1
|
Polemidiotou K, Kulkarni SG, Szydlak R, Lekka M, Radmacher M, Gkretsi V, Stylianopoulos T, Stylianou A. Assessing sarcoma cell cytoskeleton remodeling in response to varying collagen concentration. Int J Biol Macromol 2024; 282:136770. [PMID: 39437949 DOI: 10.1016/j.ijbiomac.2024.136770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Sarcomas, rare malignant tumors of mesenchymal origin, are often underdiagnosed and have face diagnostic ambiguities and limited treatment options. The main objective of this study was to define the nanomechanical and biophysical properties of sarcoma cells, particularly examining how the cytoskeleton's remodeling and related cellular processes such as cell migration and invasion in response to environmental stimuli due to collagen content. Utilizing one murine fibrosarcoma and one osteosarcoma cell line we employed atomic force microscopy, immunostaining, advanced image processing, in vitro cellular assays, and molecular techniques to investigate cells' cytoskeleton remodeling in response to varying collagen concentration. Our study focused on how alterations in collagen content affects the cytoskeletal dynamics and correlate with changes in gene expression profiles relevant to metastasis and an aggressive cancer phenotypes. Our findings indicate that despite their shared classification, fibrosarcoma and osteosarcoma cells display distinct biophysical properties and respond differently to mechanical forces. Notably, this difference in cellular behavior renders mechanical properties a potent novel biomarkers. Furthermore, the metastasis-related identified genes related to metastatic capability, could be potential therapeutic targets. This study highlights the significance of understanding the unique traits of sarcoma cells to improve diagnostic precision and expand therapeutic strategies, for this rare type of cancer.
Collapse
Affiliation(s)
- Katerina Polemidiotou
- Cancer Mechanobiology & Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus/EUC Research Centre, 2404 Nicosia, Cyprus.
| | - Shruti G Kulkarni
- Institute of Biophysics, University of Bremen, 28359 Bremen, Germany.
| | - Renata Szydlak
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, PL-30688 Krakow, Poland.
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland.
| | - Manfred Radmacher
- Institute of Biophysics, University of Bremen, 28359 Bremen, Germany.
| | - Vasiliki Gkretsi
- Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia, Cyprus.
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus.
| | - Andreas Stylianou
- Cancer Mechanobiology & Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus/EUC Research Centre, 2404 Nicosia, Cyprus; Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus.
| |
Collapse
|
2
|
Xu J, Mao Y, Qu F, Hua X, Cheng J. Detection of placental stiffness using virtual magnetic resonance elastography in pregnancies complicated by preeclampsia. Arch Gynecol Obstet 2024; 310:2283-2289. [PMID: 38884644 PMCID: PMC11392975 DOI: 10.1007/s00404-024-07585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Affiliation(s)
- Jialu Xu
- Department of Radiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yajing Mao
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Feifei Qu
- MR Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Xiaolin Hua
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Jiejun Cheng
- Department of Radiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Luo L, Yang LS, Huang JH, Jiang SG, Zhou FL, Li YD, Jiang S, Yang QB. Effects of Different Salinity Stress on the Transcriptomic Responses of Freshwater Crayfish ( Procambarus clarkii, Girard, 1852). BIOLOGY 2024; 13:530. [PMID: 39056722 PMCID: PMC11273973 DOI: 10.3390/biology13070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Salinization of freshwater ecosystems is a pressing global issue. Changes in salinity can exert severe pressure on aquatic animals and jeopardize their survival. Procambarus clarkii is a valuable freshwater aquaculture species that exhibits some degree of salinity tolerance, making it an excellent research model for freshwater aquaculture species facing salinity stress. In the present study, crayfish were exposed to acute low salt (6 ppt) and high salt (18 ppt) conditions. The organisms were continuously monitored at 6, 24, and 72 h using RNA-Seq to investigate the mechanisms of salt stress resistance. Transcriptome analysis revealed that the crayfish responded to salinity stress with numerous differentially expressed genes, and most of different expression genes was observed in high salinity group for 24h. GO and KEGG enrichment analyses indicated that metabolic pathways were the primary response pathways in crayfish under salinity stress. This suggests that crayfish may use metabolic pathways to compensate for energy loss caused by osmotic stress. Furthermore, gene expression analysis revealed the differential expression of immune and antioxidant-related pathway genes under salinity stress, implying that salinity stress induces immune disorders in crayfish. More genes related to cell proliferation, differentiation, and apoptosis, such as the Foxo, Wnt, Hippo, and Notch signaling pathways, responded to high-salinity stress. This suggests that regulating the cellular replication cycle and accelerating apoptosis may be necessary for crayfish to cope with high-salinity stress. Additionally, we identified 36 solute carrier family (SLC) genes related to ion transport, depicting possible ion exchange mechanisms in crayfish under salinity stress. These findings aimed to establish a foundation for understanding crustacean responses to salinity stress and their osmoregulatory mechanisms.
Collapse
Affiliation(s)
- Lei Luo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Li-Shi Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China;
| | - Jian-Hua Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
| | - Fa-Lin Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
| | - Yun-Dong Li
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
| | - Song Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
| | - Qi-Bin Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China;
| |
Collapse
|
4
|
Czpakowska J, Kałuża M, Szpakowski P, Głąbiński A. An Overview of Multiple Sclerosis In Vitro Models. Int J Mol Sci 2024; 25:7759. [PMID: 39063001 PMCID: PMC11276743 DOI: 10.3390/ijms25147759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple sclerosis (MS) still poses a challenge in terms of complex etiology, not fully effective methods of treatment, and lack of healing agents. This neurodegenerative condition considerably affects the comfort of life by causing difficulties with movement and worsening cognition. Neuron, astrocyte, microglia, and oligodendrocyte activity is engaged in multiple pathogenic processes associated with MS. These cells are also utilized in creating in vitro cellular models for investigations focusing on MS. In this article, we present and discuss a summary of different in vitro models useful for MS research and describe their development. We discuss cellular models derived from animals or humans and present in the form of primary cell lines or immortalized cell lines. In addition, we characterize cell cultures developed from induced pluripotent stem cells (iPSCs). Culture conditions (2D and 3D cultures) are also discussed.
Collapse
Affiliation(s)
| | | | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.); (M.K.)
| | - Andrzej Głąbiński
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.); (M.K.)
| |
Collapse
|
5
|
Nyland J, Sirignano MN, Richards J, Krupp RJ. Regenerative Anterior Cruciate Ligament Healing in Youth and Adolescent Athletes: The Emerging Age of Recovery Science. J Funct Morphol Kinesiol 2024; 9:80. [PMID: 38804446 PMCID: PMC11130880 DOI: 10.3390/jfmk9020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
Anterior cruciate ligament (ACL) injuries mainly arise from non-contact mechanisms during sport performance, with most injuries occurring among youth or adolescent-age athletes, particularly females. The growing popularity of elite-level sport training has increased the total volume, intensity and frequency of exercise and competition loading to levels that may exceed natural healing capacity. Growing evidence suggests that the prevailing mechanism that leads to non-contact ACL injury from sudden mechanical fatigue failure may be accumulated microtrauma. Given the consequences of primary ACL injury on the future health and quality of life of youth and adolescent athletes, the objective of this review is to identify key "recovery science" factors that can help prevent these injuries. Recovery science is any aspect of sports training (type, volume, intensity, frequency), nutrition, and sleep/rest or other therapeutic modalities that may prevent the accumulated microtrauma that precedes non-contact ACL injury from sudden mechanical fatigue failure. This review discusses ACL injury epidemiology, current surgical efficacy, the native ACL vascular network, regional ACL histological complexities such as the entheses and crimp patterns, extracellular matrix remodeling, the concept of causal histogenesis, exercise dosage and ligament metabolism, central nervous system reorganization post-ACL rupture, homeostasis regulation, nutrition, sleep and the autonomic nervous system. Based on this information, now may be a good time to re-think primary ACL injury prevention strategies with greater use of modified sport training, improved active recovery that includes well-planned nutrition, and healthy sleep patterns. The scientific rationale behind the efficacy of regenerative orthobiologics and concomitant therapies for primary ACL injury prevention in youth and adolescent athletes are also discussed.
Collapse
Affiliation(s)
- John Nyland
- Norton Orthopedic Institute, 9880 Angie’s Way, Suite 250, Louisville, KY 40241, USA (J.R.); (R.J.K.)
| | | | | | | |
Collapse
|
6
|
Liu S, Han Y, Kong L, Wang G, Ye Z. Atomic force microscopy in disease-related studies: Exploring tissue and cell mechanics. Microsc Res Tech 2024; 87:660-684. [PMID: 38063315 DOI: 10.1002/jemt.24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/22/2023] [Accepted: 11/26/2023] [Indexed: 03/02/2024]
Abstract
Despite significant progress in human medicine, certain diseases remain challenging to promptly diagnose and treat. Hence, the imperative lies in the development of more exhaustive criteria and tools. Tissue and cellular mechanics exhibit distinctive traits in both normal and pathological states, suggesting that "force" represents a promising and distinctive target for disease diagnosis and treatment. Atomic force microscopy (AFM) holds great promise as a prospective clinical medical device due to its capability to concurrently assess surface morphology and mechanical characteristics of biological specimens within a physiological setting. This review presents a comprehensive examination of the operational principles of AFM and diverse mechanical models, focusing on its applications in investigating tissue and cellular mechanics associated with prevalent diseases. The findings from these studies lay a solid groundwork for potential clinical implementations of AFM. RESEARCH HIGHLIGHTS: By examining the surface morphology and assessing tissue and cellular mechanics of biological specimens in a physiological setting, AFM shows promise as a clinical device to diagnose and treat challenging diseases.
Collapse
Affiliation(s)
- Shuaiyuan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yibo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
7
|
Kas SM, Mundra PA, Smith DL, Marais R. Functional classification of DDOST variants of uncertain clinical significance in congenital disorders of glycosylation. Sci Rep 2023; 13:17648. [PMID: 37848450 PMCID: PMC10582084 DOI: 10.1038/s41598-023-42178-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are rare genetic disorders with a spectrum of clinical manifestations caused by abnormal N-glycosylation of secreted and cell surface proteins. Over 130 genes are implicated and next generation sequencing further identifies potential disease drivers in affected individuals. However, functional testing of these variants is challenging, making it difficult to distinguish pathogenic from non-pathogenic events. Using proximity labelling, we identified OST48 as a protein that transiently interacts with lysyl oxidase (LOX), a secreted enzyme that cross-links the fibrous extracellular matrix. OST48 is a non-catalytic component of the oligosaccharyltransferase (OST) complex, which transfers glycans to substrate proteins. OST48 is encoded by DDOST, and 43 variants of DDOST are described in CDG patients, of which 34 are classified as variants of uncertain clinical significance (VUS). We developed an assay based on LOX N-glycosylation that confirmed two previously characterised DDOST variants as pathogenic. Notably, 39 of the 41 remaining variants did not have impaired activity, but we demonstrated that p.S243F and p.E286del were functionally impaired, consistent with a role in driving CDG in those patients. Thus, we describe a rapid assay for functional testing of clinically relevant CDG variants to complement genome sequencing and support clinical diagnosis of affected individuals.
