1
|
Lei S, Sun J, Xie Y, Xiao X, He X, Lin S, Zhang H, Huang Z, Wang H, Wu X, Peng H, Liu J. Diverse functions of Tribbles homolog 3 in cancers and its potential as a therapeutic target. Carcinogenesis 2024; 45:527-542. [PMID: 38902892 DOI: 10.1093/carcin/bgae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
Currently, cancer is the second leading cause of death worldwide, and potential targeted drugs and molecular pathways for cancer development and progression have been a hot research topic worldwide. In recent years, the importance of the kinase superfamily in diseases has been well demonstrated by studies on various molecular mechanisms of kinases and the successful application of their inhibitors in diseases. Pseudokinases are members of the kinase superfamily, which have been increasingly documented to play a crucial role in cancers year after year. As a member of pseudokinases, tribbles homolog 3 (TRIB3) also exerts diverse functions in different cancers through different interacting proteins and molecular pathways, especially in tumor immunity, stemness, drug resistance, metabolism, and autophagy. In addition, peptide drugs targeting TRIB3 have high specificity in preclinical studies, which shows great promise for TRIB3 application in diseases including cancers. In this review, we dissect diverse functions played by TRIB3 in different cancers, describing the underlying mechanisms in detail. Notably, inhibitors and agonists currently available for TRIB3 are discussed, indicating the potential for TRIB3 as a therapeutic target.
Collapse
Affiliation(s)
- Shiying Lei
- The Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiajun Sun
- The Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yifang Xie
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xiaofeng He
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Sheng Lin
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Huifang Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zineng Huang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Haiqin Wang
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xusheng Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jing Liu
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| |
Collapse
|
2
|
Zhang SX, Wang JJ, Starr CR, Lee EJ, Park KS, Zhylkibayev A, Medina A, Lin JH, Gorbatyuk M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog Retin Eye Res 2024; 98:101231. [PMID: 38092262 PMCID: PMC11056313 DOI: 10.1016/j.preteyeres.2023.101231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle carrying out a broad range of important cellular functions including protein biosynthesis, folding, and trafficking, lipid and sterol biosynthesis, carbohydrate metabolism, and calcium storage and gated release. In addition, the ER makes close contact with multiple intracellular organelles such as mitochondria and the plasma membrane to actively regulate the biogenesis, remodeling, and function of these organelles. Therefore, maintaining a homeostatic and functional ER is critical for the survival and function of cells. This vital process is implemented through well-orchestrated signaling pathways of the unfolded protein response (UPR). The UPR is activated when misfolded or unfolded proteins accumulate in the ER, a condition known as ER stress, and functions to restore ER homeostasis thus promoting cell survival. However, prolonged activation or dysregulation of the UPR can lead to cell death and other detrimental events such as inflammation and oxidative stress; these processes are implicated in the pathogenesis of many human diseases including retinal disorders. In this review manuscript, we discuss the unique features of the ER and ER stress signaling in the retina and retinal neurons and describe recent advances in the research to uncover the role of ER stress signaling in neurodegenerative retinal diseases including age-related macular degeneration, inherited retinal degeneration, achromatopsia and cone diseases, and diabetic retinopathy. In some chapters, we highlight the complex interactions between the ER and other intracellular organelles focusing on mitochondria and illustrate how ER stress signaling regulates common cellular stress pathways such as autophagy. We also touch upon the integrated stress response in retinal degeneration and diabetic retinopathy. Finally, we provide an update on the current development of pharmacological agents targeting the UPR response and discuss some unresolved questions and knowledge gaps to be addressed by future research.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Josh J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eun-Jin Lee
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jonathan H Lin
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Örd T, Örd D, Adler P, Örd T. Genome-wide census of ATF4 binding sites and functional profiling of trait-associated genetic variants overlapping ATF4 binding motifs. PLoS Genet 2023; 19:e1011014. [PMID: 37906604 PMCID: PMC10637723 DOI: 10.1371/journal.pgen.1011014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/10/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Activating Transcription Factor 4 (ATF4) is an important regulator of gene expression in stress responses and developmental processes in many cell types. Here, we catalogued ATF4 binding sites in the human genome and identified overlaps with trait-associated genetic variants. We probed these genetic variants for allelic regulatory activity using a massively parallel reporter assay (MPRA) in HepG2 hepatoma cells exposed to tunicamycin to induce endoplasmic reticulum stress and ATF4 upregulation. The results revealed that in the majority of cases, the MPRA allelic activity of these SNPs was in agreement with the nucleotide preference seen in the ATF4 binding motif from ChIP-Seq. Luciferase and electrophoretic mobility shift assays in additional cellular models further confirmed ATF4-dependent regulatory effects for the SNPs rs532446 (GADD45A intronic; linked to hematological parameters), rs7011846 (LPL upstream; myocardial infarction), rs2718215 (diastolic blood pressure), rs281758 (psychiatric disorders) and rs6491544 (educational attainment). CRISPR-Cas9 disruption and/or deletion of the regulatory elements harboring rs532446 and rs7011846 led to the downregulation of GADD45A and LPL, respectively. Thus, these SNPs could represent examples of GWAS genetic variants that affect gene expression by altering ATF4-mediated transcriptional activation.
