1
|
Zhou W, Du Z. Oleuropein mitigates non-alcoholic fatty liver disease (NAFLD) and modulates liver metabolites in high-fat diet-induced obese mice via activating PPARα. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8634-8645. [PMID: 38952322 DOI: 10.1002/jsfa.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND This study aimed to elucidate the mechanism of oleuropein (OLE) ameliorates non-alcoholic fatty liver disease (NAFLD) and its underlying mechanisms. RESULTS Male C57BL/6J mice were fed either a low-fat diet (LFD), a high-fat diet (HFD), or a HFD supplemented with 0.03% (w/w) OLE for 16 weeks. OLE supplementation decreased body weight and liver weight, improved serum lipid profiles, and ameliorated HFD-induced hepatic dysfunction. Liver metabolomics analysis revealed that OLE increased the levels of nicotinamide, tauroursodeoxycholic acid, taurine, and docosahexaenoic acid, which were beneficial for lipid homeostasis and inflammation regulation. OLE exerted its protective effects by activating peroxisome proliferator-activated receptor alpha (PPARα), a key transcription factor that regulates fibroblast growth factor 21 (FGF21) expression and modulates lipid oxidation, lipogenesis and inflammation pathways. Importantly, OLE supplementation did not significantly affect body weight or liver weight in PPARα knockout (PPARα KO) mice, indicating that PPARα is essential for OLE-mediated NAFLD prevention. CONCLUSION Our results suggest that OLE alleviates NAFLD in mice by activating PPARα and modulating liver metabolites. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Zhou
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zheng Du
- The First People's Hospital of Lianyungang Public Health Department, Lianyungang, China
| |
Collapse
|
2
|
Li W, Dasgupta A, Yang K, Wang S, Hemandhar-Kumar N, Yarbro JM, Hu Z, Salovska B, Fornasiero EF, Peng J, Liu Y. An Extensive Atlas of Proteome and Phosphoproteome Turnover Across Mouse Tissues and Brain Regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618303. [PMID: 39464138 PMCID: PMC11507808 DOI: 10.1101/2024.10.15.618303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Understanding how proteins in different mammalian tissues are regulated is central to biology. Protein abundance, turnover, and post-translational modifications like phosphorylation, are key factors that determine tissue-specific proteome properties. However, these properties are challenging to study across tissues and remain poorly understood. Here, we present Turnover-PPT, a comprehensive resource mapping the abundance and lifetime of 11,000 proteins and 40,000 phosphosites across eight mouse tissues and various brain regions, using advanced proteomics and stable isotope labeling. We revealed tissue-specific short- and long-lived proteins, strong correlations between interacting protein lifetimes, and distinct impacts of phosphorylation on protein turnover. Notably, we discovered that peroxisomes are regulated by protein turnover across tissues, and that phosphorylation regulates the stability of neurodegeneration-related proteins, such as Tau and α-synuclein. Thus, Turnover-PPT provides new fundamental insights into protein stability, tissue dynamic proteotypes, and the role of protein phosphorylation, and is accessible via an interactive web-based portal at https://yslproteomics.shinyapps.io/tissuePPT.
Collapse
Affiliation(s)
- Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Abhijit Dasgupta
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Computer Science and Engineering, SRM University AP, Neerukonda, Guntur, Andhra Pradesh 522240, India
| | - Ka Yang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shisheng Wang
- Department of Pulmonary and Critical Care Medicine, and Proteomics-Metabolomics Analysis Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nisha Hemandhar-Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Jay M. Yarbro
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhenyi Hu
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Current address: Interdisciplinary Research center on Biology and chemistry, Shanghai institute of Organic chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Barbora Salovska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT 06510, USA
- Lead Contact
| |
Collapse
|
3
|
Han J, Zheng D, Liu PS, Wang S, Xie X. Peroxisomal homeostasis in metabolic diseases and its implication in ferroptosis. Cell Commun Signal 2024; 22:475. [PMID: 39367496 PMCID: PMC11451054 DOI: 10.1186/s12964-024-01862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
Peroxisomes are dynamic organelles involved in various cellular processes, including lipid metabolism, redox homeostasis, and intracellular metabolite transfer. Accumulating evidence suggests that peroxisomal homeostasis plays a crucial role in human health and disease, particularly in metabolic disorders and ferroptosis. The abundance and function of peroxisomes are regulated by a complex interplay between biogenesis and degradation pathways, involving peroxins, membrane proteins, and pexophagy. Peroxisome-dependent lipid metabolism, especially the synthesis of ether-linked phospholipids, has been implicated in modulating cellular susceptibility to ferroptosis, a newly discovered form of iron-dependent cell death. This review discusses the current understanding of peroxisome homeostasis, its roles in redox regulation and lipid metabolism, and its implications in human diseases. We also summarize the main mechanisms of ferroptosis and highlight recent discoveries on how peroxisome-dependent metabolism and signaling influence ferroptosis sensitivity. A better understanding of the interplay between peroxisomal homeostasis and ferroptosis may provide new insights into disease pathogenesis and reveal novel therapeutic strategies for peroxisome-related metabolic disorders and ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Jiwei Han
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Pu-Ste Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shanshan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| |
Collapse
|
4
|
Eissa L, Elhassan MMO, Ismail HI, Ali HA. The ultrastructure of peroxisomes in the kidney of the camel (Camelus dromedarius). Anat Histol Embryol 2024; 53:e13103. [PMID: 39155839 DOI: 10.1111/ahe.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/09/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Dromedary camels can survive and reproduce in desert areas. The unique anatomical structure of the kidney enables the camel to prevent water loss. The present study aimed to investigate the ultrastructure of the peroxisomes in the normal kidney of the adult dromedary camel. Tissue samples were taken from the cortex and outer medulla of the kidney of eight camels. The samples were then processed for histological and ultrastructural investigations. The epithelial cells of the proximal tubules displayed peroxisomes with varying sizes and shapes. The peroxisomes were observed in either dispersed or clustered arrangement. Each peroxisome exhibited a homogenous matrix enveloped by a single membrane. Several peroxisomes exhibited one or more dark marginal plates that were always strongly associated with the smooth endoplasmic reticulum. The intensity of the peroxisomal matrix differed significantly, either within the same cell or across different cells. The intensity was light or dark, with a few peroxisomes presenting a similar intensity to that of the mitochondria. Some peroxisomes contained nucleoids within their matrix. The peroxisomes in the first and second sections of proximal convoluted tubules were scattered and primarily located in the region between the microvilli and the underlying mitochondria. The peroxisomes in the third region were abundant and frequently aggregated in clusters throughout the cytoplasm. In the fourth region, the number of peroxisomes was low. The proximal straight tubule had a limited quantity of peroxisomes. In conclusion, peroxisomes in the proximal tubule in kidney of normal dromedary camel were similar in shape and size to other mammals; however, heterogeneity exists as a result of differences in species-specific peroxisomal proteins. Peroxisomes are suggested to be a major source of metabolic energy and act as hydrogen peroxide (H2O2) scavengers, resulting in the release of water and oxygen.
Collapse
Affiliation(s)
- Lemiaa Eissa
- Department of Anatomy, College of Veterinary Medicine, University of Bahri, Khartoum, Sudan
| | - Mortada M O Elhassan
- Department of Anatomy, College of Veterinary Medicine, University of Bahri, Khartoum, Sudan
| | - Haider I Ismail
- Department of Anatomy, College of Veterinary Medicine, University of Bahri, Khartoum, Sudan
| | - Hassan A Ali
- Department of Biomedical Sciences, College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum, Sudan
| |
Collapse
|
5
|
Wang Y, Hou J, Li X, Chen P, Chen F, Pan Y, Deng Z, Li J, Liu R, Luo T. Tyrosol regulates hepatic lipid metabolism in high-fat diet-induced NAFLD mice. Food Funct 2024; 15:3752-3764. [PMID: 38506160 DOI: 10.1039/d3fo05345h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
This study aimed to elucidate the effect of tyrosol (TYR) on the amelioration of nonalcoholic fatty liver disease (NAFLD). Male C57BL/6J mice were fed a low-fat diet (LFD), a high-fat diet (HFD), or a HFD supplemented with 0.025% (w/w) TYR (TYR) for 16 weeks. Following a 16-week intervention, the TYR cohort exhibited diminished final body weight and hepatic lipid accumulation, compared to HFD fed mice. Liver metabolomics analysis revealed that TYR increased the hepatic levels of spermidine, taurine, linoleic acid, malic acid and eicosapentaenoic acid (EPA), indicating the beneficial effect of TYR on lipid homeostasis. Using molecular docking analysis and the luciferase assay, we found that TYR acts as a ligand and binds with peroxisome proliferator-activated receptor-α (PPARα), which plays a pivotal role in the modulation of hepatic lipid metabolism, thereby activating the transcription of downstream genes. Our results suggest that TYR alleviates NAFLD in HFD-fed mice probably by the modulation of the PPARα signaling pathway.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Jihang Hou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Xiaoping Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Pan Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Fang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Yao Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Rong Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
6
|
Yao Y, Shi B, Zhang X, Wang X, Li S, Yao Y, Guo Y, Chen D, Wang B, Yuan Y, Sha J, Guo X. Germ cell-specific deletion of Pex3 reveals essential roles of PEX3-dependent peroxisomes in spermiogenesis. J Biomed Res 2023; 38:24-36. [PMID: 38062668 PMCID: PMC10818173 DOI: 10.7555/jbr.37.20230055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 01/29/2024] Open
Abstract
Peroxisomes are organelles enclosed by a single membrane and are present in various species. The abruption of peroxisomes is correlated with peroxisome biogenesis disorders and single peroxisomal enzyme deficiencies that induce diverse diseases in different organs. However, little is known about the protein compositions and corresponding roles of heterogeneous peroxisomes in various organs. Through transcriptomic and proteomic analyses, we observed heterogenous peroxisomal components among different organs, as well as between testicular somatic cells and different developmental stages of germ cells. As Pex3 is expressed in both germ cells and Sertoli cells, we generated Pex3 germ cell- and Sertoli cell-specific knockout mice. While Pex3 deletion in Sertoli cells did not affect spermatogenesis, the deletion in germ cells resulted in male sterility, manifested as the destruction of intercellular bridges between spermatids and the formation of multinucleated giant cells. Proteomic analysis of the Pex3-deleted spermatids revealed defective expressions of peroxisomal proteins and spermiogenesis-related proteins. These findings provide new insights that PEX3-dependent peroxisomes are essential for germ cells undergoing spermiogenesis, but not for Sertoli cells.
