1
|
Xie W, Shan Y, Wu Z, Liu N, Yang J, Zhang H, Sun S, Chi J, Feng W, Lin H, Guo H. Herpud1 deficiency alleviates homocysteine-induced aortic valve calcification. Cell Biol Toxicol 2023; 39:2665-2684. [PMID: 36746840 DOI: 10.1007/s10565-023-09794-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/21/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To evaluate the role and therapeutic value of homocysteine (hcy)-inducible endoplasmic reticulum stress (ERS) protein with ubiquitin like domain 1 (Herpud1) in hcy-induced calcific aortic valve disease (CAVD). BACKGROUND The morbidity and mortality rates of calcific aortic valve disease (CAVD) remain high while treatment options are limited. METHODS In vivo, we use the low-density lipoprotein receptor (LDLR) and Herpud1 double knockout (LDLR-/-/Herpud1-/-) mice and used high methionine diet (HMD) to assess of aortic valve calcification lesions, ERS activation, autophagy, and osteogenic differentiation of aortic valve interstitial cells (AVICs). In vitro, the role of Herpud1 in the Hcy-related osteogenic differentiation of AVICs was investigated by manipulating of Herpud1 expression. RESULTS Herpud1 was highly expressed in calcified human and mouse aortic valves as well as primary aortic valve interstitial cells (AVICs). Hcy increased Herpud1 expression through the ERS pathway and promoted CAVD progression. Herpud1 deficiency inhibited hcy-induced CAVD in vitro and in vivo. Herpud1 silencing activated cell autophagy, which subsequently inhibited hcy-induced osteogenic differentiation of AVICs. ERS inhibitor 4-phenyl butyric acid (4-PBA) significantly attenuated aortic valve calcification in HMD-fed low-density lipoprotein receptor-/- (LDLR-/-) mice by suppressing ERS and subsequent Herpud1 biosynthesis. CONCLUSIONS These findings identify a previously unknown mechanism of Herpud1 upregulation in Hcy-related CAVD, suggesting that Herpud1 silencing or inhibition is a viable therapeutic strategy for arresting CAVD progression. HIGHLIGHTS • Herpud1 is upregulated in the leaflets of Hcy-treated mice and patients with CAVD. • In mice, global knockout of Herpud1 alleviates aortic valve calcification and Herpud1 silencing activates cell autophagy, inhibiting osteogenic differentiation of AVICs induced by Hcy. • 4-PBA suppressed Herpud1 expression to alleviate AVIC calcification in Hcy treated AVICs and to mitigate aortic valve calcification in mice.
Collapse
Affiliation(s)
- Wenqing Xie
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Yue Shan
- Department of Anesthesiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
| | - Zhuonan Wu
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Nan Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Jinjin Yang
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Hanlin Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shiming Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
- Shaoxing Key Laboratory of Cardio-cerebral Vascular Disease Rehabilitation Technology Innovation and Application, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Weizhong Feng
- Department of Cardiovascular Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.
- Shaoxing Key Laboratory of Cardio-cerebral Vascular Disease Rehabilitation Technology Innovation and Application, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| | - Hangyuan Guo
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
- Shaoxing Key Laboratory of Cardio-cerebral Vascular Disease Rehabilitation Technology Innovation and Application, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
2
|
Son SH, Lee J, Cho SN, Choi JA, Kim J, Nguyen TD, Lee SA, Son D, Song CH. Herp regulates intracellular survival of Mycobacterium tuberculosis H37Ra in macrophages by regulating reactive oxygen species-mediated autophagy. mBio 2023; 14:e0153523. [PMID: 37800958 PMCID: PMC10653826 DOI: 10.1128/mbio.01535-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Several studies have suggested that endoplasmic reticulum (ER) stress is important in the pathogenesis of infectious diseases; however, the precise function of ER stress regulation and the role of Herp as a regulator in Mtb H37Ra-induced ER stress remain elusive. Therefore, our study investigated ER stress and autophagy associated with Herp expression in Mycobacterium tuberculosis-infected macrophages to determine the role of Herp in the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Sang-Hun Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Junghwan Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, South Korea
| | - Soo-Na Cho
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Ji-Ae Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, South Korea
| | - Jaewhan Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Tam Doan Nguyen
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Seong-Ahn Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Doyi Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
3
|
Parkkinen I, Their A, Asghar MY, Sree S, Jokitalo E, Airavaara M. Pharmacological Regulation of Endoplasmic Reticulum Structure and Calcium Dynamics: Importance for Neurodegenerative Diseases. Pharmacol Rev 2023; 75:959-978. [PMID: 37127349 DOI: 10.1124/pharmrev.122.000701] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
The endoplasmic reticulum (ER) is the largest organelle of the cell, composed of a continuous network of sheets and tubules, and is involved in protein, calcium (Ca2+), and lipid homeostasis. In neurons, the ER extends throughout the cell, both somal and axodendritic compartments, and is highly important for neuronal functions. A third of the proteome of a cell, secreted and membrane-bound proteins, are processed within the ER lumen and most of these proteins are vital for neuronal activity. The brain itself is high in lipid content, and many structural lipids are produced, in part, by the ER. Cholesterol and steroid synthesis are strictly regulated in the ER of the blood-brain barrier protected brain cells. The high Ca2+ level in the ER lumen and low cytosolic concentration is needed for Ca2+-based intracellular signaling, for synaptic signaling and Ca2+ waves, and for preparing proteins for correct folding in the presence of high Ca2+ concentrations to cope with the high concentrations of extracellular milieu. Particularly, ER Ca2+ is controlled in axodendritic areas for proper neurito- and synaptogenesis and synaptic plasticity and remodeling. In this review, we cover the physiologic functions of the neuronal ER and discuss it in context of common neurodegenerative diseases, focusing on pharmacological regulation of ER Ca2+ Furthermore, we postulate that heterogeneity of the ER, its protein folding capacity, and ensuring Ca2+ regulation are crucial factors for the aging and selective vulnerability of neurons in various neurodegenerative diseases. SIGNIFICANCE STATEMENT: Endoplasmic reticulum (ER) Ca2+ regulators are promising therapeutic targets for degenerative diseases for which efficacious drug therapies do not exist. The use of pharmacological probes targeting maintenance and restoration of ER Ca2+ can provide restoration of protein homeostasis (e.g., folding of complex plasma membrane signaling receptors) and slow down the degeneration process of neurons.
