1
|
Xu T, Chen G. MPV17 Prevents Myocardial Ferroptosis and Ischemic Cardiac Injury through Maintaining SLC25A10-Mediated Mitochondrial Glutathione Import. Int J Mol Sci 2024; 25:10832. [PMID: 39409161 PMCID: PMC11476822 DOI: 10.3390/ijms251910832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Ferroptosis is a recently identified iron-dependent programmed cell death with lipid peroxide accumulation and condensation and compaction of mitochondria. A recent study indicated that ferroptosis plays a pivotal role in ischemic cardiac injury with the mechanisms remain largely unknown. This study demonstrates that when an iron overload occurs in the ischemia/reperfusion cardiac tissues, which initiates myocardial ferroptosis, the expression levels of mitochondrial inner membrane protein MPV17 are reduced. Overexpression of MPV17 delivered via adenovirus significantly reduced ferroptosis in both cardiomyocytes with high levels of iron and cardiac I/R tissues. Mitochondrial glutathione (mtGSH), crucial for reactive oxygen species scavenging and mitochondrial homeostasis maintenance, is depleted in myocardial ferroptosis caused by iron overload. This mechanistic study shows that MPV17 can increase mitochondrial glutathione levels through maintaining the protein homeostasis of SLC25A10, which is a mitochondrial inner-membrane glutathione transporter. The absence of MPV17 in iron overload resulted in the ubiquitination-dependent degradation of SLC25A10, leading to impaired mitochondrial glutathione import. Moreover, we found that MPV17 was the targeted gene of Nrf2, which plays a pivotal role in preventing lipid peroxide accumulation and ferroptosis. The decreased expression levels of Nrf2 led to the inactivation of MPV17 in iron overload-induced myocardial ferroptosis. In summary, this study demonstrates the critical role of MPV17 in protecting cardiomyocytes from ferroptosis and elucidates the Nrf2-MPV17-SLC25A10/mitochondrial glutathione signaling pathway in the regulation of myocardial ferroptosis.
Collapse
Affiliation(s)
| | - Guilan Chen
- Instrumental Analysis Center, Qingdao Agricultural University, Qingdao 266109, China;
| |
Collapse
|
2
|
Swindell J, Dos Santos PC. Interactions with sulfur acceptors modulate the reactivity of cysteine desulfurases and define their physiological functions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119794. [PMID: 39033933 DOI: 10.1016/j.bbamcr.2024.119794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Sulfur-containing biomolecules such as [FeS] clusters, thiamin, biotin, molybdenum cofactor, and sulfur-containing tRNA nucleosides are essential for various biochemical reactions. The amino acid l-cysteine serves as the major sulfur source for the biosynthetic pathways of these sulfur-containing cofactors in prokaryotic and eukaryotic systems. The first reaction in the sulfur mobilization involves a class of pyridoxal-5'-phosphate (PLP) dependent enzymes catalyzing a Cys:sulfur acceptor sulfurtransferase reaction. The first half of the catalytic reaction involves a PLP-dependent CS bond cleavage, resulting in a persulfide enzyme intermediate. The second half of the reaction involves the subsequent transfer of the thiol group to a specific acceptor molecule, which is responsible for the physiological role of the enzyme. Structural and biochemical analysis of these Cys sulfurtransferase enzymes shows that specific protein-protein interactions with sulfur acceptors modulate their catalytic reactivity and restrict their biochemical functions.
Collapse
Affiliation(s)
- Jimmy Swindell
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, United States of America
| | - Patricia C Dos Santos
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, United States of America.
| |
Collapse
|
3
|
Tang S, Fuß A, Fattahi Z, Culmsee C. Drp1 depletion protects against ferroptotic cell death by preserving mitochondrial integrity and redox homeostasis. Cell Death Dis 2024; 15:626. [PMID: 39191736 DOI: 10.1038/s41419-024-07015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Mitochondria are highly dynamic organelles which undergo constant fusion and fission as part of the mitochondrial quality control. In genetic diseases and age-related neurodegenerative disorders, altered mitochondrial fission-fusion dynamics have been linked to impaired mitochondrial quality control, disrupted organelle integrity and function, thereby promoting neural dysfunction and death. The key enzyme regulating mitochondrial fission is the GTPase Dynamin-related Protein 1 (Drp1), which is also considered as a key player in mitochondrial pathways of regulated cell death. In particular, increasing evidence suggests a role for impaired mitochondrial dynamics and integrity in ferroptosis, which is an iron-dependent oxidative cell death pathway with relevance in neurodegeneration. In this study, we demonstrate that CRISPR/Cas9-mediated genetic depletion of Drp1 exerted protective effects against oxidative cell death by ferroptosis through preserved mitochondrial integrity and maintained redox homeostasis. Knockout of Drp1 resulted in mitochondrial elongation, attenuated ferroptosis-mediated impairment of mitochondrial membrane potential, and stabilized iron trafficking and intracellular iron storage. In addition, Drp1 deficiency exerted metabolic effects, with reduced basal and maximal mitochondrial respiration and a metabolic shift towards glycolysis. These metabolic effects further alleviated the mitochondrial contribution to detrimental ROS production thereby significantly enhancing neural cell resilience against ferroptosis. Taken together, this study highlights the key role of Drp1 in mitochondrial pathways of ferroptosis and expose the regulator of mitochondrial dynamics as a potential therapeutic target in neurological diseases involving oxidative dysregulation.
Collapse
Affiliation(s)
- Stephan Tang
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
- Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany
| | - Anneke Fuß
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
- Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany
- Institute of Reconstructive Neurobiology, Neurodevelopmental Genetics, University Bonn, LIFE & BRAIN Center, Bonn, Germany
| | - Zohreh Fattahi
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
- Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany.
- Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany.
| |
Collapse
|
4
|
Jain N, Gomkale R, Rehling P. TOM-TIM23 supercomplex formation. Methods Enzymol 2024; 707:3-22. [PMID: 39488380 DOI: 10.1016/bs.mie.2024.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Mitochondria import the vast majority of proteins from the cytosol. Protein translocation machineries in outer and inner membranes facilitate precursor recognition and transport. Most mitochondrial proteins utilize N-terminal presequences as targeting signals that eventually direct them across the inner mitochondrial membrane. These precursors are transported by the TOM complex across the outer-, and subsequently by the TIM23 complex across the inner membrane. During this process the translocases align and the polypeptide chain is translocated across both membranes in a coupled manner. A transient precursor-containing TOM-TIM23 supercomplex is formed. This TOM-TIM23 supercomplex provides a fascinating import intermediate which can be stabilized if the precursor contains a tightly folded moiety at the C-terminus that is not able to pass through the TOM complex. Such a supercomplex can be generated during in vitro import, and in vivo. The stabilized TOM-TIM23 supercomplex can be purified for downstream analysis. The possibility of pausing translocation at this step provides a means to understand the mechanisms underlying precursor translocation.
Collapse
Affiliation(s)
- Naintara Jain
- Institute for Cellular Biochemistry, University of Goettingen, Goettingen, Germany
| | - Ridhima Gomkale
- Institute for Cellular Biochemistry, University of Goettingen, Goettingen, Germany
| | - Peter Rehling
- Institute for Cellular Biochemistry, University of Goettingen, Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Goettingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany.
| |
Collapse
|
5
|
Liu Y, Hu S, Shi B, Yu B, Luo W, Peng S, Du X. The Role of Iron Metabolism in Sepsis-associated Encephalopathy: a Potential Target. Mol Neurobiol 2024; 61:4677-4690. [PMID: 38110647 DOI: 10.1007/s12035-023-03870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is an acute cerebral dysfunction secondary to infection, and the severity can range from mild delirium to deep coma. Disorders of iron metabolism have been proven to play an important role in a variety of neurodegenerative diseases by inducing cell damage through iron accumulation in glial cells and neurons. Recent studies have found that iron accumulation is also a potential mechanism of SAE. Systemic inflammation can induce changes in the expression of transporters and receptors on cells, especially high expression of divalent metal transporter1 (DMT1) and low expression of ferroportin (Fpn) 1, which leads to iron accumulation in cells. Excessive free Fe2+ can participate in the Fenton reaction to produce reactive oxygen species (ROS) to directly damage cells or induce ferroptosis. As a result, it may be of great help to improve SAE by treatment of targeting disorders of iron metabolism. Therefore, it is important to review the current research progress on the mechanism of SAE based on iron metabolism disorders. In addition, we also briefly describe the current status of SAE and iron metabolism disorders and emphasize the therapeutic prospect of targeting iron accumulation as a treatment for SAE, especially iron chelator. Moreover, drug delivery and side effects can be improved with the development of nanotechnology. This work suggests that treating SAE based on disorders of iron metabolism will be a thriving field.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengnan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
6
|
Shete PA, Ghatpande NS, Varma ME, Joshi PV, Suryavanshi KR, Misar AV, Jadhav SH, Apte PP, Kulkarni PP. Chronic dietary iron overload affects hepatic iron metabolism and cognitive behavior in Wistar rats. J Trace Elem Med Biol 2024; 84:127422. [PMID: 38492476 DOI: 10.1016/j.jtemb.2024.127422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Iron accumulation in organs affects iron metabolism, leading to deleterious effects on the body. Previously, it was studied that high dietary iron in various forms and concentrations influences iron metabolism, resulting in iron accumulation in the liver and spleen and cognitive impairment. However, the actual mechanism and impact of long-term exposure to high dietary iron remain unknown. As a result, we postulated that iron overload caused by chronic exposure to excessive dietary iron supplementation would play a role in iron dyshomeostasis and inflammation in the liver and brain of Wistar rats. METHODS Animals were segregated into control, low iron (FAC-Ferric Ammonium Citrate 5000 ppm), and high iron dose group (FAC 20,000 ppm). The outcome of dietary iron overload on Wistar rats was evaluated in terms of body weight, biochemical markers, histological examination of liver and brain tissue, and cognitive-behavioral studies. Also, gene expression of rat brain tissue involving iron transporters Dmt1, TfR1, iron storage protein Fpn1, inflammatory markers Nf-kB, Tnf-α, Il-6, and hepcidin was performed. RESULTS Our data indicate that excess iron supplementation for 30 weeks leads to decreased body weight, increased serum iron levels, and decreased RBC levels in iron fed Wistar rats. Morris water maze (MWM) studies after 30 weeks showed increased escape latency in the high iron dose group compared with the control group. Histological studies of the high iron dose group showed an iron accumulation in the liver and brain loss of cellular architecture, and cellular degeneration was observed. Excess iron treatment showed upregulation of the Dmt1 gene in iron metabolism and a remarkable increase in the Nf-kB gene in rat brain tissue. CONCLUSION The results show chronic excess iron supplementation leads to iron accumulation in the liver, leading to inflammation in Wistar rats.