Collapse
Affiliation(s)
- Tiit Örd
- Institute of Genomics, University of Tartu, Tartu, Estonia
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Daima Örd
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Priit Adler
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Tõnis Örd
- Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Zhou S, Xu H, Wei T. Inhibition of stress proteins TRIB3 and STC2 potentiates sorafenib sensitivity in hepatocellular carcinoma. Heliyon 2023; 9:e17295. [PMID: 37389061 PMCID: PMC10300369 DOI: 10.1016/j.heliyon.2023.e17295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Sorafenib resistance is one of the main obstacles to the treatment of advanced hepatocellular carcinoma (HCC). Stress proteins TRIB3 and STC2 confer cell resistance to a variety of stresses, including hypoxia, nutritional deprivation, and other perturbations, which induce endoplasmic reticulum stress. However, the role of TRIB3 and STC2 in sorafenib sensitivity to HCC remains unclear. In this study, our results indicated that the common differentially expressed genes (DEGs) in sorafenib-treated HCC cells obtained from the NCBI-GEO database (Huh7 and Hep3B cells; GSE96796) included TRIB3, STC2, HOXD1, C2orf82, ADM2, RRM2, and UNC93A. The most significantly upregulated DEGs were TRIB3 and STC2, which were both stress protein genes. Bioinformatic analysis in NCBI public databases indicated that TRIB3 and STC2 were highly expressed in HCC tissues and closely associated with poor prognoses in HCC patients. Further investigation showed that inhibition of TRIB3 or STC2 with siRNA could enhance the anti-cancer effect of sorafenib in HCC cell lines. In conclusion, our study showed that stress proteins TRIB3 and STC2 are closely associated with sorafenib resistance in HCC. The combination of TRIB3 or STC2 inhibition and sorafenib may be a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Sheng Zhou
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, China
| | - Huanji Xu
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Tianhong Wei
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, China
| |
Collapse
|
5
|
He X, Wu D, Xu Y, Zhang Y, Sun Y, Chang X, Zhu Y, Tang W. Perfluorooctanoic acid promotes pancreatic β cell dysfunction and apoptosis through ER stress and the ATF4/CHOP/TRIB3 pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84532-84545. [PMID: 35788477 DOI: 10.1007/s11356-022-21188-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA), a widely used chemical substance, causes an increased risk of human type 2 diabetes (T2D), but its underlying mechanism is not well elucidated. The aim of the present study was to investigate whether PFOA regulates the functions of pancreatic β cells, which are specialized for the biosynthesis and secretion of insulin. The treatment of the mouse pancreatic β cell line (MIN6 cells) with PFOA caused a time- and dose-dependent inhibition of cell viability in CCK-8 assays. Annexin V/PI and TUNEL staining results confirmed that exposure to a high PFOA dose (500 μM) promoted apoptosis of β cells, while a low dose (300 μM) had no effects on β cell survival. PFOA treatment, even at a low dose, diminished glucose-stimulated insulin secretion (GSIS) in both primary islet perfusion and MIN6 cell experiments. RNA-sequencing data showed significantly increased expression of endoplasmic reticulum (ER) stress-associated genes, with tribbles homolog 3 (Trib3) ranking first among the altered genes. The activation of ER stress pathways was verified by qRT-PCR assays, and the ATF4/CHOP/TRIB3 pathway contributed to PFOA-induced β cell damage. The inhibition of TRIB3 expression significantly protected MIN6 cells from PFOA-induced GSIS defects and apoptosis by ameliorating ER stress. These findings reveal a link between ER stress and PFOA-induced β cell defects, opening up a new set of questions about the pathogenesis of T2D due to environmental chemicals.
