasing scientific interest. PURPOSE In this study, we investigated a pentacyclic triterpenoid compound, β-amyrin, which is found in many medicinal plants for its anti-Parkinsonian effects, using Caenorhabditis elegans (C. elegans) disease models and their underlying mechanisms. METHODS C. elegans treated or untreated with β-amyrin were investigated for oxidative stress resistance, neurodegeneration, and α-synuclein aggregation assays. The C. elegans ortholog of Atg8/LC3, LGG-1 that is involved in the autophagy pathway was also evaluated by quantitative RT-PCR and transgenic strain experiments. RESULTS β-Amyrin exerted excellent antioxidant activity and reduced intracellular oxygen species in C. elegans. Using the transgenic strain BZ555, β-amyrin showed a protective effect on dopaminergic neurons reducing cell damage induced by 6-hydroxydopamine (6-OHDA). In addition, β-amyrin significantly reduced the α-synuclein aggregation in the transgenic strain NL5901. Moreover, β-amyrin up-regulated LGG-1 mRNA expression and increased the number of localized LGG-1 puncta in the transgenic strain DA2123. CONCLUSION The results from this study suggest that the anti-Parkinsonian effects of β-amyrin might be regulated via LGG-1 involved autophagy pathway in C. elegans. Therefore, β-amyrin may be useful for therapeutic applications or supplements to treat or slow the progression of PD.
Collapse
Affiliation(s)
- Chia-Cheng Wei
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| |
Collapse
|
9
|
Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging. Int J Mol Sci 2017; 18:ijms18112329. [PMID: 29113067 PMCID: PMC5713298 DOI: 10.3390/ijms18112329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/25/2017] [Accepted: 10/29/2017] [Indexed: 12/25/2022] Open
Abstract
DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process.
Collapse
|
10
|
Tejeda-Benitez L, Flegal R, Odigie K, Olivero-Verbel J. Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:238-250. [PMID: 26851980 DOI: 10.1016/j.envpol.2016.01.057] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
The Magdalena River is the most important river in Colombia, supplying over 70% of the population of fish and drinking water, and it also is the main river transportation way of the country. It receives effluents from multiple sources along its course such as contaminant agricultural and industrial discharges. To evaluate the toxicity profile of Magdalena River sediments through endpoints such as survival, locomotion, and growth, wild type strains of Caenorhabditis elegans were exposed to aqueous extracts of the sediments. To identify changes in gene expression, GFP transgenic strains were used as reporter genes. Physiological and biochemical data were correlated with metal concentration in the sediments, identifying patterns of toxicity along the course of the river. Levels of some metals such as Cd, Cu, and Ni were above TEC and PEC limits. Effects in survival, growth, and locomotion were observed in most of the samples, and changes in gene expression were evident in the genes mtl-2, sod-4, and gst-1 using fluorescence expression. Cadmium and lead were the metals which were primarily associated with sediment toxicity, and the sampling sites with the highest increased expression of stress response genes were Barrancabermeja and Girardot. However, the diverse nature of toxic profiles observed in C. elegans in the study area showed the pervasiveness of different types of discharges throughout the river system.
Collapse
Affiliation(s)
- Lesly Tejeda-Benitez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, 130014, Colombia.
| | - Russell Flegal
- Environmental Toxicology, WIGS Laboratory, University of California at Santa Cruz, Santa Cruz, CA, USA.
| | - Kingsley Odigie
- Environmental Toxicology, WIGS Laboratory, University of California at Santa Cruz, Santa Cruz, CA, USA.
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
11
|
Abstract
Over this past decade, macroautophagy has gained prominence in the field of adult-onset neurodegeneration: from sporadic disorders such as Alzheimer's and Parkinson's disease, to genetic disorders such as Huntington's disease and frontotemporal dementia, the influence of this fundamental pathway has become an important topic of discussion. While there has been particular emphasis on the potential benefits of macroautophagy, there is growing literature that also suggests that macroautophagy contributes towards neurotoxicity. In this review, we discuss the molecular mechanism of macroautophagy and the currently available pharmacological tools, with special emphasis on mammalian macroautophagy in adult brain. Studies indicate that neuronal context strongly influences the role macroautophagy plays in maintaining cellular health, reflecting an ongoing need for better understanding of how macroautophagic regulation is achieved in the heavily differentiated and polarized neurons if we are to effectively manipulate it to treat neurodegenerative disease.
Collapse
|
12
|
The role of autophagy in genetic pathways influencing ageing. Biogerontology 2011; 12:377-86. [PMID: 21347677 DOI: 10.1007/s10522-011-9324-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 02/13/2011] [Indexed: 12/25/2022]
Abstract
Autophagy is a conserved cellular degradation pathway for the breakdown of cytosolic macromolecules and organelles. Constitutive autophagy has a housekeeping role and is essential for survival, development and metabolic regulation. Autophagy is also responsive to stress and can degrade damaged proteins and organelles, oxidized lipids and intracellular pathogens. Defects in the autophagic degradation system are linked to disease pathogenesis and ageing. Different signalling pathways converge on autophagy to regulate lifespan in diverse organisms. We discuss recent findings that provide insight into the cross-talk between this critical regulator of metabolic homeostasis and molecular mechanisms that promote longevity.
Collapse
|