Collapse
Affiliation(s)
- Yejin Yao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Baolu Shi
- Reproductive and Genetic Branch, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xin Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuangyue Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Yao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dingdong Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
7
|
Ferreira MJ, Rodrigues TA, Pedrosa AG, Silva AR, Vilarinho BG, Francisco T, Azevedo JE. Glutathione and peroxisome redox homeostasis. Redox Biol 2023; 67:102917. [PMID: 37804696 PMCID: PMC10565873 DOI: 10.1016/j.redox.2023.102917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023] Open
Abstract
Despite intensive research on peroxisome biochemistry, the role of glutathione in peroxisomal redox homeostasis has remained a matter of speculation for many years, and only recently has this issue started to be experimentally addressed. Here, we summarize and compare data from several organisms on the peroxisome-glutathione topic. It is clear from this comparison that the repertoire of glutathione-utilizing enzymes in peroxisomes of different organisms varies widely. In addition, the available data suggest that the kinetic connectivity between the cytosolic and peroxisomal pools of glutathione may also be different in different organisms, with some possessing a peroxisomal membrane that is promptly permeable to glutathione whereas in others this may not be the case. However, regardless of the differences, the picture that emerges from all these data is that glutathione is a crucial component of the antioxidative system that operates inside peroxisomes in all organisms.
Collapse
Affiliation(s)
- Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana R Silva
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Beatriz G Vilarinho
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
8
|
Guo W, Xing Y, Luo X, Li F, Ren M, Liang Y. Reactive Oxygen Species: A Crosslink between Plant and Human Eukaryotic Cell Systems. Int J Mol Sci 2023; 24:13052. [PMID: 37685857 PMCID: PMC10487619 DOI: 10.3390/ijms241713052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Reactive oxygen species (ROS) are important regulating factors that play a dual role in plant and human cells. As the first messenger response in organisms, ROS coordinate signals in growth, development, and metabolic activity pathways. They also can act as an alarm mechanism, triggering cellular responses to harmful stimuli. However, excess ROS cause oxidative stress-related damage and oxidize organic substances, leading to cellular malfunctions. This review summarizes the current research status and mechanisms of ROS in plant and human eukaryotic cells, highlighting the differences and similarities between the two and elucidating their interactions with other reactive substances and ROS. Based on the similar regulatory and metabolic ROS pathways in the two kingdoms, this review proposes future developments that can provide opportunities to develop novel strategies for treating human diseases or creating greater agricultural value.
Collapse
Affiliation(s)
- Wei Guo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yadi Xing
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China;
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Yiming Liang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
9
|
Schrader TA, Carmichael RE, Schrader M. Immunolabeling for Detection of Endogenous and Overexpressed Peroxisomal Proteins in Mammalian Cells. Methods Mol Biol 2023; 2643:47-63. [PMID: 36952177 DOI: 10.1007/978-1-0716-3048-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Peroxisomes are dynamic subcellular organelles in mammals, playing essential roles in cellular lipid metabolism and redox homeostasis. They perform a wide spectrum of functions in human health and disease, with new roles, mechanisms, and regulatory pathways still being discovered. Recently elucidated biological roles of peroxisomes include as antiviral defense hubs, intracellular signaling platforms, immunomodulators, and protective organelles in sensory cells. Furthermore, peroxisomes are part of a complex inter-organelle interaction network, which involves metabolic cooperation and cross talk via membrane contacts. The detection of endogenous and/or overexpressed proteins within a cell by immunolabelling informs us about the organellar and even sub-organellar localization of both known and putative peroxisomal proteins. In turn, this can be exploited to characterize the effects of experimental manipulations on the morphology, distribution, and/or number of peroxisomes in a cell, which are key properties controlling peroxisome function. Here, we present a protocol used successfully in our laboratory for the immunolabelling of peroxisomal proteins in cultured mammalian cells. We present immunofluorescence and transfection techniques as well as reagents to determine the localization of endogenous and overexpressed peroxisomal proteins.
Collapse
Affiliation(s)
- Tina A Schrader
- Faculty of Health and Life Sciences, Biosciences, University of Exeter, Exeter, Devon, UK
| | - Ruth E Carmichael
- Faculty of Health and Life Sciences, Biosciences, University of Exeter, Exeter, Devon, UK
| | - Michael Schrader
- Faculty of Health and Life Sciences, Biosciences, University of Exeter, Exeter, Devon, UK.
| |
Collapse
|
10
|
Martin WP, Nair M, Chuah YH, Malmodin D, Pedersen A, Abrahamsson S, Hutter M, Abdelaal M, Elliott JA, Fearon N, Eckhardt H, Godson C, Brennan EP, Fändriks L, le Roux CW, Docherty NG. Dietary restriction and medical therapy drives PPARα-regulated improvements in early diabetic kidney disease in male rats. Clin Sci (Lond) 2022; 136:1485-1511. [PMID: 36259366 PMCID: PMC7613831 DOI: 10.1042/cs20220205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
Abstract
The attenuation of diabetic kidney disease (DKD) by metabolic surgery is enhanced by pharmacotherapy promoting renal fatty acid oxidation (FAO). Using the Zucker Diabetic Fatty and Zucker Diabetic Sprague Dawley rat models of DKD, we conducted studies to determine if these effects could be replicated with a non-invasive bariatric mimetic intervention. Metabolic control and renal injury were compared in rats undergoing a dietary restriction plus medical therapy protocol (DMT; fenofibrate, liraglutide, metformin, ramipril, and rosuvastatin) and ad libitum-fed controls. The global renal cortical transcriptome and urinary 1H-NMR metabolomic profiles were also compared. Kidney cell type-specific and medication-specific transcriptomic responses were explored through in silico deconvolution. Transcriptomic and metabolomic correlates of improvements in kidney structure were defined using a molecular morphometric approach. The DMT protocol led to ∼20% weight loss, normalized metabolic parameters and was associated with reductions in indices of glomerular and proximal tubular injury. The transcriptomic response to DMT was dominated by changes in fenofibrate- and peroxisome proliferator-activated receptor-α (PPARα)-governed peroxisomal and mitochondrial FAO transcripts localizing to the proximal tubule. DMT induced urinary excretion of PPARα-regulated metabolites involved in nicotinamide metabolism and reversed DKD-associated changes in the urinary excretion of tricarboxylic acid (TCA) cycle intermediates. FAO transcripts and urinary nicotinamide and TCA cycle metabolites were moderately to strongly correlated with improvements in glomerular and proximal tubular injury. Weight loss plus pharmacological PPARα agonism is a promising means of attenuating DKD.
Collapse
Affiliation(s)
- William P. Martin
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Meera Nair
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Yeong H.D. Chuah
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Daniel Malmodin
- Swedish NMR Centre, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Anders Pedersen
- Swedish NMR Centre, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Sanna Abrahamsson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Michaela Hutter
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Mahmoud Abdelaal
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Jessie A. Elliott
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Naomi Fearon
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Hans Eckhardt
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Eoin P. Brennan
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Lars Fändriks
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Carel W. le Roux
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Diabetes Research Group, Ulster University, Coleraine BT52 1SA, UK
| | - Neil G. Docherty
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
11
|
Raval PK, Garg SG, Gould SB. Endosymbiotic selective pressure at the origin of eukaryotic cell biology. eLife 2022; 11:e81033. [PMID: 36355038 PMCID: PMC9648965 DOI: 10.7554/elife.81033] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The dichotomy that separates prokaryotic from eukaryotic cells runs deep. The transition from pro- to eukaryote evolution is poorly understood due to a lack of reliable intermediate forms and definitions regarding the nature of the first host that could no longer be considered a prokaryote, the first eukaryotic common ancestor, FECA. The last eukaryotic common ancestor, LECA, was a complex cell that united all traits characterising eukaryotic biology including a mitochondrion. The role of the endosymbiotic organelle in this radical transition towards complex life forms is, however, sometimes questioned. In particular the discovery of the asgard archaea has stimulated discussions regarding the pre-endosymbiotic complexity of FECA. Here we review differences and similarities among models that view eukaryotic traits as isolated coincidental events in asgard archaeal evolution or, on the contrary, as a result of and in response to endosymbiosis. Inspecting eukaryotic traits from the perspective of the endosymbiont uncovers that eukaryotic cell biology can be explained as having evolved as a solution to housing a semi-autonomous organelle and why the addition of another endosymbiont, the plastid, added no extra compartments. Mitochondria provided the selective pressures for the origin (and continued maintenance) of eukaryotic cell complexity. Moreover, they also provided the energetic benefit throughout eukaryogenesis for evolving thousands of gene families unique to eukaryotes. Hence, a synthesis of the current data lets us conclude that traits such as the Golgi apparatus, the nucleus, autophagosomes, and meiosis and sex evolved as a response to the selective pressures an endosymbiont imposes.
Collapse
Affiliation(s)
- Parth K Raval
- Institute for Molecular Evolution, Heinrich-Heine-University DüsseldorfDusseldorfGermany
| | - Sriram G Garg
- Evolutionary Biochemistry Group, Max-Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University DüsseldorfDusseldorfGermany
| |
Collapse
|
12
|
Kahilainen A, Oostra V, Somervuo P, Minard G, Saastamoinen M. Alternative developmental and transcriptomic responses to host plant water limitation in a butterfly metapopulation. Mol Ecol 2022; 31:5666-5683. [PMID: 34516691 DOI: 10.1111/mec.16178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 01/13/2023]
Abstract
Predicting how climate change affects biotic interactions poses a challenge. Plant-insect herbivore interactions are particularly sensitive to climate change, as climate-induced changes in plant quality cascade into the performance of insect herbivores. Whereas the immediate survival of herbivore individuals depends on plastic responses to climate change-induced nutritional stress, long-term population persistence via evolutionary adaptation requires genetic variation for these responses. To assess the prospects for population persistence under climate change, it is therefore crucial to characterize response mechanisms to climate change-induced stressors, and quantify their variability in natural populations. Here, we test developmental and transcriptomic responses to water limitation-induced host plant quality change in a Glanville fritillary butterfly (Melitaea cinxia) metapopulation. We combine nuclear magnetic resonance spectroscopy on the plant metabolome, larval developmental assays and an RNA sequencing analysis of the larval transcriptome. We observed that responses to feeding on water-limited plants, in which amino acids and aromatic compounds are enriched, showed marked variation within the metapopulation, with individuals of some families performing better on control and others on water-limited plants. The transcriptomic responses were concordant with the developmental responses: families exhibiting opposite developmental responses also produced opposite transcriptomic responses (e.g. in growth-associated transcripts). The divergent responses in both larval development and transcriptome are associated with differences between families in amino acid catabolism and storage protein production. The results reveal intrapopulation variability in plasticity, suggesting that the Finnish M. cinxia metapopulation harbours potential for buffering against drought-induced changes in host plant quality.