Collapse
Affiliation(s)
- Sjors M Kas
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| | - Piyushkumar A Mundra
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Duncan L Smith
- Biological Mass Spectrometry Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
- Oncodrug Ltd, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.
| |
Collapse
|
8
|
Wang S, Bai L, Hu X, Yao S, Hao Z, Zhou J, Li X, Lu H, He J, Wang L, Li D. 3D Bioprinting of Neurovascular Tissue Modeling with Collagen-Based Low-Viscosity Composites. Adv Healthc Mater 2023; 12:e2300004. [PMID: 37264745 PMCID: PMC11469067 DOI: 10.1002/adhm.202300004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/27/2023] [Indexed: 06/03/2023]
Abstract
In vitro neurovascular unit (NVU) models are valuable for investigating brain functions and developing drugs. However, it remains challenging to recapitulate the native architectural features and ultra-soft extracellular matrix (ECM) properties of the natural NVU. Cell-laden bioprinting is promising to prepare complex living tissues, but hard to balance the fidelity and cell growth. This study proposes a novel two-stage methodology for biomanufacturing functional 3D neurovascular constructs in vitro with low modulus of ECM. At the shaping stage, a low-viscosity alginate/collagen is printed through an embedded approach; at the culturing stage, the alginate is removed through targeted lysing. The low-viscosity and rapid crosslinking properties provide a printing resolution of ≈10 µm, and the lysis processing can decrease the hydrogels' modulus to ≈1 kPa and adjust the porosity of the microstructure, providing cells with an environment closing to the brain ECM. A 3D hollow coaxial neurovascular model is fabricated, in which the endothelial cells has expressed tight junction proteins and shown selective permeability, and the astrocytes outside of the endothelial layer are found to spread out with branches and directly interact with endothelial cells. The present study offers a promising modeling method for better understanding the NVU function and screening neuro-drugs.
Collapse
Affiliation(s)
- Sen Wang
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Luge Bai
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Xiaoxuan Hu
- Institute of NeurobiologySchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'an710061China
- Key Laboratory of Ministry of Education for Environment and Genes Related to DiseasesXi'an Jiaotong University Health Science CenterXi'an710061China
| | - Siqi Yao
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Zhiyan Hao
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - JiaJia Zhou
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Xiao Li
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Haixia Lu
- Institute of NeurobiologySchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'an710061China
- Key Laboratory of Ministry of Education for Environment and Genes Related to DiseasesXi'an Jiaotong University Health Science CenterXi'an710061China
- Department of Human Anatomy & HistoembryologySchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'an710061China
| | - Jiankang He
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Ling Wang
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| | - Dichen Li
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical DevicesXi'an710054China
| |
Collapse
|
9
|
Joselevitch JA, Vargas THM, Pulz LH, Cadrobbi KG, Huete GC, Nishiya AT, Kleeb SR, Xavier JG, Strefezzi RDF. High lysyl oxidase expression is an indicator of poor prognosis in dogs with cutaneous mast cell tumours. Vet Comp Oncol 2023; 21:401-405. [PMID: 37186079 DOI: 10.1111/vco.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/19/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Mast cell tumour (MCT) is one of the most frequent skin tumours in dogs. Due to their unpredictable biological behaviour, MCTs often cause several therapeutic frustrations, leading to investigation regarding prognostic markers. Lysyl oxidase (LOX) is an enzyme that promotes extracellular matrix stability and contributes to cell migration, angiogenesis and epithelial-mesenchymal transition. Its expression positively correlates with poor prognoses in several human and canine mammary cancers. The aim of this study was to characterise the immunohistochemical expression of LOX in MCT samples and compare it with histological grading and post-surgical survival. Twenty-six tumours were submitted to immunohistochemistry for LOX expression evaluation. All samples were positive for LOX, with variable percentages of cytoplasmic and nuclear positivity. Cytoplasmic positivity was significantly higher in high-grade MCTs (P = .0297). Our results indicate that high expression of cytoplasmic LOX in neoplastic mast cells is an indicator of poor prognosis for canine cutaneous MCTs.
Collapse
Affiliation(s)
- Julia Antongiovanni Joselevitch
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
- Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patologia, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago Henrique Moroni Vargas
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Lidia Hildebrand Pulz
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
- Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patologia, Universidade de São Paulo, São Paulo, Brazil
| | - Karine Germano Cadrobbi
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
- Clínica E+ Especialidades, São Paulo, Brazil
| | - Greice Cestari Huete
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
- Clínica E+ Especialidades, São Paulo, Brazil
| | | | - Silvia Regina Kleeb
- Universidade Anhembi Morumbi, São Paulo, Brazil
- Universidade Metodista de São Paulo, São Bernardo do Campo, Brazil
| | | | - Ricardo De Francisco Strefezzi
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| |
Collapse
|
10
|
Shang Y, Liu R, Gan J, Yang Y, Sun L. Construction of cardiac fibrosis for biomedical research. SMART MEDICINE 2023; 2:e20230020. [PMID: 39188350 PMCID: PMC11235890 DOI: 10.1002/smmd.20230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/22/2023] [Indexed: 08/28/2024]
Abstract
Cardiac remodeling is critical for effective tissue recuperation, nevertheless, excessive formation and deposition of extracellular matrix components can result in the onset of cardiac fibrosis. Despite the emergence of novel therapies, there are still no lifelong therapeutic solutions for this issue. Understanding the detrimental cardiac remodeling may aid in the development of innovative treatment strategies to prevent or reverse fibrotic alterations in the heart. Further combining the latest understanding of disease pathogenesis with cardiac tissue engineering has provided the conversion of basic laboratory studies into the therapy of cardiac fibrosis patients as an increasingly viable prospect. This review presents the current main mechanisms and the potential tissue engineering of cardiac fibrosis. Approaches using biomedical materials-based cardiac constructions are reviewed to consider key issues for simulating in vitro cardiac fibrosis, outlining a future perspective for preclinical applications.
Collapse
Affiliation(s)
- Yixuan Shang
- Department of Medical Supplies SupportNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Rui Liu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Jingjing Gan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yuzhi Yang
- Department of Medical Supplies SupportNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
11
|
Hardy M, Feehan L, Savvides G, Wong J. How controlled motion alters the biophysical properties of musculoskeletal tissue architecture. J Hand Ther 2023; 36:269-279. [PMID: 37029054 DOI: 10.1016/j.jht.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 04/09/2023]
Abstract
INTRODUCTION Movement is fundamental to the normal behaviour of the hand, not only for day-to-day activity, but also for fundamental processes like development, tissue homeostasis and repair. Controlled motion is a concept that hand therapists apply to their patients daily for functional gains, yet the scientific understanding of how this works is poorly understood. PURPOSE OF THE ARTICLE To review the biology of the tissues in the hand that respond to movement and provide a basic science understanding of how it can be manipulated to facilitate better functionThe review outlines the concept of controlled motion and actions across the scales of tissue architecture, highlighting the the role of movement forces in tissue development, homeostasis and repair. The biophysical behaviour of mechanosensitve tissues of the hand such as skin, tendon, bone and cartilage are discussed. CONCLUSION Controlled motion during early healing is a form of controlled stress and can be harnessed to generate appropriate reparative tissues. Understanding the temporal and spatial biology of tissue repair allows therapists to tailor therapies that allow optimal recovery based around progressive biophysical stimuli by movement.
Collapse
Affiliation(s)
- Maureen Hardy
- Past Director Rehab Services and Hand Management Center, St. Dominic Hospital, Jackson, MS, USA
| | - Lynne Feehan
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Georgia Savvides
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jason Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
12
|
Dai C, Wang Y, Shan Y, Ye C, Lv Z, Yang S, Cao L, Ren J, Yu H, Liu S, Shao Z, Li J, Chen W, Ling S. Cytoskeleton-inspired hydrogel ionotronics for tactile perception and electroluminescent display in complex mechanical environments. MATERIALS HORIZONS 2023; 10:136-148. [PMID: 36317638 DOI: 10.1039/d2mh01034h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The emerging applications of hydrogel ionotronics (HIs) in devices and machines require them to maintain their robustness under complex mechanical environments. Nevertheless, existing HIs still suffer from various mechanical limitations, such as the lack of balance between softness, strength, toughness, and fatigue fracture under cyclic loads. Inspired by the structure of the cytoskeleton, this study develops a sustainable HI supported by a double filamentous network. This cytoskeleton-like structure can enhance the strength of the HI by 26 times and its toughness by 3 times. It also enables HI to tolerate extreme mechanical stimuli, such as severe deformation, long-term cyclic loading, and high-frequency shearing and shocking. The advantages of these structurally- and mechanically-optimized HI devices in tactile perception and electroluminescent display, i.e., two practical applications where complex mechanical stimuli need to be sustained, are demonstrated. The findings reported in this study can inspire the design of human skin-like robust and anti-fatigue-fracture HI devices for long-term stable use.
Collapse
Affiliation(s)
- Chenchen Dai
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| | - Yicheng Shan
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| | - Chao Ye
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
- School of Textile & Clothing, Yancheng Institute of Technology, Jiangsu 224051, China
| | - Zhuochen Lv
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| | - Shuo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| | - Leitao Cao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Roulevard North, Quzhou 324000, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai 201210, People's Republic of China
| |
Collapse
|
13
|
Notermans T, Isaksson H. Predicting the formation of different tissue types during Achilles tendon healing using mechanoregulated and oxygen-regulated frameworks. Biomech Model Mechanobiol 2022; 22:655-667. [PMID: 36542228 PMCID: PMC10097799 DOI: 10.1007/s10237-022-01672-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
AbstractDuring Achilles tendon healing in rodents, besides the expected tendon tissue, also cartilage-, bone- and fat-like tissue features have been observed during the first twenty weeks of healing. Several studies have hypothesized that mechanical loading may play a key role in the formation of different tissue types during healing. We recently developed a computational mechanobiological framework to predict tendon tissue production, organization and mechanical properties during tendon healing. In the current study, we aimed to explore possible mechanobiological related mechanisms underlying formation of other tissue types than tendon tissue during tendon healing. To achieve this, we further developed our recent framework to predict formation of different tissue types, based on mechanobiological models established in other fields, which have earlier not been applied to study tendon healing. We explored a wide range of biophysical stimuli, i.e., principal strain, hydrostatic stress, pore pressure, octahedral shear strain, fluid flow, angiogenesis and oxygen concentration, that may promote the formation of different tissue types. The numerical framework predicted spatiotemporal formation of tendon-, cartilage-, bone- and to a lesser degree fat-like tissue throughout the first twenty weeks of healing, similar to recent experimental reports. Specific features of experimental data were captured by different biophysical stimuli. Our modeling approach showed that mechanobiology may play a role in governing the formation of different tissue types that have been experimentally observed during tendon healing. This study provides a numerical tool that can contribute to a better understanding of tendon mechanobiology during healing. Developing these tools can ultimately lead to development of better rehabilitation regimens that stimulate tendon healing and prevent unwanted formation of cartilage-, fat- and bone-like tissues.
Collapse
Affiliation(s)
- Thomas Notermans
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Mohindra R, Mohindra R, Agrawal DK, Thankam FG. Bioactive extracellular matrix fragments in tendon repair. Cell Tissue Res 2022; 390:131-140. [PMID: 36074173 DOI: 10.1007/s00441-022-03684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Tendinopathy is a common tendon disorder that causes pain, loss of strength and function, and local inflammation mainly characterized by hypoxia, collagen degradation, and extracellular matrix (ECM) disorganization. Generally, ECM degradation and remodeling is tightly regulated; however, hyperactivation of matrix metalloproteases (MMPs) contributes to excessive collagenolysis under pathologic conditions resulting in tendon ECM degradation. This review article focuses on the production, function, and signaling of matrikines for tendon regeneration following injury with insights into the expression, tissue compliance, and cell proliferation exhibited by various matrikines. Furthermore, the regenerative properties suggest translational significance of matrikines to improve the outcomes post-injury by assisting with tendon healing.
