1
|
Jarosz-Griffiths H, Caley L, Lara-Reyna S, Savic S, Clifton I, McDermott M, Peckham D. Heightened mitochondrial respiration in CF cells is normalised by triple CFTR modulator therapy through mechanisms involving calcium. Heliyon 2024; 10:e39244. [PMID: 39498005 PMCID: PMC11532250 DOI: 10.1016/j.heliyon.2024.e39244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Background Cystic fibrosis (CF) is associated with increased resting energy expenditure. However, the introduction of elexacaftor/tezacaftor/ivacaftor (ETI) has resulted in a paradigm shift in nutritional status for many people with CF, with increase body mass index and reduction in the need for nutritional support. While these changes are likely to reflect improved clinical status and an associated downregulation of energy expenditure, they may also reflect drug-induced alterations in metabolic perturbations within CF cells. We hypothesise that some of these changes relate to normalisation of mitochondrial respiration in CF. Methods Using wild-type (WT) and F508del/F508del CFTR human bronchial epithelial cell lines (HBE cell lines) and baby hamster kidney (BHK) cells we examined the impact of ETI on cellular metabolism. We monitored mitochondrial respiration, using Seahorse extracellular flux assays and monitored mitochondrial reactive oxygen species (mROS) and intracellular calcium levels by flow cytometry. Results Increased mitochondrial respiration was found in HBE cell lines and BHK cells expressing CFTR F508del/F508del when assessing basal, maximal, spare respiratory capacities and ATP production, as well as increased mitochondrial ROS generated via forward electron transport. ETI significantly decreased basal, maximal, spare respiratory capacity and ATP production to WT levels or below. Calcium blocker, BAPTA-AM normalised mitochondrial respiration, suggesting a calcium-mediated mechanism. ETI decreased intracellular calcium levels in CF cells to the same extent as BAPTA-AM, highlighting the importance of calcium and chloride in mitochondrial respiration in CF. Conclusions CF cell lines exhibit increased mitochondrial respiration, which can be downregulated by ETI therapy through mechanisms involving calcium.
Collapse
Affiliation(s)
| | - L.R. Caley
- Leeds Institute of Medical Research, University of Leeds, United Kingdom
| | - S. Lara-Reyna
- Institute of Microbiology and Infection, University of Birmingham, United Kingdom
| | - S. Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, United Kingdom
- Department of Clinical Immunology and Allergy, St James's University Hospital, United Kingdom
| | - I.J. Clifton
- Department of Respiratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - M.F. McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, United Kingdom
| | - D.G. Peckham
- Leeds Institute of Medical Research, University of Leeds, United Kingdom
- Department of Respiratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
2
|
Amoakon JP, Lee J, Liyanage P, Arora K, Karlstaedt A, Mylavarapu G, Amin R, Naren AP. Defective CFTR modulates mechanosensitive channels TRPV4 and PIEZO1 and drives endothelial barrier failure. iScience 2024; 27:110703. [PMID: 39252977 PMCID: PMC11382128 DOI: 10.1016/j.isci.2024.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Despite reports of CFTR expression on endothelial cells, pulmonary vascular perturbations, and perfusion deficits in CF patients, the mechanism of pulmonary vascular disease in CF remains unclear. Here, our pilot study of 40 CF patients reveals a loss of small pulmonary blood vessels in patients with severe lung disease. Using a vessel-on-a-chip model, we establish a shear-stress-dependent mechanism of endothelial barrier failure in CF involving TRPV4, a mechanosensitive channel. Furthermore, we demonstrate that CFTR deficiency downregulates the function of PIEZO1, another mechanosensitive channel involved in angiogenesis and wound repair, and exacerbates loss of small pulmonary blood vessel. We also show that CFTR directly interacts with PIEZO1 and enhances its function. Our study identifies key cellular targets to mitigate loss of small pulmonary blood vessels in CF.
Collapse
Affiliation(s)
- Jean-Pierre Amoakon
- Department of Systems Biology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jesun Lee
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pramodha Liyanage
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kavisha Arora
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Goutham Mylavarapu
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raouf Amin
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anjaparavanda P Naren
- Department of Systems Biology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
3
|
Wanford JJ, Odendall C. Ca 2+-calmodulin signalling at the host-pathogen interface. Curr Opin Microbiol 2023; 72:102267. [PMID: 36716574 DOI: 10.1016/j.mib.2023.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/29/2023]
Abstract
Multiple eukaryotic cell processes are modulated by calcium ions (Ca2+). As such, Ca2+ is emerging as a crucial regulator of innate immunity in multicellular organisms. In particular, recent studies have identified roles of Ca2+ signalling at the host-bacteria interface. Following microbial exposure, Ca2+ signals mobilised from the extracellular milieu or intracellular stores are transduced into cell physiological responses. However, during infection with host-adapted pathogens, Ca2+ signals are often atypical, due to the activities of virulence factors, with varied consequences for both the pathogen and the host cell. In this review, we describe the Ca2+-dependent host factors regulating antibacterial immunity, in addition to bacterial effectors that promote, inhibit, or co-opt Ca2+-calmodulin signalling to promote infection.