Collapse
Affiliation(s)
- Aapo Kahilainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, P.O. Box 65, Helsinki, FIN-00014, Finland
| | - Vicencio Oostra
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, P.O. Box 65, Helsinki, FIN-00014, Finland.,Department of Evolution, Ecology and Behaviour, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Panu Somervuo
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, P.O. Box 65, Helsinki, FIN-00014, Finland
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, P.O. Box 65, Helsinki, FIN-00014, Finland.,Helsinki Institute of Life Science, University of Helsinki, Finland
| |
Collapse
|
13
|
Chen CT, Shao Z, Fu Z. Dysfunctional peroxisomal lipid metabolisms and their ocular manifestations. Front Cell Dev Biol 2022; 10:982564. [PMID: 36187472 PMCID: PMC9524157 DOI: 10.3389/fcell.2022.982564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Retina is rich in lipids and dyslipidemia causes retinal dysfunction and eye diseases. In retina, lipids are not only important membrane component in cells and organelles but also fuel substrates for energy production. However, our current knowledge of lipid processing in the retina are very limited. Peroxisomes play a critical role in lipid homeostasis and genetic disorders with peroxisomal dysfunction have different types of ocular complications. In this review, we focus on the role of peroxisomes in lipid metabolism, including degradation and detoxification of very-long-chain fatty acids, branched-chain fatty acids, dicarboxylic acids, reactive oxygen/nitrogen species, glyoxylate, and amino acids, as well as biosynthesis of docosahexaenoic acid, plasmalogen and bile acids. We also discuss the potential contributions of peroxisomal pathways to eye health and summarize the reported cases of ocular symptoms in patients with peroxisomal disorders, corresponding to each disrupted peroxisomal pathway. We also review the cross-talk between peroxisomes and other organelles such as lysosomes, endoplasmic reticulum and mitochondria.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhuo Shao
- Post-Graduate Medical Education, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, the Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- The Genetics Program, North York General Hospital, University of Toronto, Toronto, ON, Canada
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Skowyra ML, Rapoport TA. PEX5 translocation into and out of peroxisomes drives matrix protein import. Mol Cell 2022; 82:3209-3225.e7. [PMID: 35931083 PMCID: PMC9444985 DOI: 10.1016/j.molcel.2022.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 12/12/2022]
Abstract
Peroxisomes are ubiquitous organelles whose dysfunction causes fatal human diseases. Most peroxisomal enzymes are imported from the cytosol by the receptor PEX5, which interacts with a docking complex in the peroxisomal membrane and then returns to the cytosol after monoubiquitination by a membrane-embedded ubiquitin ligase. The mechanism by which PEX5 shuttles between cytosol and peroxisomes and releases cargo inside the lumen is unclear. Here, we use Xenopus egg extract to demonstrate that PEX5 accompanies cargo completely into the lumen, utilizing WxxxF/Y motifs near its N terminus that bind a lumenal domain of the docking complex. PEX5 recycling is initiated by an amphipathic helix that binds to the lumenal side of the ubiquitin ligase. The N terminus then emerges in the cytosol for monoubiquitination. Finally, PEX5 is extracted from the lumen, resulting in the unfolding of the receptor and cargo release. Our results reveal the unique mechanism by which PEX5 ferries proteins into peroxisomes.
Collapse
Affiliation(s)
- Michael L Skowyra
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Gao P, Jia D, Li P, Huang Y, Hu H, Sun K, Lv Y, Chen X, Han Y, Zhang Z, Ren X, Wang Q, Liu F, Tang Z, Liu M. Accumulation of Lipid Droplets in a Novel Bietti Crystalline Dystrophy Zebrafish Model With Impaired PPARα Pathway. Invest Ophthalmol Vis Sci 2022; 63:32. [PMID: 35616930 PMCID: PMC9150832 DOI: 10.1167/iovs.63.5.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Bietti crystalline dystrophy (BCD) is a progressive retinal degenerative disease primarily characterized by numerous crystal-like deposits and degeneration of retinal pigment epithelium (RPE) and photoreceptor cells. CYP4V2 (cytochrome P450 family 4 subfamily V member 2) is currently the only disease-causing gene for BCD. We aimed to generate a zebrafish model to explore the functional role of CYP4V2 in the development of BCD and identify potential therapeutic targets for future studies. Methods The cyp4v7 and cyp4v8 (homologous genes of CYP4V2) knockout zebrafish lines were generated by CRISPR/Cas9 technology. The morphology of photoreceptor and RPE cells and the accumulation of lipid droplets in RPE cells were investigated at a series of different developmental stages through histological analysis, immunofluorescence, and lipid staining. Transcriptome analysis was performed to investigate the changes in gene expression of RPE cells during the progression of BCD. Results Progressive retinal degeneration including RPE atrophy and photoreceptor loss was observed in the mutant zebrafish as early as seven months after fertilization. We also observed the excessive accumulation of lipid droplets in RPE cells from three months after fertilization, which preceded the retinal degeneration by several months. Transcriptome analysis suggested that multiple metabolism pathways, especially the lipid metabolism pathways, were significantly changed in RPE cells. The down-regulation of the peroxisome proliferator-activated receptor α (PPARα) pathway was further confirmed in the mutant zebrafish and CYP4V2-knockdown human RPE-1 cells. Conclusions Our work established an animal model that recapitulates the symptoms of BCD patients and revealed that abnormal lipid metabolism in RPE cells, probably caused by dysregulation of the PPARα pathway, might be the main and direct consequence of CYP4V2 deficiency. These findings will deepen our understanding of the pathogenesis of BCD and provide potential therapeutic approaches.
Collapse
Affiliation(s)
- Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pei Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hualei Hu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zuxiao Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
16
|
Kamoshita M, Kumar R, Anteghini M, Kunze M, Islinger M, Martins dos Santos V, Schrader M. Insights Into the Peroxisomal Protein Inventory of Zebrafish. Front Physiol 2022; 13:822509. [PMID: 35295584 PMCID: PMC8919083 DOI: 10.3389/fphys.2022.822509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022] Open
Abstract
Peroxisomes are ubiquitous, oxidative subcellular organelles with important functions in cellular lipid metabolism and redox homeostasis. Loss of peroxisomal functions causes severe disorders with developmental and neurological abnormalities. Zebrafish are emerging as an attractive vertebrate model to study peroxisomal disorders as well as cellular lipid metabolism. Here, we combined bioinformatics analyses with molecular cell biology and reveal the first comprehensive inventory of Danio rerio peroxisomal proteins, which we systematically compared with those of human peroxisomes. Through bioinformatics analysis of all PTS1-carrying proteins, we demonstrate that D. rerio lacks two well-known mammalian peroxisomal proteins (BAAT and ZADH2/PTGR3), but possesses a putative peroxisomal malate synthase (Mlsl) and verified differences in the presence of purine degrading enzymes. Furthermore, we revealed novel candidate peroxisomal proteins in D. rerio, whose function and localisation is discussed. Our findings confirm the suitability of zebrafish as a vertebrate model for peroxisome research and open possibilities for the study of novel peroxisomal candidate proteins in zebrafish and humans.
Collapse
Affiliation(s)
- Maki Kamoshita
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rechal Kumar
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Marco Anteghini
- LifeGlimmer GmbH, Berlin, Germany
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Markus Kunze
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Markus Islinger
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vítor Martins dos Santos
- LifeGlimmer GmbH, Berlin, Germany
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
- *Correspondence: Michael Schrader,
| |
Collapse
|
17
|
Functional Histology and Ultrastructure of the Digestive Tract in Two Species of Chitons (Mollusca, Polyplacophora). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
To continue the investigation on the digestive system of polyplacophoran molluscs, a histological and ultrastructural study of the oesophagus, stomach and intestine of Chaetopleura angulata and Acanthochitona fascicularis was carried out. Stomach content examination revealed an omnivorous diet. In both species the epithelium of the whole digestive tract consisted mostly of elongated absorptive cells with an apical border of microvilli. Cilia were also frequently present. Mitochondria and electron-dense lysosomes were the prominent organelles in the region above the nucleus. The basal region was characterised by an association of mitochondria, peroxisomes and lipid droplets. In general, glycogen deposits were also abundant in absorptive cells. The ultrastructural features indicate that the absorptive cells of the digestive tract epithelium are involved in endocytosis, intracellular digestion and storage of reserves. Histochemical techniques showed that the secretory cells of the digestive tract contained proteins and polysaccharides in their secretory vesicles. The secretory cells with vesicles of low electron density were classified as mucous cells, and the ones with electron-dense vesicles were designated basophilic cells due to their staining by basic dyes in light microscopy. Additionally, basal cells that seem to correspond to enteroendocrine cells containing oval electron-dense vesicles were found along the digestive tract epithelium of both species. The thin outer layer of the digestive tract wall consisted of muscle cells and nerves embedded in connective tissue.
Collapse
|
18
|
Kim J, Bai H. Peroxisomal Stress Response and Inter-Organelle Communication in Cellular Homeostasis and Aging. Antioxidants (Basel) 2022; 11:192. [PMID: 35204075 PMCID: PMC8868334 DOI: 10.3390/antiox11020192] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are key regulators of cellular and metabolic homeostasis. These organelles play important roles in redox metabolism, the oxidation of very-long-chain fatty acids (VLCFAs), and the biosynthesis of ether phospholipids. Given the essential role of peroxisomes in cellular homeostasis, peroxisomal dysfunction has been linked to various pathological conditions, tissue functional decline, and aging. In the past few decades, a variety of cellular signaling and metabolic changes have been reported to be associated with defective peroxisomes, suggesting that many cellular processes and functions depend on peroxisomes. Peroxisomes communicate with other subcellular organelles, such as the nucleus, mitochondria, endoplasmic reticulum (ER), and lysosomes. These inter-organelle communications are highly linked to the key mechanisms by which cells surveil defective peroxisomes and mount adaptive responses to protect them from damages. In this review, we highlight the major cellular changes that accompany peroxisomal dysfunction and peroxisomal inter-organelle communication through membrane contact sites, metabolic signaling, and retrograde signaling. We also discuss the age-related decline of peroxisomal protein import and its role in animal aging and age-related diseases. Unlike other organelle stress response pathways, such as the unfolded protein response (UPR) in the ER and mitochondria, the cellular signaling pathways that mediate stress responses to malfunctioning peroxisomes have not been systematically studied and investigated. Here, we coin these signaling pathways as "peroxisomal stress response pathways". Understanding peroxisomal stress response pathways and how peroxisomes communicate with other organelles are important and emerging areas of peroxisome research.