Collapse
Affiliation(s)
- Padmaja Anil Shete
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411007, India.
| | - Niraj Sudhir Ghatpande
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Mokshada Evameshwar Varma
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Pranav Vijay Joshi
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Komal Ravindra Suryavanshi
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411007, India.
| | - Ashwini Vivek Misar
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Sachin Hanumantrao Jadhav
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Priti Parag Apte
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Prasad Padmakar Kulkarni
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411007, India.
| |
Collapse
|
7
|
Ren W, Ge X, Li M, Sun J, Li S, Gao S, Shan C, Gao B, Xi P. Visualization of cristae and mtDNA interactions via STED nanoscopy using a low saturation power probe. LIGHT, SCIENCE & APPLICATIONS 2024; 13:116. [PMID: 38782912 PMCID: PMC11116397 DOI: 10.1038/s41377-024-01463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024]
Abstract
Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and proteins essential for cellular function. However, the interaction between the inner membrane (IM) and mtDNA remains elusive due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vivo probes specifically targeting the IM. Here, we have developed a novel fluorescence probe called HBmito Crimson, characterized by exceptional photostability, fluorogenicity within lipid membranes, and low saturation power. We successfully achieved over 500 frames of low-power stimulated emission depletion microscopy (STED) imaging to visualize the IM dynamics, with a spatial resolution of 40 nm. By utilizing dual-color imaging of the IM and mtDNA, it has been uncovered that mtDNA tends to habitat at mitochondrial tips or branch points, exhibiting an overall spatially uniform distribution. Notably, the dynamics of mitochondria are intricately associated with the positioning of mtDNA, and fusion consistently occurs in close proximity to mtDNA to minimize pressure during cristae remodeling. In healthy cells, >66% of the mitochondria are Class III (i.e., mitochondria >5 μm or with >12 cristae), while it dropped to <18% in ferroptosis. Mitochondrial dynamics, orchestrated by cristae remodeling, foster the even distribution of mtDNA. Conversely, in conditions of apoptosis and ferroptosis where the cristae structure is compromised, mtDNA distribution becomes irregular. These findings, achieved with unprecedented spatiotemporal resolution, reveal the intricate interplay between cristae and mtDNA and provide insights into the driving forces behind mtDNA distribution.
Collapse
Affiliation(s)
- Wei Ren
- Department of Biomedical Engineering, National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China
| | - Xichuan Ge
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| | - Meiqi Li
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jing Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| | - Shiyi Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| | - Shu Gao
- Department of Biomedical Engineering, National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China
| | - Chunyan Shan
- School of Life Sciences, Peking University, Beijing, 100871, China.
- National Center for Protein Sciences, Peking University, Beijing, 100871, China.
| | - Baoxiang Gao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China.
| | - Peng Xi
- Department of Biomedical Engineering, National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Zhou M, Hanschmann EM, Römer A, Linn T, Petry SF. The significance of glutaredoxins for diabetes mellitus and its complications. Redox Biol 2024; 71:103043. [PMID: 38377787 PMCID: PMC10891345 DOI: 10.1016/j.redox.2024.103043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/13/2024] [Indexed: 02/22/2024] Open
Abstract
Diabetes mellitus is a non-communicable metabolic disease hallmarked by chronic hyperglycemia caused by beta-cell failure. Diabetic complications affect the vasculature and result in macro- and microangiopathies, which account for a significantly increased morbidity and mortality. The rising incidence and prevalence of diabetes is a major global health burden. There are no feasible strategies for beta-cell preservation available in daily clinical practice. Therefore, patients rely on antidiabetic drugs or the application of exogenous insulin. Glutaredoxins (Grxs) are ubiquitously expressed and highly conserved members of the thioredoxin family of proteins. They have specific functions in redox-mediated signal transduction, iron homeostasis and biosynthesis of iron-sulfur (FeS) proteins, and the regulation of cell proliferation, survival, and function. The involvement of Grxs in chronic diseases has been a topic of research for several decades, suggesting them as therapeutic targets. Little is known about their role in diabetes and its complications. Therefore, this review summarizes the available literature on the significance of Grxs in diabetes and its complications. In conclusion, Grxs are differentially expressed in the endocrine pancreas and in tissues affected by diabetic complications, such as the heart, the kidneys, the eye, and the vasculature. They are involved in several pathways essential for insulin signaling, metabolic inflammation, glucose and fatty acid uptake and processing, cell survival, and iron and mitochondrial metabolism. Most studies describe significant changes in glutaredoxin expression and/or activity in response to the diabetic metabolism. In general, mitigated levels of Grxs are associated with oxidative distress, cell damage, and even cell death. The induced overexpression is considered a potential part of the cellular stress-response, counteracting oxidative distress and exerting beneficial impact on cell function such as insulin secretion, cytokine expression, and enzyme activity.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Eva-Maria Hanschmann
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Axel Römer
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Sebastian Friedrich Petry
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
9
|
Rojsajjakul T, Selvan N, De B, Rosenberg JB, Kaminsky SM, Sondhi D, Janki P, Crystal RG, Mesaros C, Khanna R, Blair IA. Expression and processing of mature human frataxin after gene therapy in mice. Sci Rep 2024; 14:8391. [PMID: 38600238 PMCID: PMC11006666 DOI: 10.1038/s41598-024-59060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/06/2024] [Indexed: 04/12/2024] Open
Abstract
Friedreich's ataxia is a degenerative and progressive multisystem disorder caused by mutations in the highly conserved frataxin (FXN) gene that results in FXN protein deficiency and mitochondrial dysfunction. While gene therapy approaches are promising, consistent induction of therapeutic FXN protein expression that is sub-toxic has proven challenging, and numerous therapeutic approaches are being tested in animal models. FXN (hFXN in humans, mFXN in mice) is proteolytically modified in mitochondria to produce mature FXN. However, unlike endogenous hFXN, endogenous mFXN is further processed into N-terminally truncated, extra-mitochondrial mFXN forms of unknown function. This study assessed mature exogenous hFXN expression levels in the heart and liver of C57Bl/6 mice 7-10 months after intravenous administration of a recombinant adeno-associated virus encoding hFXN (AAVrh.10hFXN) and examined the potential for hFXN truncation in mice. AAVrh.10hFXN induced dose-dependent expression of hFXN in the heart and liver. Interestingly, hFXN was processed into truncated forms, but found at lower levels than mature hFXN. However, the truncations were at different positions than mFXN. AAVrh.10hFXN induced mature hFXN expression in mouse heart and liver at levels that approximated endogenous mFXN levels. These results suggest that AAVrh.10hFXN can likely induce expression of therapeutic levels of mature hFXN in mice.
Collapse
Affiliation(s)
- Teerapat Rojsajjakul
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, Penn/CHOP Friedreich's Ataxia Center of Excellence, Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Bishnu De
- Department of Genetic Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | | | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, Penn/CHOP Friedreich's Ataxia Center of Excellence, Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, Penn/CHOP Friedreich's Ataxia Center of Excellence, Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Wang S, Chen L, Li S, Hu F. Uncovering proteome variations and concomitant quality changes of differently drying-treated rape (Brassica napus) bee pollen by label-free quantitative proteomics. Food Chem 2024; 434:137559. [PMID: 37748288 DOI: 10.1016/j.foodchem.2023.137559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
High moisture content of fresh bee pollen makes it difficult to preserve and thus makes drying a necessary process during the bee pollen production. Drying treatment will affect its quality and the effects of sun drying, hot-air drying and freeze drying on the proteome of rape (Brassica napus) bee pollen have been evaluated using label-free quantitative proteomics by liquid chromatography-tandem mass spectrometer (LC-MS/MS). A total of 8377 proteins are identified, among which the most abundant differential proteins were found in freeze drying-treated samples. Also freeze-drying treatment maximizes the content of antioxidant, antibacterial and anemic bioactive pollen protein. Besides, rape bee pollen is found to adjust its metabolism to protect itself during the drying process. These results can be favorable to evaluate the effects of drying treatment on the nutrition and function of processed rape bee pollen and insight into how rape bee pollen proteins respond to dehydration.
Collapse
Affiliation(s)
- Shuyue Wang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liang Chen
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Li
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fuliang Hu
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Corrales J, Ramos-Alonso L, González-Sabín J, Ríos-Lombardía N, Trevijano-Contador N, Engen Berg H, Sved Skottvoll F, Moris F, Zaragoza O, Chymkowitch P, Garcia I, Enserink JM. Characterization of a selective, iron-chelating antifungal compound that disrupts fungal metabolism and synergizes with fluconazole. Microbiol Spectr 2024; 12:e0259423. [PMID: 38230926 PMCID: PMC10845951 DOI: 10.1128/spectrum.02594-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024] Open
Abstract
Fungal infections are a growing global health concern due to the limited number of available antifungal therapies as well as the emergence of fungi that are resistant to first-line antimicrobials, particularly azoles and echinocandins. Development of novel, selective antifungal therapies is challenging due to similarities between fungal and mammalian cells. An attractive source of potential antifungal treatments is provided by ecological niches co-inhabited by bacteria, fungi, and multicellular organisms, where complex relationships between multiple organisms have resulted in evolution of a wide variety of selective antimicrobials. Here, we characterized several analogs of one such natural compound, collismycin A. We show that NR-6226C has antifungal activity against several pathogenic Candida species, including C. albicans and C. glabrata, whereas it only has little toxicity against mammalian cells. Mechanistically, NR-6226C selectively chelates iron, which is a limiting factor for pathogenic fungi during infection. As a result, NR-6226C treatment causes severe mitochondrial dysfunction, leading to formation of reactive oxygen species, metabolic reprogramming, and a severe reduction in ATP levels. Using an in vivo model for fungal infections, we show that NR-6226C significantly increases survival of Candida-infected Galleria mellonella larvae. Finally, our data indicate that NR-6226C synergizes strongly with fluconazole in inhibition of C. albicans. Taken together, NR-6226C is a promising antifungal compound that acts by chelating iron and disrupting mitochondrial functions.IMPORTANCEDrug-resistant fungal infections are an emerging global threat, and pan-resistance to current antifungal therapies is an increasing problem. Clearly, there is a need for new antifungal drugs. In this study, we characterized a novel antifungal agent, the collismycin analog NR-6226C. NR-6226C has a favorable toxicity profile for human cells, which is essential for further clinical development. We unraveled the mechanism of action of NR-6226C and found that it disrupts iron homeostasis and thereby depletes fungal cells of energy. Importantly, NR-6226C strongly potentiates the antifungal activity of fluconazole, thereby providing inroads for combination therapy that may reduce or prevent azole resistance. Thus, NR-6226C is a promising compound for further development into antifungal treatment.