Collapse
Affiliation(s)
- Joseph J Wanford
- School of Immunology and Microbial Sciences, Kings College London, London, UK
| | - Charlotte Odendall
- School of Immunology and Microbial Sciences, Kings College London, London, UK.
| |
Collapse
|
4
|
Honrubia JM, Gutierrez-Álvarez J, Sanz-Bravo A, González-Miranda E, Muñoz-Santos D, Castaño-Rodriguez C, Wang L, Villarejo-Torres M, Ripoll-Gómez J, Esteban A, Fernandez-Delgado R, Sánchez-Cordón PJ, Oliveros JC, Perlman S, McCray PB, Sola I, Enjuanes L. SARS-CoV-2-Mediated Lung Edema and Replication Are Diminished by Cystic Fibrosis Transmembrane Conductance Regulator Modulators. mBio 2023; 14:e0313622. [PMID: 36625656 PMCID: PMC9973274 DOI: 10.1128/mbio.03136-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
Coronaviruses (CoVs) of genera α, β, γ, and δ encode proteins that have a PDZ-binding motif (PBM) consisting of the last four residues of the envelope (E) protein (PBM core). PBMs may bind over 400 cellular proteins containing PDZ domains (an acronym formed by the combination of the first letter of the names of the three first proteins where this domain was identified), making them relevant for the control of cell function. Three highly pathogenic human CoVs have been identified to date: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. The PBMs of the three CoVs were virulence factors. SARS-CoV mutants in which the E protein PBM core was replaced by the E protein PBM core from virulent or attenuated CoVs were constructed. These mutants showed a gradient of virulence, depending on whether the alternative PBM core introduced was derived from a virulent or an attenuated CoV. Gene expression patterns in the lungs of mice infected with SARS-CoVs encoding each of the different PBMs were analyzed by RNA sequencing of infected lung tissues. E protein PBM of SARS-CoV and SARS-CoV-2 dysregulated gene expression related to ion transport and cell homeostasis. Decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) mRNA, essential for alveolar edema resolution, was shown. Reduced CFTR mRNA levels were associated with edema accumulation in the alveoli of mice infected with SARS-CoV and SARS-CoV-2. Compounds that increased CFTR expression and activity, significantly reduced SARS-CoV-2 growth in cultured cells and protected against mouse infection, suggesting that E protein virulence is mediated by a decreased CFTR expression. IMPORTANCE Three highly pathogenic human CoVs have been identified: SARS-CoV, MERS-CoV, and SARS-CoV-2. The E protein PBMs of these three CoVs were virulence factors. Gene expression patterns associated with the different PBM motifs in the lungs of infected mice were analyzed by deep sequencing. E protein PBM motif of SARS-CoV and SARS-CoV-2 dysregulated the expression of genes related to ion transport and cell homeostasis. A decrease in the mRNA expression of the cystic fibrosis transmembrane conductance regulator (CFTR), which is essential for edema resolution, was observed. The reduction of CFTR mRNA levels was associated with edema accumulation in the lungs of mice infected with SARS-CoV-2. Compounds that increased the expression and activity of CFTR drastically reduced the production of SARS-CoV-2 and protected against its infection in a mice model. These results allowed the identification of cellular targets for the selection of antivirals.
Collapse
Affiliation(s)
- Jose M. Honrubia
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Javier Gutierrez-Álvarez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Alejandro Sanz-Bravo
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ezequiel González-Miranda
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Diego Muñoz-Santos
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Li Wang
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marta Villarejo-Torres
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jorge Ripoll-Gómez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ana Esteban
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Infectious Diseases and Global Health, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Pedro José Sánchez-Cordón
- Veterinary Pathology Department, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Juan Carlos Oliveros
- Bioinformatics for Genomics and Proteomics Unit, CNB-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, USA
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- Pappajohn Biomedical Institute, The University of Iowa, Iowa City, Iowa, USA
- Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
5
|
Lin J, Gettings SM, Talbi K, Schreiber R, Taggart MJ, Preller M, Kunzelmann K, Althaus M, Gray MA. Pharmacological inhibitors of the cystic fibrosis transmembrane conductance regulator exert off-target effects on epithelial cation channels. Pflugers Arch 2023; 475:167-179. [PMID: 36205782 PMCID: PMC9849171 DOI: 10.1007/s00424-022-02758-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 02/01/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel and the epithelial Na+ channel (ENaC) play essential roles in transepithelial ion and fluid transport in numerous epithelial tissues. Inhibitors of both channels have been important tools for defining their physiological role in vitro. However, two commonly used CFTR inhibitors, CFTRinh-172 and GlyH-101, also inhibit non-CFTR anion channels, indicating they are not CFTR specific. However, the potential off-target effects of these inhibitors on epithelial cation channels has to date not been addressed. Here, we show that both CFTR blockers, at concentrations routinely employed by many researchers, caused a significant inhibition of store-operated calcium entry (SOCE) that was time-dependent, poorly reversible and independent of CFTR. Patch clamp experiments showed that both CFTRinh-172 and GlyH-101 caused a significant block of Orai1-mediated whole cell currents, establishing that they likely reduce SOCE via modulation of this Ca2+ release-activated Ca2+ (CRAC) channel. In addition to off-target effects on calcium channels, both inhibitors significantly reduced human αβγ-ENaC-mediated currents after heterologous expression in Xenopus oocytes, but had differential effects on δβγ-ENaC function. Molecular docking identified two putative binding sites in the extracellular domain of ENaC for both CFTR blockers. Together, our results indicate that caution is needed when using these two CFTR inhibitors to dissect the role of CFTR, and potentially ENaC, in physiological processes.