Collapse
Affiliation(s)
- Jinoh Kim
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Hua Bai
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
19
|
Yagai T, Nakamura T. Mechanistic insights into the peroxisome proliferator-activated receptor alpha as a transcriptional suppressor. Front Med (Lausanne) 2022; 9:1060244. [PMID: 36507526 PMCID: PMC9732035 DOI: 10.3389/fmed.2022.1060244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent hepatic disorders that 20-30% of the world population suffers from. The feature of NAFLD is excess lipid accumulation in the liver, exacerbating multiple metabolic syndromes such as hyperlipidemia, hypercholesterolemia, hypertension, and type 2 diabetes. Approximately 20-30% of NAFLD cases progress to more severe chronic hepatitis, known as non-alcoholic steatohepatitis (NASH), showing deterioration of hepatic functions and liver fibrosis followed by cirrhosis and cancer. Previous studies uncovered that several metabolic regulators had roles in disease progression as key factors. Peroxisome proliferator-activated receptor alpha (PPARα) has been identified as one of the main players in hepatic lipid homeostasis. PPARα is abundantly expressed in hepatocytes, and is a ligand-dependent nuclear receptor belonging to the NR1C nuclear receptor subfamily, orchestrating lipid/glucose metabolism, inflammation, cell proliferation, and carcinogenesis. PPARα agonists are expected to be novel prescription drugs for NASH treatment, and some of them (e.g., Lanifibranor) are currently under clinical trials. These potential novel drugs are developed based on the knowledge of PPARα-activating target genes related to NAFLD and NASH. Intriguingly, PPARα is known to suppress the expression of subsets of target genes under agonist treatment; however, the mechanisms of PPARα-mediated gene suppression and functions of these genes are not well understood. In this review, we summarize and discuss the mechanisms of target gene repression by PPARα and the roles of repressed target genes on hepatic lipid metabolism, fibrosis and carcinogenesis related to NALFD and NASH, and provide future perspectives for PPARα pharmaceutical potentials.
Collapse
Affiliation(s)
- Tomoki Yagai
- Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takahisa Nakamura
- Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
20
|
Chu S, Li X, Sun N, He F, Cui Z, Li Y, Liu R. The combination of ultrafine carbon black and lead provokes cytotoxicity and apoptosis in mice lung fibroblasts through oxidative stress-activated mitochondrial pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149420. [PMID: 34371411 DOI: 10.1016/j.scitotenv.2021.149420] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Ultrafine particulates (UFPs) are considered one of the most hazardous of all air pollutants, which can be directly inhaled into the human body and cause direct damage to lung tissues. Lung fibroblasts (LF) play an important role in the structure and function of lung and there are few studies on primary cells at present. So, the article focuses on LF as the research objective and ultrafine carbon black (UFCB) and Pb-UFCB (loaded with lead) as a representative of UFPs to study the effect on LF. The results showed that UFCB and Pb-UFCB inhibited LF proliferation due to cell cycle arrested in the S phase, and induced apoptosis. Additionally, UFCB or Pb-UFCB could induce oxidative stress manifested as the increase of intracellular reactive oxygen species. The redox imbalance was further confirmed by measuring the changes of related enzymes, including the activity of superoxide dismutase and catalase and the level of reduced glutathione and malondialdehyde in cells. Moreover, the elevated lactate dehydrogenase in the culture medium indicated that cell membrane had been injured. And mitochondrial function was impaired by the imbalance of ATP synthesis and hydrolysis. In summary, both induced oxidative stress, which is the main driving force of LF early apoptosis, disruption of cell membrane integrity and mitochondrial function. Here, we provide a meaningful and challenging subject to explore the toxic effect and mechanism between UFPs and lung tissue at cellular levels, and theoretical basics for the possible changes of lung tissue function in vivo.
Collapse
Affiliation(s)
- Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Ning Sun
- School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zhihan Cui
- School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuze Li
- School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
21
|
Zinsmaier KE. Mitochondrial Miro GTPases coordinate mitochondrial and peroxisomal dynamics. Small GTPases 2021; 12:372-398. [PMID: 33183150 PMCID: PMC8583064 DOI: 10.1080/21541248.2020.1843957] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria and peroxisomes are highly dynamic, multifunctional organelles. Both perform key roles for cellular physiology and homoeostasis by mediating bioenergetics, biosynthesis, and/or signalling. To support cellular function, they must be properly distributed, of proper size, and be able to interact with other organelles. Accumulating evidence suggests that the small atypical GTPase Miro provides a central signalling node to coordinate mitochondrial as well as peroxisomal dynamics. In this review, I summarize our current understanding of Miro-dependent functions and molecular mechanisms underlying the proper distribution, size and function of mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Konrad E. Zinsmaier
- Departments of Neuroscience and Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
22
|
Skern-Mauritzen R, Malde K, Eichner C, Dondrup M, Furmanek T, Besnier F, Komisarczuk AZ, Nuhn M, Dalvin S, Edvardsen RB, Klages S, Huettel B, Stueber K, Grotmol S, Karlsbakk E, Kersey P, Leong JS, Glover KA, Reinhardt R, Lien S, Jonassen I, Koop BF, Nilsen F. The salmon louse genome: Copepod features and parasitic adaptations. Genomics 2021; 113:3666-3680. [PMID: 34403763 DOI: 10.1016/j.ygeno.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Copepods encompass numerous ecological roles including parasites, detrivores and phytoplankton grazers. Nonetheless, copepod genome assemblies remain scarce. Lepeophtheirus salmonis is an economically and ecologically important ectoparasitic copepod found on salmonid fish. We present the 695.4 Mbp L. salmonis genome assembly containing ≈60% repetitive regions and 13,081 annotated protein-coding genes. The genome comprises 14 autosomes and a ZZ-ZW sex chromosome system. Assembly assessment identified 92.4% of the expected arthropod genes. Transcriptomics supported annotation and indicated a marked shift in gene expression after host attachment, including apparent downregulation of genes related to circadian rhythm coinciding with abandoning diurnal migration. The genome shows evolutionary signatures including loss of genes needed for peroxisome biogenesis, presence of numerous FNII domains, and an incomplete heme homeostasis pathway suggesting heme proteins to be obtained from the host. Despite repeated development of resistance against chemical treatments L. salmonis exhibits low numbers of many genes involved in detoxification.
Collapse
Affiliation(s)
| | - Ketil Malde
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway; Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Christiane Eichner
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Michael Dondrup
- Computational Biology Unit, Department of Informatics, University of Bergen, Thormøhlens Gate 55, 5008 Bergen, Norway
| | - Tomasz Furmanek
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Francois Besnier
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Anna Zofia Komisarczuk
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Michael Nuhn
- EMBL-The European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Sussie Dalvin
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Sven Klages
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Carl von Linné Weg 10, D-50829 Köln, Germany
| | - Kurt Stueber
- Max Planck Genome Centre Cologne, Carl von Linné Weg 10, D-50829 Köln, Germany
| | - Sindre Grotmol
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Egil Karlsbakk
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Paul Kersey
- EMBL-The European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK; Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Jong S Leong
- Department of Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Kevin A Glover
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway; Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Richard Reinhardt
- Max Planck Genome Centre Cologne, Carl von Linné Weg 10, D-50829 Köln, Germany
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Oluf Thesens vei 6, 1433 Ås, Norway
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, Thormøhlens Gate 55, 5008 Bergen, Norway
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Frank Nilsen
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway; Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway.
| |
Collapse
|
23
|
Andrés‐Benito P, Gelpi E, Jové M, Mota‐Martorell N, Obis È, Portero‐Otin M, Povedano M, Pujol A, Pamplona R, Ferrer I. Lipid alterations in human frontal cortex in ALS-FTLD-TDP43 proteinopathy spectrum are partly related to peroxisome impairment. Neuropathol Appl Neurobiol 2021; 47:544-563. [PMID: 33332650 PMCID: PMC8248144 DOI: 10.1111/nan.12681] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023]
Abstract
AIM Peroxisomes play a key role in lipid metabolism, and peroxisome defects have been associated with neurodegenerative diseases such as X-adrenoleukodystrophy and Alzheimer's disease. This study aims to elucidate the contribution of peroxisomes in lipid alterations of area 8 of the frontal cortex in the spectrum of TDP43-proteinopathies. Cases of frontotemporal lobar degeneration-TDP43 (FTLD-TDP), manifested as sporadic (sFTLD-TDP) or linked to mutations in various genes including expansions of the non-coding region of C9ORF72 (c9FTLD), and of sporadic amyotrophic lateral sclerosis (sALS) as the most common TDP43 proteinopathies, were analysed. METHODS We used transcriptomics and lipidomics methods to define the steady-state levels of gene expression and lipid profiles. RESULTS Our results show alterations in gene expression of some components of peroxisomes and related lipid pathways in frontal cortex area 8 in sALS, sFTLD-TDP and c9FTLD. Additionally, we identify a lipidomic pattern associated with the ALS-FTLD-TDP43 proteinopathy spectrum, notably characterised by down-regulation of ether lipids and acylcarnitine among other lipid species, as well as alterations in the lipidome of each phenotype of TDP43 proteinopathy, which reveals commonalities and disease-dependent differences in lipid composition. CONCLUSION Globally, lipid alterations in the human frontal cortex of the ALS-FTLD-TDP43 proteinopathy spectrum, which involve cell membrane composition and signalling, vulnerability against cellular stress and possible glucose metabolism, are partly related to peroxisome impairment.