Collapse
Affiliation(s)
- Jeanne Corrales
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Lucia Ramos-Alonso
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Javier González-Sabín
- EntreChem SL, Vivero Ciencias de la Salud, Calle Colegio Santo Domingo Guzmán, Oviedo, Spain
| | - Nicolás Ríos-Lombardía
- EntreChem SL, Vivero Ciencias de la Salud, Calle Colegio Santo Domingo Guzmán, Oviedo, Spain
| | - Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Madrid, Spain
| | | | | | - Francisco Moris
- EntreChem SL, Vivero Ciencias de la Salud, Calle Colegio Santo Domingo Guzmán, Oviedo, Spain
| | - Oscar Zaragoza
- EntreChem SL, Vivero Ciencias de la Salud, Calle Colegio Santo Domingo Guzmán, Oviedo, Spain
- Center for Biomedical Research in Network in Infectious Diseases, CB21/13/00105, Instituto de Salud Carlos III, Madrid, Spain
| | - Pierre Chymkowitch
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Ignacio Garcia
- Department of Bacteriology, Norwegian Institute of Public Health, Oslo, Norway
| | - Jorrit M. Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Antunes M, Sá-Correia I. The role of ion homeostasis in adaptation and tolerance to acetic acid stress in yeasts. FEMS Yeast Res 2024; 24:foae016. [PMID: 38658183 PMCID: PMC11092280 DOI: 10.1093/femsyr/foae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
Maintenance of asymmetric ion concentrations across cellular membranes is crucial for proper yeast cellular function. Disruptions of these ionic gradients can significantly impact membrane electrochemical potential and the balance of other ions, particularly under stressful conditions such as exposure to acetic acid. This weak acid, ubiquitous to both yeast metabolism and industrial processes, is a major inhibitor of yeast cell growth in industrial settings and a key determinant of host colonization by pathogenic yeast. Acetic acid toxicity depends on medium composition, especially on the pH (H+ concentration), but also on other ions' concentrations. Regulation of ion fluxes is essential for effective yeast response and adaptation to acetic acid stress. However, the intricate interplay among ion balancing systems and stress response mechanisms still presents significant knowledge gaps. This review offers a comprehensive overview of the mechanisms governing ion homeostasis, including H+, K+, Zn2+, Fe2+/3+, and acetate, in the context of acetic acid toxicity, adaptation, and tolerance. While focus is given on Saccharomyces cerevisiae due to its extensive physiological characterization, insights are also provided for biotechnologically and clinically relevant yeast species whenever available.
Collapse
Affiliation(s)
- Miguel Antunes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| |
Collapse
|
13
|
Sun K, Zhi Y, Ren W, Li S, Zhou X, Gao L, Zhi K. The mitochondrial regulation in ferroptosis signaling pathway and its potential strategies for cancer. Biomed Pharmacother 2023; 169:115892. [PMID: 37976895 DOI: 10.1016/j.biopha.2023.115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Ferroptosis is an iron-dependent regulated cell death, mainly manifested by the production of reactive oxygen species and accumulation of lipid peroxides. It is distinct from other forms of cell death with regard to morphology and biochemistry, particularly in disrupting mitochondrial function. Mitochondria are essential compartments where the organism generates energy and are closely associated with the fate of ferroptosis. Currently, researchers focus on the potential value of ferroptosis and mitochondria for overcoming drug sensitivity and assisting in cancer therapy. In this review, we summarize the main mechanisms of ferroptosis (the GPX4-realated pathway, FSP1-related pathway, and iron metabolism pathway) and the functions and regulating pathways of mitochondria (the TCA cycle, oxidative phosphorylation, mitochondrial regulation of iron ions, and mtDNA) in ferroptosis. We believe that exploring the role of mitochondria in ferroptosis will help us understand the potential regulatory mechanisms of ferroptosis in cancer and help us find new therapeutic targets.
Collapse
Affiliation(s)
- Kai Sun
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yuan Zhi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaoqing Zhou
- Department of the Stomatology, Jining NO.1 People' hospital, Shandong, China
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
14
|
Rojsajjakul T, Selvan N, De B, Rosenberg JB, Kaminsky SM, Sondhi D, Janki P, Crystal RG, Mesaros C, Khanna R, Blair IA. Expression and processing of mature human frataxin after gene therapy in mice. RESEARCH SQUARE 2023:rs.3.rs-3788652. [PMID: 38234818 PMCID: PMC10793484 DOI: 10.21203/rs.3.rs-3788652/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Friedreich's ataxia is a degenerative and progressive multisystem disorder caused by mutations in the highly conserved frataxin (FXN) gene that results in FXN protein deficiency and mitochondrial dysfunction. While gene therapy approaches are promising, consistent induction of therapeutic FXN protein expression that is sub-toxic has proven challenging, and numerous therapeutic approaches are being tested in animal models. FXN (hFXN in humans, mFXN in mice) is proteolytically modified in mitochondria to produce mature FXN. However, unlike endogenous hFXN, endogenous mFXN is further processed into N-terminally truncated, extra-mitochondrial mFXN forms of unknown function. This study assessed mature exogenous hFXN expression levels in the heart and liver of C57Bl/6 mice 7-10 months after intravenous administration of a recombinant adeno-associated virus encoding hFXN (AAVrh.10hFXN) and examined the potential for hFXN truncation in mice. AAVrh.10hFXN induced dose-dependent expression of hFXN in the heart and liver. Interestingly, hFXN was processed into truncated forms, but found at lower levels than mature hFXN. However, the truncations were at different positions than mFXN. AAVrh.10hFXN induced mature hFXN expression in mouse heart and liver at levels that approximated endogenous mFXN levels. These results demonstrate that AAVrh.10hFXN may induce expression of therapeutic levels of mature hFXN in mice.
Collapse
|
15
|
Alghusen IM, Carman MS, Wilkins H, Ephrame SJ, Qiang A, Dias WB, Fedosyuk H, Denson AR, Swerdlow RH, Slawson C. O-GlcNAc regulates the mitochondrial integrated stress response by regulating ATF4. Front Aging Neurosci 2023; 15:1326127. [PMID: 38192280 PMCID: PMC10773771 DOI: 10.3389/fnagi.2023.1326127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Background Accumulation of mitochondrial dysfunctional is a hallmark of age-related neurodegeneration including Alzheimer's disease (AD). Impairment of mitochondrial quality control mechanisms leading to the accumulation of damaged mitochondria and increasing neuronal stress. Therefore, investigating the basic mechanisms of how mitochondrial homeostasis is regulated is essential. Herein, we investigate the role of O-GlcNAcylation, a single sugar post-translational modification, in controlling mitochondrial stress-induced transcription factor Activating Transcription Factor 4 (ATF4). Mitochondrial dysfunction triggers the integrated stress response (ISRmt), in which the phosphorylation of eukaryotic translation initiation factor 2α results in the translation of ATF4. Methods We used patient-derived induced pluripotent stem cells, a transgenic mouse model of AD, SH-SY5Y neuroblastoma and HeLa cell-lines to examine the effect of sustained O-GlcNAcase inhibition by Thiamet-G (TMG) on ISRmt using biochemical analyses. Results We show that TMG elevates ATF4 protein levels upon mitochondrial stress in SH-SY5Y neuroblastoma and HeLa cell-lines. An indirect downstream target of ATF4 mitochondrial chaperone glucose-regulated protein 75 (GRP75) is significantly elevated. Interestingly, knock-down of O-GlcNAc transferase (OGT), the enzyme that adds O-GlcNAc, in SH-SY5Y increases ATF4 protein and mRNA expression. Additionally, ATF4 target gene Activating Transcription Factor 5 (ATF5) is significantly elevated at both the protein and mRNA level. Brains isolated from TMG treated mice show elevated levels of ATF4 and GRP75. Importantly, ATF4 occupancy increases at the ATF5 promoter site in brains isolated from TMG treated mice suggesting that O-GlcNAc is regulating ATF4 targeted gene expression. Interestingly, ATF4 and GRP75 are not induced in TMG treated familial Alzheimer's Disease mice model. The same results are seen in a human in vitro model of AD. Conclusion Together, these results indicate that in healthy conditions, O-GlcNAc regulates the ISRmt through regulating ATF4, while manipulating O-GlcNAc in AD has no effect on ISRmt.
Collapse
Affiliation(s)
- Ibtihal M. Alghusen
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Marisa S. Carman
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Heather Wilkins
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sophiya John Ephrame
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Amy Qiang
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Wagner B. Dias
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Halyna Fedosyuk
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aspin R. Denson
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Chad Slawson
- School of Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
16
|
Malvaso A, Gatti A, Negro G, Calatozzolo C, Medici V, Poloni TE. Microglial Senescence and Activation in Healthy Aging and Alzheimer's Disease: Systematic Review and Neuropathological Scoring. Cells 2023; 12:2824. [PMID: 38132144 PMCID: PMC10742050 DOI: 10.3390/cells12242824] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The greatest risk factor for neurodegeneration is the aging of the multiple cell types of human CNS, among which microglia are important because they are the "sentinels" of internal and external perturbations and have long lifespans. We aim to emphasize microglial signatures in physiologic brain aging and Alzheimer's disease (AD). A systematic literature search of all published articles about microglial senescence in human healthy aging and AD was performed, searching for PubMed and Scopus online databases. Among 1947 articles screened, a total of 289 articles were assessed for full-text eligibility. Microglial transcriptomic, phenotypic, and neuropathological profiles were analyzed comprising healthy aging and AD. Our review highlights that studies on animal models only partially clarify what happens in humans. Human and mice microglia are hugely heterogeneous. Like a two-sided coin, microglia can be protective or harmful, depending on the context. Brain health depends upon a balance between the actions and reactions of microglia maintaining brain homeostasis in cooperation with other cell types (especially astrocytes and oligodendrocytes). During aging, accumulating oxidative stress and mitochondrial dysfunction weaken microglia leading to dystrophic/senescent, otherwise over-reactive, phenotype-enhancing neurodegenerative phenomena. Microglia are crucial for managing Aβ, pTAU, and damaged synapses, being pivotal in AD pathogenesis.
Collapse
Affiliation(s)
- Antonio Malvaso
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Alberto Gatti
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Giulia Negro
- Department of Neurology, University of Milano Bicocca, 20126 Milan, Italy;
| | - Chiara Calatozzolo
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Valentina Medici
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| |
Collapse
|
17
|
An F, Zhang J, Gao P, Xiao Z, Chang W, Song J, Wang Y, Ma H, Zhang R, Chen Z, Yan C. New insight of the pathogenesis in osteoarthritis: the intricate interplay of ferroptosis and autophagy mediated by mitophagy/chaperone-mediated autophagy. Front Cell Dev Biol 2023; 11:1297024. [PMID: 38143922 PMCID: PMC10748422 DOI: 10.3389/fcell.2023.1297024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Ferroptosis, characterized by iron accumulation and lipid peroxidation, is a form of iron-driven cell death. Mitophagy is a type of selective autophagy, where degradation of damaged mitochondria is the key mechanism for maintaining mitochondrial homeostasis. Additionally, Chaperone-mediated autophagy (CMA) is a biological process that transports individual cytoplasmic proteins to lysosomes for degradation through companion molecules such as heat shock proteins. Research has demonstrated the involvement of ferroptosis, mitophagy, and CMA in the pathological progression of Osteoarthritis (OA). Furthermore, research has indicated a significant correlation between alterations in the expression of reactive oxygen species (ROS), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factors (HIFs) and the occurrence of OA, particularly in relation to ferroptosis and mitophagy. In light of these findings, our study aims to assess the regulatory functions of ferroptosis and mitophagy/CMA in the pathogenesis of OA. Additionally, we propose a mechanism of crosstalk between ferroptosis and mitophagy, while also examining potential pharmacological interventions for targeted therapy in OA. Ultimately, our research endeavors to offer novel insights and directions for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haizhen Ma
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Rui Zhang
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhendong Chen
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
18
|
Pijuan J, Moreno DF, Yahya G, Moisa M, Ul Haq I, Krukiewicz K, Mosbah R, Metwally K, Cavalu S. Regulatory and pathogenic mechanisms in response to iron deficiency and excess in fungi. Microb Biotechnol 2023; 16:2053-2071. [PMID: 37804207 PMCID: PMC10616654 DOI: 10.1111/1751-7915.14346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
Iron is an essential element for all eukaryote organisms because of its redox properties, which are important for many biological processes such as DNA synthesis, mitochondrial respiration, oxygen transport, lipid, and carbon metabolism. For this reason, living organisms have developed different strategies and mechanisms to optimally regulate iron acquisition, transport, storage, and uptake in different environmental responses. Moreover, iron plays an essential role during microbial infections. Saccharomyces cerevisiae has been of key importance for decrypting iron homeostasis and regulation mechanisms in eukaryotes. Specifically, the transcription factors Aft1/Aft2 and Yap5 regulate the expression of genes to control iron metabolism in response to its deficiency or excess, adapting to the cell's iron requirements and its availability in the environment. We also review which iron-related virulence factors have the most common fungal human pathogens (Aspergillus fumigatus, Cryptococcus neoformans, and Candida albicans). These factors are essential for adaptation in different host niches during pathogenesis, including different fungal-specific iron-uptake mechanisms. While being necessary for virulence, they provide hope for developing novel antifungal treatments, which are currently scarce and usually toxic for patients. In this review, we provide a compilation of the current knowledge about the metabolic response to iron deficiency and excess in fungi.