Collapse
Affiliation(s)
- JinHeng Lin
- grid.1006.70000 0001 0462 7212Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK ,grid.4991.50000 0004 1936 8948Present Address: Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
| | - Sean M. Gettings
- grid.1006.70000 0001 0462 7212School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
| | - Khaoula Talbi
- grid.7727.50000 0001 2190 5763Physiological Institute, University of Regensburg, 93053 Regensburg, Germany
| | - Rainer Schreiber
- grid.7727.50000 0001 2190 5763Physiological Institute, University of Regensburg, 93053 Regensburg, Germany
| | - Michael J. Taggart
- grid.1006.70000 0001 0462 7212Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Matthias Preller
- grid.425058.e0000 0004 0473 3519Department of Natural Sciences/Institute for Functional Gene Analytics, Structural Biology Group, Bonn-Rhein-Sieg University of Applied Sciences, 53359 Rheinbach, Germany
| | - Karl Kunzelmann
- grid.7727.50000 0001 2190 5763Physiological Institute, University of Regensburg, 93053 Regensburg, Germany
| | - Mike Althaus
- grid.1006.70000 0001 0462 7212School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU UK ,grid.425058.e0000 0004 0473 3519Present Address: Department of Natural Sciences /Institute for Functional Gene Analytics, Ion Transport Physiology Group, Bonn-Rhein-Sieg University of Applied Sciences, 53359 Rheinbach, Germany
| | - Michael A. Gray
- grid.1006.70000 0001 0462 7212Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
6
|
Sluysmans S, Salmaso A, Rouaud F, Méan I, Brini M, Citi S. The PLEKHA7-PDZD11 complex regulates the localization of the calcium pump PMCA and calcium handling in cultured cells. J Biol Chem 2022; 298:102138. [PMID: 35714771 PMCID: PMC9307954 DOI: 10.1016/j.jbc.2022.102138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/11/2023] Open
Abstract
The plasma membrane calcium ATPase (PMCA) extrudes calcium from the cytosol to the extracellular space to terminate calcium-dependent signaling. Although the distribution of PMCA is crucial for its function, the molecular mechanisms that regulate the localization of PMCA isoforms are not well understood. PLEKHA7 is implicated by genetic studies in hypertension and the regulation of calcium handling. PLEKHA7 recruits the small adapter protein PDZD11 to adherens junctions, and together they control the trafficking and localization of plasma membrane associated proteins, including the Menkes copper ATPase. Since PDZD11 binds to the C-terminal domain of b-isoforms of PMCA, PDZD11 and its interactor PLEKHA7 could control the localization and activity of PMCA. Here, we test this hypothesis using cultured cell model systems. We show using immunofluorescence microscopy and a surface biotinylation assay that KO of either PLEKHA7 or PDZD11 in mouse kidney collecting duct epithelial cells results in increased accumulation of endogenous PMCA at lateral cell–cell contacts and PDZ-dependent ectopic apical localization of exogenous PMCA4x/b isoform. In HeLa cells, coexpression of PDZD11 reduces membrane accumulation of overexpressed PMCA4x/b, and analysis of cytosolic calcium transients shows that PDZD11 counteracts calcium extrusion activity of overexpressed PMCA4x/b, but not PMCA4x/a, which lacks the PDZ-binding motif. Moreover, KO of PDZD11 in either endothelial (bEnd.3) or epithelial (mouse kidney collecting duct) cells increases the rate of calcium extrusion. Collectively, these results suggest that the PLEKHA7–PDZD11 complex modulates calcium homeostasis by regulating the localization of PMCA.
Collapse
Affiliation(s)
- Sophie Sluysmans
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Andrea Salmaso
- Department of Biology, University of Padua, Padua, Italy
| | - Florian Rouaud
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Isabelle Méan
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Marisa Brini
- Department of Biology, University of Padua, Padua, Italy.
| | - Sandra Citi
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
Madácsy T, Varga Á, Papp N, Tél B, Pallagi P, Szabó V, Kiss A, Fanczal J, Rakonczay Z, Tiszlavicz L, Rázga Z, Hohwieler M, Kleger A, Gray M, Hegyi P, Maléth J. Impaired regulation of PMCA activity by defective CFTR expression promotes epithelial cell damage in alcoholic pancreatitis and hepatitis. Cell Mol Life Sci 2022; 79:265. [PMID: 35484438 PMCID: PMC11073305 DOI: 10.1007/s00018-022-04287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
Alcoholic pancreatitis and hepatitis are frequent, potentially lethal diseases with limited treatment options. Our previous study reported that the expression of CFTR Cl- channel is impaired by ethanol in pancreatic ductal cells leading to more severe alcohol-induced pancreatitis. In addition to determining epithelial ion secretion, CFTR has multiple interactions with other proteins, which may influence intracellular Ca2+ signaling. Thus, we aimed to investigate the impact of ethanol-mediated CFTR damage on intracellular Ca2+ homeostasis in pancreatic ductal epithelial cells and cholangiocytes. Human and mouse pancreas and liver samples and organoids were used to study ion secretion, intracellular signaling, protein expression and interaction. The effect of PMCA4 inhibition was analyzed in a mouse model of alcohol-induced pancreatitis. The decreased CFTR expression impaired PMCA function and resulted in sustained intracellular Ca2+ elevation in ethanol-treated and mouse and human pancreatic organoids. Liver samples derived from alcoholic hepatitis patients and ethanol-treated mouse liver organoids showed decreased CFTR expression and function, and impaired PMCA4 activity. PMCA4 co-localizes and physically interacts with CFTR on the apical membrane of polarized epithelial cells, where CFTR-dependent calmodulin recruitment determines PMCA4 activity. The sustained intracellular Ca2+ elevation in the absence of CFTR inhibited mitochondrial function and was accompanied with increased apoptosis in pancreatic epithelial cells and PMCA4 inhibition increased the severity of alcohol-induced AP in mice. Our results suggest that improving Ca2+ extrusion in epithelial cells may be a potential novel therapeutic approach to protect the exocrine pancreatic function in alcoholic pancreatitis and prevent the development of cholestasis in alcoholic hepatitis.