Collapse
Affiliation(s)
- Pol Andrés‐Benito
- NeuropathologyBellvitge University Hospital‐Bellvitge Biomedical Research Institute (IDIBELLHospitalet de Llobregat, BarcelonaSpain
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative DiseasesInstitute of Health Carlos IIIMinistry of Economy and CompetitivenessMadridSpain
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALSUtrechtThe Netherlands
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc‐Hospital Clínic‐Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPSBarcelonaSpain
- Institute of NeurologyMedical University of ViennaViennaAustria
| | - Mariona Jové
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Natalia Mota‐Martorell
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Èlia Obis
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Manuel Portero‐Otin
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Mònica Povedano
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALSUtrechtThe Netherlands
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELAService of NeurologyBellvitge University HospitalHospitalet de LlobregatSpain
| | - Aurora Pujol
- Catalan Institution for Research and Advanced Studies (ICREABarcelonaSpain
- Neurometabolic Diseases LaboratoryBellvitge Biomedical Research InstituteHospital Duran i ReynalsHospitalet de Llobregat, BarcelonaSpain
- Center for Biomedical Research on Rare Diseases (CIBERERInstitute of Health Carlos IIIMadridSpain
| | - Reinald Pamplona
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Isidro Ferrer
- NeuropathologyBellvitge University Hospital‐Bellvitge Biomedical Research Institute (IDIBELLHospitalet de Llobregat, BarcelonaSpain
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative DiseasesInstitute of Health Carlos IIIMinistry of Economy and CompetitivenessMadridSpain
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALSUtrechtThe Netherlands
- Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
24
|
Das Y, Swinkels D, Baes M. Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity. Int J Mol Sci 2021; 22:ijms22084101. [PMID: 33921065 PMCID: PMC8071455 DOI: 10.3390/ijms22084101] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022] Open
Abstract
Peroxisomes are multifunctional organelles, well known for their role in cellular lipid homeostasis. Their importance is highlighted by the life-threatening diseases caused by peroxisomal dysfunction. Importantly, most patients suffering from peroxisomal biogenesis disorders, even those with a milder disease course, present with a number of ocular symptoms, including retinopathy. Patients with a selective defect in either peroxisomal α- or β-oxidation or ether lipid synthesis also suffer from vision problems. In this review, we thoroughly discuss the ophthalmological pathology in peroxisomal disorder patients and, where possible, the corresponding animal models, with a special emphasis on the retina. In addition, we attempt to link the observed retinal phenotype to the underlying biochemical alterations. It appears that the retinal pathology is highly variable and the lack of histopathological descriptions in patients hampers the translation of the findings in the mouse models. Furthermore, it becomes clear that there are still large gaps in the current knowledge on the contribution of the different metabolic disturbances to the retinopathy, but branched chain fatty acid accumulation and impaired retinal PUFA homeostasis are likely important factors.
Collapse
|
25
|
Corpas FJ, González-Gordo S, Palma JM. Nitric Oxide (NO) Scaffolds the Peroxisomal Protein-Protein Interaction Network in Higher Plants. Int J Mol Sci 2021; 22:2444. [PMID: 33671021 PMCID: PMC7957770 DOI: 10.3390/ijms22052444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
The peroxisome is a single-membrane subcellular compartment present in almost all eukaryotic cells from simple protists and fungi to complex organisms such as higher plants and animals. Historically, the name of the peroxisome came from a subcellular structure that contained high levels of hydrogen peroxide (H2O2) and the antioxidant enzyme catalase, which indicated that this organelle had basically an oxidative metabolism. During the last 20 years, it has been shown that plant peroxisomes also contain nitric oxide (NO), a radical molecule than leads to a family of derived molecules designated as reactive nitrogen species (RNS). These reactive species can mediate post-translational modifications (PTMs) of proteins, such as S-nitrosation and tyrosine nitration, thus affecting their function. This review aims to provide a comprehensive overview of how NO could affect peroxisomal metabolism and its internal protein-protein interactions (PPIs). Remarkably, many of the identified NO-target proteins in plant peroxisomes are involved in the metabolism of reactive oxygen species (ROS), either in its generation or its scavenging. Therefore, it is proposed that NO is a molecule with signaling properties with the capacity to modulate the peroxisomal protein-protein network and consequently the peroxisomal functions, especially under adverse environmental conditions.
Collapse
Affiliation(s)
- Francisco J. Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/ Profesor Albareda, 1, E-18008 Granada, Spain; (S.G.-G.); (J.M.P.)
| | | | | |
Collapse
|
26
|
Azadi AS, Carmichael RE, Kovacs WJ, Koster J, Kors S, Waterham HR, Schrader M. A Functional SMAD2/3 Binding Site in the PEX11β Promoter Identifies a Role for TGFβ in Peroxisome Proliferation in Humans. Front Cell Dev Biol 2020; 8:577637. [PMID: 33195217 PMCID: PMC7644849 DOI: 10.3389/fcell.2020.577637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/01/2020] [Indexed: 01/10/2023] Open
Abstract
In mammals, peroxisomes perform crucial functions in cellular metabolism, signaling and viral defense which are essential to the viability of the organism. Molecular cues triggered by changes in the cellular environment induce a dynamic response in peroxisomes, which manifests itself as a change in peroxisome number, altered enzyme levels and adaptations to the peroxisomal morphology. How the regulation of this process is integrated into the cell's response to different stimuli, including the signaling pathways and factors involved, remains unclear. Here, a cell-based peroxisome proliferation assay has been applied to investigate the ability of different stimuli to induce peroxisome proliferation. We determined that serum stimulation, long-chain fatty acid supplementation and TGFβ application all increase peroxisome elongation, a prerequisite for proliferation. Time-resolved mRNA expression during the peroxisome proliferation cycle revealed a number of peroxins whose expression correlated with peroxisome elongation, including the β isoform of PEX11, but not the α or γ isoforms. An initial map of putative regulatory motif sites in the respective promoters showed a difference between binding sites in PEX11α and PEX11β, suggesting that these genes may be regulated by distinct pathways. A functional SMAD2/3 binding site in PEX11β points to the involvement of the TGFβ signaling pathway in expression of this gene and thus peroxisome proliferation/dynamics in humans.
Collapse
Affiliation(s)
- Afsoon S Azadi
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Ruth E Carmichael
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Zurich, Switzerland
| | - Janet Koster
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Suzan Kors
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Michael Schrader
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
27
|
González-Robles A, González-Lázaro M, Lagunes-Guillén AE, Omaña-Molina M, Lares-Jiménez LF, Lares-Villa F, Martínez-Palomo A. Ultrastructural, Cytochemical, and Comparative Genomic Evidence of Peroxisomes in Three Genera of Pathogenic Free-Living Amoebae, Including the First Morphological Data for the Presence of This Organelle in Heteroloboseans. Genome Biol Evol 2020; 12:1734-1750. [PMID: 32602891 PMCID: PMC7549135 DOI: 10.1093/gbe/evaa129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Peroxisomes perform various metabolic processes that are primarily related to the elimination of reactive oxygen species and oxidative lipid metabolism. These organelles are present in all major eukaryotic lineages, nevertheless, information regarding the presence of peroxisomes in opportunistic parasitic protozoa is scarce and in many cases it is still unknown whether these organisms have peroxisomes at all. Here, we performed ultrastructural, cytochemical, and bioinformatic studies to investigate the presence of peroxisomes in three genera of free-living amoebae from two different taxonomic groups that are known to cause fatal infections in humans. By transmission electron microscopy, round structures with a granular content limited by a single membrane were observed in Acanthamoeba castellanii, Acanthamoeba griffini, Acanthamoeba polyphaga, Acanthamoeba royreba, Balamuthia mandrillaris (Amoebozoa), and Naegleria fowleri (Heterolobosea). Further confirmation for the presence of peroxisomes was obtained by treating trophozoites in situ with diaminobenzidine and hydrogen peroxide, which showed positive reaction products for the presence of catalase. We then performed comparative genomic analyses to identify predicted peroxin homologues in these organisms. Our results demonstrate that a complete set of peroxins-which are essential for peroxisome biogenesis, proliferation, and protein import-are present in all of these amoebae. Likewise, our in silico analyses allowed us to identify a complete set of peroxins in Naegleria lovaniensis and three novel peroxin homologues in Naegleria gruberi. Thus, our results indicate that peroxisomes are present in these three genera of free-living amoebae and that they have a similar peroxin complement despite belonging to different evolutionary lineages.
Collapse
Affiliation(s)
- Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Mónica González-Lázaro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Anel Edith Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Maritza Omaña-Molina
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlanepantla, Estado de México, Mexico
| | - Luis Fernando Lares-Jiménez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, Mexico
| | - Fernando Lares-Villa
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, Mexico
| | - Adolfo Martínez-Palomo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| |
Collapse
|
28
|
Kichuk TC, Carrasco-López C, Avalos JL. Lights up on organelles: Optogenetic tools to control subcellular structure and organization. WIREs Mech Dis 2020; 13:e1500. [PMID: 32715616 DOI: 10.1002/wsbm.1500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 12/21/2022]
Abstract
Since the neurobiological inception of optogenetics, light-controlled molecular perturbations have been applied in many scientific disciplines to both manipulate and observe cellular function. Proteins exhibiting light-sensitive conformational changes provide researchers with avenues for spatiotemporal control over the cellular environment and serve as valuable alternatives to chemically inducible systems. Optogenetic approaches have been developed to target proteins to specific subcellular compartments, allowing for the manipulation of nuclear translocation and plasma membrane morphology. Additionally, these tools have been harnessed for molecular interrogation of organelle function, location, and dynamics. Optogenetic approaches offer novel ways to answer fundamental biological questions and to improve the efficiency of bioengineered cell factories by controlling the assembly of synthetic organelles. This review first provides a summary of available optogenetic systems with an emphasis on their organelle-specific utility. It then explores the strategies employed for organelle targeting and concludes by discussing our perspective on the future of optogenetics to control subcellular structure and organization. This article is categorized under: Metabolic Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Therese C Kichuk
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - César Carrasco-López
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA.,Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
29
|
Eberhardt EL, Ludlam AV, Tan Z, Cianfrocco MA. Miro: A molecular switch at the center of mitochondrial regulation. Protein Sci 2020; 29:1269-1284. [PMID: 32056317 PMCID: PMC7255519 DOI: 10.1002/pro.3839] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/24/2022]
Abstract
The orchestration of mitochondria within the cell represents a critical aspect of cell biology. At the center of this process is the outer mitochondrial membrane protein, Miro. Miro coordinates diverse cellular processes by regulating connections between organelles and the cytoskeleton that range from mediating contacts between the endoplasmic reticulum and mitochondria to the regulation of both actin and microtubule motor proteins. Recently, a number of cell biological, biochemical, and protein structure studies have helped to characterize the myriad roles played by Miro. In addition to answering questions regarding Miro's function, these studies have opened the door to new avenues in the study of Miro in the cell. This review will focus on summarizing recent findings for Miro's structure, function, and activity while highlighting key questions that remain unanswered.