Collapse
Affiliation(s)
- Ilmari Parkkinen
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Anna Their
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Muhammad Yasir Asghar
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Sreesha Sree
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Nie X, Liu D, Zheng M, Li X, Liu O, Guo Q, Zhu L, Lin B. HERPUD1 promotes ovarian cancer cell survival by sustaining autophagy and inhibit apoptosis via PI3K/AKT/mTOR and p38 MAPK signaling pathways. BMC Cancer 2022; 22:1338. [PMID: 36544104 PMCID: PMC9769045 DOI: 10.1186/s12885-022-10248-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/29/2022] [Indexed: 12/24/2022] Open
Abstract
HERPUD1 is an important early marker of endoplasmic reticulum stress (ERS) and is involved in the ubiquitination and degradation of several unfolded proteins. However, its role in tumorigenesis is seldom studied, and its role in ovarian cancer is unclear. Lewis y antigen is a tumor-associated sugar antigen that acts as an 'antenna' on the cell surface to receive signals from both inside and outside the cell. We previously reported that Lewis y can promote ovarian cancer by promoting autophagy and inhibiting apoptosis. In this study, we detect the expression of HERPUD1 and Lewis y antigens in 119 different ovarian cancer tissues, determine their relationship with clinicopathological parameters, analyze the correlation between these two proteins, and explore the related cancer-promoting mechanisms through MTT, flow cytometry, western blotting, and bioinformatics. HERPUD1 is highly expressed in ovarian cancer, especially in the early stage, and the expression of HERPUD1 and Lewis y antigen was positively correlated. After overexpression of Lewis y antigen, the expression level of HERPUD1 increased. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) analysis showed that HERPUD1 and its related genes are enriched in regulating immunity, endoplasmic reticulum stress, ubiquitin-dependent degradation, ERS-induced apoptosis, and other key signaling pathways. We also clarified the HERPUD1 network of kinases, microRNA and transcription factor targets, and the impact of HERPUD1 mutations on prognosis. In addition, HERPUD1 promotes the proliferation of ovarian cancer cells, inhibits apoptosis, affects the cell cycle, promotes the occurrence of autophagy, and inhibits EMT and PI3K/AKT/mTOR and p38MAPK pathways. Overall, HERPUD1, regulated by the expression of tumor-associated protein Lewis y, promotes cell survival in the early stages of tumors, suggesting that HERPUD1 may play an important role in the development of ovarian cancer.
Collapse
Affiliation(s)
- Xin Nie
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Dawo Liu
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Mingjun Zheng
- grid.411095.80000 0004 0477 2585Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Xiao Li
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Ouxuan Liu
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Qian Guo
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Liancheng Zhu
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Bei Lin
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| |
Collapse
|
5
|
Thapsigargin: key to new host-directed coronavirus antivirals? Trends Pharmacol Sci 2022; 43:557-568. [PMID: 35534355 PMCID: PMC9013669 DOI: 10.1016/j.tips.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/20/2022]
Abstract
Despite the great success of vaccines that protect against RNA virus infections, and the development and clinical use of a limited number of RNA virus-specific drugs, there is still an urgent need for new classes of antiviral drugs against circulating or emerging RNA viruses. To date, it has proved difficult to efficiently suppress RNA virus replication by targeting host cell functions, and there are no approved drugs of this type. This opinion article discusses the recent discovery of a pronounced and sustained antiviral activity of the plant-derived natural compound thapsigargin against enveloped RNA viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Middle East respiratory syndrome coronavirus (MERS-CoV), and influenza A virus. Based on its mechanisms of action, thapsigargin represents a new prototype of compounds with multimodal host-directed antiviral activity.
Collapse
|
6
|
Vargas G, Cortés O, Arias-Muñoz E, Hernández S, Cerda-Troncoso C, Hernández L, González AE, Tatham MH, Bustamante HA, Retamal C, Cancino J, Varas-Godoy M, Hay RT, Rojas-Fernández A, Cavieres VA, Burgos PV. Negative Modulation of Macroautophagy by Stabilized HERPUD1 is Counteracted by an Increased ER-Lysosomal Network With Impact in Drug-Induced Stress Cell Survival. Front Cell Dev Biol 2022; 10:743287. [PMID: 35309917 PMCID: PMC8924303 DOI: 10.3389/fcell.2022.743287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Macroautophagy and the ubiquitin proteasome system work as an interconnected network in the maintenance of cellular homeostasis. Indeed, efficient activation of macroautophagy upon nutritional deprivation is sustained by degradation of preexisting proteins by the proteasome. However, the specific substrates that are degraded by the proteasome in order to activate macroautophagy are currently unknown. By quantitative proteomic analysis we identified several proteins downregulated in response to starvation independently of ATG5 expression. Among them, the most significant was HERPUD1, an ER membrane protein with low expression and known to be degraded by the proteasome under normal conditions. Contrary, under ER stress, levels of HERPUD1 increased rapidly due to a blockage in its proteasomal degradation. Thus, we explored whether HERPUD1 stability could work as a negative regulator of autophagy. In this work, we expressed a version of HERPUD1 with its ubiquitin-like domain (UBL) deleted, which is known to be crucial for its proteasome degradation. In comparison to HERPUD1-WT, we found the UBL-deleted version caused a negative role on basal and induced macroautophagy. Unexpectedly, we found stabilized HERPUD1 promotes ER remodeling independent of unfolded protein response activation observing an increase in stacked-tubular structures resembling previously described tubular ER rearrangements. Importantly, a phosphomimetic S59D mutation within the UBL mimics the phenotype observed with the UBL-deleted version including an increase in HERPUD1 stability and ER remodeling together with a negative role on autophagy. Moreover, we found UBL-deleted version and HERPUD1-S59D trigger an increase in cellular size, whereas HERPUD1-S59D also causes an increased in nuclear size. Interestingly, ER remodeling by the deletion of the UBL and the phosphomimetic S59D version led to an increase in the number and function of lysosomes. In addition, the UBL-deleted version and phosphomimetic S59D version established a tight ER-lysosomal network with the presence of extended patches of ER-lysosomal membrane-contact sites condition that reveals an increase of cell survival under stress conditions. Altogether, we propose stabilized HERPUD1 downregulates macroautophagy favoring instead a closed interplay between the ER and lysosomes with consequences in drug-cell stress survival.