Collapse
Affiliation(s)
- Tamara Madácsy
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Árpád Varga
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Noémi Papp
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Bálint Tél
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Petra Pallagi
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Viktória Szabó
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Aletta Kiss
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Júlia Fanczal
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary
| | - Zoltan Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, 6720, Hungary
| | | | - Zsolt Rázga
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Meike Hohwieler
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Mike Gray
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, England
| | - Péter Hegyi
- Institute for Translational Medicine, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine and Division for Pancreatic Disorders, Semmelweis University, Budapest, Hungary
| | - József Maléth
- Department of Medicine, University of Szeged, Szeged, 6720, Hungary.
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Szeged, 6720, Hungary.
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, 6720, Hungary.
| |
Collapse
|
8
|
Caterini JE, Ratjen F, Barker AR, Williams CA, Rendall K, Schneiderman JE, Wells GD. Exercise intolerance in cystic fibrosis-the role of CFTR modulator therapies. J Cyst Fibros 2021; 21:282-292. [PMID: 34955387 DOI: 10.1016/j.jcf.2021.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/18/2021] [Accepted: 11/20/2021] [Indexed: 12/11/2022]
Abstract
Exercise intolerance is common in people with CF (pwCF), but not universal among all individuals. While associated with disease prognosis, exercise intolerance is not simply a reflection of the degree of lung disease. In people with severe CF, respiratory limitations may contribute more significantly to impaired exercise capacity than in those with mild-moderate CF. At all levels of disease severity, there are peripheral factors e.g., abnormal macro- and micro-vascular function that impair blood flow and reduce oxygen extraction, and mitochondrial defects that diminish metabolic efficiency. We discuss advances in understanding the central and peripheral mechanisms underlying exercise intolerance in pwCF. Exploring both the central and peripheral factors that contribute to exercise intolerance in CF can help inform the development of new therapeutic targets, as well as help define prognostic criteria.
Collapse
Affiliation(s)
- Jessica E Caterini
- Translational Medicine Program, SickKids Research Institute, Toronto, ON M5G 0A4, Canada; Queen's Medical School, Kingston, ON K7L 3N6, Canada
| | - Felix Ratjen
- Translational Medicine Program, SickKids Research Institute, Toronto, ON M5G 0A4, Canada; Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada; Division of Respiratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Alan R Barker
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Craig A Williams
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Kate Rendall
- Translational Medicine Program, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jane E Schneiderman
- Division of Respiratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada; Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Greg D Wells
- Translational Medicine Program, SickKids Research Institute, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
9
|
Lukasiak A, Zajac M. The Distribution and Role of the CFTR Protein in the Intracellular Compartments. MEMBRANES 2021; 11:membranes11110804. [PMID: 34832033 PMCID: PMC8618639 DOI: 10.3390/membranes11110804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis is a hereditary disease that mainly affects secretory organs in humans. It is caused by mutations in the gene encoding CFTR with the most common phenylalanine deletion at position 508. CFTR is an anion channel mainly conducting Cl− across the apical membranes of many different epithelial cells, the impairment of which causes dysregulation of epithelial fluid secretion and thickening of the mucus. This, in turn, leads to the dysfunction of organs such as the lungs, pancreas, kidney and liver. The CFTR protein is mainly localized in the plasma membrane; however, there is a growing body of evidence that it is also present in the intracellular organelles such as the endosomes, lysosomes, phagosomes and mitochondria. Dysfunction of the CFTR protein affects not only the ion transport across the epithelial tissues, but also has an impact on the proper functioning of the intracellular compartments. The review aims to provide a summary of the present state of knowledge regarding CFTR localization and function in intracellular compartments, the physiological role of this localization and the consequences of protein dysfunction at cellular, epithelial and organ levels. An in-depth understanding of intracellular processes involved in CFTR impairment may reveal novel opportunities in pharmacological agents of cystic fibrosis.