Collapse
Affiliation(s)
- Emily L. Eberhardt
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
- Cellular and Molecular Biology ProgramUniversity of MichiganAnn ArborMichigan
| | - Anthony V. Ludlam
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| | - Zhenyu Tan
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
- Biophysics ProgramUniversity of MichiganAnn ArborMichigan
| | - Michael A. Cianfrocco
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
30
|
Abstract
Blobel and coworkers discovered in 1978 that peroxisomal proteins are synthesized on free ribosomes in the cytosol and thus provided the grounds for the conception of peroxisomes as self-containing organelles. Peroxisomes are highly adaptive and versatile organelles carrying out a wide variety of metabolic functions. A striking feature of the peroxisomal import machinery is that proteins can traverse the peroxisomal membrane in a folded and even oligomeric state via cycling receptors. We outline essential steps of peroxisomal matrix protein import, from targeting of the proteins to the peroxisomal membrane, their translocation via transient pores and export of the corresponding cycling import receptors with emphasis on the situation in yeast. Peroxisomes can contribute to the adaptation of cells to different environmental conditions. This is realized by changes in metabolic functions and thus the enzyme composition of the organelles is adopted according to the cellular needs. In recent years, it turned out that this organellar diversity is based on an elaborate regulation of gene expression and peroxisomal protein import. The latter is in the focus of this review that summarizes our knowledge on the composition and function of the peroxisomal protein import machinery with emphasis on novel alternative protein import pathways.
Collapse
Affiliation(s)
- Thomas Walter
- Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Ralf Erdmann
- Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
31
|
Chang J, Rachubinski RA. Pex20p functions as the receptor for non‐PTS1/non‐PTS2 acyl‐CoA oxidase import into peroxisomes of the yeast
Yarrowia lipolytica. Traffic 2019; 20:504-515. [DOI: 10.1111/tra.12652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jinlan Chang
- Department of Cell BiologyUniversity of Alberta Edmonton Alberta Canada
| | | |
Collapse
|
32
|
Jo DS, Cho DH. Peroxisomal dysfunction in neurodegenerative diseases. Arch Pharm Res 2019; 42:393-406. [PMID: 30739266 DOI: 10.1007/s12272-019-01131-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/03/2019] [Indexed: 01/06/2023]
Abstract
Peroxisomes and their (patho-)physiological importance in heath and disease have attracted increasing interest during last few decades. Together with mitochondria, peroxisomes comprise key metabolic platforms for oxidation of various fatty acids and redox regulation. In addition, peroxisomes contribute to bile acid, cholesterol, and plasmalogen biosynthesis. The importance of functional peroxisomes for cellular metabolism is demonstrated by the marked brain and systemic organ abnormalities occuring in peroxisome biogenesis disorders and peroxisomal enzyme deficiencies. Current evidences indicate that peroxisomal function is declined with aging, with peroxisomal dysfunction being linked to early onset of multiple age-related diseases including neurodegenerative diseases. Herein, we review recent progress toward understanding the physiological roles and pathological implications of peroxisomal dysfunctions, focusing on neurodegenerative disease.
Collapse
Affiliation(s)
- Doo Sin Jo
- School of Life Sciences, Kyungpook National University, 80 Daehakro Bukgu, Daegu, 41566, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, Kyungpook National University, 80 Daehakro Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
33
|
Das Y, Roose N, De Groef L, Fransen M, Moons L, Van Veldhoven PP, Baes M. Differential distribution of peroxisomal proteins points to specific roles of peroxisomes in the murine retina. Mol Cell Biochem 2019; 456:53-62. [PMID: 30604065 DOI: 10.1007/s11010-018-3489-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
Abstract
The retinal pathology in peroxisomal disorders suggests that peroxisomes are important to maintain retinal homeostasis and function. These ubiquitous cell organelles are mainly involved in lipid metabolism, which comprises α- and β-oxidation and ether lipid synthesis. Although peroxisomes were extensively studied in liver, their role in the retina still remains to be elucidated. As a first step in gaining more insight into the role of peroxisomes in retinal physiology, we performed immunohistochemical stainings, immunoblotting and enzyme activity measurements to reveal the distribution of peroxisomes and peroxisomal lipid metabolizing enzymes in the murine retina. Whereas peroxisomes were detected in every retinal layer, we found a clear differential distribution of the peroxisomal lipid metabolizing enzymes in the neural retina compared to the retinal pigment epithelium. In particular, the ABC transporters that transfer lipid substrates into the organelle as well as several enzymes of the β-oxidation pathway were enriched either in the neural retina or in the retinal pigment epithelium. In conclusion, our results strongly indicate that peroxisome function varies between different regions in the murine retina.
Collapse
Affiliation(s)
- Yannick Das
- Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Nele Roose
- Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Lies De Groef
- Department of Biology, Animal Physiology and Neurobiology, KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Marc Fransen
- Department of Cellular and Molecular Medicine, Lipid Biochemistry and Protein Interactions (LIPIT), KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Lieve Moons
- Department of Biology, Animal Physiology and Neurobiology, KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Paul P Van Veldhoven
- Department of Cellular and Molecular Medicine, Lipid Biochemistry and Protein Interactions (LIPIT), KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, KU Leuven -University of Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
34
|
Lutfullahoğlu-Bal G, Seferoğlu AB, Keskin A, Akdoğan E, Dunn CD. A bacteria-derived tail anchor localizes to peroxisomes in yeast and mammalian cells. Sci Rep 2018; 8:16374. [PMID: 30401812 PMCID: PMC6219538 DOI: 10.1038/s41598-018-34646-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
Prokaryotes can provide new genetic information to eukaryotes by horizontal gene transfer (HGT), and such transfers are likely to have been particularly consequential in the era of eukaryogenesis. Since eukaryotes are highly compartmentalized, it is worthwhile to consider the mechanisms by which newly transferred proteins might reach diverse organellar destinations. Toward this goal, we have focused our attention upon the behavior of bacteria-derived tail anchors (TAs) expressed in the eukaryote Saccharomyces cerevisiae. In this study, we report that a predicted membrane-associated domain of the Escherichia coli YgiM protein is specifically trafficked to peroxisomes in budding yeast, can be found at a pre-peroxisomal compartment (PPC) upon disruption of peroxisomal biogenesis, and can functionally replace an endogenous, peroxisome-directed TA. Furthermore, the YgiM(TA) can localize to peroxisomes in mammalian cells. Since the YgiM(TA) plays no endogenous role in peroxisomal function or assembly, this domain is likely to serve as an excellent tool allowing further illumination of the mechanisms by which TAs can travel to peroxisomes. Moreover, our findings emphasize the ease with which bacteria-derived sequences might target to organelles in eukaryotic cells following HGT, and we discuss the importance of flexible recognition of organelle targeting information during and after eukaryogenesis.
Collapse
Affiliation(s)
- Güleycan Lutfullahoğlu-Bal
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
| | - Ayşe Bengisu Seferoğlu
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Abdurrahman Keskin
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
- Department of Biological Sciences, Columbia University, New York, NY, 10027, United States of America
| | - Emel Akdoğan
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, United States of America
| | - Cory D Dunn
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland.
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey.
| |
Collapse
|
35
|
Abstract
Peroxisomes are key metabolic organelles, which contribute to cellular lipid metabolism, e.g. the β-oxidation of fatty acids and the synthesis of myelin sheath lipids, as well as cellular redox balance. Peroxisomal dysfunction has been linked to severe metabolic disorders in man, but peroxisomes are now also recognized as protective organelles with a wider significance in human health and potential impact on a large number of globally important human diseases such as neurodegeneration, obesity, cancer, and age-related disorders. Therefore, the interest in peroxisomes and their physiological functions has significantly increased in recent years. In this review, we intend to highlight recent discoveries, advancements and trends in peroxisome research, and present an update as well as a continuation of two former review articles addressing the unsolved mysteries of this astonishing organelle. We summarize novel findings on the biological functions of peroxisomes, their biogenesis, formation, membrane dynamics and division, as well as on peroxisome-organelle contacts and cooperation. Furthermore, novel peroxisomal proteins and machineries at the peroxisomal membrane are discussed. Finally, we address recent findings on the role of peroxisomes in the brain, in neurological disorders, and in the development of cancer.
Collapse
Affiliation(s)
- Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Manheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Alfred Voelkl
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - H Dariush Fahimi
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | | |
Collapse
|
36
|
Feidantsis K, Pörtner HO, Vlachonikola E, Antonopoulou E, Michaelidis B. Seasonal Changes in Metabolism and Cellular Stress Phenomena in the Gilthead Sea Bream (Sparus aurata). Physiol Biochem Zool 2018; 91:878-895. [PMID: 29553887 DOI: 10.1086/697170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Seasonal temperature changes may take organisms to the upper and lower limit of their thermal range, with respective variations in their biochemical and metabolic profile. To elucidate these traits, we investigated metabolic and antioxidant patterns in tissues of sea bream Sparus aurata during seasonal acclimatization for 1 yr in the field. Metabolic patterns were assessed by determining lactate dehydrogenase, citrate synthase, and β-hydroxyacyl CoA dehydrogenase activities, their kinetic properties and plasma levels of glucose, lactate, and triglycerides and tissue succinate levels. Oxidative stress was assessed by determining antioxidant enzymes superoxide dismutase, catalase, and glutathione reductase activities and levels of thiobarbituric acid reactive substances. Xanthine oxidase (XO) activity was determined as another source of reactive oxygen species (ROS) production. Furthermore, we studied the antiapoptotic protein indicator Bcl-2 and the apoptotic protein indicators Bax, Bad, ubiquitin, and caspase as well as indexes of autophagy (LC3B II/LC3B I and SQSTM1/p62) in the liver and the heart to identify possible relationships between oxidative stress and cell death. The results indicate clear seasonal metabolic patterns involving oxidative stress during summer as well as winter. During cold acclimatization, lipid oxidation is induced, while during increased temperatures, warm-induced metabolic activation and carbohydrate oxidation are observed. Thus, oxidative stress seems to be more prominent during warming because of the increased aerobic metabolism. The seasonal profile of apoptosis and XO as another source of ROS matches the results obtained in the laboratory and are interpreted within the framework of oxygen- and capacity-limited thermal tolerance.
Collapse
|
37
|
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018; 39:760-802. [PMID: 30020428 DOI: 10.1210/er.2018-00064] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor of clinical interest as a drug target in various metabolic disorders. PPARα also exhibits marked anti-inflammatory capacities. The first-generation PPARα agonists, the fibrates, have however been hampered by drug-drug interaction issues, statin drop-in, and ill-designed cardiovascular intervention trials. Notwithstanding, understanding the molecular mechanisms by which PPARα works will enable control of its activities as a drug target for metabolic diseases with an underlying inflammatory component. Given its role in reshaping the immune system, the full potential of this nuclear receptor subtype as a versatile drug target with high plasticity becomes increasingly clear, and a novel generation of agonists may pave the way for novel fields of applications.