Collapse
Affiliation(s)
- Xiaowei He
- Department of Endocrinology, Islet Cell Senescence and Function Research Laboratory, Nanjing Medical University Affiliated Geriatric Hospital/Jiangsu Province Geriatric Hospital, 30 Luojia Road, Nanjing, 210024, Jiangsu, China
| | - Dan Wu
- Department of Endocrinology, Islet Cell Senescence and Function Research Laboratory, Nanjing Medical University Affiliated Geriatric Hospital/Jiangsu Province Geriatric Hospital, 30 Luojia Road, Nanjing, 210024, Jiangsu, China
| | - Yanan Xu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjia Yuan, Nanjing, 210011, Jiangsu, China
| | - Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Yue Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Wei Tang
- Department of Endocrinology, Islet Cell Senescence and Function Research Laboratory, Nanjing Medical University Affiliated Geriatric Hospital/Jiangsu Province Geriatric Hospital, 30 Luojia Road, Nanjing, 210024, Jiangsu, China.
| |
Collapse
|
6
|
TRIB3 Modulates PPARγ-Mediated Growth Inhibition by Interfering with the MLL Complex in Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms231810535. [PMID: 36142452 PMCID: PMC9503934 DOI: 10.3390/ijms231810535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Aberrant expression or activity of proteins are amongst the best understood mechanisms that can drive cancer initiation and progression, as well as therapy resistance. TRIB3, a member of the Tribbles family of pseudokinases, is often dysregulated in cancer and has been associated with breast cancer initiation and metastasis formation. However, the underlying mechanisms by which TRIB3 contributes to these events are unclear. In this study, we demonstrate that TRIB3 regulates the expression of PPARγ, a transcription factor that has gained attention as a potential drug target in breast cancer for its antiproliferative actions. Proteomics and phosphoproteomics analyses together with classical biochemical assays indicate that TRIB3 interferes with the MLL complex and reduces MLL-mediated H3K4 trimethylation of the PPARG locus, thereby reducing PPARγ mRNA expression. Consequently, the overexpression of TRIB3 blunts the antiproliferative effect of PPARγ ligands in breast cancer cells, while reduced TRIB3 expression gives the opposite effect. In conclusion, our data implicate TRIB3 in epigenetic gene regulation and suggest that expression levels of this pseudokinase may serve as a predictor of successful experimental treatments with PPARγ ligands in breast cancer.