Collapse
|
10
|
Fűr G, Bálint ER, Orján EM, Balla Z, Kormányos ES, Czira B, Szűcs A, Kovács DP, Pallagi P, Maléth J, Venglovecz V, Hegyi P, Kiss L, Rakonczay Z. Mislocalization of CFTR expression in acute pancreatitis and the beneficial effect of VX-661 + VX-770 treatment on disease severity. J Physiol 2021; 599:4955-4971. [PMID: 34587656 DOI: 10.1113/jp281765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/24/2021] [Indexed: 01/15/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) has an essential role in maintaining pancreatic ductal function. Impaired CFTR function can trigger acute pancreatitis (AP) and exacerbate disease severity. We aimed to investigate the localization and expression of CFTR during AP, and determined the effects of a CFTR corrector (VX-661) and potentiator (VX-770) on disease severity. AP was induced in FVB/n mice by 6-10 hourly intraperitoneal injections of 50 μg/kg cerulein. Some mice were pre-treated with five to six daily injections of 2 mg/kg VX-661 + VX-770. Control animals were administered physiological saline instead of cerulein and dimethyl sulfoxide instead of VX compounds. AP severity was determined by measuring laboratory and histological parameters; CFTR and CK19 expression was measured. Activity of ion transporters was followed by intracellular pH or fluid secretion measurement of isolated pancreatic intra-/interlobular ducts. Cerulein-induced AP severity was greatest between 12 and 24 h. CFTR mRNA expression was significantly increased 24 h after AP induction. Immunohistochemistry demonstrated disturbed staining morphology of CFTR and CK19 proteins in AP. Mislocalization of CFTR protein was observed from 6 h, while expression increased at 24 h compared to control. Ductal HCO3 - transport activity was significantly increased 6 h after AP induction. AP mice pre-treatment with VX-661 + VX-770 significantly reduced the extent of tissue damage by about 20-30%, but other parameters were unchanged. Interestingly, VX-661 + VX-770 in vitro administration significantly increased the fluid secretion of ducts derived from AP animals. This study described the course of the CFTR expression and mislocalization in cerulein-induced AP. Our results suggest that the beneficial effects of CFTR correctors and potentiators should be further investigated in AP. KEY POINTS: Cystic fibrosis transmembrane conductance regulator (CFTR) is an important ion channel in epithelial cells. Its malfunction has several serious consequences, like developing or aggravating acute pancreatitis (AP). Here, the localization and expression of CFTR during cerulein-induced AP in mice were investigated and the effects of CFTR corrector (VX-661) and a potentiator (VX-770) on disease severity were determined. CFTR mRNA expression was significantly increased and mislocalization of CFTR protein was observed in AP compared to the control group. Interestingly, pre-treatment of AP mice with VX-661 + VX-770 significantly reduced the extent of pancreatic tissue damage by 20-30%. In vitro administration of VX-661 + VX-770 significantly increased the fluid secretion of ducts derived from AP animals. Based on these results, the utilization of CFTR correctors and potentiators should be further investigated in AP.
Collapse
Affiliation(s)
- Gabriella Fűr
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Emese Réka Bálint
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Erik Márk Orján
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Zsolt Balla
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | | | - Beáta Czira
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Attila Szűcs
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | | | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithelial Cell Signalling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithelial Cell Signalling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine and First Department of Medicine, University of Pécs, Pécs, Hungary.,Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Lóránd Kiss
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
Rimessi A, Vitto VAM, Patergnani S, Pinton P. Update on Calcium Signaling in Cystic Fibrosis Lung Disease. Front Pharmacol 2021; 12:581645. [PMID: 33776759 PMCID: PMC7990772 DOI: 10.3389/fphar.2021.581645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder characterized by mutations in the cystic fibrosis transmembrane conductance regulator gene, which causes multifunctional defects that preferentially affect the airways. Abnormal viscosity of mucus secretions, persistent pathogen infections, hyperinflammation, and lung tissue damage compose the classical pathological manifestation referred to as CF lung disease. Among the multifunctional defects associated with defective CFTR, increasing evidence supports the relevant role of perturbed calcium (Ca2+) signaling in the pathophysiology of CF lung disease. The Ca2+ ion is a critical player in cell functioning and survival. Its intracellular homeostasis is maintained by a fine balance between channels, transporters, and exchangers, mediating the influx and efflux of the ion across the plasma membrane and the intracellular organelles. An abnormal Ca2+ profile has been observed in CF cells, including airway epithelial and immune cells, with heavy repercussions on cell function, viability, and susceptibility to pathogens, contributing to proinflammatory overstimulation, organelle dysfunction, oxidative stress, and excessive cytokines release in CF lung. This review discusses the role of Ca2+ signaling in CF and how its dysregulation in airway epithelial and immune cells contributes to hyperinflammation in the CF lung. Finally, we provide an outlook on the therapeutic options that target the Ca2+ signaling to treat the CF lung disease.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Veronica A M Vitto
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Burgos M, Philippe R, Antigny F, Buscaglia P, Masson E, Mukherjee S, Dubar P, Le Maréchal C, Campeotto F, Lebonvallet N, Frieden M, Llopis J, Domingo B, Stathopulos PB, Ikura M, Brooks W, Guida W, Chen JM, Ferec C, Capiod T, Mignen O. The p.E152K-STIM1 mutation deregulates Ca 2+ signaling contributing to chronic pancreatitis. J Cell Sci 2021; 134:jcs.244012. [PMID: 33468626 DOI: 10.1242/jcs.244012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 12/24/2020] [Indexed: 11/20/2022] Open
Abstract
Since deregulation of intracellular Ca2+ can lead to intracellular trypsin activation, and stromal interaction molecule-1 (STIM1) protein is the main regulator of Ca2+ homeostasis in pancreatic acinar cells, we explored the Ca2+ signaling in 37 STIM1 variants found in three pancreatitis patient cohorts. Extensive functional analysis of one particular variant, p.E152K, identified in three patients, provided a plausible link between dysregulated Ca2+ signaling within pancreatic acinar cells and chronic pancreatitis susceptibility. Specifically, p.E152K, located within the STIM1 EF-hand and sterile α-motif domain, increased the release of Ca2+ from the endoplasmic reticulum in patient-derived fibroblasts and transfected HEK293T cells. This event was mediated by altered STIM1-sarco/endoplasmic reticulum calcium transport ATPase (SERCA) conformational change and enhanced SERCA pump activity leading to increased store-operated Ca2+ entry (SOCE). In pancreatic AR42J cells expressing the p.E152K variant, Ca2+ signaling perturbations correlated with defects in trypsin activation and secretion, and increased cytotoxicity after cholecystokinin stimulation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Miguel Burgos
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France .,Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02002 Albacete, Spain.,Complejo Hospitalario Universitario de Albacete (UI-CHUA), 02002 Albacete, Spain