Collapse
Affiliation(s)
- Nadia Bougarne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Basiel Weyers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie J Desmet
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium
| | - David W Ray
- Division of Metabolism and Endocrinology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Bart Staels
- Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
- INSERM, U1011, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
38
|
Rymer Ł, Kempiński B, Chełstowska A, Skoneczny M. The budding yeast Pex5p receptor directs Fox2p and Cta1p into peroxisomes via its N-terminal region near the FxxxW domain. J Cell Sci 2018; 131:jcs.216986. [PMID: 30131444 DOI: 10.1242/jcs.216986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 08/07/2018] [Indexed: 01/08/2023] Open
Abstract
The import of most of peroxisomal proteins into the lumen of their target organelle is driven by C-terminal (PTS1) or N-terminal (PTS2) signals recognized by the Pex5p or Pex7p receptors, respectively. However, some proteins in budding yeast, such as acyl-CoA oxidase (AOx) and carnitine acetyltransferase (Cat2p), are imported into peroxisomes via an alternative route that does not rely on known PTS signals and involves the Pex5p receptor N-terminal region. Here, we show that two other budding yeast peroxisomal proteins, a multifunctional enzyme from the β-oxidation pathway (Fox2p) and catalase A (Cta1p), both of which contain PTS1, can be imported independently of this signal. The I264K amino acid substitution in Pex5p adjacent to its FxxxW diaromatic motif, previously shown to abolish the import of AOx and Cat2p into peroxisomes, also affects Fox2p and Cta1p import. Moreover, we demonstrate that Pex9p, a newly discovered paralog of Pex5p that was recently implicated in the import of malate synthases in budding yeast, also exhibits weak receptor activity towards Fox2p and Cta1p. These findings indicate the need to re-evaluate the peroxisomal import paradigm.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Łukasz Rymer
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | - Błażej Kempiński
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | - Anna Chełstowska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| |
Collapse
|
39
|
Pedrosa AG, Francisco T, Bicho D, Dias AF, Barros-Barbosa A, Hagmann V, Dodt G, Rodrigues TA, Azevedo JE. Peroxisomal monoubiquitinated PEX5 interacts with the AAA ATPases PEX1 and PEX6 and is unfolded during its dislocation into the cytosol. J Biol Chem 2018; 293:11553-11563. [PMID: 29884772 DOI: 10.1074/jbc.ra118.003669] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/28/2018] [Indexed: 11/06/2022] Open
Abstract
PEX1 and PEX6 are two members of the ATPases associated with diverse cellular activities (AAA) family and the core components of the receptor export module of the peroxisomal matrix protein import machinery. Their role is to extract monoubiquitinated PEX5, the peroxisomal protein-shuttling receptor, from the peroxisomal membrane docking/translocation module (DTM), so that a new cycle of protein transportation can start. Recent data have shown that PEX1 and PEX6 form a heterohexameric complex that unfolds substrates by processive threading. However, whether the natural substrate of the PEX1-PEX6 complex is monoubiquitinated PEX5 (Ub-PEX5) itself or some Ub-PEX5-interacting component(s) of the DTM remains unknown. In this work, we used an established cell-free in vitro system coupled with photoaffinity cross-linking and protein PEGylation assays to address this problem. We provide evidence suggesting that DTM-embedded Ub-PEX5 interacts directly with both PEX1 and PEX6 through its ubiquitin moiety and that the PEX5 polypeptide chain is globally unfolded during the ATP-dependent extraction event. These findings strongly suggest that DTM-embedded Ub-PEX5 is a bona fide substrate of the PEX1-PEX6 complex.
Collapse
Affiliation(s)
- Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Diana Bicho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ana F Dias
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Aurora Barros-Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Vera Hagmann
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe Seyler Strasse 4, 72076 Tübingen, Germany
| | - Gabriele Dodt
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe Seyler Strasse 4, 72076 Tübingen, Germany
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| |
Collapse
|
40
|
Cho DH, Kim YS, Jo DS, Choe SK, Jo EK. Pexophagy: Molecular Mechanisms and Implications for Health and Diseases. Mol Cells 2018; 41:55-64. [PMID: 29370694 PMCID: PMC5792714 DOI: 10.14348/molcells.2018.2245] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an intracellular degradation pathway for large protein aggregates and damaged organelles. Recent studies have indicated that autophagy targets cargoes through a selective degradation pathway called selective autophagy. Peroxisomes are dynamic organelles that are crucial for health and development. Pexophagy is selective autophagy that targets peroxisomes and is essential for the maintenance of homeostasis of peroxisomes, which is necessary in the prevention of various peroxisome-related disorders. However, the mechanisms by which pexophagy is regulated and the key players that induce and modulate pexophagy are largely unknown. In this review, we focus on our current understanding of how pexophagy is induced and regulated, and the selective adaptors involved in mediating pexophagy. Furthermore, we discuss current findings on the roles of pexophagy in physiological and pathological responses, which provide insight into the clinical relevance of pexophagy regulation. Understanding how pexophagy interacts with various biological functions will provide fundamental insights into the function of pexophagy and facilitate the development of novel therapeutics against peroxisomal dysfunction-related diseases.
Collapse
Affiliation(s)
- Dong-Hyung Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104,
Korea
| | - Yi Sak Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015,
Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015,
Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015,
Korea
| | - Doo Sin Jo
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104,
Korea
| | - Seong-Kyu Choe
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan 54538,
Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015,
Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015,
Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015,
Korea
| |
Collapse
|
41
|
Islinger M, Manner A, Völkl A. The Craft of Peroxisome Purification-A Technical Survey Through the Decades. Subcell Biochem 2018; 89:85-122. [PMID: 30378020 DOI: 10.1007/978-981-13-2233-4_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Purification technologies are one of the working horses in organelle proteomics studies as they guarantee the separation of organelle-specific proteins from the background contamination by other subcellular compartments. The development of methods for the separation of organelles was a major prerequisite for the initial detection and characterization of peroxisome as a discrete entity of the cell. Since then, isolated peroxisomes fractions have been used in numerous studies in order to characterize organelle-specific enzyme functions, to allocate the peroxisome-specific proteome or to unravel the organellar membrane composition. This review will give an overview of the fractionation methods used for the isolation of peroxisomes from animals, plants and fungi. In addition to "classic" centrifugation-based isolation methods, relying on the different densities of individual organelles, the review will also summarize work on alternative technologies like free-flow-electrophoresis or flow field fractionation which are based on distinct physicochemical parameters. A final chapter will further describe how different separation methods and quantitative mass spectrometry have been used in proteomics studies to assign the proteome of PO.
Collapse
Affiliation(s)
- Markus Islinger
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Andreas Manner
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alfred Völkl
- Department of Medical Cell Biology, Institute of Anatomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
42
|
Li L, Wang J, Chen H, Chai R, Zhang Z, Mao X, Qiu H, Jiang H, Wang Y, Sun G. Pex14/17, a filamentous fungus-specific peroxin, is required for the import of peroxisomal matrix proteins and full virulence of Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2017; 18:1238-1252. [PMID: 27571711 PMCID: PMC6638247 DOI: 10.1111/mpp.12487] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/11/2016] [Accepted: 08/28/2016] [Indexed: 05/27/2023]
Abstract
Peroxisomes are ubiquitous organelles in eukaryotic cells that fulfil a variety of biochemical functions. The biogenesis of peroxisomes requires a variety of proteins, named peroxins, which are encoded by PEX genes. Pex14/17 is a putative recently identified peroxin, specifically present in filamentous fungal species. Its function in peroxisomal biogenesis is still obscure and its roles in fungal pathogenicity have not yet been documented. Here, we demonstrate the contributions of Pex14/17 in the rice blast fungus Magnaporthe oryzae (Mopex14/17) to peroxisomal biogenesis and fungal pathogenicity by targeting gene replacement strategies. Mopex14/17 has properties of both Pex14 and Pex17 with regard to its protein sequence. Mopex14/17 is distributed at the peroxisomal membrane and is essential for efficient peroxisomal targeting of proteins containing peroxisomal targeting signal 1. MoPEX19 deletion leads to the cytoplasmic distribution of Mopex14/17, indicating that the peroxisomal import of Pex14/17 is dependent on Pex19. The knockout mutants of MoPEX14/17 show reduced fatty acid utilization, reactive oxygen species (ROS) degradation and cell wall integrity. Moreover, Δmopex14/17 mutants show delayed conidial generation and appressorial formation, and a reduction in appressorial turgor accumulation and penetration ability in host plants. These defects result in a significant reduction in the virulence of the mutant. These data indicate that MoPEX14/17 plays a crucial role in peroxisome biogenesis and contributes to fungal development and pathogenicity.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
- School of Agricultural and Food SciencesZhejiang Agriculture and Forest UniversityHangzhou311300China
| | - Jiaoyu Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Haili Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Rongyao Chai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Zhen Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Xueqin Mao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Haiping Qiu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Hua Jiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| |
Collapse
|
43
|
Francisco T, Rodrigues TA, Dias AF, Barros-Barbosa A, Bicho D, Azevedo JE. Protein transport into peroxisomes: Knowns and unknowns. Bioessays 2017; 39. [PMID: 28787099 DOI: 10.1002/bies.201700047] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and rapidly transported into the organelle by a complex machinery. The data gathered in recent years suggest that this machinery operates through a syringe-like mechanism, in which the shuttling receptor PEX5 - the "plunger" - pushes a newly synthesized protein all the way through a peroxisomal transmembrane protein complex - the "barrel" - into the matrix of the organelle. Notably, insertion of cargo-loaded receptor into the "barrel" is an ATP-independent process, whereas extraction of the receptor back into the cytosol requires its monoubiquitination and the action of ATP-dependent mechanoenzymes. Here, we review the main data behind this model.