Collapse
|
7
|
Örd T, Örd D, Kaikkonen MU, Örd T. Pharmacological or TRIB3-Mediated Suppression of ATF4 Transcriptional Activity Promotes Hepatoma Cell Resistance to Proteasome Inhibitor Bortezomib. Cancers (Basel) 2021; 13:cancers13102341. [PMID: 34066165 PMCID: PMC8150958 DOI: 10.3390/cancers13102341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/17/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Proteasome inhibitors are currently used in the treatment of certain blood cancers, and clinical trials to treat solid tumors, including liver cancer, have also been conducted. However, different malignancies are not equally susceptible to proteasome inhibitors, and resistance to the drug may develop during the therapy. Here, we characterize the molecular mechanisms underlying the resilience of liver cancer cells to the proteasome inhibitor bortezomib. The results demonstrate that the activity of the eIF2α–ATF4 stress response pathway affects the viability of cells treated with bortezomib. We found that the pseudokinase TRIB3, an endogenous regulator of ATF4 and a gene highly expressed in liver cancer, resides predominantly at the same chromatin sites as ATF4 and constrains ATF4 activity. The survival of bortezomib-exposed hepatoma cells proved sensitive to TRIB3 overexpression and inactivation. Thus, TRIB3 is a novel factor contributing to bortezomib resistance of liver cancer cells. Abstract The proteasome is an appealing target for anticancer therapy and the proteasome inhibitor bortezomib has been approved for the treatment of several types of malignancies. However, the molecular mechanisms underlying cancer cell resistance to bortezomib remain poorly understood. In the current article, we investigate how modulation of the eIF2α–ATF4 stress pathway affects hepatoma cell response to bortezomib. Transcriptome profiling revealed that many ATF4 transcriptional target genes are among the most upregulated genes in bortezomib-treated HepG2 human hepatoma cells. While pharmacological enhancement of the eIF2α–ATF4 pathway activity results in the elevation of the activities of all branches of the unfolded protein response (UPR) and sensitizes cells to bortezomib toxicity, the suppression of ATF4 induction delays bortezomib-induced cell death. The pseudokinase TRIB3, an inhibitor of ATF4, is expressed at a high basal level in hepatoma cells and is strongly upregulated in response to bortezomib. To map genome-wide chromatin binding loci of TRIB3 protein, we fused a Flag tag to endogenous TRIB3 in HepG2 cells and performed ChIP-Seq. The results demonstrate that TRIB3 predominantly colocalizes with ATF4 on chromatin and binds to genomic regions containing the C/EBP–ATF motif. Bortezomib treatment leads to a robust enrichment of TRIB3 binding near genes induced by bortezomib and involved in the ER stress response and cell death. Disruption of TRIB3 increases C/EBP–ATF-driven transcription, augments ER stress and cell death upon exposure to bortezomib, while TRIB3 overexpression enhances cell survival. Thus, TRIB3, colocalizing with ATF4 and limiting its transcriptional activity, functions as a factor increasing resistance to bortezomib, while pharmacological over-activation of eIF2α–ATF4 can overcome the endogenous restraint mechanisms and sensitize cells to bortezomib.
Collapse
Affiliation(s)
- Tiit Örd
- Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (T.Ö.); (D.Ö.)
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland;
| | - Daima Örd
- Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (T.Ö.); (D.Ö.)
| | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland;
| | - Tõnis Örd
- Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (T.Ö.); (D.Ö.)
- Correspondence:
| |
Collapse
|
8
|
Stefanovska B, André F, Fromigué O. Tribbles Pseudokinase 3 Regulation and Contribution to Cancer. Cancers (Basel) 2021; 13:cancers13081822. [PMID: 33920424 PMCID: PMC8070086 DOI: 10.3390/cancers13081822] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Accumulating evidence supports a key function for Tribbles proteins in oncogenesis, both in leukemia and solid tumors. However, the exact role of these proteins is hard to define since in a context-dependent manner they can function as both oncogenes and tumor suppressors. Their complex role arises from the capacity to interact with a wide range of target molecules thereby acting as molecular scaffolds and signaling regulators of multiple pathways. This review focuses on one particular Tribbles family member, namely, TRIB3, addressing its gene and protein expression, as well as its role in cancer development and progression. Abstract The first Tribbles protein was identified as critical for the coordination of morphogenesis in Drosophila melanogaster. Three mammalian homologs were subsequently identified, with a structure similar to classic serine/threonine kinases, but lacking crucial amino acids for the catalytic activity. Thereby, the very weak ATP affinity classifies TRIB proteins as pseudokinases. In this review, we provide an overview of the regulation of TRIB3 gene expression at both transcriptional and post-translational levels. Despite the absence of kinase activity, TRIB3 interferes with a broad range of cellular processes through protein–protein interactions. In fact, TRIB3 acts as an adaptor/scaffold protein for many other proteins such as kinase-dependent proteins, transcription factors, ubiquitin ligases, or even components of the spliceosome machinery. We then state the contribution of TRIB3 to cancer development, progression, and metastasis. TRIB3 dysregulation can be associated with good or bad prognosis. Indeed, as TRIB3 interacts with and regulates the activity of many key signaling components, it can act as a tumor-suppressor or oncogene in a context-dependent manner.