| | - Reginald Philippe
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Fabrice Antigny
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis Robinson, France.,Department of Cell Physiology and Metabolism, Geneva Medical Center, CH-1211 Geneva, Switzerland
| | - Paul Buscaglia
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France.,UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609 Brest, France
| | - Emmanuelle Masson
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Sreya Mukherjee
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Pauline Dubar
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | | | - Florence Campeotto
- Hôpital Necker, AP-HP, Service de Gastroentérologie et Explorations Fonctionnelles Digestives Pédiatriques, Paris Descartes-Sorbonne Paris Cité Université, Institut Imagine, 75015 Paris, France
| | - Nicolas Lebonvallet
- Laboratory of Interactions Keratinocytes Neurons (EA4685), University of Western Brittany, F-29200 Brest, France
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, Geneva Medical Center, CH-1211 Geneva, Switzerland
| | - Juan Llopis
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02002 Albacete, Spain
| | - Beatriz Domingo
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02002 Albacete, Spain
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, London, ON N6A 5C1, Canada
| | - Mitsuhiko Ikura
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Wesley Brooks
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Wayne Guida
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Jian-Min Chen
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Claude Ferec
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Thierry Capiod
- INSERM Unit 1151, Institut Necker Enfants Malades (INEM), Université Paris Descartes, Paris 75014, France
| | - Olivier Mignen
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France .,UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609 Brest, France
| |
Collapse
|
13
|
Briottet M, Shum M, Urbach V. The Role of Specialized Pro-Resolving Mediators in Cystic Fibrosis Airways Disease. Front Pharmacol 2020; 11:1290. [PMID: 32982730 PMCID: PMC7493015 DOI: 10.3389/fphar.2020.01290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic Fibrosis (CF) is a recessive genetic disease due to mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encoding the CFTR chloride channel. The ion transport abnormalities related to CFTR mutation generate a dehydrated airway surface liquid (ASL) layer, which is responsible for an altered mucociliary clearance, favors infections and persistent inflammation that lead to progressive lung destruction and respiratory failure. The inflammatory response is normally followed by an active resolution phase to return to tissue homeostasis, which involves specialized pro-resolving mediators (SPMs). SPMs promote resolution of inflammation, clearance of microbes, tissue regeneration and reduce pain, but do not evoke unwanted immunosuppression. The airways of CF patients showed a decreased production of SPMs even in the absence of pathogens. SPMs levels in the airway correlated with CF patients' lung function. The prognosis for CF has greatly improved but there remains a critical need for more effective treatments that prevent excessive inflammation, lung damage, and declining pulmonary function for all CF patients. This review aims to highlight the recent understanding of CF airway inflammation and the possible impact of SPMs on functions that are altered in CF airways.
Collapse
Affiliation(s)
| | | | - Valerie Urbach
- Institut national de la santé et de la recherche médicale (Inserm) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| |
Collapse
|
14
|
Cabrini G, Rimessi A, Borgatti M, Lampronti I, Finotti A, Pinton P, Gambari R. Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Front Immunol 2020; 11:1438. [PMID: 32849500 PMCID: PMC7427443 DOI: 10.3389/fimmu.2020.01438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cystic fibrosis (CF) chronic respiratory disease is an extensive neutrophil infiltrate in the mucosa filling the bronchial lumen, starting early in life for CF infants. The genetic defect of the CF Transmembrane conductance Regulator (CFTR) ion channel promotes dehydration of the airway surface liquid, alters mucus properties, and decreases mucociliary clearance, favoring the onset of recurrent and, ultimately, chronic bacterial infection. Neutrophil infiltrates are unable to clear bacterial infection and, as an adverse effect, contribute to mucosal tissue damage by releasing proteases and reactive oxygen species. Moreover, the rapid cellular turnover of lumenal neutrophils releases nucleic acids that further alter the mucus viscosity. A prominent role in the recruitment of neutrophil in bronchial mucosa is played by CF bronchial epithelial cells carrying the defective CFTR protein and are exposed to whole bacteria and bacterial products, making pharmacological approaches to regulate the exaggerated neutrophil chemotaxis in CF a relevant therapeutic target. Here we revise: (a) the major receptors, kinases, and transcription factors leading to the expression, and release of neutrophil chemokines in bronchial epithelial cells; (b) the role of intracellular calcium homeostasis and, in particular, the calcium crosstalk between endoplasmic reticulum and mitochondria; (c) the epigenetic regulation of the key chemokines; (d) the role of mutant CFTR protein as a co-regulator of chemokines together with the host-pathogen interactions; and (e) different pharmacological strategies to regulate the expression of chemokines in CF bronchial epithelial cells through novel drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Giulio Cabrini
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Alessandro Rimessi
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
Scott P, Anderson K, Singhania M, Cormier R. Cystic Fibrosis, CFTR, and Colorectal Cancer. Int J Mol Sci 2020; 21:E2891. [PMID: 32326161 PMCID: PMC7215855 DOI: 10.3390/ijms21082891] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF), caused by biallelic inactivating mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, has recently been categorized as a familial colorectal cancer (CRC) syndrome. CF patients are highly susceptible to early, aggressive colorectal tumor development. Endoscopic screening studies have revealed that by the age of forty 50% of CF patients will develop adenomas, with 25% developing aggressive advanced adenomas, some of which will have already advanced to adenocarcinomas. This enhanced risk has led to new CF colorectal cancer screening recommendations, lowering the initiation of endoscopic screening to age forty in CF patients, and to age thirty in organ transplant recipients. The enhanced risk for CRC also extends to the millions of people (more than 10 million in the US) who are heterozygous carriers of CFTR gene mutations. Further, lowered expression of CFTR is reported in sporadic CRC, where downregulation of CFTR is associated with poor survival. Mechanisms underlying the actions of CFTR as a tumor suppressor are not clearly understood. Dysregulation of Wnt/β-catenin signaling and disruption of intestinal stem cell homeostasis and intestinal barrier integrity, as well as intestinal dysbiosis, immune cell infiltration, stress responses, and intestinal inflammation have all been reported in human CF patients and in animal models. Notably, the development of new drug modalities to treat non-gastrointestinal pathologies in CF patients, especially pulmonary disease, offers hope that these drugs could be repurposed for gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | | | - Robert Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (P.S.); (K.A.); (M.S.)