Collapse
Affiliation(s)
- Jordi Pijuan
- Laboratory of Neurogenetics and Molecular MedicineInstitut de Recerca Sant Joan de DéuBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIIIMadridSpain
| | - David F. Moreno
- Department of Molecular Cellular and Developmental BiologyYale UniversityNew HavenConnecticutUSA
- Systems Biology InstituteYale UniversityWest HavenConnecticutUSA
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of PharmacyZagazig UniversityAl SharqiaEgypt
| | - Mihaela Moisa
- Faculty of Medicine and PharmacyUniversity of OradeaOradeaRomania
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Polymers TechnologySilesian University of TechnologyGliwicePoland
- Programa de Pós‐graduação em Inovação TecnológicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Polymers TechnologySilesian University of TechnologyGliwicePoland
- Centre for Organic and Nanohybrid ElectronicsSilesian University of TechnologyGliwicePoland
| | - Rasha Mosbah
- Infection Control UnitHospitals of Zagazig UniversityZagazigEgypt
| | - Kamel Metwally
- Department of Medicinal Chemistry, Faculty of PharmacyUniversity of TabukTabukSaudi Arabia
- Department of Pharmaceutical Medicinal Chemistry, Faculty of PharmacyZagazig UniversityZagazigEgypt
| | - Simona Cavalu
- Faculty of Medicine and PharmacyUniversity of OradeaOradeaRomania
| |
Collapse
|
19
|
Hider RC, Pourzand C, Ma Y, Cilibrizzi A. Optical Imaging Opportunities to Inspect the Nature of Cytosolic Iron Pools. Molecules 2023; 28:6467. [PMID: 37764245 PMCID: PMC10537325 DOI: 10.3390/molecules28186467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The chemical nature of intracellular labile iron pools (LIPs) is described. By virtue of the kinetic lability of these pools, it is suggested that the isolation of such species by chromatography methods will not be possible, but rather mass spectrometric techniques should be adopted. Iron-sensitive fluorescent probes, which have been developed for the detection and quantification of LIP, are described, including those specifically designed to monitor cytosolic, mitochondrial, and lysosomal LIPs. The potential of near-infrared (NIR) probes for in vivo monitoring of LIP is discussed.
Collapse
Affiliation(s)
- Robert Charles Hider
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK;
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK;
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
- Centre for Bioengineering and Biomedical Technologies, University of Bath, Bath BA2 7AY, UK
| | - Yongmin Ma
- Institute of Advanced Studies, School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China;
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
20
|
Lee J, Roh JL. Altered iron metabolism as a target for ferroptosis induction in head and neck cancer. Cell Oncol (Dordr) 2023; 46:801-810. [PMID: 36811720 DOI: 10.1007/s13402-023-00784-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Iron is a mineral micronutrient essential for survival and vital functions in many biological processes in living organisms. Iron plays a crucial role as a cofactor of iron-sulfur clusters in energy metabolism and biosynthesis by binding with enzymes and transferring electrons to targets. Iron can also impair cellular functions by damaging organelles and nucleic acids by producing free radicals from redox cycling. Iron-catalyzed reaction products can induce active-site mutations in tumorigenesis and cancer progression. However, the boosted pro-oxidant iron form may contribute to cytotoxicity by increasing soluble radicals and highly reactive oxygen species via the Fenton reaction. An increased redox-active labile iron pool is required for tumor growth and metastasis, but the increased cytotoxic lipid radicals also lead to regulated cell death, such as ferroptosis. Therefore, this may be a major target for selectively killing cancer cells. This review intends to understand altered iron metabolism in cancers and discuss iron-related molecular regulators highly associated with iron-induced cytotoxic radical production and ferroptosis induction, focusing on head and neck cancer.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, 13496, Seongnam, Gyeonggi-do, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, 13496, Seongnam, Gyeonggi-do, Republic of Korea.
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
21
|
Bargagna B, Banci L, Camponeschi F. Understanding the Molecular Basis of the Multiple Mitochondrial Dysfunctions Syndrome 2: The Disease-Causing His96Arg Mutation of BOLA3. Int J Mol Sci 2023; 24:11734. [PMID: 37511493 PMCID: PMC10380394 DOI: 10.3390/ijms241411734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple mitochondrial dysfunctions syndrome type 2 with hyperglycinemia (MMDS2) is a severe disorder of mitochondrial energy metabolism, associated with biallelic mutations in the gene encoding for BOLA3, a protein with a not yet completely understood role in iron-sulfur (Fe-S) cluster biogenesis, but essential for the maturation of mitochondrial [4Fe-4S] proteins. To better understand the role of BOLA3 in MMDS2, we have investigated the impact of the p.His96Arg (c.287A > G) point mutation, which involves a highly conserved residue, previously identified as a [2Fe-2S] cluster ligand in the BOLA3-[2Fe-2S]-GLRX5 heterocomplex, on the structural and functional properties of BOLA3 protein. The His96Arg mutation has been associated with a severe MMDS2 phenotype, characterized by defects in the activity of mitochondrial respiratory complexes and lipoic acid-dependent enzymes. Size exclusion chromatography, NMR, UV-visible, circular dichroism, and EPR spectroscopy characterization have shown that the His96Arg mutation does not impair the interaction of BOLA3 with its protein partner GLRX5, but leads to the formation of an aberrant BOLA3-[2Fe-2S]-GLRX5 heterocomplex, that is not functional anymore in the assembly of a [4Fe-4S] cluster on NFU1. These results allowed us to rationalize the severe phenotype observed in MMDS2 caused by His96Arg mutation.
Collapse
Affiliation(s)
- Beatrice Bargagna
- Department of Chemistry, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Lucia Banci
- Department of Chemistry, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Francesca Camponeschi
- Department of Chemistry, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
22
|
Chen B, Das NK, Talukder I, Singhal R, Castillo C, Andren A, Mancias JD, Lyssiotis CA, Shah YM. PTEN-induced kinase PINK1 supports colorectal cancer growth by regulating the labile iron pool. J Biol Chem 2023; 299:104691. [PMID: 37037306 PMCID: PMC10196865 DOI: 10.1016/j.jbc.2023.104691] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023] Open
Abstract
Mitophagy is a cargo-specific autophagic process that recycles damaged mitochondria to promote mitochondrial turnover. PTEN-induced putative kinase 1 (PINK1) mediates the canonical mitophagic pathway. However, the role of PINK1 in diseases where mitophagy has been purported to play a role, such as colorectal cancer, is unclear. Our results here demonstrate that higher PINK1 expression is positively correlated with decreased colon cancer survival, and mitophagy is required for colon cancer growth. We show that doxycycline-inducible knockdown (KD) of PINK1 in a panel of colon cancer cell lines inhibited proliferation, whereas disruption of other mitophagy receptors did not impact cell growth. We observed that PINK KD led to a decrease in mitochondrial respiration, membrane hyperpolarization, accumulation of mitochondrial DNA, and depletion of antioxidant glutathione. In addition, mitochondria are important hubs for the utilization of iron and synthesizing iron-dependent cofactors such as heme and iron sulfur clusters. We observed an increase in the iron storage protein ferritin and a decreased labile iron pool in the PINK1 KD cells, but total cellular iron or markers of iron starvation/overload were not affected. Finally, cellular iron storage and the labile iron pool are maintained via autophagic degradation of ferritin (ferritinophagy). We found overexpressing nuclear receptor coactivator 4, a key adaptor for ferritinophagy, rescued cell growth and the labile iron pool in PINK1 KD cells. These results indicate that PINK1 integrates mitophagy and ferritinophagy to regulate intracellular iron availability and is essential for maintaining intracellular iron homeostasis to support survival and growth in colorectal cancer cells.
Collapse
Affiliation(s)
- Brandon Chen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nupur K Das
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Indrani Talukder
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cristina Castillo
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anthony Andren
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
23
|
Lee HJ, Yoon YS, Lee SJ. Molecular mechanisms of cellular senescence in neurodegenerative diseases. J Mol Biol 2023:168114. [PMID: 37085010 DOI: 10.1016/j.jmb.2023.168114] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by several pathological features, including selective neuronal loss, aggregation of specific proteins, and chronic inflammation. Aging is the most critical risk factor of these disorders. However, the mechanism by which aging contributes to the pathogenesis of neurodegenerative diseases is not clearly understood. Cellular senescence is a cell state or fate in response to stimuli. It is typically associated with a series of changes in cellular phenotypes such as abnormal cellular metabolism and proteostasis, reactive oxygen species (ROS) production, and increased secretion of certain molecules via senescence-associated secretory phenotype (SASP). In this review, we discuss how cellular senescence contributes to brain aging and neurodegenerative diseases, and the relationship between protein aggregation and cellular senescence. Finally, we discuss the potential of senescence modifiers and senolytics in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- He-Jin Lee
- Department of Anatomy, Konkuk University, Seoul 05029, Korea; IBST, Konkuk University, Seoul 05029, Korea.
| | - Ye-Seul Yoon
- Department of Anatomy, Konkuk University, Seoul 05029, Korea; IBST, Konkuk University, Seoul 05029, Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul, Korea; Neuramedy, Co., Ltd., Seoul, Korea.
| |
Collapse
|
24
|
da Silva AA, Galego L, Arraiano CM. New Perspectives on BolA: A Still Mysterious Protein Connecting Morphogenesis, Biofilm Production, Virulence, Iron Metabolism, and Stress Survival. Microorganisms 2023; 11:microorganisms11030632. [PMID: 36985206 PMCID: PMC10051749 DOI: 10.3390/microorganisms11030632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The BolA-like protein family is widespread among prokaryotes and eukaryotes. BolA was originally described in E. coli as a gene induced in the stationary phase and in stress conditions. The BolA overexpression makes cells spherical. It was characterized as a transcription factor modulating cellular processes such as cell permeability, biofilm production, motility, and flagella assembly. BolA is important in the switch between motile and sedentary lifestyles having connections with the signaling molecule c-di-GMP. BolA was considered a virulence factor in pathogens such as Salmonella Typhimurium and Klebsiella pneumoniae and it promotes bacterial survival when facing stresses due to host defenses. In E. coli, the BolA homologue IbaG is associated with resistance to acidic stress, and in Vibrio cholerae, IbaG is important for animal cell colonization. Recently, it was demonstrated that BolA is phosphorylated and this modification is important for the stability/turnover of BolA and its activity as a transcription factor. The results indicate that there is a physical interaction between BolA-like proteins and the CGFS-type Grx proteins during the biogenesis of Fe-S clusters, iron trafficking and storage. We also review recent progress regarding the cellular and molecular mechanisms by which BolA/Grx protein complexes are involved in the regulation of iron homeostasis in eukaryotes and prokaryotes.