Collapse
Affiliation(s)
- Gabriela Vargas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Omar Cortés
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Eloisa Arias-Muñoz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Sergio Hernández
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Cristobal Cerda-Troncoso
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Laura Hernández
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alexis E González
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Michael H Tatham
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Hianara A Bustamante
- Facultad de Medicina, Instituto de Microbiología Clínica, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Ronald T Hay
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alejandro Rojas-Fernández
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom.,Instituto de Medicina & Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Viviana A Cavieres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile.,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| |
Collapse
|
7
|
Nechiporuk VM, Pentyuk LO, Shushkovskaya YY, Niushko TY, Korda MM. SUBMICROSCOPIC CHANGES IN THE SENSORIMOTOR AREA OF THE CEREBRAL CORTEX UNDER THE CONDITIONS OF EXPERIMENTAL HYPERHOMOCYSTEINEMIA, HYPER- AND HYPOTHYREOSIS AND THEIR COMBINED INFLUENCE. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-3-166-398-420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - M. M. Korda
- I. Horbachevsky Ternopil State Medical University
| |
Collapse
|
8
|
Multi-level inhibition of coronavirus replication by chemical ER stress. Nat Commun 2021; 12:5536. [PMID: 34545074 PMCID: PMC8452654 DOI: 10.1038/s41467-021-25551-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 08/02/2021] [Indexed: 12/25/2022] Open
Abstract
Coronaviruses (CoVs) are important human pathogens for which no specific treatment is available. Here, we provide evidence that pharmacological reprogramming of ER stress pathways can be exploited to suppress CoV replication. The ER stress inducer thapsigargin efficiently inhibits coronavirus (HCoV-229E, MERS-CoV, SARS-CoV-2) replication in different cell types including primary differentiated human bronchial epithelial cells, (partially) reverses the virus-induced translational shut-down, improves viability of infected cells and counteracts the CoV-mediated downregulation of IRE1α and the ER chaperone BiP. Proteome-wide analyses revealed specific pathways, protein networks and components that likely mediate the thapsigargin-induced antiviral state, including essential (HERPUD1) or novel (UBA6 and ZNF622) factors of ER quality control, and ER-associated protein degradation complexes. Additionally, thapsigargin blocks the CoV-induced selective autophagic flux involving p62/SQSTM1. The data show that thapsigargin hits several central mechanisms required for CoV replication, suggesting that this compound (or derivatives thereof) may be developed into broad-spectrum anti-CoV drugs.
Collapse
|
9
|
Luizet JB, Raymond J, Lacerda TLS, Barbieux E, Kambarev S, Bonici M, Lembo F, Willemart K, Borg JP, Celli J, Gérard FCA, Muraille E, Gorvel JP, Salcedo SP. The Brucella effector BspL targets the ER-associated degradation (ERAD) pathway and delays bacterial egress from infected cells. Proc Natl Acad Sci U S A 2021; 118:e2105324118. [PMID: 34353909 PMCID: PMC8364137 DOI: 10.1073/pnas.2105324118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Perturbation of the endoplasmic reticulum (ER), a central organelle of the cell, can have critical consequences for cellular homeostasis. An elaborate surveillance system known as ER quality control ensures that cells can respond and adapt to stress via the unfolded protein response (UPR) and that only correctly assembled proteins reach their destination. Interestingly, several bacterial pathogens hijack the ER to establish an infection. However, it remains poorly understood how bacterial pathogens exploit ER quality-control functions to complete their intracellular cycle. Brucella spp. replicate extensively within an ER-derived niche, which evolves into specialized vacuoles suited for exit from infected cells. Here we present Brucella-secreted protein L (BspL), a Brucella abortus effector that interacts with Herp, a central component of the ER-associated degradation (ERAD) machinery. We found that BspL enhances ERAD at the late stages of the infection. BspL targeting of Herp and ERAD allows tight control of the kinetics of autophagic Brucella-containing vacuole formation, delaying the last step of its intracellular cycle and cell-to-cell spread. This study highlights a mechanism by which a bacterial pathogen hijacks ERAD components for fine regulation of its intracellular trafficking.
Collapse
Affiliation(s)
- Jean-Baptiste Luizet
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France
| | - Julie Raymond
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France
| | - Thais Lourdes Santos Lacerda
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France
| | - Emeline Barbieux
- Department of Biology, Research Unit in Microorganisms Biology, Namur Research Institute for Life Sciences, 5000 Namur, Belgium
- Laboratory of Parasitology, Université Libre de Bruxelles Centre for Research in Immunology (UCRI), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Stanimir Kambarev
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164
| | - Magali Bonici
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France
| | - Frédérique Lembo
- Equipe labellisée Ligue 'Cell Polarity, Cell Signaling and Cancer', Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, CNRS, INSERM, 13009 Marseille, France
| | - Kévin Willemart
- Department of Biology, Research Unit in Microorganisms Biology, Namur Research Institute for Life Sciences, 5000 Namur, Belgium
| | - Jean-Paul Borg
- Equipe labellisée Ligue 'Cell Polarity, Cell Signaling and Cancer', Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, CNRS, INSERM, 13009 Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164
| | - Francine C A Gérard
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France
| | - Eric Muraille
- Department of Biology, Research Unit in Microorganisms Biology, Namur Research Institute for Life Sciences, 5000 Namur, Belgium
- Laboratory of Parasitology, Université Libre de Bruxelles Centre for Research in Immunology (UCRI), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, CNRS, INSERM, Aix-Marseille Université, 13009 Marseille, France
| | - Suzana P Salcedo
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France;
| |
Collapse
|
10
|
Herroon MK, Mecca S, Haimbaugh A, Garmo LC, Rajagurubandara E, Todi SV, Baker TR, Podgorski I. Adipocyte-driven unfolded protein response is a shared transcriptomic signature of metastatic prostate carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119101. [PMID: 34280426 DOI: 10.1016/j.bbamcr.2021.119101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022]
Abstract
A critical unknown in the field of skeletal metastases is how cancer cells find a way to thrive under harsh conditions, as exemplified by metastatic colonization of adipocyte-rich bone marrow by prostate carcinoma cells. To begin understanding molecular processes that enable tumor cells to survive and progress in difficult microenvironments such as bone, we performed unbiased examination of the transcriptome of two different prostate cancer cell lines in the absence or presence of bone marrow adipocytes. Our RNAseq analyses and subsequent quantitative PCR and protein-based assays reveal that upregulation of endoplasmic reticulum (ER) stress and unfolded protein response (UPR) genes is a shared signature between metastatic prostate carcinoma cell lines of different origin. Pathway analyses and pharmacological examinations highlight the ER chaperone BIP as an upstream coordinator of this transcriptomic signature. Additional patient-based data support our overall conclusion that ER stress and UPR induction are shared, important factors in the response and adaptation of metastatic tumor cells to their micro-environment. Our studies pave the way for additional mechanistic investigations and offer new clues towards effective therapeutic interventions in metastatic disease.