Collapse
Affiliation(s)
- Ritika Mohindra
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Rohit Mohindra
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
15
|
Abstract
Approved therapies for tendon diseases have not yet changed the clinical practice of symptomatic pain treatment and physiotherapy. This review article summarizes advances in the development of novel drugs, biologic products, and biomaterial therapies for tendon diseases with perspectives for translation of integrated therapies. Shifting from targeting symptom relief toward disease modification and prevention of disease progression may open new avenues for therapies. Deep evidence-based clinical, cellular, and molecular characterization of the underlying pathology of tendon diseases, as well as therapeutic delivery optimization and establishment of multidiscipline interorganizational collaboration platforms, may accelerate the discovery and translation of transformative therapies for tendon diseases.
Collapse
Affiliation(s)
- Benjamin R. Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | |
Collapse
|
16
|
Dickerson DA. Advancing Engineered Heart Muscle Tissue Complexity with Hydrogel Composites. Adv Biol (Weinh) 2022; 7:e2200067. [PMID: 35999488 DOI: 10.1002/adbi.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/19/2022] [Indexed: 11/10/2022]
Abstract
A heart attack results in the permanent loss of heart muscle and can lead to heart disease, which kills more than 7 million people worldwide each year. To date, outside of heart transplantation, current clinical treatments cannot regenerate lost heart muscle or restore full function to the damaged heart. There is a critical need to create engineered heart tissues with structural complexity and functional capacity needed to replace damaged heart muscle. The inextricable link between structure and function suggests that hydrogel composites hold tremendous promise as a biomaterial-guided strategy to advance heart muscle tissue engineering. Such composites provide biophysical cues and functionality as a provisional extracellular matrix that hydrogels cannot on their own. This review describes the latest advances in the characterization of these biomaterial systems and using them for heart muscle tissue engineering. The review integrates results across the field to provide new insights on critical features within hydrogel composites and perspectives on the next steps to harnessing these promising biomaterials to faithfully reproduce the complex structure and function of native heart muscle.
Collapse
Affiliation(s)
- Darryl A. Dickerson
- Department of Mechanical and Materials Engineering Florida International University 10555 West Flagler St Miami FL 33174 USA
| |
Collapse
|
17
|
Liu YH, Yuan M, Xu BX, Gao R, You YJ, Wang ZX, Zhang YC, Guo M, Chen ZY, Yu BF, Wang QW, Wang HL, Pang M. ANKRD49 promotes the invasion and metastasis of lung adenocarcinoma via a P38/ATF-2 signalling pathway. J Cell Mol Med 2022; 26:4401-4415. [PMID: 35775112 PMCID: PMC9357638 DOI: 10.1111/jcmm.17464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/28/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most challenging neoplasm to treat in clinical practice. Ankyrin repeat domain 49 protein (ANKRD49) is highly expressed in several carcinomas; however, its pattern of expression and role in LUAD are not known. Tissue microarrays, immunohistochemistry, χ2 test, Spearman correlation analysis, Kaplan–Meier, log‐rank test, and Cox's proportional hazard model were used to analyse the clinical cases. The effect of ANKRD49 on the LUAD was investigated using CCK‐8, clonal formation, would healing, transwell assays, and nude mice experiment. Expressions of ANKRD49 and its associated downstream protein molecules were verified by real‐time PCR, Western blot, immunohistochemistry, and/or immunofluorescence analyses. ANKRD49 expression was highly elevated in LUAD. The survival rate and Cox's modelling analysis indicated that there may be an independent prognostic indicator for LUAD patients. We also found that ANKRD49 promoted the invasion and migration in both in in vitro and in vivo assays, through upregulating matrix metalloproteinase (MMP)‐2 and MMP‐9 activities via the P38/ATF‐2 signalling pathway Our findings suggest that ANKRD49 is a latent biomarker for evaluating LUAD prognosis and promotes the metastasis of A549 cells via upregulation of MMP‐2 and MMP‐9 in a P38/ATF‐2 pathway‐dependent manner.
Collapse
Affiliation(s)
- Yue-Hua Liu
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, China.,Xi'an Jiaotong University-Affiliated Honghui Hospital, Xi'an, China
| | - Meng Yuan
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, China
| | - Bai-Xue Xu
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, China
| | - Rui Gao
- Department of Pulmonary and Critical Care Medicine, The First Hospital, Shanxi Medical University; Shanxi Province Key Laboratory of Respiratory Disease, Taiyuan, China
| | - Yu-Jie You
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, China
| | - Zhi-Xin Wang
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, China
| | - Yong-Cai Zhang
- Department of Cardiothoracic Surgery, The First Hospital, Shanxi Medical University, Taiyuan, China
| | - Min Guo
- Laboratory of Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, China
| | - Zhao-Yang Chen
- Laboratory of Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, China
| | - Bao-Feng Yu
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, China
| | - Qi-Wei Wang
- Class ZT011907, The First Clinical Medical College, Shanxi Medical University, Jinzhong, China
| | - Hai-Long Wang
- School of Basic Medicine, Basic Medical Science Center, Shanxi Medical University, Jinzhong, China
| | - Min Pang
- Department of Pulmonary and Critical Care Medicine, The First Hospital, Shanxi Medical University; Shanxi Province Key Laboratory of Respiratory Disease, Taiyuan, China
| |
Collapse
|
18
|
Abstract
An ensemble of in vitro cardiac tissue models has been developed over the past several decades to aid our understanding of complex cardiovascular disorders using a reductionist approach. These approaches often rely on recapitulating single or multiple clinically relevant end points in a dish indicative of the cardiac pathophysiology. The possibility to generate disease-relevant and patient-specific human induced pluripotent stem cells has further leveraged the utility of the cardiac models as screening tools at a large scale. To elucidate biological mechanisms in the cardiac models, it is critical to integrate physiological cues in form of biochemical, biophysical, and electromechanical stimuli to achieve desired tissue-like maturity for a robust phenotyping. Here, we review the latest advances in the directed stem cell differentiation approaches to derive a wide gamut of cardiovascular cell types, to allow customization in cardiac model systems, and to study diseased states in multiple cell types. We also highlight the recent progress in the development of several cardiovascular models, such as cardiac organoids, microtissues, engineered heart tissues, and microphysiological systems. We further expand our discussion on defining the context of use for the selection of currently available cardiac tissue models. Last, we discuss the limitations and challenges with the current state-of-the-art cardiac models and highlight future directions.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Suji Choi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.)
| | - Christina Alamana
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, Wyss Institute for Biologically Inspired Engineering, Boston, MA (K.K.P.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Greenstone Biosciences, Palo Alto, CA (J.C.W.)
| |
Collapse
|
19
|
Querceto S, Santoro R, Gowran A, Grandinetti B, Pompilio G, Regnier M, Tesi C, Poggesi C, Ferrantini C, Pioner JM. The harder the climb the better the view: The impact of substrate stiffness on cardiomyocyte fate. J Mol Cell Cardiol 2022; 166:36-49. [PMID: 35139328 PMCID: PMC11270945 DOI: 10.1016/j.yjmcc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 12/27/2022]
Abstract
The quest for novel methods to mature human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for cardiac regeneration, modelling and drug testing has emphasized a need to create microenvironments with physiological features. Many studies have reported on how cardiomyocytes sense substrate stiffness and adapt their morphological and functional properties. However, these observations have raised new biological questions and a shared vision to translate it into a tissue or organ context is still elusive. In this review, we will focus on the relevance of substrates mimicking cardiac extracellular matrix (cECM) rigidity for the understanding of the biomechanical crosstalk between the extracellular and intracellular environment. The ability to opportunely modulate these pathways could be a key to regulate in vitro hiPSC-CM maturation. Therefore, both hiPSC-CM models and substrate stiffness appear as intriguing tools for the investigation of cECM-cell interactions. More understanding of these mechanisms may provide novel insights on how cECM affects cardiac cell function in the context of genetic cardiomyopathies.
Collapse
Affiliation(s)
- Silvia Querceto
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Rosaria Santoro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Aoife Gowran
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Bruno Grandinetti
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, FI, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Chiara Tesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Corrado Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Josè Manuel Pioner
- Department of Biology, Università degli Studi di Firenze, Florence, Italy.
| |
Collapse
|
20
|
Zhu M, Zhong W, Cao W, Zhang Q, Wu G. Chondroinductive/chondroconductive peptides and their-functionalized biomaterials for cartilage tissue engineering. Bioact Mater 2022; 9:221-238. [PMID: 34820567 PMCID: PMC8585793 DOI: 10.1016/j.bioactmat.2021.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
The repair of articular cartilage defects is still challenging in the fields of orthopedics and maxillofacial surgery due to the avascular structure of articular cartilage and the limited regenerative capacity of mature chondrocytes. To provide viable treatment options, tremendous efforts have been made to develop various chondrogenically-functionalized biomaterials for cartilage tissue engineering. Peptides that are derived from and mimic the functions of chondroconductive cartilage extracellular matrix and chondroinductive growth factors, represent a unique group of bioactive agents for chondrogenic functionalization. Since they can be chemically synthesized, peptides bear better reproducibility, more stable efficacy, higher modifiability and yielding efficiency in comparison with naturally derived biomaterials and recombinant growth factors. In this review, we summarize the current knowledge in the designs of the chondroinductive/chondroconductive peptides, the underlying molecular mechanisms and their-functionalized biomaterials for cartilage tissue engineering. We also systematically compare their in-vitro and in-vivo efficacies in inducing chondrogenesis. Our vision is to stimulate the development of novel peptides and their-functionalized biomaterials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Mingjing Zhu
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
| | - Wenchao Zhong
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Wei Cao
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Potjewyd G, Kellett K, Hooper N. 3D hydrogel models of the neurovascular unit to investigate blood-brain barrier dysfunction. Neuronal Signal 2021; 5:NS20210027. [PMID: 34804595 PMCID: PMC8579151 DOI: 10.1042/ns20210027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
The neurovascular unit (NVU), consisting of neurons, glial cells, vascular cells (endothelial cells, pericytes and vascular smooth muscle cells (VSMCs)) together with the surrounding extracellular matrix (ECM), is an important interface between the peripheral blood and the brain parenchyma. Disruption of the NVU impacts on blood-brain barrier (BBB) regulation and underlies the development and pathology of multiple neurological disorders, including stroke and Alzheimer's disease (AD). The ability to differentiate induced pluripotent stem cells (iPSCs) into the different cell types of the NVU and incorporate them into physical models provides a reverse engineering approach to generate human NVU models to study BBB function. To recapitulate the in vivo situation such NVU models must also incorporate the ECM to provide a 3D environment with appropriate mechanical and biochemical cues for the cells of the NVU. In this review, we provide an overview of the cells of the NVU and the surrounding ECM, before discussing the characteristics (stiffness, functionality and porosity) required of hydrogels to mimic the ECM when incorporated into in vitro NVU models. We summarise the approaches available to measure BBB functionality and present the techniques in use to develop robust and translatable models of the NVU, including transwell models, hydrogel models, 3D-bioprinting, microfluidic models and organoids. The incorporation of iPSCs either without or with disease-specific genetic mutations into these NVU models provides a platform in which to study normal and disease mechanisms, test BBB permeability to drugs, screen for new therapeutic targets and drugs or to design cell-based therapies.