Collapse
Affiliation(s)
- Bojana Stefanovska
- Inserm, UMR981, F-94805 Villejuif, France; (B.S.); (F.A.)
- Gustave Roussy, F-94805 Villejuif, France
- Orsay, Université Paris Saclay, F-91400 Gif-sur-Yvette, France
| | - Fabrice André
- Inserm, UMR981, F-94805 Villejuif, France; (B.S.); (F.A.)
- Gustave Roussy, F-94805 Villejuif, France
- Orsay, Université Paris Saclay, F-91400 Gif-sur-Yvette, France
- Department of Medical Oncology, Gustave Roussy, F-94805 Villejuif, France
| | - Olivia Fromigué
- Inserm, UMR981, F-94805 Villejuif, France; (B.S.); (F.A.)
- Gustave Roussy, F-94805 Villejuif, France
- Orsay, Université Paris Saclay, F-91400 Gif-sur-Yvette, France
- Correspondence: ; Tel.: +33-142114211
| |
Collapse
|
9
|
Örd T, Puurand T, Örd D, Annilo T, Möls M, Remm M, Örd T. A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individuals. PLoS Genet 2020; 16:e1008981. [PMID: 32745133 PMCID: PMC7425993 DOI: 10.1371/journal.pgen.1008981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/13/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Tribbles homolog 3 (TRIB3) is pseudokinase involved in intracellular regulatory processes and has been implicated in several diseases. In this article, we report that human TRIB3 promoter contains a 33-bp variable number tandem repeat (VNTR) and characterize the heterogeneity and function of this genetic element. Analysis of human populations around the world uncovered the existence of alleles ranging from 1 to 5 copies of the repeat, with 2-, 3- and 5-copy alleles being the most common but displaying considerable geographical differences in frequency. The repeated sequence overlaps a C/EBP-ATF transcriptional regulatory element and is highly conserved, but not repeated, in various mammalian species, including great apes. The repeat is however evident in Neanderthal and Denisovan genomes. Reporter plasmid experiments in human cell culture reveal that an increased copy number of the TRIB3 promoter 33-bp repeat results in increased transcriptional activity. In line with this, analysis of whole genome sequencing and RNA-Seq data from human cohorts demonstrates that the copy number of TRIB3 promoter 33-bp repeats is positively correlated with TRIB3 mRNA expression level in many tissues throughout the body. Moreover, the copy number of the TRIB3 33-bp repeat appears to be linked to known TRIB3 eQTL SNPs as well as TRIB3 SNPs reported in genetic association studies. Taken together, the results indicate that the promoter 33-bp VNTR constitutes a causal variant for TRIB3 expression variation between individuals and could underlie the results of SNP-based genetic studies.
Collapse
Affiliation(s)
- Tiit Örd
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tarmo Puurand
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Daima Örd
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tarmo Annilo
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Märt Möls
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Maido Remm
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tõnis Örd
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
10
|
Expression of genes encoding IGF1, IGF2, and IGFBPs in blood of obese adolescents with insulin resistance. Endocr Regul 2020; 53:34-45. [PMID: 31517621 DOI: 10.2478/enr-2019-0005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE The development of obesity and its metabolic complications is associated with dys-regulation of various intrinsic mechanisms, which control basic metabolic processes via changes in the expression of numerous regulatory genes. The main goal of this work was to study the association between the expression of insulin-like growth factors (IGF1 and IGF2) and IGF-binding proteins and insulin resistance in obese adolescents for evaluation of possible contribution of these genes in development of insulin resistance. METHODS The expression of IGF1, IGF2, and IGFBPs mRNA was measured in blood of obese adolescents with normal insulin sensitivity and insulin resistance in comparison with the normal (control) individuals. RESULTS In the blood of obese adolescents with normal insulin sensitivity the expression of IGFBP4, IGFBP5 and HTRA1 genes was down-regulated, but IGFBP2 and IGFBP7 genes up-regulated as compared to control (normal) group. At the same time, no significant changes in IGF1 and IGF2 gene expressions in this group of obese adolescents were found. Insulin resistance in obese adolescents led to up-regulation of IGF2, IGFBP2, and IGFBP7 gene expressions as well as to down-regulation of the expression of IGF1, IGFBP5 and HTRA1 genes in the blood in comparison with the obese patients, which have normal insulin sensitivity. Furthermore, the level of IGFBP4 gene expression was similar in both groups of obese adolescents. CONCLUSIONS Results of this investigation provide evidence that insulin resistance in obese adolescents is associated with gene specific changes in the expression of IGF1, IGF2, IGFBP2, IGFBP5, IGFBP7, and HTRA1 genes and these changes possibly contribute to the development of glucose intolerance and insulin resistance.