Collapse
Affiliation(s)
- Mackenzie K Herroon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Shane Mecca
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Alex Haimbaugh
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States of America
| | - Laimar C Garmo
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Erandi Rajagurubandara
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Tracie R Baker
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States of America
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America.
| |
Collapse
|
11
|
Wu H, Wang J, Cao M, Liang J, Wu D, Gu X, Ke K. Effects of homocysteine-induced endoplasmic reticulum protein on endoplasmic reticulum stress, autophagy, and neuronal apoptosis following intracerebral hemorrhage. IBRO Rep 2020; 9:207-217. [PMID: 32984639 PMCID: PMC7494608 DOI: 10.1016/j.ibror.2020.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is defined as bleeding into the brain parenchyma with a high mortality and morbidity rate. Unfortunately, it remains an unresolved medical problem. Therefore, it is necessary to find ways to reduce cellular apoptosis after ICH. Homocysteine-induced endoplasmic reticulum protein (HERP), a 54 kD transmembrane protein, is an early stress response protein encoded by ubiquitin-like domain member 1 (Herpud1) gene. In the present work, our group investigated the role of HERP after ICH and hemin stimulation, HERP expression was examined in mouse and primary cortical neurons after ICH and hemin stimulation by western blot and Immunofluorescent labeling. Using shRNA-HERP plasmid and recombinant adenovirus, we also investigated how HERP affected neuronal apoptosis after ICH and hemin stimulation. In addition, behavioral evaluation was used to ensure our models' success. In vivo and vitro studies, the expression of HERP was increased following ICH and hemin-exposed primary cortical neurons. HERP depletion activated the endoplasmic reticulum (ER) stress pathway and apoptosis in hemin-exposed primary cortical neurons, but inhibited autophagy in hemin-exposed primary cortical neurons. Overexpression of HERP inhibited the ER stress pathway and apoptosis, but activated autophagy in hemin-exposed primary cortical neurons. Consequently, we confirm that HERP plays a protective role in ICH model.
Collapse
Affiliation(s)
- Hui Wu
- Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Jinglei Wang
- Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Jingjing Liang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Dan Wu
- Department of Neurology, Tongzhou People's Hospital, Nantong, Jiangsu Province, People's Republic of China
| | - Xingxing Gu
- Jiangsu Key Laboratory of Neuroregeneration, Department of Neuronscience, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| |
Collapse
|
12
|
Alves de Souza CE, Pires ADRA, Cardoso CR, Carlos RM, Cadena SMSC, Acco A. Antineoplastic activity of a novel ruthenium complex against human hepatocellular carcinoma (HepG2) and human cervical adenocarcinoma (HeLa) cells. Heliyon 2020; 6:e03862. [PMID: 32405548 PMCID: PMC7210510 DOI: 10.1016/j.heliyon.2020.e03862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/21/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Novel metal complexes have received much attention recently because of their potential anticancer activity. Notably, ruthenium-based complexes have emerged as good alternatives to the currently used platinum-based drugs for cancer therapy, with less toxicity and fewer side effects. The beneficial properties of Ru, which make it a highly promising therapeutic agent, include its variable oxidative states, low toxicity, and high selectivity for cancer cells. The present study evaluated the cytotoxic effects of a ruthenium complex, namely cis-[Ru(1,10-phenanthroline)2(imidazole)2]2+ (RuC), on human hepatocellular carcinoma (HepG2) and human cervical adenocarcinoma (HeLa) cells and analyzed metabolic parameters. RuC reduced HepG2 and HeLa cell viability at all tested concentrations (10, 50, and 100 nmol/L) at 48 h of incubation, based on the MTT, Crystal violet, and neutral red assays. The proliferation capacity of HepG2 cells did not recover, whereas HeLa cell proliferation partially recovered after RuC treatment. RuC also inhibited all states of cell respiration and increased the levels of the metabolites pyruvate and lactate in both cell lines. The cytotoxicity of RuC was higher than cisplatin (positive control) in both lineages. These results indicate that RuC affects metabolic functions that are related to the energy provision and viability of HepG2 and HeLa cells and is a promising candidate for further investigations that utilize models of human cervical adenocarcinoma and mainly hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | | | - Rose Maria Carlos
- Department of Chemistry, Federal São Carlos University, São Carlos, Brazil
| | | | - Alexandra Acco
- Department of Pharmacology, Federal University of Parana, Curitiba, Brazil
| |
Collapse
|
13
|
The Role of Ubiquitin-Proteasome Pathway and Autophagy-Lysosome Pathway in Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5457049. [PMID: 32089771 PMCID: PMC7016479 DOI: 10.1155/2020/5457049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome pathway and autophagy-lysosome pathway are two major routes for clearance of aberrant cellular components to maintain protein homeostasis and normal cellular functions. Accumulating evidence shows that these two pathways are impaired during cerebral ischemia, which contributes to ischemic-induced neuronal necrosis and apoptosis. This review aims to critically discuss current knowledge and controversies on these two pathways in response to cerebral ischemic stress. We also discuss molecular mechanisms underlying the impairments of these protein degradation pathways and how such impairments lead to neuronal damage after cerebral ischemia. Further, we review the recent advance on the understanding of the involvement of these two pathways in the pathological process during many therapeutic approaches against cerebral ischemia. Despite recent advances, the exact role and molecular mechanisms of these two pathways following cerebral ischemia are complex and not completely understood, of which better understanding will provide avenues to develop novel therapeutic strategies for ischemic stroke.
Collapse
|
14
|
Reddy VS, Trinath J, Reddy GB. Implication of homocysteine in protein quality control processes. Biochimie 2019; 165:19-31. [PMID: 31269461 DOI: 10.1016/j.biochi.2019.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022]
Abstract
Homocysteine (Hcy) is a key metabolite generated during methionine metabolism. The elevated levels of Hcy in the blood are reffered to as hyperhomocystenimeia (HHcy). The HHcy is caused by impaired metabolism/deficiency of either folate or B12 or defects in Hcy metabolism. Accumulating evidence suggests that HHcy is associated with cardiovascular and brain diseases including atherosclerosis, endothelial injury, and stroke etc. Vitamin B12 (cobalamin; B12) is a water-soluble vitamin essential for two metabolic reactions. It acts as a co-factor for methionine synthase and L-methylmalonyl-CoA mutase. Besides, it is also vital for DNA synthesis and maturation of RBC. Deficiency of B12 is associated with haematological and neurological disorders. Hyperhomocysteinemia (HHcy)-induced toxicity is thought to be mediated by the accumulation of Hcy and its metabolites, homocysteinylated proteins. Cellular protein quality control (PQC) is essential for the maintenance of proteome integrity, and cell viability and its failure contributes to the development of multiple diseases. Chaperones, unfolded protein response (UPR), ubiquitin-proteasome system (UPS), and autophagy are analogous strategies of PQC that maintain cellular proteome integrity. Recently, multiple studies reported that HHcy responsible for perturbation of PQC by reducing chaperone levels, activating UPR, and impairing autophagy. Besides, HHcy also induce cytotoxicity, inflammation, protein aggregation and apoptosis. It has been shown that some of the factors including altered SIRT1-HSF1 axis and irreversible homocysteinylation of proteins are responsible for folate and/or B12 deficiency or HHcy-induced impairment of PQC. Therefore, this review highlights the current understanding of HHcy in the context of cellular PQC and their pathophysiological and clinical consequences, epigenomic changes, therapeutic implications of B12, and chemical chaperones based on cell culture and experimental animal models.