| |
Collapse
|
16
|
Madácsy T, Pallagi P, Maleth J. Cystic Fibrosis of the Pancreas: The Role of CFTR Channel in the Regulation of Intracellular Ca 2+ Signaling and Mitochondrial Function in the Exocrine Pancreas. Front Physiol 2018; 9:1585. [PMID: 30618777 PMCID: PMC6306458 DOI: 10.3389/fphys.2018.01585] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis (CF) is the most common genetic disorder that causes a significant damage in secretory epithelial cells due to the defective ion flux across the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Pancreas is one of the organs most frequently damaged by the disease leading to pancreatic insufficiency, abdominal pain and an increased risk of acute pancreatitis in CF patients causing a significant decrease in the quality of life. CFTR plays a central role in the pancreatic ductal secretory functions by carrying Cl- and HCO3 - ions across the apical membrane. Therefore pathophysiological studies in CF mostly focused on the effects of impaired ion secretion by pancreatic ductal epithelial cells leading to exocrine pancreatic damage. However, several studies indicated that CFTR has a central role in the regulation of intracellular signaling processes and is now more widely considered as a signaling hub in epithelial cells. In contrast, elevated intracellular Ca2+ level was observed in the lack of functional CFTR in different cell types including airway epithelial cells. In addition, impaired CFTR expression has been correlated with damaged mitochondrial function in epithelial cells. These alterations of intracellular signaling in CF are not well characterized in the exocrine pancreas yet. Therefore in this review we would like to summarize the complex role of CFTR in the exocrine pancreas with a special focus on the intracellular signaling and mitochondrial function.
Collapse
Affiliation(s)
- Tamara Madácsy
- First Department of Medicine, University of Szeged, Szeged, Hungary.,HAS-USZ Momentum Epithel Cell Signalling and Secretion Research Group, Szeged, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Jozsef Maleth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,HAS-USZ Momentum Epithel Cell Signalling and Secretion Research Group, Szeged, Hungary.,Department of Public Health, University of Szeged, Szeged, Hungary
| |
Collapse
|
17
|
Gouin O, L'Herondelle K, Buscaglia P, Le Gall-Ianotto C, Philippe R, Legoux N, Mignen O, Buhé V, Leschiera R, Sakka M, Kerfant N, Carré JL, Le Garrec R, Lefeuvre L, Lebonvallet N, Misery L. Major Role for TRPV1 and InsP3R in PAR2-Elicited Inflammatory Mediator Production in Differentiated Human Keratinocytes. J Invest Dermatol 2018; 138:1564-1572. [DOI: 10.1016/j.jid.2018.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 11/15/2022]
|
18
|
Sakka M, Leschiera R, Le Gall-Ianotto C, Gouin O, L'herondelle K, Buscaglia P, Mignen O, Philbé JL, Saguet T, Carré JL, Misery L, Lebonvallet N. A new tool to test active ingredient using lactic acid in vitro, a help to understand cellular mechanism involved in stinging test: An example using a bacterial polysaccharide (Fucogel ® ). Exp Dermatol 2018; 27:238-244. [PMID: 29280518 DOI: 10.1111/exd.13489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
The stinging test is an in vivo protocol that evaluates sensitive skin using lactic acid (LA). A soothing sensation of cosmetics or ingredients can be also appreciated through a decrease in stinging score. To predict the soothing sensation of a product before in vivo testing, we developed a model based on an LA test and substance P (SP) release using a co-culture of human keratinocytes and NGF-differentiated PC12 cells. A bacterial fucose-rich polysaccharide present in Fucogel® was evaluated as the soothing molecule in the in vivo stinging test and our in vitro model. Excluding toxic concentrations, the release of SP was significant from 0.2% of lactic acid for the PC12 cells and from 0.1% of lactic acid for the keratinocytes. When the pH was adjusted to approximately 7.4, LA did not provoke SP release. At these concentrations of LA, 0.1% of polysaccharide showed a significant decrease in SP release from the two cellular types and in co-cultures without modifying the pH of the medium. In vivo, a stinging test using the polysaccharide showed a 30% decrease in prickling intensity vs the placebo in 19 women between the ages of 21 and 69. Our in vitro model is ethically interesting and is adapted for cosmetic ingredients screening because it does not use animal experimentation and limits human volunteers. Moreover, Fucogel® reduced prickling sensation as revealed by the in vivo stinging test and inhibits the neurogenic inflammation as showed by our new in vitro stinging test based on SP release.