Collapse
|
25
|
Fouché B, Turner S, Gorham R, Stephenson EJ, Gutbier S, Elson JL, García-Beltrán O, Van Der Westhuizen FH, Pienaar IS. A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson's Disease. Mol Neurobiol 2023; 60:749-767. [PMID: 36357615 DOI: 10.1007/s12035-022-03107-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022]
Abstract
Coumarins are plant-derived polyphenolic compounds belonging to the benzopyrones family, possessing wide-ranging pharmaceutical applications including cytoprotection, which may translate into therapeutic potential for multiple diseases, including Parkinson's disease (PD). Here we demonstrate the neuroprotective potential of a new polyhydroxyl coumarin, N-(1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide (CT51), against the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+). MPP+'s mechanism of toxicity relates to its ability to inhibit complex I of the mitochondrial electron transport chain (METC), leading to adenosine triphosphate (ATP) depletion, increased reactive oxygen species (ROS) production, and apoptotic cell death, hence mimicking PD-related neuropathology. Dopaminergic differentiated human neuroblastoma cells were briefly pretreated with CT51, followed by toxin exposure. CT51 significantly restored somatic cell viability and neurite processes; hence, the drug targets cell bodies and axons thereby preserving neural function and circuitry against PD-related damage. Moreover, MPP+ emulates the iron dyshomeostasis affecting dopaminergic neurons in PD-affected brains, whilst CT51 was previously revealed as an effective iron chelator that preferentially partitions to mitochondria. We extend these findings by characterising the drug's interactive effects at the METC level. CT51 did not improve mitochondrial coupling efficiency. However, voltammetric measurements and high-resolution respirometry analysis revealed that CT51 acts as an antioxidant agent. Also, the neuronal protection afforded by CT51 associated with downregulating MPP+-induced upregulated expression of hypoxia-inducible factor 1 alpha (HIF-1α), a protein which regulates iron homeostasis and protects against certain forms of oxidative stress after translocating to mitochondria. Our findings support the further development of CT51 as a dual functioning iron chelator and antioxidant antiparkinsonian agent.
Collapse
Affiliation(s)
- Belinda Fouché
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Stephanie Turner
- School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Rebecca Gorham
- School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | | | - Simon Gutbier
- Unit for In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doeren Kamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Joanna L Elson
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.,The Welcome Trust Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Olimpo García-Beltrán
- Centro Integrativo de Biología Y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile.,Facultad de Ciencias Naturales Y Matemáticas, Universidad de Ibagué, Ibagué, Colombia
| | | | - Ilse S Pienaar
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa. .,Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B12 2TT, UK.
| |
Collapse
|
26
|
Zhou Y, Tong T, Wei M, Zhang P, Fei F, Zhou X, Guo Z, Zhang J, Xu H, Zhang L, Wang S, Wang J, Cai T, Zhang X, Xie C. Towards magnetism in pigeon MagR: Iron- and iron-sulfur binding work indispensably and synergistically. Zool Res 2023; 44:142-152. [PMID: 36484226 PMCID: PMC9841195 DOI: 10.24272/j.issn.2095-8137.2022.423] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability to navigate long distances is essential for many animals to locate shelter, food, and breeding grounds. Magnetic sense has evolved in various migratory and homing species to orient them based on the geomagnetic field. A highly conserved iron-sulfur cluster assembly protein IscA is proposed as an animal magnetoreceptor (MagR). Iron-sulfur cluster binding is also suggested to play an essential role in MagR magnetism and is thus critical in animal magnetoreception. In the current study, we provide evidence for distinct iron binding and iron-sulfur cluster binding in MagR in pigeons, an avian species that relies on the geomagnetic field for navigation and homing. Pigeon MagR showed significantly higher total iron content from both iron- and iron-sulfur binding. Y65 in pigeon MagR was shown to directly mediate mononuclear iron binding, and its mutation abolished iron-binding capacity of the protein. Surprisingly, both iron binding and iron-sulfur binding demonstrated synergistic effects, and thus appear to be integral and indispensable to pigeon MagR magnetism. These results not only extend our current understanding of the origin and complexity of MagR magnetism, but also imply a possible molecular explanation for the huge diversity in animal magnetoreception.
Collapse
Affiliation(s)
- Yajie Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Tianyang Tong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Mengke Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Peng Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Fan Fei
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Xiujuan Zhou
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Zhen Guo
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jing Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Huangtao Xu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Shun Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Junfeng Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China,International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China
| | - Tiantian Cai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Xin Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China,International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China
| | - Can Xie
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China,International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China,E-mail:
| |
Collapse
|
27
|
Tena-Morraja P, Riqué-Pujol G, Müller-Sánchez C, Reina M, Martínez-Estrada OM, Soriano FX. Synaptic Activity Regulates Mitochondrial Iron Metabolism to Enhance Neuronal Bioenergetics. Int J Mol Sci 2023; 24:ijms24020922. [PMID: 36674431 PMCID: PMC9864932 DOI: 10.3390/ijms24020922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Synaptic activity is the main energy-consuming process in the central nervous system. We are beginning to understand how energy is supplied and used during synaptic activity by neurons. However, the long-term metabolic adaptations associated with a previous episode of synaptic activity are not well understood. Herein, we show that an episode of synaptic activity increases mitochondrial bioenergetics beyond the duration of the synaptic activity by transcriptionally inducing the expression of iron metabolism genes with the consequent enhancement of cellular and mitochondrial iron uptake. Iron is a necessary component of the electron transport chain complexes, and its chelation or knockdown of mitochondrial iron transporter Mfrn1 blocks the activity-mediated bioenergetics boost. We found that Mfrn1 expression is regulated by the well-known regulator of synaptic plasticity CREB, suggesting the coordinated expression of synaptic plasticity programs with those required to meet the associated increase in energetic demands.
Collapse
Affiliation(s)
- Paula Tena-Morraja
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08035 Barcelona, Spain
| | - Guillem Riqué-Pujol
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08035 Barcelona, Spain
| | - Claudia Müller-Sánchez
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Manuel Reina
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Ofelia M. Martínez-Estrada
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Francesc X. Soriano
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
28
|
Leite AC, Martins TS, Cesário RR, Teixeira V, Costa V, Pereira C. Mitochondrial respiration promotes Cdc37-dependent stability of the Cdk1 homolog Cdc28. J Cell Sci 2023; 136:286215. [PMID: 36594787 DOI: 10.1242/jcs.260279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/25/2022] [Indexed: 01/04/2023] Open
Abstract
Cdc28, the homolog of mammalian Cdk1, is a conserved key regulatory kinase for all major cell cycle transitions in yeast. We have found that defects in mitochondrial respiration (including deletion of ATP2, an ATP synthase subunit) inhibit growth of cells carrying a degron allele of Cdc28 (cdc28td) or Cdc28 temperature-sensitive mutations (cdc28-1 and cdc28-1N) at semi-permissive temperatures. Loss of cell proliferation in the atp2Δcdc28td double mutant is associated with aggravated cell cycle arrest and mitochondrial dysfunction, including mitochondrial hyperpolarization and fragmentation. Unexpectedly, in mutants defective in mitochondrial respiration, steady-state protein levels of mutant cdc28 are strongly reduced, accounting for the aggravated growth defects. Stability of Cdc28 is promoted by the Hsp90-Cdc37 chaperone complex. Our results show that atp2Δcdc28td double-mutant cells, but not single mutants, are sensitive to chemical inhibition of the Hsp90-Cdc37 complex, and exhibit reduced levels of additional Hsp90-Cdc37 client kinases, suggesting an inhibition of this complex. In agreement, overexpression of CDC37 improved atp2Δcdc28td cell growth and Cdc28 levels. Overall, our study shows that simultaneous disturbance of mitochondrial respiration and Cdc28 activity reduces the capacity of Cdc37 to chaperone client kinases, leading to growth arrest.
Collapse
Affiliation(s)
- Ana Cláudia Leite
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Telma S Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Rute R Cesário
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vitor Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vítor Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Clara Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
29
|
Lipid Peroxidation and Iron Metabolism: Two Corner Stones in the Homeostasis Control of Ferroptosis. Int J Mol Sci 2022; 24:ijms24010449. [PMID: 36613888 PMCID: PMC9820499 DOI: 10.3390/ijms24010449] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Regulated cell death (RCD) has a significant impact on development, tissue homeostasis, and the occurrence of various diseases. Among different forms of RCD, ferroptosis is considered as a type of reactive oxygen species (ROS)-dependent regulated necrosis. ROS can react with polyunsaturated fatty acids (PUFAs) of the lipid (L) membrane via the formation of a lipid radical L• and induce lipid peroxidation to form L-ROS. Ferroptosis is triggered by an imbalance between lipid hydroperoxide (LOOH) detoxification and iron-dependent L-ROS accumulation. Intracellular iron accumulation and lipid peroxidation are two central biochemical events leading to ferroptosis. Organelles, including mitochondria and lysosomes are involved in the regulation of iron metabolism and redox imbalance in ferroptosis. In this review, we will provide an overview of lipid peroxidation, as well as key components involved in the ferroptotic cascade. The main mechanism that reduces ROS is the redox ability of glutathione (GSH). GSH, a tripeptide that includes glutamic acid, cysteine, and glycine, acts as an antioxidant and is the substrate of glutathione peroxidase 4 (GPX4), which is then converted into oxidized glutathione (GSSG). Increasing the expression of GSH can inhibit ferroptosis. We highlight the role of the xc- GSH-GPX4 pathway as the main pathway to regulate ferroptosis. The system xc-, composed of subunit solute carrier family members (SLC7A11 and SLC3A2), mediates the exchange of cystine and glutamate across the plasma membrane to synthesize GSH. Accumulating evidence indicates that ferroptosis requires the autophagy machinery for its execution. Ferritinophagy is used to describe the removal of the major iron storage protein ferritin by the autophagy machinery. Nuclear receptor coactivator 4 (NCOA4) is a cytosolic autophagy receptor used to bind ferritin for subsequent degradation by ferritinophagy. During ferritinophagy, stored iron released becomes available for biosynthetic pathways. The dysfunctional ferroptotic response is implicated in a variety of pathological conditions. Ferroptosis inducers or inhibitors targeting redox- or iron metabolism-related proteins and signal transduction have been developed. The simultaneous detection of intracellular and extracellular markers may help diagnose and treat diseases related to ferroptotic damage.