Collapse
Affiliation(s)
- V Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India.
| | - Jamma Trinath
- Department of Biological Sciences, BITS-Pilani, 500078, Hyderabad Campus, Hyderabad, Telangana, India
| | | |
Collapse
|
15
|
Navarro-Marquez M, Torrealba N, Troncoso R, Vásquez-Trincado C, Rodriguez M, Morales PE, Villalobos E, Eura Y, Garcia L, Chiong M, Klip A, Jaimovich E, Kokame K, Lavandero S. Herpud1 impacts insulin-dependent glucose uptake in skeletal muscle cells by controlling the Ca2+-calcineurin-Akt axis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1653-1662. [DOI: 10.1016/j.bbadis.2018.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 01/08/2023]
|
16
|
Américo-Da-Silva L, Diaz J, Bustamante M, Mancilla G, Oyarzún I, Verdejo HE, Quiroga C. A new role for HERPUD1 and ERAD activation in osteoblast differentiation and mineralization. FASEB J 2018; 32:4681-4695. [PMID: 29570393 DOI: 10.1096/fj.201701229rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bone integrity depends on a finely tuned balance between bone synthesis by osteoblasts and resorption by osteoclasts. The secretion capacity of mature osteoblasts requires strict control of proteostasis. Endoplasmic reticulum-associated degradation (ERAD) prevents the accumulation of unfolded ER proteins via dislocation to the cytosol and degradation by the proteasome. The ER membrane protein, homocysteine-inducible endoplasmic reticulum protein with ubiquitin-like domain 1 (HERPUD1), is a key component of the ERAD multiprotein complex which helps to stabilize the complex and facilitate the efficient degradation of unfolded proteins. HERPUD1 expression is strongly up-regulated by the unfolded protein response and cellular stress. The aim of the current study was to establish whether HERPUD1 and ERAD play roles in osteoblast differentiation and maturation. We evaluated preosteoblastic MC3T3-E1 cell and primary rat osteoblast differentiation by measuring calcium deposit levels, alkaline phosphatase activity, and runt-related transcription factor 2 and osterix expression. We found that ERAD and proteasomal degradation were activated and that HERPUD1 expression was increased as osteoblast differentiation progressed. The absence of HERPUD1 blocked osteoblast mineralization in vitro and significantly reduced alkaline phosphatase activity. In contrast, HERPUD1 overexpression activated the osteoblast differentiation program. Our results demonstrate that HERPUD1 and ERAD are important for the activation of the osteoblast maturation program and may be useful new targets for elucidating bone physiology.-Américo-Da-Silva, L., Diaz, J., Bustamante, M., Mancilla, G., Oyarzún, I., Verdejo, H. E., Quiroga, C. A new role for HERPUD1 and ERAD activation in osteoblast differentiation and mineralization.
Collapse
Affiliation(s)
- Luan Américo-Da-Silva
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jheimmy Diaz
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Bustamante
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Georthan Mancilla
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ingrid Oyarzún
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo E Verdejo
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clara Quiroga
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Aumailley L, Dubois MJ, Brennan TA, Garand C, Paquet ER, Pignolo RJ, Marette A, Lebel M. Serum vitamin C levels modulate the lifespan and endoplasmic reticulum stress response pathways in mice synthesizing a nonfunctional mutant WRN protein. FASEB J 2018; 32:3623-3640. [PMID: 29452565 DOI: 10.1096/fj.201701176r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-family DNA helicase (WRN). Mice lacking part of the helicase domain of the WRN ortholog exhibit several phenotypic features of WS. In this study, we generated a Wrn mutant line that, like humans, relies entirely on dietary sources of vitamin C (ascorbate) to survive, by crossing them to mice that lack the gulonolactone oxidase enzyme required for ascorbate synthesis. In the presence of 0.01% ascorbate (w/v) in drinking water, double-mutant mice exhibited a severe reduction in lifespan, small size, sterility, osteopenia, and metabolic profiles different from wild-type (WT) mice. Although increasing the dose of ascorbate to 0.4% improved dramatically the phenotypes of double-mutant mice, the metabolic and cytokine profiles were different from age-matched WT mice. Finally, double-mutant mice treated with 0.01% ascorbate revealed a permanent activation of all the 3 branches of the ER stress response pathways due to a severe chronic oxidative stress in the ER compartment. In addition, markers associated with the ubiquitin-proteasome-dependent ER-associated degradation pathway were increased. Augmenting the dose of ascorbate reversed the activation of this pathway to WT levels rendering this pathway a potential therapeutic target in WS.-Aumailley, L., Dubois, M. J., Brennan, T. A., Garand, C., Paquet, E. R., Pignolo, R. J., Marette, A., Lebel, M. Serum vitamin C levels modulate the lifespan and endoplasmic reticulum stress response pathways in mice synthesizing a nonfunctional mutant WRN protein.