Collapse
|
11
|
Effect of IGFBP2 Overexpression on the Expression of Fatty Acid Synthesis Genes in Primary Cultured Chicken Hepatocytes. J Poult Sci 2019; 56:177-185. [PMID: 32055212 PMCID: PMC7005387 DOI: 10.2141/jpsa.0180114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The effects of insulin-like growth factor binding protein 2 (IGFBP2) on the expression of fatty acid synthesis regulators and triglyceride production were investigated in primary cultured chicken hepatocytes. The full-length chicken IGFBP2 coding region was synthesized by overlap extension PCR and cloned into the pcDNA3.1 vector. An in situ digestion method was used to prepare the chicken hepatocytes. Primary chicken hepatocytes were maintained in monolayer culture. Real-time PCR was used to detect changes in the expression of IGFBP2, PPARG, IGF1, IGF1R, APOAI, and LFABP, after the overexpression of IGFBP2 in chicken hepatocytes. Triglyceride production and glucose content were also evaluated using triglyceride and glucose analysis methods. The expression level of IGFBP2 increased after transfection of the IGFBP2-containing vector. The expression levels of PPARG, IGF1, and IGF1R also increased in cultured chicken hepatocytes after the overexpression of IGFBP2, whereas the expression of LFABP and APOAI decreased. Triglyceride production in primary cultured chicken hepatocytes increased after the overexpression of IGFBP2. These results suggest that IGFBP2 is involved in lipogenesis, increasing both the expression of fatty acid synthesis regulators, and triglyceride production in primary cultured chicken hepatocytes.
Collapse
|
12
|
Wang ZY, Ragsdale CW. Multiple optic gland signaling pathways implicated in octopus maternal behaviors and death. J Exp Biol 2018; 221:jeb185751. [PMID: 30104305 PMCID: PMC6198452 DOI: 10.1242/jeb.185751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/01/2018] [Indexed: 01/02/2023]
Abstract
Post-reproductive life in the female octopus is characterized by an extreme pattern of maternal care: the mother cares for her clutch of eggs without feeding until her death. These maternal behaviors are eradicated if the optic glands, the octopus analog of the vertebrate pituitary gland, are removed from brooding females. Despite the optic gland's importance in regulating maternal behavior, the molecular features underlying optic gland function are unknown. Here, we identify major signaling systems of the Octopus bimaculoides optic gland. Through behavioral analyses and transcriptome sequencing, we report that the optic gland undergoes remarkable molecular changes that coincide with transitions between behavioral stages. These include the dramatic upregulation and downregulation of catecholamine, steroid, insulin and feeding peptide pathways. Transcriptome analyses in other tissues demonstrate that these molecular changes are not generalized markers of senescence, but instead, specific features of the optic glands. Our study expands the classic optic gland-pituitary gland analogy and more specifically, it indicates that, rather than a single 'self-destruct' hormone, the maternal optic glands employ multiple pathways as systemic hormonal signals of behavioral regulation.