Collapse
|
30
|
Baker MJ, Crameri JJ, Thorburn DR, Frazier AE, Stojanovski D. Mitochondrial biology and dysfunction in secondary mitochondrial disease. Open Biol 2022; 12:220274. [PMID: 36475414 PMCID: PMC9727669 DOI: 10.1098/rsob.220274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases are a broad, genetically heterogeneous class of metabolic disorders characterized by deficits in oxidative phosphorylation (OXPHOS). Primary mitochondrial disease (PMD) defines pathologies resulting from mutation of mitochondrial DNA (mtDNA) or nuclear genes affecting either mtDNA expression or the biogenesis and function of the respiratory chain. Secondary mitochondrial disease (SMD) arises due to mutation of nuclear-encoded genes independent of, or indirectly influencing OXPHOS assembly and operation. Despite instances of novel SMD increasing year-on-year, PMD is much more widely discussed in the literature. Indeed, since the implementation of next generation sequencing (NGS) techniques in 2010, many novel mitochondrial disease genes have been identified, approximately half of which are linked to SMD. This review will consolidate existing knowledge of SMDs and outline discrete categories within which to better understand the diversity of SMD phenotypes. By providing context to the biochemical and molecular pathways perturbed in SMD, we hope to further demonstrate the intricacies of SMD pathologies outside of their indirect contribution to mitochondrial energy generation.
Collapse
Affiliation(s)
- Megan J. Baker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David R. Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Ann E. Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
31
|
Cegarra L, Aguirre P, Nuñez MT, Gerdtzen ZP, Salgado JC. Calcium is a noncompetitive inhibitor of DMT1 on the intestinal iron absorption process: empirical evidence and mathematical modeling analysis. Am J Physiol Cell Physiol 2022; 323:C1791-C1806. [PMID: 36342159 DOI: 10.1152/ajpcell.00411.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Iron absorption is a complex and highly controlled process where DMT1 transports nonheme iron through the brush-border membrane of enterocytes to the cytoplasm but does not transport alkaline-earth metals such as calcium. However, it has been proposed that high concentrations of calcium in the diet could reduce iron bioavailability. In this work, we investigate the effect of intracellular and extracellular calcium on iron uptake by Caco-2 cells, as determined by calcein fluorescence quenching. We found that extracellular calcium inhibits iron uptake by Caco-2 cells in a concentration-dependent manner. Chelation of intracellular calcium with BAPTA did not affect iron uptake, which indicates that the inhibitory effect of calcium is not exerted through intracellular calcium signaling. Kinetic studies performed, provided evidence that calcium acts as a reversible noncompetitive inhibitor of the iron transport activity of DMT1. Based on these experimental results, a mathematical model was developed that considers the dynamics of noncompetitive inhibition using a four-state mechanism to describe the inhibitory effect of calcium on the DMT1 iron transport process in intestinal cells. The model accurately predicts the calcein fluorescence quenching dynamics observed experimentally after an iron challenge. Therefore, the proposed model structure is capable of representing the inhibitory effect of extracellular calcium on DMT1-mediated iron entry into the cLIP of Caco-2 cells. Considering the range of calcium concentrations that can inhibit iron uptake, the possible inhibition of dietary calcium on intestinal iron uptake is discussed.
Collapse
Affiliation(s)
- Layimar Cegarra
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Mammalian Cell Culture Laboratory, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, University of Chile, Santiago, Chile
| | - Pabla Aguirre
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Marco T Nuñez
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ziomara P Gerdtzen
- Mammalian Cell Culture Laboratory, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, University of Chile, Santiago, Chile.,Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.,Millennium Nucleus Marine Agronomy of Seaweed Holobionts, Puerto Mont, Chile
| | - J Cristian Salgado
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, University of Chile, Santiago, Chile
| |
Collapse
|
32
|
Parmagnani AS, D'Alessandro S, Maffei ME. Iron-sulfur complex assembly: Potential players of magnetic induction in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111483. [PMID: 36183809 DOI: 10.1016/j.plantsci.2022.111483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Iron-sulfur (Fe-S) clusters are involved in fundamental biological reactions and represent a highly regulated process involving a complex sequence of mitochondrial, cytosolic and nuclear-catalyzed protein-protein interactions. Iron-sulfur complex assembly (ISCA) scaffold proteins are involved in Fe-S cluster biosynthesis, nitrogen and sulfur metabolism. ISCA proteins are involved in abiotic stress responses and in the pigeon they act as a magnetic sensor by forming a magnetosensor (MagS) complex with cryptochrome (Cry). MagR gene exists in the genomes of humans, plants, and microorganisms and the interaction between Cry and MagR is highly conserved. Owing to the extensive presence of ISCA proteins in plants and the occurrence of homology between animal and human MagR with at least four Arabidopsis ISCAs and several ISCAs from different plant species, we believe that a mechanism similar to pigeon magnetoperception might be present in plants. We suggest that plant ISCA proteins, homologous of the animal MagR, are good candidates and could contribute to a better understanding of plant magnetic induction. We thus urge more studies in this regard to fully uncover the plant molecular mechanisms underlying MagR/Cry mediated magnetic induction and the possible coupling between light and magnetic induction.
Collapse
Affiliation(s)
- Ambra S Parmagnani
- Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Stefano D'Alessandro
- Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Massimo E Maffei
- Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy.
| |
Collapse
|
33
|
Wen Y, Kang X, Li Z, Xia L, Lu Y. Identification of a secretory heme-binding protein from Nocardia seriolae involved in cell apoptosis. JOURNAL OF FISH DISEASES 2022; 45:1189-1199. [PMID: 35671346 DOI: 10.1111/jfd.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
According to the whole-genome bioinformatics analysis, a heme-binding protein from Nocardia seriolae (HBP) was found. HBP was predicted to be a bacterial secretory protein, located at mitochondrial membrane in eukaryotic cells and have a similar protein structure with the heme-binding protein of Mycobacterium tuberculosis, Rv0203. In this study, HBP was found to be a secretory protein and co-localized with mitochondria in FHM cells. Quantitative analysis of mitochondrial membrane potential value, caspase-3 activity, and transcription level of apoptosis-related genes suggested that overexpression of HBP protein can induce cell apoptosis. In conclusion, HBP was a secretory protein which may target to mitochondria and involve in cell apoptosis in host cells. This research will promote the function study of HBP and deepen the comprehension of the virulence factors and pathogenic mechanisms of N. seriolae.
Collapse
Affiliation(s)
- Yiming Wen
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, China
| | - Xu Kang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Zhiyuan Li
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Liqun Xia
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, China
| | - Yishan Lu
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, China
| |
Collapse
|
34
|
Foley PB, Hare DJ, Double KL. A brief history of brain iron accumulation in Parkinson disease and related disorders. J Neural Transm (Vienna) 2022; 129:505-520. [PMID: 35534717 PMCID: PMC9188502 DOI: 10.1007/s00702-022-02505-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/22/2022] [Indexed: 12/21/2022]
Abstract
Iron has a long and storied history in Parkinson disease and related disorders. This essential micronutrient is critical for normal brain function, but abnormal brain iron accumulation has been associated with extrapyramidal disease for a century. Precisely why, how, and when iron is implicated in neuronal death remains the subject of investigation. In this article, we review the history of iron in movement disorders, from the first observations in the early twentieth century to recent efforts that view extrapyramidal iron as a novel therapeutic target and diagnostic indicator.
Collapse
Affiliation(s)
| | - Dominic J. Hare
- Atomic Medicine Initiative, University of Technology, Sydney, Australia
| | - Kay L. Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
35
|
Bomer N, Pavez-Giani MG, Grote Beverborg N, Cleland JGF, van Veldhuisen DJ, van der Meer P. Micronutrient deficiencies in heart failure: Mitochondrial dysfunction as a common pathophysiological mechanism? J Intern Med 2022; 291:713-731. [PMID: 35137472 PMCID: PMC9303299 DOI: 10.1111/joim.13456] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heart failure is a devastating clinical syndrome, but current therapies are unable to abolish the disease burden. New strategies to treat or prevent heart failure are urgently needed. Over the past decades, a clear relationship has been established between poor cardiac performance and metabolic perturbations, including deficits in substrate uptake and utilization, reduction in mitochondrial oxidative phosphorylation and excessive reactive oxygen species production. Together, these perturbations result in progressive depletion of cardiac adenosine triphosphate (ATP) and cardiac energy deprivation. Increasing the delivery of energy substrates (e.g., fatty acids, glucose, ketones) to the mitochondria will be worthless if the mitochondria are unable to turn these energy substrates into fuel. Micronutrients (including coenzyme Q10, zinc, copper, selenium and iron) are required to efficiently convert macronutrients to ATP. However, up to 50% of patients with heart failure are deficient in one or more micronutrients in cross-sectional studies. Micronutrient deficiency has a high impact on mitochondrial energy production and should be considered an additional factor in the heart failure equation, moving our view of the failing myocardium away from an "an engine out of fuel" to "a defective engine on a path to self-destruction." This summary of evidence suggests that supplementation with micronutrients-preferably as a package rather than singly-might be a potential therapeutic strategy in the treatment of heart failure patients.
Collapse
Affiliation(s)
- Nils Bomer
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Mario G Pavez-Giani
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Niels Grote Beverborg
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - John G F Cleland
- Robertson Centre for Biostatistics and Clinical Trials, University of Glasgow, Glasgow, UK.,National Heart & Lung Institute, Royal Brompton and Harefield Hospitals, Imperial College, London, UK
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
Kobayashi T, Shinkawa H, Nagano AJ, Nishizawa NK. The basic leucine zipper transcription factor OsbZIP83 and the glutaredoxins OsGRX6 and OsGRX9 facilitate rice iron utilization under the control of OsHRZ ubiquitin ligases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1731-1750. [PMID: 35411594 DOI: 10.1111/tpj.15767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 05/16/2023]
Abstract
Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron-related genes at the transcript level, but their protein-level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA-type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ-interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome- and OsHRZ-dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron-deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron-related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Haruka Shinkawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| |
Collapse
|
37
|
Foley PB, Hare DJ, Double KL. A brief history of brain iron accumulation in Parkinson disease and related disorders. J Neural Transm (Vienna) 2022; 129:505-520. [PMID: 35534717 DOI: 10.1007/s00702-022-025055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/22/2022] [Indexed: 05/26/2023]
Abstract
Iron has a long and storied history in Parkinson disease and related disorders. This essential micronutrient is critical for normal brain function, but abnormal brain iron accumulation has been associated with extrapyramidal disease for a century. Precisely why, how, and when iron is implicated in neuronal death remains the subject of investigation. In this article, we review the history of iron in movement disorders, from the first observations in the early twentieth century to recent efforts that view extrapyramidal iron as a novel therapeutic target and diagnostic indicator.