Collapse
Affiliation(s)
- Geoffrey Potjewyd
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Katherine A.B. Kellett
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, U.K
| |
Collapse
|
22
|
Hongjin W, Han C, Baoxiang J, Shiqi Y, Xiaoyu X. Reconstituting neurovascular unit based on the close relations between neural stem cells and endothelial cells: an effective method to explore neurogenesis and angiogenesis. Rev Neurosci 2021; 31:143-159. [PMID: 31539363 DOI: 10.1515/revneuro-2019-0023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
The discovery of neural stem cells (NSCs) and their microenvironment, the NSC niche, brought new therapeutic strategies through neurogenesis and angiogenesis for stroke and most neurodegenerative diseases, including Alzheimer's disease. Based on the close links between NSCs and endothelial cells, the integration of neurogenesis and angiogenesis of the NSC niche is also a promising area to the neurovascular unit (NVU) modeling and is now offering a powerful tool to advance our understanding of the brain. In this review, critical aspects of the NVU and model systems are discussed. First, we briefly describe the interaction of each part in the NSC niche. Second, we introduce the co-culture system, microfluidic platforms, and stem cell-derived 3D reconstitution used in NVU modeling based on the close relations between NSCs and endothelial cells, and various characteristics of cell interactions in these systems are also described. Finally, we address the challenges in modeling the NVU that can potentially be overcome by employing strategies for advanced biomaterials and stem cell co-culture use. Based on these approaches, researchers will continue to develop predictable technologies to control the fate of stem cells, achieve accurate screening of drugs for the nervous system, and advance the clinical application of NVU models.
Collapse
Affiliation(s)
- Wang Hongjin
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Chen Han
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Jiang Baoxiang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Yu Shiqi
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Xu Xiaoyu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| |
Collapse
|
23
|
Stejskalová A, Vankelecom H, Sourouni M, Ho MY, Götte M, Almquist BD. In vitro modelling of the physiological and diseased female reproductive system. Acta Biomater 2021; 132:288-312. [PMID: 33915315 DOI: 10.1016/j.actbio.2021.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
The maladies affecting the female reproductive tract (FRT) range from infections to endometriosis to carcinomas. In vitro models of the FRT play an increasingly important role in both basic and translational research, since the anatomy and physiology of the FRT of humans and other primates differ significantly from most of the commonly used animal models, including rodents. Using organoid culture to study the FRT has overcome the longstanding hurdle of maintaining epithelial phenotype in culture. Both ECM-derived and engineered materials have proved critical for maintaining a physiological phenotype of FRT cells in vitro by providing the requisite 3D environment, ligands, and architecture. Advanced materials have also enabled the systematic study of factors contributing to the invasive metastatic processes. Meanwhile, microphysiological devices make it possible to incorporate physical signals such as flow and cyclic exposure to hormones. Going forward, advanced materials compatible with hormones and optimised to support FRT-derived cells' long-term growth, will play a key role in addressing the diverse array of FRT pathologies and lead to impactful new treatments that support the improvement of women's health. STATEMENT OF SIGNIFICANCE: The female reproductive system is a crucial component of the female anatomy. In addition to enabling reproduction, it has wide ranging influence on tissues throughout the body via endocrine signalling. This intrinsic role in regulating normal female biology makes it susceptible to a variety of female-specific diseases. However, the complexity and human-specific features of the reproductive system make it challenging to study. This has spurred the development of human-relevant in vitro models for helping to decipher the complex issues that can affect the reproductive system, including endometriosis, infection, and cancer. In this Review, we cover the current state of in vitro models for studying the female reproductive system, and the key role biomaterials play in enabling their development.
Collapse
|
24
|
Ambade AS, Hassoun PM, Damico RL. Basement Membrane Extracellular Matrix Proteins in Pulmonary Vascular and Right Ventricular Remodeling in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2021; 65:245-258. [PMID: 34129804 PMCID: PMC8485997 DOI: 10.1165/rcmb.2021-0091tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM), a highly organized network of structural and nonstructural proteins, plays a pivotal role in cellular and tissue homeostasis. Changes in the ECM are critical for normal tissue repair, whereas dysregulation contributes to aberrant tissue remodeling. Pulmonary arterial hypertension is a severe disorder of the pulmonary vasculature characterized by pathologic remodeling of the pulmonary vasculature and right ventricle, increased production and deposition of structural and nonstructural proteins, and altered expression of ECM growth factors and proteases. Furthermore, ECM remodeling plays a significant role in disease progression, as several dynamic changes in its composition, quantity, and organization are documented in both humans and animal models of disease. These ECM changes impact vascular cell biology and affect proliferation of resident cells. Furthermore, ECM components determine the tissue architecture of the pulmonary and myocardial vasculature as well as the myocardium itself and provide mechanical stability crucial for tissue homeostasis. However, little is known about the basement membrane (BM), a specialized, self-assembled conglomerate of ECM proteins, during remodeling. In the vasculature, the BM is in close physical association with the vascular endothelium and smooth muscle cells. While in the myocardium, each cardiomyocyte is enclosed by a BM that serves as the interface between cardiomyocytes and the surrounding interstitial matrix. In this review, we provide a brief overview on the current state of knowledge of the BM and its ECM composition and their impact on pulmonary vascular remodeling and right ventricle dysfunction and failure in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Anjira S Ambade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
25
|
Ye Y, Zhou Y, Jing Z, Xu Y, Yin D. Electrospun heparin-loaded nano-fiber sutures for the amelioration of achilles tendon rupture regeneration: in vivo evaluation. J Mater Chem B 2021; 9:4154-4168. [PMID: 33982044 DOI: 10.1039/d1tb00162k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Peritendinous blood circulation improvement is a challenge to promote the healing of ruptured tendons in clinical treatment. Although electrospun membranes or scaffolds enable the reduction of complications such as adhesion, however, low efficiency, toxicity issues, the loss of biological activity, and complex electrospinning techniques are all bottlenecks of these systems. Improving the blood supply is crucial for their successful use, which involves promoting the metabolism and nutrient absorption in tendons. Here, a multifunctional, structurally simple strategy involving heparin-loaded sutures (PPH) that are clinically applicable is reported, in the form of electrospun core-shell nanofibers, with the ability to perform sustained release of anticoagulants heparin (verified in our previous publication) for the improvement of the healing of Achilles tendon. The morphology and diameter distribution of the collagen fiber in the PPH group are closely related to the health of the Achilles tendon than those of commercial sutures (CS). The in vivo results of the total collagen content and the expression of collagen type I in the PPH group are more than those of the CS group. After 6 weeks of culture, the tensile strength of the PPH group shows no significant difference compared to the healthy group. The data obtained in this study improves the current understanding on the regeneration of ruptured tendons and presents a promising strategy for clinical treatment.
Collapse
Affiliation(s)
- Yajing Ye
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yaqing Zhou
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zhuoyuan Jing
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yifan Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dachuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
26
|
Lupon E, Lellouch AG, Acun A, Andrews AR, Oganesyan R, Goutard M, Taveau CB, Lantieri LA, Cetrulo CL, Uygun BE. Engineering Vascularized Composite Allografts Using Natural Scaffolds: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:677-693. [PMID: 34238047 DOI: 10.1089/ten.teb.2021.0102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Vascularized Composite Allotransplantation refers to the transplantation of multiple tissues as a functional unit from a deceased donor to a recipient with a severe injury. These grafts serve as potential replacements for traumatic tissue losses. The main problems are the consequences of the long immunosuppressive drugs medications and the lake of compatible donor. To avoid these limitations, decellularization/recellularization constitute an attractive approach. The aim of decellularization/recellularization technology is to develop immunogenic free biological substitutes that will restore, maintain, or improve tissue and organ's function. METHODS A PubMed search was performed for articles on decellularization and recellularization of composite tissue allografts between March and February 2021, with no restrictions in publication year. The selected reports were evaluated in terms of decellularization protocols, assessment of decellularized grafts, and evaluation of their biocompatibility and repopulation with cells both in vitro and in vivo. RESULTS The search resulted in a total of 88 articles. Each article was reviewed, 77 were excluded and the remaining 11 articles reported decellularization of 12 different vascular composite allografts in humans (four), large animals (three), and small animals (rodents) (five). The decellularization protocol for vascularized composite allotransplantation varies slightly between studies, but majority of the reports employ 1% sodium dodecyl sulfate as the main reagent for decellularization. The immunological response of the decellularized scaffolds remains poorly evaluated. Few authors have been able to attempt the recellularization and transplantation of these scaffolds. Successful transplantation seems to require prior recellularization. CONCLUSION Decellularization/recellularization is a promising, growing, emerging developing research field in vascular composite allotransplantation.
Collapse
Affiliation(s)
- Elise Lupon
- University Toulouse III Paul Sabatier, Department of Plastic Surgery, Toulouse, Occitanie, France.,Massachusetts General Hospital, Harvard Medical School, Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Boston, Massachusetts, United States.,Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, 2348, Division of Plastic and Reconstructive Surgery, Boston, Massachusetts, United States;
| | - Alexandre G Lellouch
- Massachusetts General Hospital, Harvard Medical School, Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Boston, Massachusetts, United States.,Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Hospital European George Pompidou, 55647, Department of Plastic Surgery, Paris, Île-de-France, France.,Massachusetts General Hospital, 2348, Division of Plastic and Reconstructive Surgery, Boston, Massachusetts, United States;
| | - Aylin Acun
- Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, Harvard Medical School, Center for Engineering in Medicine and Surgery, Boston, Massachusetts, United States;
| | - Alec R Andrews
- Massachusetts General Hospital, Harvard Medical School, Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Boston, Massachusetts, United States.,Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, 2348, Division of Plastic and Reconstructive Surgery, Boston, Massachusetts, United States;
| | - Ruben Oganesyan
- Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, Harvard Medical School, Center for Engineering in Medicine and Surgery, Boston, Massachusetts, United States;
| | - Marion Goutard
- Massachusetts General Hospital, Harvard Medical School, Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Boston, Massachusetts, United States.,Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Hospital European George Pompidou, 55647, Department of Plastic Surgery, Paris, Île-de-France, France.,Massachusetts General Hospital, 2348, Division of Plastic and Reconstructive Surgery, Boston, Massachusetts, United States;
| | - Corentin B Taveau
- Hospital European George Pompidou, 55647, Department of Plastic Surgery, Paris, Île-de-France, France;
| | - Laurent A Lantieri
- Hospital European George Pompidou, 55647, Department of Plastic Surgery, Paris, Île-de-France, France;
| | - Curtis L Cetrulo
- Massachusetts General Hospital, Harvard Medical School, Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Boston, Massachusetts, United States.,Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, 2348, Division of Plastic and Reconstructive Surgery, Boston, Massachusetts, United States;
| | - Basak E Uygun
- Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, Harvard Medical School, Center for Engineering in Medicine and Surgery, Boston, Massachusetts, United States;
| |
Collapse
|
27
|
van Vijven M, Wunderli SL, Ito K, Snedeker JG, Foolen J. Serum deprivation limits loss and promotes recovery of tenogenic phenotype in tendon cell culture systems. J Orthop Res 2021; 39:1561-1571. [PMID: 32478872 PMCID: PMC8359397 DOI: 10.1002/jor.24761] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/28/2020] [Accepted: 05/25/2020] [Indexed: 02/04/2023]
Abstract
Current knowledge gaps on tendon tissue healing can partly be ascribed to the limited availability of physiologically relevant culture models. An unnatural extracellular matrix, high serum levels and random cell morphology in vitro mimic strong vascularization and lost cell elongation in pathology, and discord with a healthy, in vivo cell microenvironment. The thereby induced phenotypic drift in tendon-derived cells (TDCs) compromises the validity of the research model. Therefore, this research quantified the extracellular matrix (ECM)-, serum-, and cell morphology-guided phenotypic changes in tendon cells of whole tendon fascicle explants with intact ECM and TDCs cultured in a controlled microenvironmental niche. Explanted murine tail tendon fascicles were cultured in serum-rich or serum-free medium and phenotype was assessed using transcriptome analysis. Next, phenotypic marker gene expression was measured in in vitro expanded murine tail TDCs upon culture in serum-rich or serum-free medium on aligned or random collagen I patterns. Freshly isolated fascicles or TDCs served as native controls. In both systems, the majority of tendon-specific genes were similarly attenuated in serum-rich culture. Strikingly, 1-week serum-deprived culture-independent of cell morphology-converged TDC gene expression toward native levels. This study reveals a dynamic serum-responsive tendon cell phenotype. Extracting fascicles or TDCs from their native environment causes large changes in cellular phenotype, which can be limited and even reversed by serum deprivation. We conclude that serum-derived factors override matrix-integrity and cell morphology cues and that serum-deprivation stimulates a more physiological microenvironment for in vitro studies.