Collapse
Affiliation(s)
- Z Yan Wang
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Örd T, Örd D, Örd T. TRIB3 limits FGF21 induction during in vitro and in vivo nutrient deficiencies by inhibiting C/EBP-ATF response elements in the Fgf21 promoter. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:271-281. [PMID: 29378327 DOI: 10.1016/j.bbagrm.2018.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Mammals must be able to endure periods of limited food availability, and the liver plays a central role in the adaptation to nutritional stresses. TRIB3 (Tribbles homolog 3) is a cellular stress-inducible gene with a liver-centric expression pattern and it has been implicated in stress response regulation and metabolic control. In the current article, we study the involvement of TRIB3 in responses to nutrient deficiencies, including fasting for up to 48 h in mice. We show that hepatic expression of Trib3 is increased after 48 h of fasting and mice with a targeted deletion of the Trib3 gene present elevated hepatic triglyceride content and liver weight at 48 h, along with an upregulation of lipid utilization genes in the liver. Further, hepatic and serum levels of the metabolic stress hormone FGF21 are considerably increased in 48-h-fasted Trib3 knockout mice compared to wild type. Trib3 deficiency also leads to elevated FGF21 levels in the mouse liver during essential amino acid deficiency and in cultured mouse embryonic fibroblasts during glucose starvation. Reporter assays reveal that TRIB3 regulates FGF21 by inhibiting ATF4-mediated, C/EBP-ATF site-dependent activation of Fgf21 transcription. Based on chromatin immunoprecipitation from mouse liver, the binding of TRIB3 and ATF4, a transcription factor known to physically interact with TRIB3, is significantly increased at the Fgf21 promoter following 48 h of fasting. Thus, under nutrient-limiting conditions that stimulate ATF4 activity, TRIB3 is implicated in the regulation of metabolic adaptation by restraining the transcription of Fgf21.
Collapse
Affiliation(s)
- Tiit Örd
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia
| | - Daima Örd
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia
| | - Tõnis Örd
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia.
| |
Collapse
|
14
|
Minchenko DO, Tsymbal DO, Yavorovsky OP, Solokha NV, Minchenko OH. Expression of genes encoding IGFBPs, SNARK, CD36, and PECAM1 in the liver of mice treated with chromium disilicide and titanium nitride nanoparticles. Endocr Regul 2017; 51:84-95. [PMID: 28609285 DOI: 10.1515/enr-2017-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The aim of the present study was to examine the effect of chromium disilicide and titanium nitride nanoparticles on the expression level of genes encoding important regulatory factors (IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK/NUAK2, CD36, and PECAM1/CD31) in mouse liver for evaluation of possible toxic effects of these nanoparticles. METHODS Male mice received 20 mg chromium disilicide nanoparticles (45 nm) and titanium nitride nanoparticles (20 nm) with food every working day for 2 months. The expression of IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver was studied by quantitative polymerase chain reaction. RESULTS Treatment of mice with chromium disilicide nanoparticles led to down-regulation of the expression of IGFBP2, IGFBP5, PECAM1, and SNARK genes in the liver in comparison with control mice, with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3 and CD36 genes was increased in mouse liver upon treatment with chromium disilicide nanoparticles. We have also shown that treatment with titanium nitride nanoparticles resulted in down-regulation of the expression of IGFBP2 and SNARK genes in the liver with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3, IGFBP4, and CD36 genes was increased in the liver of mice treated with titanium nitride nanoparticles. Furthermore, the effect of chromium disilicide nanoparticles on IGFBP2 and CD36 genes expression was significantly stronger as compared to titanium nitride nanoparticles. CONCLUSIONS The results of this study demonstrate that chromium disilicide and titanium nitride nanoparticles have variable effects on the expression of IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver, which may reflect the genotoxic activities of the studied nanoparticles.