Collapse
Affiliation(s)
| | - Dominic J Hare
- Atomic Medicine Initiative, University of Technology, Sydney, Australia
| | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
38
|
Onukwufor JO, Dirksen RT, Wojtovich AP. Iron Dysregulation in Mitochondrial Dysfunction and Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11040692. [PMID: 35453377 PMCID: PMC9027385 DOI: 10.3390/antiox11040692] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is a devastating progressive neurodegenerative disease characterized by neuronal dysfunction, and decreased memory and cognitive function. Iron is critical for neuronal activity, neurotransmitter biosynthesis, and energy homeostasis. Iron accumulation occurs in AD and results in neuronal dysfunction through activation of multifactorial mechanisms. Mitochondria generate energy and iron is a key co-factor required for: (1) ATP production by the electron transport chain, (2) heme protein biosynthesis and (3) iron-sulfur cluster formation. Disruptions in iron homeostasis result in mitochondrial dysfunction and energetic failure. Ferroptosis, a non-apoptotic iron-dependent form of cell death mediated by uncontrolled accumulation of reactive oxygen species and lipid peroxidation, is associated with AD and other neurodegenerative diseases. AD pathogenesis is complex with multiple diverse interacting players including Aβ-plaque formation, phosphorylated tau, and redox stress. Unfortunately, clinical trials in AD based on targeting these canonical hallmarks have been largely unsuccessful. Here, we review evidence linking iron dysregulation to AD and the potential for targeting ferroptosis as a therapeutic intervention for AD.
Collapse
Affiliation(s)
- John O. Onukwufor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; (R.T.D.); (A.P.W.)
- Correspondence:
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; (R.T.D.); (A.P.W.)
| | - Andrew P. Wojtovich
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; (R.T.D.); (A.P.W.)
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
39
|
Chen MM, Li Y, Deng SL, Zhao Y, Lian ZX, Yu K. Mitochondrial Function and Reactive Oxygen/Nitrogen Species in Skeletal Muscle. Front Cell Dev Biol 2022; 10:826981. [PMID: 35265618 PMCID: PMC8898899 DOI: 10.3389/fcell.2022.826981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/26/2022] [Indexed: 12/06/2022] Open
Abstract
Skeletal muscle fibers contain a large number of mitochondria, which produce ATP through oxidative phosphorylation (OXPHOS) and provide energy for muscle contraction. In this process, mitochondria also produce several types of "reactive species" as side product, such as reactive oxygen species and reactive nitrogen species which have attracted interest. Mitochondria have been proven to have an essential role in the production of skeletal muscle reactive oxygen/nitrogen species (RONS). Traditionally, the elevation in RONS production is related to oxidative stress, leading to impaired skeletal muscle contractility and muscle atrophy. However, recent studies have shown that the optimal RONS level under the action of antioxidants is a critical physiological signal in skeletal muscle. Here, we will review the origin and physiological functions of RONS, mitochondrial structure and function, mitochondrial dynamics, and the coupling between RONS and mitochondrial oxidative stress. The crosstalk mechanism between mitochondrial function and RONS in skeletal muscle and its regulation of muscle stem cell fate and myogenesis will also be discussed. In all, this review aims to describe a comprehensive and systematic network for the interaction between skeletal muscle mitochondrial function and RONS.
Collapse
Affiliation(s)
- Ming-Ming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yue Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Hou W, Xu H. Incorporating Selenium into Heterocycles and Natural Products─From Chemical Properties to Pharmacological Activities. J Med Chem 2022; 65:4436-4456. [PMID: 35244394 DOI: 10.1021/acs.jmedchem.1c01859] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Selenium (Se)-containing compounds have emerged as potential therapeutic agents for the treatment of a range of diseases. Through tremendous effort, considerable knowledge has been acquired to understand the complex chemical properties and biological activities of selenium, especially after its incorporation into bioactive molecules. From this perspective, we compiled extensive literature evidence to summarize and critically discuss the relationship between the pharmacological activities and chemical properties of selenium compounds and the strategic incorporation of selenium into organic molecules, especially bioactive heterocycles and natural products. We also provide perspectives regarding the challenges in selenium-based medicinal chemistry and future research directions.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development and Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
41
|
Monfort B, Want K, Gervason S, D’Autréaux B. Recent Advances in the Elucidation of Frataxin Biochemical Function Open Novel Perspectives for the Treatment of Friedreich’s Ataxia. Front Neurosci 2022; 16:838335. [PMID: 35310092 PMCID: PMC8924461 DOI: 10.3389/fnins.2022.838335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
Friedreich’s ataxia (FRDA) is the most prevalent autosomic recessive ataxia and is associated with a severe cardiac hypertrophy and less frequently diabetes. It is caused by mutations in the gene encoding frataxin (FXN), a small mitochondrial protein. The primary consequence is a defective expression of FXN, with basal protein levels decreased by 70–98%, which foremost affects the cerebellum, dorsal root ganglia, heart and liver. FXN is a mitochondrial protein involved in iron metabolism but its exact function has remained elusive and highly debated since its discovery. At the cellular level, FRDA is characterized by a general deficit in the biosynthesis of iron-sulfur (Fe-S) clusters and heme, iron accumulation and deposition in mitochondria, and sensitivity to oxidative stress. Based on these phenotypes and the proposed ability of FXN to bind iron, a role as an iron storage protein providing iron for Fe-S cluster and heme biosynthesis was initially proposed. However, this model was challenged by several other studies and it is now widely accepted that FXN functions primarily in Fe-S cluster biosynthesis, with iron accumulation, heme deficiency and oxidative stress sensitivity appearing later on as secondary defects. Nonetheless, the biochemical function of FXN in Fe-S cluster biosynthesis is still debated. Several roles have been proposed for FXN: iron chaperone, gate-keeper of detrimental Fe-S cluster biosynthesis, sulfide production stimulator and sulfur transfer accelerator. A picture is now emerging which points toward a unique function of FXN as an accelerator of a key step of sulfur transfer between two components of the Fe-S cluster biosynthetic complex. These findings should foster the development of new strategies for the treatment of FRDA. We will review here the latest discoveries on the biochemical function of frataxin and the implication for a potential therapeutic treatment of FRDA.
Collapse
|
42
|
Campodonico J, Junod D, Carulli E, Lo Russo G, Gaudenzi Asinelli M, Doni F, Bonomi A, Agostoni P. Role of impaired iron transport on exercise performance in heart failure patients. Eur J Prev Cardiol 2022; 29:1104-1111. [PMID: 35134891 DOI: 10.1093/eurjpc/zwab216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022]
Abstract
AIMS Impaired iron transport (IIT) occurs frequently in heart failure (HF) patients, even in the absence of anaemia and it is associated with a poor quality of life and prognosis. The impact of IIT on exercise capacity, as assessed by the cardiopulmonary exercise test (CPET), in HF is at present unknown. The aim of this article is to evaluate in HF patients the impact on exercise performance of IIT, defined as transferrin saturation (TSAT) <20%. METHODS AND RESULTS We collected data of 676 patients hospitalized for HF. All underwent laboratory analysis, cardiac ultrasound, and CPET. Patients were grouped by the presence/absence of IIT and anaemia (haemoglobin <13 and <12 g/dL in male and female, respectively): Group 1 (G1) no anaemia, no IIT; Group 2 (G2) anaemia, no IIT; Group 3 (G3) no anaemia, IIT; Group 4 (G4) anaemia and IIT. Peak oxygen uptake (peakVO2) reduced from G1 to G3 and from G2 to G4 (G1: 1266 ± 497 mL/min, G2: 1011 ± 385 mL/min, G3: 1041 ± 395 mL/min, G4: 833 ± 241 mL/min), whereas the ventilation to carbon dioxide relationship slope (VE/VCO2 slope) increased (G1: 31.8 ± 7.5, G2: 34.5 ± 7.4, G3: 36.1 ± 10.2, G4: 37.5 ± 8.4). At multivariate regression analysis, peakVO2 independent predictors were anaemia, brain natriuretic peptide (BNP), and left ventricular ejection fraction, whereas VE/VCO2 slope independent predictors were IIT and BNP. CONCLUSION In HF IIT is associated with exercise performance impairment independently from anaemia, and it is a predictor of elevated VE/VCO2 slope, a pivotal index of HF prognosis.
Collapse
Affiliation(s)
- Jeness Campodonico
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138 Milano, Italy.,Translational Medicine PhD Course, University of Milan, Milan, Italy
| | - Daniele Junod
- Cardiovascular Section, Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Ermes Carulli
- Cardiovascular Section, Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Gerardo Lo Russo
- Cardiovascular Section, Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | | | - Francesco Doni
- Cardiovascular Section, Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Alice Bonomi
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138 Milano, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138 Milano, Italy.,Cardiovascular Section, Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
43
|
First genome-wide association study investigating blood pressure and renal traits in domestic cats. Sci Rep 2022; 12:1899. [PMID: 35115544 PMCID: PMC8813908 DOI: 10.1038/s41598-022-05494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 12/28/2021] [Indexed: 11/08/2022] Open
Abstract
Hypertension (HTN) and chronic kidney disease (CKD) are common in ageing cats. In humans, blood pressure (BP) and renal function are complex heritable traits. We performed the first feline genome-wide association study (GWAS) of quantitative traits systolic BP and creatinine and binary outcomes HTN and CKD, testing 1022 domestic cats with a discovery, replication and meta-analysis design. No variants reached experimental significance level in the discovery stage for any phenotype. Follow up of the top 9 variants for creatinine and 5 for systolic BP, one SNP reached experimental-wide significance for association with creatinine in the combined meta-analysis (chrD1.10258177; P = 1.34 × 10–6). Exploratory genetic risk score (GRS) analyses were performed. Within the discovery sample, GRS of top SNPs from the BP and creatinine GWAS show strong association with HTN and CKD but did not validate in independent replication samples. A GRS including SNPs corresponding to human CKD genes was not significant in an independent subset of cats. Gene-set enrichment and pathway-based analysis (GSEA) was performed for both quantitative phenotypes, with 30 enriched pathways with creatinine. Our results support the utility of GWASs and GSEA for genetic discovery of complex traits in cats, with the caveat of our findings requiring validation.
Collapse
|
44
|
Montealegre S, Lebigot E, Debruge H, Romero N, Héron B, Gaignard P, Legendre A, Imbard A, Gobin S, Lacène E, Nusbaum P, Hubas A, Desguerre I, Servais A, Laforêt P, van Endert P, Authier FJ, Gitiaux C, de Lonlay P. FDX2 and ISCU Gene Variations Lead to Rhabdomyolysis With Distinct Severity and Iron Regulation. Neurol Genet 2022; 8:e648. [PMID: 35079622 PMCID: PMC8771665 DOI: 10.1212/nxg.0000000000000648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
Background and Objectives To determine common clinical and biological traits in 2 individuals with
variants in ISCU and FDX2, displaying
severe and recurrent rhabdomyolyses and lactic acidosis. Methods We performed a clinical characterization of 2 distinct individuals with
biallelic ISCU or FDX2 variants from 2
separate families and a biological characterization with muscle and cells
from those patients. Results The individual with FDX2 variants was clinically more
affected than the individual with ISCU variants. Affected
FDX2 individual fibroblasts and myoblasts showed reduced oxygen consumption
rates and mitochondrial complex I and PDHc activities, associated with high
levels of blood FGF21. ISCU individual fibroblasts showed no oxidative
phosphorylation deficiency and moderate increase of blood FGF21 levels
relative to controls. The severity of the FDX2 individual was not due to
dysfunctional autophagy. Iron was excessively accumulated in ISCU-deficient
skeletal muscle, which was accompanied by a downregulation of
IRP1 and mitoferrin2 genes and an
upregulation of frataxin (FXN) gene expression. This
excessive iron accumulation was absent from FDX2 affected muscle and could
not be correlated with variable gene expression in muscle cells. Discussion We conclude that FDX2 and ISCU variants
result in a similar muscle phenotype, that differ in severity and skeletal
muscle iron accumulation. ISCU and FDX2 are not involved in mitochondrial
iron influx contrary to frataxin.