Collapse
Affiliation(s)
- Mehdi Sakka
- Laboratory Interactions Neurons-Keratinocytes, University of Western Brittany, Brest, France
| | - Raphael Leschiera
- Laboratory Interactions Neurons-Keratinocytes, University of Western Brittany, Brest, France
| | | | - Olivier Gouin
- Laboratory Interactions Neurons-Keratinocytes, University of Western Brittany, Brest, France
| | - Killian L'herondelle
- Laboratory Interactions Neurons-Keratinocytes, University of Western Brittany, Brest, France
| | - Paul Buscaglia
- INSERM U1227 "Lymphocyte B et Auto-Immunité", Brest, France
| | - Olivier Mignen
- INSERM U1227 "Lymphocyte B et Auto-Immunité", Brest, France
| | | | | | - Jean-Luc Carré
- Laboratory Interactions Neurons-Keratinocytes, University of Western Brittany, Brest, France
| | - Laurent Misery
- Laboratory Interactions Neurons-Keratinocytes, University of Western Brittany, Brest, France
| | - Nicolas Lebonvallet
- Laboratory Interactions Neurons-Keratinocytes, University of Western Brittany, Brest, France
| |
Collapse
|
19
|
Calumenin contributes to ER-Ca 2+ homeostasis in bronchial epithelial cells expressing WT and F508del mutated CFTR and to F508del-CFTR retention. Cell Calcium 2017; 62:47-59. [PMID: 28189267 DOI: 10.1016/j.ceca.2017.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 11/22/2022]
Abstract
Cystic Fibrosis (CF) is the most frequent fatal genetic disease in Caucasian populations. Mutations in the chloride channel CF Transmembrane Conductance Regulator (CFTR) gene are responsible for functional defects of the protein and multiple associated dysregulations. The most common mutation in patients with CF, F508del-CFTR, causes defective CFTR protein folding. Thus minimal levels of the receptor are expressed at the cell surface as the mutated CFTR is retained in the endoplasmic reticulum (ER) where it correlates with defective calcium (Ca2+) homeostasis. In this study, we discovered that the Ca2+ binding protein Calumenin (CALU) is a key regulator in the maintenance of ER-Ca2+ calcium homeostasis in both wild type and F508del-CFTR expressing cells. Calumenin modulates SERCA pump activity without drastically affecting ER-Ca2+ concentration. In addition, reducing Calumenin expression in CF cells results in a partial restoration of CFTR activity, highlighting a potential function of Calumenin in CFTR maturation. These findings demonstrate a pivotal role for Calumenin in CF cells, providing insights into how modulation of Calumenin expression or activity may be used as a potential therapeutic tool to correct defects in F508del-CFTR.
Collapse
|
20
|
Casciano JC, Duchemin NJ, Lamontagne RJ, Steel LF, Bouchard MJ. Hepatitis B virus modulates store-operated calcium entry to enhance viral replication in primary hepatocytes. PLoS One 2017; 12:e0168328. [PMID: 28151934 PMCID: PMC5289456 DOI: 10.1371/journal.pone.0168328] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
Many viruses modulate calcium (Ca2+) signaling to create a cellular environment that is more permissive to viral replication, but for most viruses that regulate Ca2+ signaling, the mechanism underlying this regulation is not well understood. The hepatitis B virus (HBV) HBx protein modulates cytosolic Ca2+ levels to stimulate HBV replication in some liver cell lines. A chronic HBV infection is associated with life-threatening liver diseases, including hepatocellular carcinoma (HCC), and HBx modulation of cytosolic Ca2+ levels could have an important role in HBV pathogenesis. Whether HBx affects cytosolic Ca2+ in a normal hepatocyte, the natural site of an HBV infection, has not been addressed. Here, we report that HBx alters cytosolic Ca2+ signaling in cultured primary hepatocytes. We used single cell Ca2+ imaging of cultured primary rat hepatocytes to demonstrate that HBx elevates the cytosolic Ca2+ level in hepatocytes following an IP3-linked Ca2+ response; HBx effects were similar when expressed alone or in the context of replicating HBV. HBx elevation of the cytosolic Ca2+ level required extracellular Ca2+ influx and store-operated Ca2+ (SOC) entry and stimulated HBV replication in hepatocytes. We used both targeted RT-qPCR and transcriptome-wide RNAseq analyses to compare levels of SOC channel components and other Ca2+ signaling regulators in HBV-expressing and control hepatocytes and show that the transcript levels of these various proteins are not affected by HBV. We also show that HBx regulation of SOC-regulated Ca2+ accumulation is likely the consequence of HBV modulation of a SOC channel regulatory mechanism. In support of this, we link HBx enhancement of SOC-regulated Ca2+ accumulation to Ca2+ uptake by mitochondria and demonstrate that HBx stimulates mitochondrial Ca2+ uptake in primary hepatocytes. The results of our study may provide insights into viral mechanisms that affect Ca2+ signaling to regulate viral replication and virus-associated diseases.
Collapse
Affiliation(s)
- Jessica C. Casciano
- Program in Molecular and Cellular Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Nicholas J. Duchemin
- Program in Molecular and Cellular Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - R. Jason Lamontagne
- Program in Microbiology and Immunology, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Laura F. Steel
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|