Collapse
|
15
|
Örd D, Örd T, Biene T, Örd T. TRIB3 increases cell resistance to arsenite toxicity by limiting the expression of the glutathione-degrading enzyme CHAC1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2668-2680. [PMID: 27526673 DOI: 10.1016/j.bbamcr.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Abstract
Arsenic, a metalloid with cytotoxic and carcinogenic effects related to the disruption of glutathione homeostasis, induces the expression of ATF4, a central transcription factor in the cellular stress response. However, the interplay between factors downstream of ATF4 is incompletely understood. In this article, we investigate the role of Tribbles homolog 3 (TRIB3), a regulatory member of the ATF4 pathway, in determining cell sensitivity to arsenite. Our results show that arsenite potently upregulates Trib3 mRNA and protein in an ATF4-dependent manner in mouse embryonic fibroblasts. Trib3-deficient cells display increased susceptibility to arsenite-induced cell death, which is rescued by re-expressing TRIB3. In cells lacking TRIB3, arsenite stress leads to markedly elevated mRNA and protein levels of Chac1, a gene that encodes a glutathione-degrading enzyme and is not previously known to be repressed by TRIB3. Analysis of the Chac1 promoter identified two regulatory elements that additively mediate the induction of Chac1 by arsenite and ATF4, as well as the robust suppression of Chac1 by TRIB3. Crucially, Chac1 silencing enhances glutathione levels and eliminates the increased susceptibility of Trib3-deficient cells to arsenite stress. Moreover, Trib3-deficient cells demonstrate an increased rate of glutathione consumption, which is abolished by Chac1 knockdown. Taken together, these data indicate that excessive Chac1 expression is detrimental to arsenite-treated cell survival and that TRIB3 is critical for restraining the pro-death potential of Chac1 during arsenite stress, representing a novel mechanism of cell viability regulation that occurs within the ATF4 pathway.
Collapse
Affiliation(s)
- Daima Örd
- Estonian Biocentre, Riia 23b, 51010 Tartu, Estonia
| | - Tiit Örd
- Estonian Biocentre, Riia 23b, 51010 Tartu, Estonia; Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Tuuliki Biene
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Tõnis Örd
- Estonian Biocentre, Riia 23b, 51010 Tartu, Estonia.
| |
Collapse
|
16
|
Dong S, Xia J, Wang H, Sun L, Wu Z, Bin J, Liao Y, Li N, Liao W. Overexpression of TRIB3 promotes angiogenesis in human gastric cancer. Oncol Rep 2016; 36:2339-48. [DOI: 10.3892/or.2016.5017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/08/2016] [Indexed: 11/06/2022] Open
|
17
|
Hu YL, Yin Y, Liu HY, Feng YY, Bian ZH, Zhou LY, Zhang JW, Fei BJ, Wang YG, Huang ZH. Glucose deprivation induces chemoresistance in colorectal cancer cells by increasing ATF4 expression. World J Gastroenterol 2016; 22:6235-6245. [PMID: 27468213 PMCID: PMC4945982 DOI: 10.3748/wjg.v22.i27.6235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/25/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of activating transcription factor 4 (ATF4) in glucose deprivation (GD) induced colorectal cancer (CRC) drug resistance and the mechanism involved.
METHODS: Chemosensitivity and apoptosis were measured under the GD condition. Inhibition of ATF4 using short hairpin RNA in CRC cells under the GD condition and in ATF4-overexpressing CRC cells was performed to identify the role of ATF4 in the GD induced chemoresistance. Quantitative real-time RT-PCR and Western blot were used to detect the mRNA and protein expression of drug resistance gene 1 (MDR1), respectively.
RESULTS: GD protected CRC cells from drug-induced apoptosis (oxaliplatin and 5-fluorouracil) and induced the expression of ATF4, a key gene of the unfolded protein response. Depletion of ATF4 in CRC cells under the GD condition can induce apoptosis and drug re-sensitization. Similarly, inhibition of ATF4 in the ATF4-overexpressing CRC cells reintroduced therapeutic sensitivity and apoptosis. In addition, increased MDR1 expression was observed in GD-treated CRC cells.
CONCLUSION: These data indicate that GD promotes chemoresistance in CRC cells through up-regulating ATF4 expression.
Collapse
|
18
|
Mondal D, Mathur A, Chandra PK. Tripping on TRIB3 at the junction of health, metabolic dysfunction and cancer. Biochimie 2016; 124:34-52. [DOI: 10.1016/j.biochi.2016.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 02/04/2016] [Indexed: 12/16/2022]
|