Collapse
Affiliation(s)
- Marc van Vijven
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands
| | - Stefania L. Wunderli
- Orthopaedic Biomechanics LaboratoryUniversity Hospital Balgrist, University of ZurichZürichSwitzerland
- Institute for Biomechanics, ETH ZurichZürichSwitzerland
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands
| | - Jess G. Snedeker
- Orthopaedic Biomechanics LaboratoryUniversity Hospital Balgrist, University of ZurichZürichSwitzerland
- Institute for Biomechanics, ETH ZurichZürichSwitzerland
| | - Jasper Foolen
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
28
|
Bicket AK, Szeto J, Roeber P, Towler J, Troutman M, Craven ER, Khatana A, Ahmed I, Quigley H, Ramulu P, Pitha IF. A novel bilayered expanded polytetrafluoroethylene glaucoma implant creates a permeable thin capsule independent of aqueous humor exposure. Bioeng Transl Med 2021; 6:e10179. [PMID: 33532583 PMCID: PMC7823119 DOI: 10.1002/btm2.10179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 11/08/2022] Open
Abstract
The purpose of these studies was to evaluate clinical, functional, and histopathological features of glaucoma drainage implants (GDIs) fabricated from novel, custom-tailored expanded polytetrafluoroethylene (ePTFE). Implants of matching footprints were fabricated from silicone (Control) and novel, bilayered ePTFE. ePTFE implants included: (a) one that inflated with aqueous humor (AH) (High), (b) one that inflated with a lower profile (Low), (c) an uninflated implant not connected to the anterior chamber (Flat), and (d) one filled with material that did not allow AH flow (Filled). All implants were placed in adult New Zealand White rabbits and followed over 1-3 months with clinical exams and intraocular pressure. The permeability of tissue capsules surrounding GDIs was assessed using constant-flow perfusion with fluoresceinated saline at physiologic flow rates. After sacrifice, quantitative histopathological measures of capsule thickness were compared among devices, along with qualitative assessment of cellular infiltration and inflammation. Capsular thickness was significantly reduced in blebs over ePTFE (61.4 ± 53 μm) versus silicone implants (193.6 ± 53 μm, p = .0086). AH exposure did not significantly alter capsular thickness, as there was no significant difference between High and Filled (50.9 ± 29, p = .34) implants. Capsules around ePTFE implants demonstrated permeability with steady-state pressure: flow relationships at physiologic flow rates and rapid pressure decay with flow cessation, while pressure in control blebs increased even at low flow rates and showed little decay. Perfused fluorescein dye appeared beyond the plate border only in ePTFE implants. ePTFE implants are associated with thinner, more permeable capsules compared to silicone implants simulating presently used devices.
Collapse
Affiliation(s)
- Amanda Kiely Bicket
- Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Julia Szeto
- Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | | | | | - E. Randy Craven
- Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Ike Ahmed
- Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoCanada
| | - Harry Quigley
- Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Pradeep Ramulu
- Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ian F. Pitha
- Wilmer Eye Institute, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
29
|
Zamboulis DE, Thorpe CT, Ashraf Kharaz Y, Birch HL, Screen HR, Clegg PD. Postnatal mechanical loading drives adaptation of tissues primarily through modulation of the non-collagenous matrix. eLife 2020; 9:58075. [PMID: 33063662 PMCID: PMC7593091 DOI: 10.7554/elife.58075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Mature connective tissues demonstrate highly specialised properties, remarkably adapted to meet their functional requirements. Tissue adaptation to environmental cues can occur throughout life and poor adaptation commonly results in injury. However, the temporal nature and drivers of functional adaptation remain undefined. Here, we explore functional adaptation and specialisation of mechanically loaded tissues using tendon; a simple aligned biological composite, in which the collagen (fascicle) and surrounding predominantly non-collagenous matrix (interfascicular matrix) can be interrogated independently. Using an equine model of late development, we report the first phase-specific analysis of biomechanical, structural, and compositional changes seen in functional adaptation, demonstrating adaptation occurs postnatally, following mechanical loading, and is almost exclusively localised to the non-collagenous interfascicular matrix. These novel data redefine adaptation in connective tissue, highlighting the fundamental importance of non-collagenous matrix and suggesting that regenerative medicine strategies should change focus from the fibrous to the non-collagenous matrix of tissue.
Collapse
Affiliation(s)
- Danae E Zamboulis
- Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, United Kingdom
| | - Yalda Ashraf Kharaz
- Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Helen L Birch
- University College London, Department of Orthopaedics and Musculoskeletal Science, Stanmore Campus, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Hazel Rc Screen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Peter D Clegg
- Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
30
|
Characterizing placental stiffness using ultrasound shear-wave elastography in healthy and preeclamptic pregnancies. Arch Gynecol Obstet 2020; 302:1103-1112. [PMID: 32676857 DOI: 10.1007/s00404-020-05697-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To measure the stiffness of the placenta in healthy and preeclamptic patients in the second and third trimesters of pregnancy using ultrasound shear-wave elastography (SWE). We also aimed to evaluate the effect of age, gestational age, gravidity, parity and body mass index (BMI) on placental stiffness and a possible correlation of stiffness with perinatal outcomes. METHODS In a case-control study, we recruited a total of 47 singleton pregnancies in the second and third trimesters of which 24 were healthy and 23 were diagnosed with preeclampsia. In vivo placental stiffness was measured once at the time of recruitment for each patient. Pregnancies with posterior placentas, multiple gestation, gestational hypertension, chronic hypertension, diabetes, autoimmune disease, fetal growth restriction and congenital anomalies were excluded. RESULTS The mean placental stiffness was significantly higher in preeclamptic pregnancies compared to controls in the third trimester (difference of means = 16.8; 95% CI (9.0, 24.5); P < 0.001). There were no significant differences in placental stiffness between the two groups in the second trimester or between the severe preeclampsia and preeclampsia without severe features groups (difference of means = 9.86; 95% CI (-5.95, 25.7); P ≥ 0.05). Peripheral regions of the placenta were significantly stiffer than central regions in the preeclamptic group (difference of means = 10.67; 95% CI (0.07, 21.27); P < 0.05), which was not observed in the control group (difference of means = 0.55; 95% CI (- 5.25, 6.35); P > 0.05). We did not identify a correlation of placental stiffness with gestational age, maternal age, gravidity or parity. However, there was a statistically significant correlation with BMI (P < 0.05). In addition, pregnancies with higher placental stiffness during the 2nd and 3rd trimesters had significantly reduced birth weight (2890 ± 176 vs. 2420 ± 219 g) and earlier GA (37.8 ± 0.84 vs. 34.3 ± 0.98 weeks) at delivery (P < 0.05). CONCLUSION Compared to healthy pregnancies, placentas of preeclamptic pregnancies are stiffer and more heterogeneous. Placental stiffness is not affected by gestational age or the severity of preeclampsia but there is a correlation with higher BMI and poor perinatal outcomes.
Collapse
|
31
|
Lumngwena EN, Skatulla S, Blackburn JM, Ntusi NAB. Mechanistic implications of altered protein expression in rheumatic heart disease. Heart Fail Rev 2020; 27:357-368. [PMID: 32653980 DOI: 10.1007/s10741-020-09993-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rheumatic heart disease (RHD) is a major cause of cardiovascular morbidity and mortality in low- and middle-income countries, where living conditions promote spread of group A β-haemolytic streptococcus. Autoimmune reactions due to molecular mimicry of bacterial epitopes by host proteins cause acute rheumatic fever (ARF) and subsequent disease progression to RHD. Despite knowledge of the factors that predispose to ARF and RHD, determinants of the progression to valvular damage and the molecular events involved remain incompletely characterised. This review focuses on altered protein expression in heart valves, myocardial tissue and plasma of patients with RHD and pathogenic consequences on RHD. Proteins mainly involved in structural organization of the valve matrix, blood homeostasis and immune response were altered due to RHD pathogenesis. Study of secreted forms of these proteins may aid the development of non-invasive biomarkers for early diagnosis and monitoring outcomes in RHD. Valve replacement surgery, the single evidence-based strategy to improve outcomes in severe RHD, is costly, largely unavailable in low- and middle-income countries (LMIC) and requires specialised facilities. When diagnosed early, penicillin prophylaxis may be used to delay progression to severe valvular damage. Echocardiography and cardiovascular magnetic resonance and the standard imaging tools recommended to confirm early diagnosis remain largely unavailable and inaccessible in most LMIC and both require expensive equipment and highly skilled persons for manipulation as well as interpretation of results. Changes in protein expression in heart valves and myocardium are associated with progressive valvular deformation in RHD. Understanding these protein changes should shed more light on the mechanisms of pathogenicity, while secreted forms of these proteins may provide leads towards a biomarker for non-invasive early detection of RHD.
Collapse
Affiliation(s)
- Evelyn N Lumngwena
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Hatter instititute for Cardiovascualar research in Africa, Departmenent of Medicine, 4th floor Chris Barnard Building, University of Cape Town, Cape Town, South Africa.