Collapse
Affiliation(s)
- Sebastian Montealegre
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Elise Lebigot
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Hugo Debruge
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Norma Romero
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Bénédicte Héron
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Pauline Gaignard
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Antoine Legendre
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Apolline Imbard
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Stéphanie Gobin
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Emmanuelle Lacène
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Patrick Nusbaum
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Arnaud Hubas
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Isabelle Desguerre
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Aude Servais
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Pascal Laforêt
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Peter van Endert
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - François Jérome Authier
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Cyril Gitiaux
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Pascale de Lonlay
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| |
Collapse
|
45
|
So M, Stiban J, Ciesielski GL, Hovde SL, Kaguni LS. Implications of Membrane Binding by the Fe-S Cluster-Containing N-Terminal Domain in the Drosophila Mitochondrial Replicative DNA Helicase. Front Genet 2021; 12:790521. [PMID: 34950192 PMCID: PMC8688847 DOI: 10.3389/fgene.2021.790521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Recent evidence suggests that iron-sulfur clusters (ISCs) in DNA replicative proteins sense DNA-mediated charge transfer to modulate nuclear DNA replication. In the mitochondrial DNA replisome, only the replicative DNA helicase (mtDNA helicase) from Drosophila melanogaster (Dm) has been shown to contain an ISC in its N-terminal, primase-like domain (NTD). In this report, we confirm the presence of the ISC and demonstrate the importance of a metal cofactor in the structural stability of the Dm mtDNA helicase. Further, we show that the NTD also serves a role in membrane binding. We demonstrate that the NTD binds to asolectin liposomes, which mimic phospholipid membranes, through electrostatic interactions. Notably, membrane binding is more specific with increasing cardiolipin content, which is characteristically high in the mitochondrial inner membrane (MIM). We suggest that the N-terminal domain of the mtDNA helicase interacts with the MIM to recruit mtDNA and initiate mtDNA replication. Furthermore, Dm NUBPL, the known ISC donor for respiratory complex I and a putative donor for Dm mtDNA helicase, was identified as a peripheral membrane protein that is likely to execute membrane-mediated ISC delivery to its target proteins.
Collapse
Affiliation(s)
- Minyoung So
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States
| | - Johnny Stiban
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Department of Biology and Biochemistry, Birzeit University, Birzeit, Palestine
| | - Grzegorz L Ciesielski
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland.,Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States
| | - Stacy L Hovde
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| |
Collapse
|
46
|
Criscuolo D, Avolio R, Matassa DS, Esposito F. Targeting Mitochondrial Protein Expression as a Future Approach for Cancer Therapy. Front Oncol 2021; 11:797265. [PMID: 34888254 PMCID: PMC8650000 DOI: 10.3389/fonc.2021.797265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Extensive metabolic remodeling is a fundamental feature of cancer cells. Although early reports attributed such remodeling to a loss of mitochondrial functions, it is now clear that mitochondria play central roles in cancer development and progression, from energy production to synthesis of macromolecules, from redox modulation to regulation of cell death. Biosynthetic pathways are also heavily affected by the metabolic rewiring, with protein synthesis dysregulation at the hearth of cellular transformation. Accumulating evidence in multiple organisms shows that the metabolic functions of mitochondria are tightly connected to protein synthesis, being assembly and activity of respiratory complexes highly dependent on de novo synthesis of their components. In turn, protein synthesis within the organelle is tightly connected with the cytosolic process. This implies an entire network of interactions and fine-tuned regulations that build up a completely under-estimated level of complexity. We are now only preliminarily beginning to reconstitute such regulatory level in human cells, and to perceive its role in diseases. Indeed, disruption or alterations of these connections trigger conditions of proteotoxic and energetic stress that could be potentially exploited for therapeutic purposes. In this review, we summarize the available literature on the coordinated regulation of mitochondrial and cytosolic mRNA translation, and their effects on the integrity of the mitochondrial proteome and functions. Finally, we highlight the potential held by this topic for future research directions and for the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
47
|
Revisiting the Potential Functionality of the MagR Protein. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent findings have sparked great interest in the putative magnetic receptor protein MagR. However, in vivo experiments have revealed no magnetic moment of MagR at room temperature. Nevertheless, the interaction of MagR and MagR fusion proteins with silica-coated magnetite beads have proven useful for protein purification. In this study, we recombinantly produced two different MagR proteins in Escherichia coli BL21(DE3) to (1) expand earlier protein purification studies, (2) test if MagR can magnetize whole E. coli cells once it is expressed to a high cytosolic, soluble titer, and (3) investigate the MagR-expressing E. coli cells’ magnetic properties at low temperatures. Our results show that MagR induces no measurable, permanent magnetic moment in cells at low temperatures, indicating no usability for cell magnetization. Furthermore, we show the limited usability for magnetic bead-based protein purification, thus closing the current knowledge gap between theoretical considerations and empirical data on the MagR protein.
Collapse
|
48
|
Rydz L, Wróbel M, Jurkowska H. Sulfur Administration in Fe-S Cluster Homeostasis. Antioxidants (Basel) 2021; 10:antiox10111738. [PMID: 34829609 PMCID: PMC8614886 DOI: 10.3390/antiox10111738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are the key organelles of Fe–S cluster synthesis. They contain the enzyme cysteine desulfurase, a scaffold protein, iron and electron donors, and specific chaperons all required for the formation of Fe–S clusters. The newly formed cluster can be utilized by mitochondrial Fe–S protein synthesis or undergo further transformation. Mitochondrial Fe–S cluster biogenesis components are required in the cytosolic iron–sulfur cluster assembly machinery for cytosolic and nuclear cluster supplies. Clusters that are the key components of Fe–S proteins are vulnerable and prone to degradation whenever exposed to oxidative stress. However, once degraded, the Fe–S cluster can be resynthesized or repaired. It has been proposed that sulfurtransferases, rhodanese, and 3-mercaptopyruvate sulfurtransferase, responsible for sulfur transfer from donor to nucleophilic acceptor, are involved in the Fe–S cluster formation, maturation, or reconstitution. In the present paper, we attempt to sum up our knowledge on the involvement of sulfurtransferases not only in sulfur administration but also in the Fe–S cluster formation in mammals and yeasts, and on reconstitution-damaged cluster or restoration of enzyme’s attenuated activity.
Collapse
|
49
|
Belaya I, Kucháriková N, Górová V, Kysenius K, Hare DJ, Crouch PJ, Malm T, Atalay M, White AR, Liddell JR, Kanninen KM. Regular Physical Exercise Modulates Iron Homeostasis in the 5xFAD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22168715. [PMID: 34445419 PMCID: PMC8395833 DOI: 10.3390/ijms22168715] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of brain iron metabolism is one of the pathological features of aging and Alzheimer's disease (AD), a neurodegenerative disease characterized by progressive memory loss and cognitive impairment. While physical inactivity is one of the risk factors for AD and regular exercise improves cognitive function and reduces pathology associated with AD, the underlying mechanisms remain unclear. The purpose of the study is to explore the effect of regular physical exercise on modulation of iron homeostasis in the brain and periphery of the 5xFAD mouse model of AD. By using inductively coupled plasma mass spectrometry and a variety of biochemical techniques, we measured total iron content and level of proteins essential in iron homeostasis in the brain and skeletal muscles of sedentary and exercised mice. Long-term voluntary running induced redistribution of iron resulted in altered iron metabolism and trafficking in the brain and increased iron content in skeletal muscle. Exercise reduced levels of cortical hepcidin, a key regulator of iron homeostasis, coupled with interleukin-6 (IL-6) decrease in cortex and plasma. We propose that regular exercise induces a reduction of hepcidin in the brain, possibly via the IL-6/STAT3/JAK1 pathway. These findings indicate that regular exercise modulates iron homeostasis in both wild-type and AD mice.
Collapse
Affiliation(s)
- Irina Belaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Nina Kucháriková
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Veronika Górová
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Kai Kysenius
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Dominic J. Hare
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Peter J. Crouch
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Mustafa Atalay
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Anthony R. White
- Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Jeffrey R. Liddell
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
- Correspondence:
| |
Collapse
|
50
|
Mehta R, Cho ME, Cai X, Lee J, Chen J, He J, Flack J, Shafi T, Saraf SL, David V, Feldman HI, Isakova T, Wolf M. Iron status, fibroblast growth factor 23 and cardiovascular and kidney outcomes in chronic kidney disease. Kidney Int 2021; 100:1292-1302. [PMID: 34339746 DOI: 10.1016/j.kint.2021.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022]
Abstract
Disordered iron and mineral homeostasis are interrelated complications of chronic kidney disease that may influence cardiovascular and kidney outcomes. In a prospective analysis of 3747 participants in the Chronic Renal Insufficiency Cohort Study, we investigated risks of mortality, heart failure, end-stage kidney disease (ESKD), and atherosclerotic cardiovascular disease according to iron status, and tested for mediation by C-terminal fibroblast growth factor 23 (FGF23), hemoglobin and parathyroid hormone. Study participants were agnostically categorized based on quartiles of transferrin saturation and ferritin as: "Iron Replete" (27.1% of participants; referent group for all outcomes analyses), "Iron Deficiency" (11.1%), "Functional Iron Deficiency" (7.6%), "Mixed Iron Deficiency" (iron indices between the Iron Deficiency and Functional Iron Deficiency groups; 6.3%), "High Iron" (9.2%), or "Non-Classified" (the remaining 38.8% of participants). In multivariable-adjusted Cox models, Iron Deficiency independently associated with mortality (hazard ratio 1.28, 95% confidence interval 1.04-1.58) and heart failure (1.34, 1.05- 1.72). Mixed Iron Deficiency associated with mortality (1.61, 1.27-2.04) and ESKD (1.33, 1.02-1.73). High Iron associated with mortality (1.54, 1.24-1.91), heart failure (1.58, 1.21-2.05), and ESKD (1.41, 1.13-1.77). Functional Iron Deficiency did not significantly associate with any outcome, and no iron group significantly associated with atherosclerotic cardiovascular disease. Among the candidate facilitators, FGF23 most significantly mediated the risks of mortality and heart failure conferred by Iron Deficiency. Thus, alterations in iron homeostasis associated with adverse cardiovascular and kidney outcomes in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Rupal Mehta
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Jesse Brown Veterans Administration Medical Center; Chicago, IL, USA.
| | - Monique E Cho
- Renal Section, VA Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Xuan Cai
- Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jungwha Lee
- Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jing Chen
- Tulane University, New Orleans, LA, USA
| | - Jiang He
- Tulane University, New Orleans, LA, USA
| | - John Flack
- Southern Illinois University School of Medicine, Springfield, IL USA
| | | | | | - Valentin David
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Harold I Feldman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tamara Isakova
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, and Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC USA
| | | |
Collapse
|