Collapse
Affiliation(s)
- Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana F Dias
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Aurora Barros-Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Diana Bicho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
44
|
The Peroxisome-Mitochondria Connection: How and Why? Int J Mol Sci 2017; 18:ijms18061126. [PMID: 28538669 PMCID: PMC5485950 DOI: 10.3390/ijms18061126] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/15/2017] [Accepted: 05/20/2017] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, peroxisomes have emerged as key regulators in overall cellular lipid and reactive oxygen species metabolism. In mammals, these organelles have also been recognized as important hubs in redox-, lipid-, inflammatory-, and innate immune-signaling networks. To exert these activities, peroxisomes must interact both functionally and physically with other cell organelles. This review provides a comprehensive look of what is currently known about the interconnectivity between peroxisomes and mitochondria within mammalian cells. We first outline how peroxisomal and mitochondrial abundance are controlled by common sets of cis- and trans-acting factors. Next, we discuss how peroxisomes and mitochondria may communicate with each other at the molecular level. In addition, we reflect on how these organelles cooperate in various metabolic and signaling pathways. Finally, we address why peroxisomes and mitochondria have to maintain a healthy relationship and why defects in one organelle may cause dysfunction in the other. Gaining a better insight into these issues is pivotal to understanding how these organelles function in their environment, both in health and disease.
Collapse
|
45
|
Abstract
Organelle movement, distribution and interaction contribute to the organisation of the eukaryotic cell. Peroxisomes are multifunctional organelles which contribute to cellular lipid metabolism and ROS homeostasis. They distribute uniformly in mammalian cells and move along microtubules via kinesin and dynein motors. Their metabolic cooperation with mitochondria and the endoplasmic reticulum (ER) is essential for the β-oxidation of fatty acids and the synthesis of myelin lipids and polyunsaturated fatty acids. A key assay to assess peroxisome motility in mammalian cells is the expression of a fluorescent fusion protein with a peroxisomal targeting signal (e.g., GFP-PTS1), which targets the peroxisomal matrix and allows live-cell imaging of peroxisomes. Here, we first present a protocol for the transfection of cultured mammalian cells with the peroxisomal marker EGFP-SKL to observe peroxisomes in living cells. This approach has revealed different motile behaviour of peroxisomes and novel insight into peroxisomal membrane dynamics (Rapp et al., 1996; Wiemer et al., 1997; Schrader et al., 2000). We then present a protocol which combines the live-cell approach with peroxisome motility measurements and quantification of peroxisome dynamics in mammalian cells. More recently, we used this approach to demonstrate that peroxisome motility and displacement is increased when a molecular tether, which associates peroxisomes with the ER, is lost (Costello et al., 2017b). Silencing of the peroxisomal acyl-CoA binding domain protein ACBD5, which interacts with ER-localised VAPB, increased peroxisome movement in skin fibroblasts, indicating that membrane contact sites can modulate organelle distribution and motility. The protocols described can be adapted to other cell types and organelles to measure and quantify organelle movement under different experimental conditions.
Collapse
Affiliation(s)
- Jeremy Metz
- Biosciences, University of Exeter, Exeter, UK
| | | | | |
Collapse
|
46
|
Abstract
Peroxisomes are essential organelles in mammals which contribute to cellular lipid metabolism and redox homeostasis. The spectrum of their functions in human health and disease is far from being complete, and unexpected and novel roles of peroxisomes are being discovered. To date, those include novel biological roles in antiviral defence, as intracellular signaling platforms and as protective organelles in sensory cells. Furthermore, peroxisomes are part of a complex network of interacting subcellular compartments which involves metabolic cooperation, cross-talk and membrane contacts. As potentially novel peroxisomal proteins are continuously discovered, there is great interest in the verification of their peroxisomal localization. Here, we present protocols used successfully in our laboratory for the detection and immunolabeling of peroxisomal proteins in cultured mammalian cells. We present immunofluorescence and fluorescence-based techniques as well as reagents to determine peroxisome-specific targeting and localization of candidate proteins.
Collapse
Affiliation(s)
- Tina A Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Markus Islinger
- Center for Biomedicine and Medical Technology Mannheim, Institute of Neuroanatomy, University of Heidelberg, Ludolf-Krehl Str. 13-17, 68137, Mannheim, Germany
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, United Kingdom.
| |
Collapse
|
47
|
Critical role of the peroxisomal protein PEX16 in white adipocyte development and lipid homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:358-368. [PMID: 28017862 PMCID: PMC7116240 DOI: 10.1016/j.bbalip.2016.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/06/2016] [Accepted: 12/21/2016] [Indexed: 11/20/2022]
Abstract
The importance of peroxisomes for adipocyte function is poorly understood. Herein, we provide insights into the critical role of peroxin 16 (PEX16)-mediated peroxisome biogenesis in adipocyte development and lipid metabolism. Pex16 is highly expressed in adipose tissues and upregulated during adipogenesis of murine and human cells. We demonstrate that Pex16 is a target gene of the adipogenesis “master-regulator” PPARγ. Stable silencing of Pex16 in 3T3-L1 cells strongly reduced the number of peroxisomes while mitochondrial number was unaffected. Concomitantly, peroxisomal fatty acid (FA) oxidation was reduced, thereby causing accumulation of long-and very long-chain (polyunsaturated) FAs and reduction of odd-chain FAs. Further, Pex16-silencing decreased cellular oxygen consumption and increased FA release. Additionally, silencing of Pex16 impaired adipocyte differentiation, lipogenic and adipogenic marker gene expression, and cellular triglyceride stores. Addition of PPARγ agonist rosiglitazone and peroxisome-related lipid species to Pex16-silenced 3T3-L1 cells rescued adipogenesis. These data provide evidence that PEX16 is required for peroxisome biogenesis and highlights the relevance of peroxisomes for adipogenesis and adipocyte lipid metabolism.
Collapse
|
48
|
Yifrach E, Chuartzman SG, Dahan N, Maskit S, Zada L, Weill U, Yofe I, Olender T, Schuldiner M, Zalckvar E. Characterization of proteome dynamics during growth in oleate reveals a new peroxisome-targeting receptor. J Cell Sci 2016; 129:4067-4075. [PMID: 27663510 PMCID: PMC6275125 DOI: 10.1242/jcs.195255] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/20/2016] [Indexed: 02/03/2023] Open
Abstract
To optimally perform the diversity of metabolic functions that occur within peroxisomes, cells must dynamically regulate peroxisome size, number and content in response to the cell state and the environment. Except for transcriptional regulation little is known about the mechanisms used to perform this complicated feat. Focusing on the yeast Saccharomyces cerevisiae, we used complementary high-content screens to follow changes in localization of most proteins during growth in oleate. We found extensive changes in cellular architecture and identified several proteins that colocalized with peroxisomes that had not previously been considered peroxisomal proteins. One of the newly identified peroxisomal proteins, Ymr018w, is a protein with an unknown function that is similar to the yeast and human peroxisomal targeting receptor Pex5. We demonstrate that Ymr018w is a new peroxisomal-targeting receptor that targets a subset of matrix proteins to peroxisomes. We, therefore, renamed Ymr018w, Pex9, and suggest that Pex9 is a condition-specific targeting receptor that enables the dynamic rewiring of peroxisomes in response to metabolic needs. Moreover, we suggest that Pex5-like receptors might also exist in vertebrates.
Collapse
Affiliation(s)
- Eden Yifrach
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Silvia G Chuartzman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noa Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shiran Maskit
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lior Zada
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uri Weill
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ido Yofe
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
49
|
Salogiannis J, Reck-Peterson SL. Hitchhiking: A Non-Canonical Mode of Microtubule-Based Transport. Trends Cell Biol 2016; 27:141-150. [PMID: 27665063 DOI: 10.1016/j.tcb.2016.09.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 01/01/2023]
Abstract
The long-range movement of organelles, vesicles, and macromolecular complexes by microtubule-based transport is crucial for cell growth and survival. The canonical view of intracellular transport is that each cargo directly recruits molecular motors via cargo-specific adaptor molecules. Recently, a new paradigm called 'hitchhiking' has emerged: some cargos can achieve motility by interacting with other cargos that have already recruited molecular motors. In this way, cargos are co-transported together and their movements are directly coupled. Cargo hitchhiking was discovered in fungi. However, the observation that organelle dynamics are coupled in mammalian cells suggests that this paradigm may be evolutionarily conserved. We review here the data for hitchhiking and discuss the biological significance of this non-canonical mode of microtubule-based transport.
Collapse
Affiliation(s)
- John Salogiannis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Hong HK, Donaghy L, Kang CK, Kang HS, Lee HJ, Park HS, Choi KS. Substantial changes in hemocyte parameters of Manila clam Ruditapes philippinarum two years after the Hebei Spirit oil spill off the west coast of Korea. MARINE POLLUTION BULLETIN 2016; 108:171-179. [PMID: 27132991 DOI: 10.1016/j.marpolbul.2016.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/09/2016] [Accepted: 04/14/2016] [Indexed: 06/05/2023]
Abstract
Two years after the Hebei Spirit oil spill occurred off the west coast of Korea, we determined sub-lethal effects of the spilled oil on hemocyte parameters of Ruditapes philippinarum in the damaged areas. Clams in the spilled sites displayed unusually high proportion of granulocytes, which may result in higher phagocytosis capacity and reactive oxygen species production. Hemocytes in clams from the polluted sites also displayed less DNA damage and mortality than in the control site, possibly due to a faster phagocytosis of the impaired cells. Glycogen, the major energetic reserve, was depleted in clams from the spilled sites, potentially due to energetic consumption for maintenance of a large pool of granulocytes, detoxification processes and oxidative stress. Modified hemocyte parameters in clams in the spilled area, may reflect sub-lethal physiological stresses caused by the residual oils in the sediment, in conjunction with environmental modifications such as food availability and pathogens pattern.
Collapse
Affiliation(s)
- Hyun-Ki Hong
- School of Marine Biomedical Science (BK21 PLUS), Jeju National University 102, Jejudaehakno, Jeju 690-756, Republic of Korea
| | - Ludovic Donaghy
- School of Marine Biomedical Science (BK21 PLUS), Jeju National University 102, Jejudaehakno, Jeju 690-756, Republic of Korea
| | - Chang-Keun Kang
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Hyun-Sil Kang
- School of Marine Biomedical Science (BK21 PLUS), Jeju National University 102, Jejudaehakno, Jeju 690-756, Republic of Korea
| | - Hee-Jung Lee
- School of Marine Biomedical Science (BK21 PLUS), Jeju National University 102, Jejudaehakno, Jeju 690-756, Republic of Korea
| | - Heung-Sik Park
- Marine Ecosystem and Environment Research Division, Korea Institute of Ocean Science and Technology (KIOST), Ansan 425-600, Republic of Korea
| | - Kwang-Sik Choi
- School of Marine Biomedical Science (BK21 PLUS), Jeju National University 102, Jejudaehakno, Jeju 690-756, Republic of Korea.
| |
Collapse
|