- Centre for the Study of Emerging and Re-emerging Infections (CREMER), Institute for Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaounde, Cameroon.
| | - Sebastian Skatulla
- Department of Civil Engineering, Faculty of Engineering and the Built Environment, University of Cape Town, Cape Town, South Africa
| | - Jonathan M Blackburn
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Ntobeko A B Ntusi
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
- Hatter instititute for Cardiovascualar research in Africa, Departmenent of Medicine, 4th floor Chris Barnard Building, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
32
|
Rajabi S, Aghdami N, Varzideh F, Parchehbaf-Kashani M, Nobakht Lahrood F. Decellularized muscle-derived hydrogels support in vitro cardiac microtissue fabrication. J Biomed Mater Res B Appl Biomater 2020; 108:3302-3310. [PMID: 32524765 DOI: 10.1002/jbm.b.34666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
Cardiovascular research has considerably benefited from in vitro models of cardiac tissue. Two important elements of these constructs, cardiac cells and the extracellular matrix (ECM), play essential roles that mimic the structural and functional aspects of myocardium. Here, we compared decellularized ECM from cardiac muscle (D-CM), skeletal muscle (D-SM), aorta (D-Ao), liver (D-Liv), small intestine submucosa (D-SIS), and human umbilical cord (D-hUC) in terms of their biocompatibility and potential for differentiation of human embryonic stem cell-derived cardiac progenitor cells (hESC-derived CPCs) to cardiovascular lineage cells. The decellularization procedure successfully removed resident cells of the tissues but preserved ECM components such as laminin and fibronectin, which was identified by histological studies of decellularized tissue (D-tissues) and immunostaining. Encapsulation of hESC-derived CPCs and human umbilical vein endothelial cells within hydrogels that were obtained from all decellularized tissues did not induce cytotoxicity after 10 days of culture. Upregulation of cardiac specific genes, cTNT and αMHC, as well as the presence of cTNT+ cardiomyocytes were also observed in CPCs cultured on D-CM, D-SM, D-Liv, and D-SIS, which showed their support for cardiogenic differentiation. However, D-CM provided substantially higher expression of cardiac markers compared to the other D-tissues. The endothelial and smooth muscle specific genes, CD31 and PDGFRα, were upregulated in cells cultured on D-Ao and D-hUC, which reflected their support for vascular lineage cell differentiation. In conclusion, it might be imperative to use decellularized tissue of muscle origins in combination with naturally derived vascular tissues to generate in vitro vascularized human cardiac microtissues.
Collapse
Affiliation(s)
- Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem, Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fahimeh Varzideh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Melika Parchehbaf-Kashani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Nobakht Lahrood
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
33
|
Stylianou A, Gkretsi V, Louca M, Zacharia LC, Stylianopoulos T. Collagen content and extracellular matrix cause cytoskeletal remodelling in pancreatic fibroblasts. J R Soc Interface 2020; 16:20190226. [PMID: 31113335 DOI: 10.1098/rsif.2019.0226] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In many solid tumours a desmoplastic reaction takes place, which results in tumour tissue stiffening due to the extensive production of extracellular matrix (ECM) proteins, such as collagen, by stromal cells, mainly fibroblasts (FBs) and cancer-associated fibroblasts (CAFs). In this study, we investigated the effect of collagen stiffness on pancreatic FBs and CAFs, particularly on specific cytoskeleton properties and gene expression involved in tumour invasion. We found that cells become stiffer when they are cultured on stiff substrates and express higher levels of alpha-smooth muscle actin (α-SMA). Also, it was confirmed that on stiff substrates, CAFs are softer than FBs, while on soft substrates they have comparable Young's moduli. Furthermore, the number of spread FBs and CAFs was higher in stiffer substrates, which was also confirmed by Ras-related C3 botulinum toxin substrate 1 ( RAC1) mRNA expression, which mediates cell spreading. Although stress fibres in FBs become more oriented on stiff substrates, CAFs have oriented stress fibres regardless of substrate stiffness. Subsequently, we demonstrated that cells' invasion has a differential response to stiffness, which was associated with regulation of Ras homologue family member ( RhoA) and Rho-associated, coiled-coil containing protein kinase 1 ( ROCK-1) mRNA expression. Overall, our results demonstrate that collagen stiffness modulates FBs and CAFs cytoskeleton remodelling and alters their invasion properties.
Collapse
Affiliation(s)
- Andreas Stylianou
- 1 Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia 1678 , Cyprus
| | - Vasiliki Gkretsi
- 1 Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia 1678 , Cyprus
| | - Maria Louca
- 1 Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia 1678 , Cyprus
| | - Lefteris C Zacharia
- 2 Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia , 1700 Nicosia , Cyprus
| | - Triantafyllos Stylianopoulos
- 1 Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia 1678 , Cyprus
| |
Collapse
|
34
|
Torres WM, Barlow SC, Moore A, Freeburg LA, Hoenes A, Doviak H, Zile MR, Shazly T, Spinale FG. Changes in Myocardial Microstructure and Mechanics With Progressive Left Ventricular Pressure Overload. JACC Basic Transl Sci 2020; 5:463-480. [PMID: 32478208 PMCID: PMC7251228 DOI: 10.1016/j.jacbts.2020.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 01/08/2023]
Abstract
This study assessed the regional changes in myocardial geometry, microstructure, mechanical behavior, and properties that occur in response to progressive left ventricular pressure overload (LVPO) in a large animal model. Using an index of local biomechanical function at early onset of LVPO allowed for prediction of the magnitude of left ventricular chamber stiffness (Kc) and left atrial area at LVPO late timepoints. Our study found that LV myocardial collagen content alone was insufficient to identify mechanisms for LV myocardial stiffness with progression to heart failure with preserved ejection fraction (HFpEF). Serial assessment of regional biomechanical function might hold value in monitoring the natural history and progression of HFpEF, which would allow evaluation of novel therapeutic approaches.
Collapse
Key Words
- Ct, cycle time
- EDV, end-diastolic volume
- EF, ejection fraction
- ESV, end-systolic volume
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- IVRT, isovolumic relaxation time
- LA, left atrial
- LV, left ventricular
- LVPO, left ventricular pressure overload
- NT-proBNP, N-terminal pro-brain natriuretic peptide
- PCR, polymerase chain reaction
- PRSW, pre-load recruitable stroke work
- SHG, second harmonic generation
- STE, speckle tracking echocardiography
- echocardiography
- heart failure
- pressure overload
- qPCR, quantitative real-time PCR
Collapse
Affiliation(s)
- William M. Torres
- College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Healthcare Center, Columbia, South Carolina
| | - Shayne C. Barlow
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Healthcare Center, Columbia, South Carolina
| | - Amber Moore
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Healthcare Center, Columbia, South Carolina
| | - Lisa A. Freeburg
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Healthcare Center, Columbia, South Carolina
| | - Abigail Hoenes
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Healthcare Center, Columbia, South Carolina
| | - Heather Doviak
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Healthcare Center, Columbia, South Carolina
| | - Michael R. Zile
- Medical University of South Carolina and RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina
| | - Tarek Shazly
- College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
| | - Francis G. Spinale
- College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Healthcare Center, Columbia, South Carolina
| |
Collapse
|
35
|
Torres WM, Spinale FG, Shazly T. Speckle-Tracking Echocardiography Enables Model-Based Identification of Regional Stiffness Indices in the Left Ventricular Myocardium. Cardiovasc Eng Technol 2020; 11:176-187. [DOI: 10.1007/s13239-020-00456-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/23/2020] [Indexed: 02/03/2023]
|
36
|
Kim MH, Kino-Oka M. Bioengineering Considerations for a Nurturing Way to Enhance Scalable Expansion of Human Pluripotent Stem Cells. Biotechnol J 2020; 15:e1900314. [PMID: 31904180 DOI: 10.1002/biot.201900314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/11/2019] [Indexed: 12/13/2022]
Abstract
Understanding how defects in mechanotransduction affect cell-to-cell variability will add to the fundamental knowledge of human pluripotent stem cell (hPSC) culture, and may suggest new approaches for achieving a robust, reproducible, and scalable process that result in consistent product quality and yields. Here, the current state of the understanding of the fundamental mechanisms that govern the growth kinetics of hPSCs between static and dynamic cultures is reviewed, the factors causing fluctuations are identified, and culture strategies that might eliminate or minimize the occurrence of cell-to-cell variability arising from these fluctuations are discussed. The existing challenges in the development of hPSC expansion methods for enabling the transition from process development to large-scale production are addressed, a mandatory step for industrial and clinical applications of hPSCs.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
37
|
Zuskov A, Freedman BR, Gordon JA, Sarver JJ, Buckley MR, Soslowsky LJ. Tendon Biomechanics and Crimp Properties Following Fatigue Loading Are Influenced by Tendon Type and Age in Mice. J Orthop Res 2020; 38:36-42. [PMID: 31286548 PMCID: PMC6917867 DOI: 10.1002/jor.24407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/25/2019] [Indexed: 02/04/2023]
Abstract
In tendon, type-I collagen assembles together into fibrils, fibers, and fascicles that exhibit a wavy or crimped pattern that uncrimps with applied tensile loading. This structural property has been observed across multiple tendons throughout aging and may play an important role in tendon viscoelasticity, response to fatigue loading, healing, and development. Previous work has shown that crimp is permanently altered with the application of fatigue loading. This opens the possibility of evaluating tendon crimp as a clinical surrogate of tissue damage. The purpose of this study was to determine how fatigue loading in tendon affects crimp and mechanical properties throughout aging and between tendon types. Mouse patellar tendons (PT) and flexor digitorum longus (FDL) tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties at P150 and P570 days of age to model mature and aged tendon phenotypes (N = 10-11/group). Tendon type, fatigue loading, and aging were found to differentially affect tendon mechanical and crimp properties. FDL tendons had higher modulus and hysteresis, whereas the PT showed more laxity and toe region strain throughout aging. Crimp frequency was consistently higher in FDL compared with PT throughout fatigue loading, whereas the crimp amplitude was cycle dependent. This differential response based on tendon type and age further suggests that the FDL and the PT respond differently to fatigue loading and that this response is age-dependent. Together, our findings suggest that the mechanical and structural effects of fatigue loading are specific to tendon type and age in mice. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:36-42, 2020.
Collapse
Affiliation(s)
- Andrey Zuskov
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Benjamin R Freedman
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| | - Joshua A Gordon
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph J Sarver
- Department of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania
| | - Mark R Buckley
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Argentati C, Morena F, Tortorella I, Bazzucchi M, Porcellati S, Emiliani C, Martino S. Insight into Mechanobiology: How Stem Cells Feel Mechanical Forces and Orchestrate Biological Functions. Int J Mol Sci 2019; 20:E5337. [PMID: 31717803 PMCID: PMC6862138 DOI: 10.3390/ijms20215337] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
The cross-talk between stem cells and their microenvironment has been shown to have a direct impact on stem cells' decisions about proliferation, growth, migration, and differentiation. It is well known that stem cells, tissues, organs, and whole organisms change their internal architecture and composition in response to external physical stimuli, thanks to cells' ability to sense mechanical signals and elicit selected biological functions. Likewise, stem cells play an active role in governing the composition and the architecture of their microenvironment. Is now being documented that, thanks to this dynamic relationship, stemness identity and stem cell functions are maintained. In this work, we review the current knowledge in mechanobiology on stem cells. We start with the description of theoretical basis of mechanobiology, continue with the effects of mechanical cues on stem cells, development, pathology, and regenerative medicine, and emphasize the contribution in the field of the development of ex-vivo mechanobiology modelling and computational tools, which allow for evaluating the role of forces on stem cell biology.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Serena Porcellati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| |
Collapse
|
39
|
Barin FR, de Sousa Neto IV, Vieira Ramos G, Szojka A, Ruivo AL, Anflor CTM, Agualimpia JDH, Domingues AC, Franco OL, Adesida AB, Durigan JLQ, Marqueti RDC. Calcaneal Tendon Plasticity Following Gastrocnemius Muscle Injury in Rat. Front Physiol 2019; 10:1098. [PMID: 31551799 PMCID: PMC6733963 DOI: 10.3389/fphys.2019.01098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023] Open
Abstract
Cross-talk between skeletal muscle and tendon is important for tissue homeostasis. Whereas the skeletal muscle response to tendon injury has been well-studied, to the best of our knowledge the tendon response to skeletal muscle injury has been neglected. Thus, we investigated calcaneal tendon extracellular matrix (ECM) remodeling after gastrocnemius muscle injury using a rat model. Wistar rats were randomly divided into four groups: control group (C; animals that were not exposed to muscle injury) and harvested at different time points post gastrocnemius muscle injury (3, 14, and 28 days) for gene expression, morphological, and biomechanical analyses. At 3 days post injury, we observed mRNA-level dysregulation of signaling pathways associated with collagen I accompanied with disrupted biomechanical properties. At 14 days post injury, we found reduced collagen content histologically accompanied by invasion of blood vessels into the tendon proper and an abundance of peritendinous sheath cells. Finally, at 28 days post injury, there were signs of recovery at the gene expression level including upregulation of transcription factors related to ECM synthesis, remodeling, and repair. At this time point, tendons also presented with increased peritendinous sheath cells, decreased adipose cells, higher Young's modulus, and lower strain to failure compared to the uninjured controls and all post injury time points. In summary, we demonstrate that the calcaneal tendon undergoes extensive ECM remodeling in response to gastrocnemius muscle injury leading to altered functional properties in a rat model. Tendon plasticity in response to skeletal muscle injury merits further investigation to understand its physiological relevance and potential clinical implications.