Collapse
Affiliation(s)
- Lucie Aumailley
- Centre de Recherche du Centre Hospitalier de l'Université (CHU) de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Marie Julie Dubois
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Tracy A Brennan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chantal Garand
- Centre de Recherche du Centre Hospitalier de l'Université (CHU) de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Eric R Paquet
- Centre de Recherche sur le Cancer de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Quebec City, Quebec, Canada
| | - Robert J Pignolo
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - André Marette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Michel Lebel
- Centre de Recherche du Centre Hospitalier de l'Université (CHU) de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
18
|
MicroRNA-384-mediated Herpud1 upregulation promotes angiotensin II-induced endothelial cell apoptosis. Biochem Biophys Res Commun 2017; 488:453-460. [PMID: 28483519 DOI: 10.1016/j.bbrc.2017.05.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/05/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Angiotensin II (Ang II)-induced damage to endothelial cells (ECs) plays a crucial role in the pathogenesis of atherosclerosis. This study aimed to investigate the role of microRNA-384 (miR-384) in endothelial cell apoptosis. METHODS The expression of five various miRNAs in Ang II-treated human umbilical vein endothelial cells (HUVECs) were detected by qPCR. The Ang II-induced apoptosis of HUVECs was determined by flow cytometry, TUNEL staining and western blot. Endoplasmic reticulum (ER) stress markers were detected by western blot analysis. The target gene of miR-384 was determined by bioinformatics analyses. qPCR, western blotting and immunofluorescence were performed to determine the expression level of homocysteine inducible ER protein with ubiquitin like domain 1 (Herpud1). RESULTS miR-384 expression level was significantly decreased in Ang II-treated HUVECs. Ang II-induced HUVEC apoptosis was accompanied by the occurrence of ER stress. A decreased rate of HUVEC apoptosis and a decreased rate of ER stress were observed following restoration of miR-384 expression. Herpud1 expression level was increased in HUVECs treated with Ang II, and miR-384 mimics effectively inhibited Herpud1 expression. Mechanistically, miR-384 directly targets the 3'-untranslated region of Herpud1. Furthermore, effects of miR-384 on HUVECs apoptosis and ER stress were at least partly reversed by knockdown of Herpud1 expression. CONCLUSION The results of the present study collectively indicated that miR-384 expression level was downregulated in Ang II-treated HUVECs and miR-384 overexpression protected HUVECs against Ang II-induced apoptosis by negatively regulating Herpud1. These findings point towards new strategies by which apoptosis of ECs can be suppressed.
Collapse
|
19
|
Yang L, Mu Y, Cui H, Liang Y, Su X. MiR-9-3p augments apoptosis induced by H2O2 through down regulation of Herpud1 in glioma. PLoS One 2017; 12:e0174839. [PMID: 28430789 PMCID: PMC5400238 DOI: 10.1371/journal.pone.0174839] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 03/03/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs are short, single-stranded non-coding RNA molecules that function as regulators of tumor progression in various cancers, including glioma. The present study sought to investigate the biological functions of miR-9-3p in glioma progression. The results of a microRNA microarray indicated that microRNA-9-3p (miR-9-3p, miR-9*) is down-regulated in high-grade (grades III and IV) gliomas compared with non-tumor tissues. These results were confirmed with real-time PCR. The miR-9-3p expression level was associated with age and tumor grade. Herpud1 was regulated by miR-9-3p in glioma cells and tissues and was identified as a miR-9-3p target with luciferase reporter assays. Glioma cells transfected with miR-9-3p mimics or HERPUD1-RNAi had more apoptotic cells than them in control after induced by H2O2. Our results indicated that low expression of miR-9-3p results in a high level of Herpud1, which may protect against apoptosis in glioma.
Collapse
Affiliation(s)
- Ling Yang
- Clinical Medicine Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yongping Mu
- Department of Clinical Laboratory, the Affiliated People’s Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Hongwei Cui
- Clinical Medicine Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yabing Liang
- Clinical Medicine Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xiulan Su
- Clinical Medicine Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
- * E-mail:
| |
Collapse
|
20
|
Ding W, Chen R, Wu C, Chen W, Zhang H, Fan X, Wang H, Ji Y, Xie L, Ning X, Shen L. Increased expression of HERPUD1 involves in neuronal apoptosis after intracerebral hemorrhage. Brain Res Bull 2016; 128:40-47. [PMID: 27871950 DOI: 10.1016/j.brainresbull.2016.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/13/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
Homocysteine-inducible endoplasmic reticulum stress-inducible ubiquitin-like domain member 1 protein (HERPUD1) is involved in endoplasmic reticulum stress response. Immense amounts of research showed HERPUD1 plays multiple roles in various models. In this work, we explored the role of HERPUD1 during the pathophysiological processes of intracerebral hemorrhage (ICH). Rat ICH model was established and verified by behavioral test. Western blot and immunohistochemistry revealed a significant up-regulation of HERPUD1 expression around the hematoma after ICH. Besides, the expression of cytochrome c (cyt c) and active caspase-3 increased accompanied to HERPUD1 expression. Double-labeled immunofluorescence indicated HERPUD1 mainly colocalized with neurons. Further study showed HERPUD1 silence brought about up-regulation of apoptosis markers including cyt c and active caspase-3 coupled with increased cell apoptosis in vitro model. All these findings suggested that HERPUD1 might play a protective role in ICH-induced neuronal apoptosis in rat models.
Collapse
Affiliation(s)
- Wensen Ding
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Rongrong Chen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Chunshuai Wu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Weihai Chen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Hongtian Zhang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xingjuan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Hongmei Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yuteng Ji
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Lili Xie
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xiaojin Ning
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Lihua Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
21
|
Deletion of Herpud1 Enhances Heme Oxygenase-1 Expression in a Mouse Model of Parkinson's Disease. PARKINSONS DISEASE 2016; 2016:6163934. [PMID: 27057372 PMCID: PMC4781986 DOI: 10.1155/2016/6163934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 01/05/2023]
Abstract
Herp is an endoplasmic reticulum- (ER-) resident membrane protein that plays a role in ER-associated degradation. We studied the expression of Herp and its effect on neurodegeneration in a mouse model of Parkinson's disease (PD), in which both the oxidative stress and the ER stress are evoked. Eight hours after administering a PD-related neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), to mice, the expression of Herp increased at both the mRNA and the protein levels. Experiments using Herpud1 (+/+) and Herpud1 (-/-) mice revealed that the status of acute degeneration of nigrostriatal neurons and reactive astrogliosis was comparable between two genotypes after MPTP injection. However, the expression of a potent antioxidant, heme oxygenase-1 (HO-1), was detected to a higher degree in the astrocytes of Herpud1 (-/-) mice than in the astrocytes of Herpud1 (+/+) mice 24 h after MPTP administration. Further experiments using cultured astrocytes revealed that the stress response against MPP(+), an active form of MPTP, and hydrogen peroxide, both of which cause oxidative stress, was comparable between the two genotypes. These results suggest that deletion of Herpud1 may cause a slightly higher level of initial damage in the nigrastrial neurons after MPTP administration but is compensated for by higher induction of antioxidants such as HO-1 in astrocytes.