Collapse
Affiliation(s)
| | | | | | - Alexander Szojka
- Division of Orthopaedic Surgery, University of Alberta, Edmonton, AB, Canada
- Division of Surgical Research, University of Alberta, Edmonton, AB, Canada
| | | | | | | | - Allan Corrêa Domingues
- Group of Experimental and Computational Mechanics, Universidade de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Universidade Catolica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Adetola B. Adesida
- Division of Orthopaedic Surgery, University of Alberta, Edmonton, AB, Canada
- Division of Surgical Research, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
40
|
Chiarelli N, Ritelli M, Zoppi N, Colombi M. Cellular and Molecular Mechanisms in the Pathogenesis of Classical, Vascular, and Hypermobile Ehlers‒Danlos Syndromes. Genes (Basel) 2019; 10:E609. [PMID: 31409039 PMCID: PMC6723307 DOI: 10.3390/genes10080609] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
The Ehlers‒Danlos syndromes (EDS) constitute a heterogenous group of connective tissue disorders characterized by joint hypermobility, skin abnormalities, and vascular fragility. The latest nosology recognizes 13 types caused by pathogenic variants in genes encoding collagens and other molecules involved in collagen processing and extracellular matrix (ECM) biology. Classical (cEDS), vascular (vEDS), and hypermobile (hEDS) EDS are the most frequent types. cEDS and vEDS are caused respectively by defects in collagen V and collagen III, whereas the molecular basis of hEDS is unknown. For these disorders, the molecular pathology remains poorly studied. Herein, we review, expand, and compare our previous transcriptome and protein studies on dermal fibroblasts from cEDS, vEDS, and hEDS patients, offering insights and perspectives in their molecular mechanisms. These cells, though sharing a pathological ECM remodeling, show differences in the underlying pathomechanisms. In cEDS and vEDS fibroblasts, key processes such as collagen biosynthesis/processing, protein folding quality control, endoplasmic reticulum homeostasis, autophagy, and wound healing are perturbed. In hEDS cells, gene expression changes related to cell-matrix interactions, inflammatory/pain responses, and acquisition of an in vitro pro-inflammatory myofibroblast-like phenotype may contribute to the complex pathogenesis of the disorder. Finally, emerging findings from miRNA profiling of hEDS fibroblasts are discussed to add some novel biological aspects about hEDS etiopathogenesis.
Collapse
Affiliation(s)
- Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy.
| |
Collapse
|
41
|
Freedman BR, Rodriguez AB, Hillin CD, Weiss SN, Han B, Han L, Soslowsky LJ. Tendon healing affects the multiscale mechanical, structural and compositional response of tendon to quasi-static tensile loading. J R Soc Interface 2019; 15:rsif.2017.0880. [PMID: 29467258 DOI: 10.1098/rsif.2017.0880] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
Tendon experiences a variety of multiscale changes to its extracellular matrix during mechanical loading at the fascicle, fibre and fibril levels. For example, tensile loading of tendon increases its stiffness, with organization of collagen fibres, and increases cell strain in the direction of loading. Although applied macroscale strains correlate to cell and nuclear strains in uninjured tendon, the multiscale response during tendon healing remains unknown and may affect cell mechanosensing and response. Therefore, this study evaluated multiscale structure-function mechanisms in response to quasi-static tensile loading in uninjured and healing tendons. We found that tendon healing affected the macroscale mechanical and structural response to mechanical loading, evidenced by decreases in strain stiffening and collagen fibre realignment. At the micro- and nanoscales, healing resulted in increased collagen fibre disorganization, nuclear disorganization, decreased change in nuclear aspect ratio with loading, and decreased indentation modulus compared to uninjured tendons. Taken together, this work supports a new concept of nuclear strain transfer attenuation during tendon healing and identifies several multiscale properties that may contribute. Our work also provides benchmarks for the biomechanical microenvironments that tendon cells may experience following cell delivery therapies.
Collapse
Affiliation(s)
- Benjamin R Freedman
- McKay Orthopedic Research Laboratory, University of Pennsylvania, 110 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| | - Ashley B Rodriguez
- McKay Orthopedic Research Laboratory, University of Pennsylvania, 110 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| | - Cody D Hillin
- McKay Orthopedic Research Laboratory, University of Pennsylvania, 110 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| | - Stephanie N Weiss
- McKay Orthopedic Research Laboratory, University of Pennsylvania, 110 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| | - Biao Han
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - Lin Han
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, 110 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| |
Collapse
|
42
|
Freedman BR, Mooney DJ. Biomaterials to Mimic and Heal Connective Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806695. [PMID: 30908806 PMCID: PMC6504615 DOI: 10.1002/adma.201806695] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/27/2019] [Indexed: 05/11/2023]
Abstract
Connective tissue is one of the four major types of animal tissue and plays essential roles throughout the human body. Genetic factors, aging, and trauma all contribute to connective tissue dysfunction and motivate the need for strategies to promote healing and regeneration. The goal here is to link a fundamental understanding of connective tissues and their multiscale properties to better inform the design and translation of novel biomaterials to promote their regeneration. Major clinical problems in adipose tissue, cartilage, dermis, and tendon are discussed that inspire the need to replace native connective tissue with biomaterials. Then, multiscale structure-function relationships in native soft connective tissues that may be used to guide material design are detailed. Several biomaterials strategies to improve healing of these tissues that incorporate biologics and are biologic-free are reviewed. Finally, important guidance documents and standards (ASTM, FDA, and EMA) that are important to consider for translating new biomaterials into clinical practice are highligted.
Collapse
Affiliation(s)
- Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
43
|
Hillin CD, Fryhofer GW, Freedman BR, Choi DS, Weiss SN, Huegel J, Soslowsky LJ. Effects of immobilization angle on tendon healing after achilles rupture in a rat model. J Orthop Res 2019; 37:562-573. [PMID: 30720208 PMCID: PMC6534419 DOI: 10.1002/jor.24241] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/29/2019] [Indexed: 02/04/2023]
Abstract
Conservative (non-operative) treatment of Achilles tendon ruptures is a common alternative to operative treatment. Following rupture, ankle immobilization in plantarflexion is thought to aid healing by restoring tendon end-to-end apposition. However, early activity may improve limb function, challenging the role of immobilization position on tendon healing, as it may affect loading across the injury site. This study investigated the effects of ankle immobilization angle in a rat model of Achilles tendon rupture. We hypothesized that manipulating the ankle from full plantarflexion into a more dorsiflexed position during the immobilization period would result in superior hindlimb function and tendon properties, but that prolonged casting in dorsiflexion would result in inferior outcomes. After Achilles tendon transection, animals were randomized into eight immobilization groups ranging from full plantarflexion (160°) to mid-point (90°) to full dorsiflexion (20°), with or without angle manipulation. Tendon properties and ankle function were influenced by ankle immobilization position and time. Tendon lengthening occurred after 1 week at 20° compared to more plantarflexed angles, and was associated with loss of propulsion force. Dorsiflexing the ankle during immobilization from 160° to 90° produced a stiffer, more aligned tendon, but did not lead to functional changes compared to immobilization at 160°. Although more dorsiflexed immobilization can enhance tissue properties and function of healing Achilles tendon following rupture, full dorsiflexion creates significant tendon elongation regardless of application time. This study suggests that the use of moderate plantarflexion and earlier return to activity can provide improved clinical outcomes. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Cody D. Hillin
- McKay Orthopaedic LaboratoryUniversity of Pennsylvania110 Stemmler Hall, 3450 Hamilton WalkPhiladelphiaPennsylvania19104‐6081
| | - George W. Fryhofer
- McKay Orthopaedic LaboratoryUniversity of Pennsylvania110 Stemmler Hall, 3450 Hamilton WalkPhiladelphiaPennsylvania19104‐6081
| | - Benjamin R. Freedman
- McKay Orthopaedic LaboratoryUniversity of Pennsylvania110 Stemmler Hall, 3450 Hamilton WalkPhiladelphiaPennsylvania19104‐6081
| | - Daniel S. Choi
- McKay Orthopaedic LaboratoryUniversity of Pennsylvania110 Stemmler Hall, 3450 Hamilton WalkPhiladelphiaPennsylvania19104‐6081
| | - Stephanie N. Weiss
- McKay Orthopaedic LaboratoryUniversity of Pennsylvania110 Stemmler Hall, 3450 Hamilton WalkPhiladelphiaPennsylvania19104‐6081
| | - Julianne Huegel
- McKay Orthopaedic LaboratoryUniversity of Pennsylvania110 Stemmler Hall, 3450 Hamilton WalkPhiladelphiaPennsylvania19104‐6081
| | - Louis J. Soslowsky
- McKay Orthopaedic LaboratoryUniversity of Pennsylvania110 Stemmler Hall, 3450 Hamilton WalkPhiladelphiaPennsylvania19104‐6081
| |
Collapse
|
44
|
Guzzoni V, Selistre-de-Araújo HS, Marqueti RDC. Tendon Remodeling in Response to Resistance Training, Anabolic Androgenic Steroids and Aging. Cells 2018; 7:E251. [PMID: 30544536 PMCID: PMC6316563 DOI: 10.3390/cells7120251] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Exercise training (ET), anabolic androgenic steroids (AAS), and aging are potential factors that affect tendon homeostasis, particularly extracellular matrix (ECM) remodeling. The goal of this review is to aggregate findings regarding the effects of resistance training (RT), AAS, and aging on tendon homeostasis. Data were gathered from our studies regarding the impact of RT, AAS, and aging on the calcaneal tendon (CT) of rats. We demonstrated a series of detrimental effects of AAS and aging on functional and biomechanical parameters, including the volume density of blood vessel cells, adipose tissue cells, tendon calcification, collagen content, the regulation of the major proteins related to the metabolic/development processes of tendons, and ECM remodeling. Conversely, RT seems to mitigate age-related tendon dysfunction. Our results suggest that AAS combined with high-intensity RT exert harmful effects on ECM remodeling, and also instigate molecular and biomechanical adaptations in the CT. Moreover, we provide further information regarding the harmful effects of AAS on tendons at a transcriptional level, and demonstrate the beneficial effects of RT against the age-induced tendon adaptations of rats. Our studies might contribute in terms of clinical approaches in favor of the benefits of ET against tendinopathy conditions, and provide a warning on the harmful effects of the misuse of AAS on tendon development.