Collapse
|
22
|
Chen F, Wang N, Yang D, Wen X, Mahmoud TN, Zhou D, Tang K, Lin P, Wang A, Jin Y. Herp depletion arrests the S phase of the cell cycle and increases estradiol synthesis in mouse granulosa cells. J Reprod Dev 2016; 62:159-66. [PMID: 26781490 PMCID: PMC4848573 DOI: 10.1262/jrd.2015-120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) stress response has been implicated in the development, atresia and luteinization of ovarian follicles. However, there have been few reports concerning the role of Herp, an ER stress-induced protein, in follicular development. The present study aims to detect the distribution and cyclic variations of Herp during the estrous cycle and to reveal the roles of Herp in regulating the cell cycle, apoptosis and steroid hormone biosynthesis in mouse granulosa cells. In this study, immunohistochemistry staining showed that Herp expression was primarily in the granulosa cells and oocytes. Furthermore, we constructed recombinant lentiviral vectors for Herp short hairpin interfering RNA (shRNA) expression; immunofluorescence staining, real-time quantitative PCR (RT-qPCR) and western blot analysis revealed that Herp was successfully knocked down. Flow cytometry showed that knockdown of Herp arrested granulosa cells at the S phase of the cell cycle. More importantly, ELISA analysis revealed that Herp knockdown significantly upregulated the concentration of estradiol (E2) in the culture supernatants. RT-qPCR was performed to determine the regulatory mechanism of Herp knockdown in the cell cycle, and in steroid synthesis, RT-qPCR analysis revealed that Herp knockdown upregulated the mRNA expression of steroidogenic enzymes (Cyp19a1) and downregulated metabolic enzymes (Cyp1b1) and cell cycle factors (cyclin A1, cyclin B1 and cyclin D2). These results suggest that Herp may regulate the cell cycle and hormone secretions in mouse granulosa cells. The present study helps to elucidate the physiological functions of Herp as they relate to reproduction.
Collapse
Affiliation(s)
- Fenglei Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Paredes F, Parra V, Torrealba N, Navarro-Marquez M, Gatica D, Bravo-Sagua R, Troncoso R, Pennanen C, Quiroga C, Chiong M, Caesar C, Taylor WR, Molgó J, San Martin A, Jaimovich E, Lavandero S. HERPUD1 protects against oxidative stress-induced apoptosis through downregulation of the inositol 1,4,5-trisphosphate receptor. Free Radic Biol Med 2016; 90:206-18. [PMID: 26616647 PMCID: PMC4710961 DOI: 10.1016/j.freeradbiomed.2015.11.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 11/27/2022]
Abstract
Homocysteine-inducible, endoplasmic reticulum (ER) stress-inducible, ubiquitin-like domain member 1 (HERPUD1), an ER resident protein, is upregulated in response to ER stress and Ca(2+) homeostasis deregulation. HERPUD1 exerts cytoprotective effects in various models, but its role during oxidative insult remains unknown. The aim of this study was to investigate whether HERPUD1 contributes to cytoprotection in response to redox stress and participates in mediating stress-dependent signaling pathways. Our data showed that HERPUD1 protein levels increased in HeLa cells treated for 30 min with H2O2 or angiotensin II and in aortic tissue isolated from mice treated with angiotensin II for 3 weeks. Cell death was higher in HERPUD1 knockdown (sh-HERPUD1) HeLa cells treated with H2O2 in comparison with control (sh-Luc) HeLa cells. This effect was abolished by the intracellular Ca(2+) chelating agent BAPTA-AM or the inositol 1,4,5-trisphosphate receptor (ITPR) antagonist xestospongin B, suggesting that the response to H2O2 was dependent on intracellular Ca(2+) stores and the ITPR. Ca(2+) kinetics showed that sh-HERPUD1 HeLa cells exhibited greater and more sustained cytosolic and mitochondrial Ca(2+) increases than sh-Luc HeLa cells. This higher sensitivity of sh-HERPUD1 HeLa cells to H2O2 was prevented with the mitochondrial permeability transition pore inhibitor cyclosporine A. We concluded that the HERPUD1-mediated cytoprotective effect against oxidative stress depends on the ITPR and Ca(2+) transfer from the ER to mitochondria.
Collapse
Affiliation(s)
- Felipe Paredes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile
| | - Natalia Torrealba
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile
| | - Mario Navarro-Marquez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile
| | - Damian Gatica
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile
| | - Rodrigo Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile; Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile
| | - Clara Quiroga
- ACCDiS, Cardiovascular Diseases Division, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile
| | - Christa Caesar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - W Robert Taylor
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA; Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jordi Molgó
- Institut des Neurosciences Paris-Saclay, UMR 9197, 91190 Gif sur Yvette, France
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Enrique Jaimovich
- Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 838049 Santiago, Chile; Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Chen F, Lin P, Wang N, Yang D, Wen X, Zhou D, Wang A, Jin Y. Herp depletion inhibits zearalenone-induced cell death in RAW 264.7 macrophages. Toxicol In Vitro 2015; 32:115-22. [PMID: 26723276 DOI: 10.1016/j.tiv.2015.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 11/26/2015] [Accepted: 12/18/2015] [Indexed: 12/14/2022]
Abstract
Herp is an endoplasmic reticulum (ER) membrane protein and strongly induced by the ER stress that not only participates in the unfolded protein response (UPR) under the ER stress, but also in cell autophagy under glucose starvation (GS). However, we do not know whether Herp plays any roles in other responses, such as zearalenone (ZEA). In this study, we constructed recombinant lentiviral vectors for Herp shRNA expression and generated stable Herp knockdown RAW 264.7 macrophages. Flow cytometry analysis showed Herp depletion could inhibit cell death induced by ZEA. Western blot analysis revealed that Herp depletion could up-regulate autophagy-related protein LC3-I conversion into LC3-II and the expression of ER stress-related protein CHOP. These results suggest that Herp depletion inhibits cell death by up-regulating autophagy.
Collapse
Affiliation(s)
- Fenglei Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nan Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Diqi Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Wen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
25
|
Upadhyay A, Amanullah A, Chhangani D, Mishra R, Mishra A. Selective multifaceted E3 ubiquitin ligases barricade extreme defense: Potential therapeutic targets for neurodegeneration and ageing. Ageing Res Rev 2015; 24:138-59. [PMID: 26247845 DOI: 10.1016/j.arr.2015.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/24/2015] [Accepted: 07/30/2015] [Indexed: 12/24/2022]
Abstract
Efficient and regular performance of Ubiquitin Proteasome System and Autophagy continuously eliminate deleterious accumulation of nonnative protiens. In cellular quality control system, E3 ubiquitin ligases are significant employees for defense mechanism against abnormal toxic proteins. Few findings indicate that lack of functions of E3 ubiquitin ligases can be a causative factor of neurodevelopmental disorders, neurodegeneration, cancer and ageing. However, the detailed molecular pathomechanism implying E3 ubiquitin ligases in cellular functions in multifactorial disease conditions are not well understood. This article systematically represents the unique characteristics, molecular nature, and recent developments in the knowledge of neurobiological functions of few crucial E3 ubiquitin ligases. Here, we review recent literature on the roles of E6-AP, HRD1 and ITCH E3 ubiquitin ligases in the neuro-pathobiological mechanisms, with precise focus on the processes of neurodegeneration, and thereby propose new lines of potential targets for therapeutic interventions.