Collapse
Affiliation(s)
- Vinicius Guzzoni
- Departamento de Biologia Molecular e Celular, Universidade Federal da Paraíba, João Pessoa 58051-970, Paraíba, Brazil.
| | | | - Rita de Cássia Marqueti
- Graduate Program of Rehabilitation Science, University of Brasilia, Distrito Federal, Brasília 70840-901, Distrito Federal, Brazil.
| |
Collapse
|
45
|
Huang YW, Chiang MF, Ho CS, Hung PL, Hsu MH, Lee TH, Chu LJ, Liu H, Tang P, Victor Ng W, Lin DS. A Transcriptome Study of Progeroid Neurocutaneous Syndrome Reveals POSTN As a New Element in Proline Metabolic Disorder. Aging Dis 2018; 9:1043-1057. [PMID: 30574417 PMCID: PMC6284769 DOI: 10.14336/ad.2018.0222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/22/2018] [Indexed: 12/27/2022] Open
Abstract
Aging is a complex biological process. A study of pyrroline-5-carboxylate reductase 1 (PYCR1) deficiency, which causes a progeroid syndrome, may not only shed light on its genetic contribution to autosomal recessive cutis laxa (ARCL) but also help elucidate the functional mechanisms associated with aging. In this study, we used RNA-Seq technology to examine gene expression changes in primary skin fibroblasts from healthy controls and patients with PYCR1 mutations. Approximately 22 and 32 candidate genes were found to be up- and downregulated, respectively, in fibroblasts from patients. Among the downregulated candidates in fibroblasts with PYCR1 mutations, a strong reduction in the expression of 17 genes (53.1%) which protein products are localized in the extracellular space was detected. These proteins included several important ECM components, periostin (POSTN), elastin (ELN), and decorin (DCN); genetic mutations in these proteins are associated with different phenotypes of aging, such as cutis laxa and joint and dermal manifestations. The differential expression of ten selected extracellular space genes was further validated using quantitative RT-PCR. Ingenuity Pathway Analysis revealed that some of the affected genes may be associated with cardiovascular system development and function, dermatological diseases and conditions, and cardiovascular disease. POSTN, one of the most downregulated gene candidates in affected individuals, is a matricellular protein with pivotal functions in heart valvulogenesis, skin wound healing, and brain development. Perturbation of PYCR1 expression revealed that it is positively correlated with the POSTN levels. Taken together, POSTN might be one of the key molecules that deserves further investigation for its role in this progeroid neurocutaneous syndrome.
Collapse
Affiliation(s)
- Yu-Wen Huang
- Institute of Biotechnology in Medicine and Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming University, Taipei, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei, Taiwan.
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan.
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan.
| | - Che-Sheng Ho
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.
| | - Pi-Lien Hung
- Department of Pediatric Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Mei-Hsin Hsu
- Department of Pediatric Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Tsung-Han Lee
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Petrus Tang
- Molecular Regulation and Bioinformatics Laboratory and Department of Parasitology, Chang Gung University, Taoyuan, Taiwan.
| | - Wailap Victor Ng
- Institute of Biotechnology in Medicine and Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming University, Taipei, Taiwan.
- Institute of Biomedical Informatics and Center for Systems and Synthetic Biology, National Yang Ming University, Taipei, Taiwan.
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Dar-Shong Lin
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| |
Collapse
|
46
|
Oksdath M, Perrin SL, Bardy C, Hilder EF, DeForest CA, Arrua RD, Gomez GA. Review: Synthetic scaffolds to control the biochemical, mechanical, and geometrical environment of stem cell-derived brain organoids. APL Bioeng 2018; 2:041501. [PMID: 31069322 PMCID: PMC6481728 DOI: 10.1063/1.5045124] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/31/2018] [Indexed: 01/16/2023] Open
Abstract
Stem cell-derived brain organoids provide a powerful platform for systematic studies of tissue functional architecture and the development of personalized therapies. Here, we review key advances at the interface of soft matter and stem cell biology on synthetic alternatives to extracellular matrices. We emphasize recent biomaterial-based strategies that have been proven advantageous towards optimizing organoid growth and controlling the geometrical, biomechanical, and biochemical properties of the organoid's three-dimensional environment. We highlight systems that have the potential to increase the translational value of region-specific brain organoid models suitable for different types of manipulations and high-throughput applications.
Collapse
Affiliation(s)
- Mariana Oksdath
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| | - Sally L. Perrin
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| | | | - Emily F. Hilder
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Cole A. DeForest
- Department of Chemical Engineering and Department of Bioengineering, University of Washington, Seattle, Washington 98195-1750, USA
| | - R. Dario Arrua
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Guillermo A. Gomez
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| |
Collapse
|
47
|
Sackmann E. Viscoelasticity of single cells-from subcellular to cellular level. Semin Cell Dev Biol 2018; 93:2-15. [PMID: 30267805 DOI: 10.1016/j.semcdb.2018.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
This review deals with insights into complex cellular structures and processes obtained by measuring viscoelastic impedances of the cell envelope and the cytoplasm by colloidal bead microrheometry. I first introduce a mechanical cell model that allows us to understand their unique ability of mechanical self-stabilization by actin microtubule crosstalk. In the second part, I show how cell movements can be driven by pulsatile or propagating solitary actin gelatin waves (SAGW) that are generated on nascent adhesion domains by logistically controlled membrane recruitment of functional proteins by electrostatic-hydrophobic forces. The global polarization of cell migration is guided by actin-microtubule crosstalk that is mediated by the Ca++ and strain-sensitive supramolecular scaffolding protein IQGAP. In the third part, I introduce the traction force microscopy as a tool to measure the forces between somatic cells and the tissue ´Here I show, how absolute values of viscoelastic impedances of the composite cell envelope can be obtained by deformation field mapping techniques. In the fourth part, it is shown how the dynamic mechanical properties of the active viscoplastic cytoplasmic space can be evaluated using colloidal beads as phantom endosomes. Separate measurements of velocity distributions of directed and random motions of phantom endosomes, yield local values of transport forces, viscosities and life times of directed motion along microtubules. The last part deals with biomimetic experiments allowing us to quantitatively evaluate the mechanical properties of passive and active actin networks on the basis of the percolation theory of gelation.
Collapse
Affiliation(s)
- Erich Sackmann
- Physics Department E22, Technical University Munich, James Franck Str. 1, D85747, Garching, Germany.
| |
Collapse
|
48
|
Piccirillo G, Ditaranto MV, Feuerer NFS, Carvajal Berrio DA, Brauchle EM, Pepe A, Bochicchio B, Schenke-Layland K, Hinderer S. Non-invasive characterization of hybrid gelatin:poly-l-lactide electrospun scaffolds using second harmonic generation and multiphoton imaging. J Mater Chem B 2018; 6:6399-6412. [PMID: 32254648 DOI: 10.1039/c8tb02026d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid scaffolds composed of synthetic polymers and naturally occurring components have become more relevant in the field of tissue engineering and regenerative medicine. Synthetic polymers are responsible for scaffold durability, strength and structural integrity; however, often do not provide biological signals. Introducing a biological component leads to more advanced and biocompatible scaffolds. In order to use these scaffolds as implants, a deeper knowledge of material characteristics and the impact of the biological component on the scaffold mechanical properties are required. Furthermore, it is necessary to implement fast, easy and non-invasive methods to determine material characteristics. In this work, we aimed to generate gelatin-poly-l-lactide (PLA) hybrids via electrospinning with defined, controllable and tunable scaffold characteristics. Using Raman microspectroscopy, we demonstrated the effectiveness of the cross-linking reaction and evaluated the increasing PLA content in the hybrid scaffolds with a non-invasive approach. Using multiphoton microscopy, we showed that gelatin fibers electrospun from a fluorinated solvent exhibit a second harmonic generation (SHG) signal typical for collagen-like structures. Compared to pure gelatin, where the SHG signal vanishes after cross-linking, the signal could be preserved in the hybrid scaffolds even after cross-linking. Furthermore, we non-invasively imaged cellular growth of human dermal fibroblasts on the hybrid electrospun scaffolds and performed fluorescence lifetime imaging microscopy on the cell-seeded hybrids, where we were able to discriminate between cells and scaffolds. Here, we successfully employed non-invasive methods to evaluate scaffold characteristics and investigate cell-material interactions.
Collapse
|
49
|
Giannopoulos A, Svensson RB, Heinemeier KM, Schjerling P, Kadler KE, Holmes DF, Kjaer M, Magnusson SP. Cellular homeostatic tension and force transmission measured in human engineered tendon. J Biomech 2018; 78:161-165. [PMID: 30100218 PMCID: PMC6135935 DOI: 10.1016/j.jbiomech.2018.07.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/04/2018] [Accepted: 07/20/2018] [Indexed: 11/19/2022]
Abstract
Tendons transmit contractile muscular force to bone to produce movement, and it is believed cells can generate endogenous forces on the extracellular matrix to maintain tissue homeostasis. However, little is known about the direct mechanical measurement of cell-matrix interaction in cell-generated human tendon constructs. In this study we examined if cell-generated force could be detected and quantified in engineered human tendon constructs, and if glycosaminoglycans (GAGs) contribute to tendon force transmission. Following de-tensioning of the tendon constructs it was possible to quantify an endogenous re-tensioning. Further, it was demonstrated that the endogenous re-tensioning response was markedly blunted after interference with the cytoskeleton (inhibiting non-muscle myosin-dependent cell contraction by blebbistatin), which confirmed that re-tensioning was cell generated. When the constructs were elongated and held at a constant length a stress relaxation response was quantified, and removing 27% of the GAG content of tendon did not alter the relaxation behavior, which indicates that GAGs do not play a meaningful role in force transmission within this system.
Collapse
Affiliation(s)
- Antonis Giannopoulos
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Rene B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Katja M Heinemeier
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Karl E Kadler
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - David F Holmes
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - S Peter Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark; Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark.
| |
Collapse
|
50
|
Freedman BR, Rodriguez AB, Leiphart RJ, Newton JB, Ban E, Sarver JJ, Mauck RL, Shenoy VB, Soslowsky LJ. Dynamic Loading and Tendon Healing Affect Multiscale Tendon Properties and ECM Stress Transmission. Sci Rep 2018; 8:10854. [PMID: 30022076 PMCID: PMC6052000 DOI: 10.1038/s41598-018-29060-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is the primary biomechanical environment that interacts with tendon cells (tenocytes). Stresses applied via muscle contraction during skeletal movement transfer across structural hierarchies to the tenocyte nucleus in native uninjured tendons. Alterations to ECM structural and mechanical properties due to mechanical loading and tissue healing may affect this multiscale strain transfer and stress transmission through the ECM. This study explores the interface between dynamic loading and tendon healing across multiple length scales using living tendon explants. Results show that macroscale mechanical and structural properties are inferior following high magnitude dynamic loading (fatigue) in uninjured living tendon and that these effects propagate to the microscale. Although similar macroscale mechanical effects of dynamic loading are present in healing tendon compared to uninjured tendon, the microscale properties differed greatly during early healing. Regression analysis identified several variables (collagen and nuclear disorganization, cellularity, and F-actin) that directly predict nuclear deformation under loading. Finite element modeling predicted deficits in ECM stress transmission following fatigue loading and during healing. Together, this work identifies the multiscale response of tendon to dynamic loading and healing, and provides new insight into microenvironmental features that tenocytes may experience following injury and after cell delivery therapies.
Collapse
Affiliation(s)
- Benjamin R Freedman
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ashley B Rodriguez
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan J Leiphart
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph B Newton
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Ehsan Ban
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.,Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph J Sarver
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - Robert L Mauck
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.,Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|