Collapse
|
26
|
Rashid MM, Runci A, Polletta L, Carnevale I, Morgante E, Foglio E, Arcangeli T, Sansone L, Russo MA, Tafani M. Muscle LIM protein/CSRP3: a mechanosensor with a role in autophagy. Cell Death Discov 2015; 1:15014. [PMID: 27551448 PMCID: PMC4981024 DOI: 10.1038/cddiscovery.2015.14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022] Open
Abstract
Muscle LIM protein (MLP) is a microtubule-associated protein expressed in cardiac and muscle tissues that belongs to the cysteine-rich protein (CSRP/CRP) family. MLP has a central role during muscle development and for architectural maintenance of muscle cells. However, muscle cells rely on autophagy during differentiation and for structural maintenance. To study the role of MLP in autophagy, we have used C2C12 mouse myoblasts silenced or overexpressing MLP. Our results show that MLP contributes to the correct autophagosome formation and flux by interacting with LC3 as demonstrated by co-immunoprecipitation and PLA assay. In fact, MLP silencing results in decreased LC3-II staining and absent degradation of long-lived proteins. Moreover, MLP silencing impaired myoblasts differentiation as measured by decreased expression of MyoD1, MyoG1 and myosin heavy chain. Ultrastructural analysis revealed the presence of large empty autophagosomes in myoblasts and multimembranous structures in myotubes from MLP-silenced clones. Impaired autophagy in MLP-silenced cells resulted in increased susceptibility to apoptotic cell death. In fact, treatment of MLP-silenced C2C12 myoblasts and myotubes with staurosporine resulted in increased caspase-3 and PARP cleavage as well as increased percentage of cell death. In conclusion, we propose that MLP regulates autophagy during muscle cell differentiation or maintenance through a mechanism involving MLP/LC3-II interaction and correct autophagosome formation.
Collapse
Affiliation(s)
- M M Rashid
- Department of Experimental Medicine, University of Rome , Sapienza, Rome, Italy
| | - A Runci
- Department of Experimental Medicine, University of Rome , Sapienza, Rome, Italy
| | - L Polletta
- Department of Experimental Medicine, University of Rome , Sapienza, Rome, Italy
| | - I Carnevale
- Department of Experimental Medicine, University of Rome , Sapienza, Rome, Italy
| | - E Morgante
- Department of Experimental Medicine, University of Rome , Sapienza, Rome, Italy
| | - E Foglio
- Department of Experimental Medicine, University of Rome , Sapienza, Rome, Italy
| | - T Arcangeli
- Department of Experimental Medicine, University of Rome , Sapienza, Rome, Italy
| | - L Sansone
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele , Rome, Italy
| | - M A Russo
- Consorzio MEBIC, San Raffaele University , Rome, Italy
| | - M Tafani
- Department of Experimental Medicine, University of Rome, Sapienza, Rome, Italy; Department of Cellular and Molecular Pathology, IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
27
|
Currò M, Gangemi C, Gugliandolo A, Risitano R, Ferlazzo N, Ientile R, Caccamo D. Transglutaminase 2 is involved in homocysteine-induced activation of human THP-1 monocytes. Free Radic Res 2015; 49:299-308. [PMID: 25547897 DOI: 10.3109/10715762.2014.1002495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant transglutaminase 2 (TG2) expression and protein cross-linking activity have been associated with several chronic neurodegenerative disorders in which inflammatory processes triggered by activated microglia and monocytes play a key role, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Interestingly, mild-to-moderate hyperhomocysteinemia (HHcy), corresponding to increased plasma homocysteine (Hcy) concentrations in the range 16-60 μM, have recently been associated with the above-cited diseases. Using THP-1 monocytes, here we investigated the role of TG2 in cell response to mildly elevated Hcy concentrations. A five-day incubation with Hcy (∼25 μM) increased reactive oxygen species, peroxide lipids, as well as 8-hydroxyguanosine levels by twofold, and decreased the endogenous cell antioxidant defenses, that is reduced glutathione, by 50% in Hcy-exposed cultures compared with controls (p < 0.01). Hcy-induced oxidative stress was associated with increases in TG2 expression and activity, as well as nuclear factor kappa B activation. Notably, the latter was reduced in the presence of the TG-specific inhibitor R283. Hcy exposure also significantly increased the mRNA levels of tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β, as well as the level of Hcy-inducible endoplasmic reticulum (ER) stress protein, a marker of ER stress, in Hcy-exposed cultures compared with controls. Notably, these effects were dramatically reduced by R283. These preliminary findings indicate that TG2 plays a key role in Hcy-induced activation of THP-1 monocytes, involving oxidative as well as ER stress and inflammation. This underlines the potential of TG2 inhibition in the therapeutic management of inflammatory processes contributing to neurodegenerative disorders associated with mild HHcy.
Collapse
Affiliation(s)
- M Currò
- Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina , Messina , Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Mollereau B, Manié S, Napoletano F. Getting the better of ER stress. J Cell Commun Signal 2014; 8:311-21. [PMID: 25354560 DOI: 10.1007/s12079-014-0251-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022] Open
Abstract
Research over the past few years has highlighted the ability of the unfolded protein response (UPR) to minimize the deleterious effects of accumulated misfolded proteins under both physiological and pathological conditions. The endoplasmic reticulum (ER) adapts to endogenous and exogenous stressors by expanding its protein-folding capacity and by stimulating protective processes such as autophagy and antioxidant responses. Although it is clear that severe ER stress can elicit cell death, several recent studies have shown that low levels of ER stress may actually be beneficial to cells by eliciting an adaptive UPR that 'preconditions' the cell to a subsequent lethal insult; this process is called ER hormesis. The findings have important implications for the treatment of a wide variety of diseases associated with defective proteostasis, including neurodegenerative diseases, diabetes, and cancer. Here, we review the physiological and pathological functions of the ER, with a particular focus on the molecular mechanisms that lead to ER hormesis and cellular protection, and discuss the implications for disease treatment.
Collapse
Affiliation(s)
- Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France,
| | | | | |
Collapse
|