1
|
Norman K, Hemmings KE, Shawer H, Appleby HL, Burnett AJ, Hamzah N, Gosain R, Woodhouse EM, Beech DJ, Foster R, Bailey MA. Side-by-side comparison of published small molecule inhibitors against thapsigargin-induced store-operated Ca2+ entry in HEK293 cells. PLoS One 2024; 19:e0296065. [PMID: 38261554 PMCID: PMC10805320 DOI: 10.1371/journal.pone.0296065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024] Open
Abstract
Calcium (Ca2+) is a key second messenger in eukaryotes, with store-operated Ca2+ entry (SOCE) being the main source of Ca2+ influx into non-excitable cells. ORAI1 is a highly Ca2+-selective plasma membrane channel that encodes SOCE. It is ubiquitously expressed in mammals and has been implicated in numerous diseases, including cardiovascular disease and cancer. A number of small molecules have been identified as inhibitors of SOCE with a variety of potential therapeutic uses proposed and validated in vitro and in vivo. These encompass both nonselective Ca2+ channel inhibitors and targeted selective inhibitors of SOCE. Inhibition of SOCE can be quantified both directly and indirectly with a variety of assay setups, making an accurate comparison of the activity of different SOCE inhibitors challenging. We have used a fluorescence based Ca2+ addback assay in native HEK293 cells to generate dose-response data for many published SOCE inhibitors. We were able to directly compare potency. Most compounds were validated with only minor and expected variations in potency, but some were not. This could be due to differences in assay setup relating to the mechanism of action of the inhibitors and highlights the value of a singular approach to compare these compounds, as well as the general need for biorthogonal validation of novel bioactive compounds. The compounds observed to be the most potent against SOCE in our study were: 7-azaindole 14d (12), JPIII (17), Synta-66 (6), Pyr 3 (5), GSK5503A (8), CM4620 (14) and RO2959 (7). These represent the most promising candidates for future development of SOCE inhibitors for therapeutic use.
Collapse
Affiliation(s)
- Katherine Norman
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Karen E. Hemmings
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Heba Shawer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Hollie L. Appleby
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Alan J. Burnett
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Nurasyikin Hamzah
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Rajendra Gosain
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Emily M. Woodhouse
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - David J. Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Richard Foster
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Marc A. Bailey
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| |
Collapse
|
2
|
Mignen O, Vannier JP, Schneider P, Renaudineau Y, Abdoul-Azize S. Orai1 Ca 2+ channel modulators as therapeutic tools for treating cancer: Emerging evidence! Biochem Pharmacol 2024; 219:115955. [PMID: 38040093 DOI: 10.1016/j.bcp.2023.115955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
In non-excitable cells, Orai proteins represent the main channel for Store-Operated Calcium Entry (SOCE), and also mediate various store-independent Calcium Entry (SICE) pathways. Deregulation of these pathways contribute to increased tumor cell proliferation, migration, metastasis, and angiogenesis. Among Orais, Orai1 is an attractive therapeutic target explaining the development of specific modulators. Therapeutic trials using Orai1 channel inhibitors have been evaluated for treating diverse diseases such as psoriasis and acute pancreatitis, and emerging data suggest that Orai1 channel modulators may be beneficial for cancer treatment. This review discusses herein the importance of Orai1 channel modulators as potential therapeutic tools and the added value of these modulators for treating cancer.
Collapse
Affiliation(s)
| | | | | | - Yves Renaudineau
- Laboratory of Immunology, CHU Purpan Toulouse, INSERM U1291, CNRS U5051, University Toulouse III, 31062 Toulouse, France
| | - Souleymane Abdoul-Azize
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France; Normandie Univ., UNIROUEN, INSERM, U1234, Rouen 76000, France.
| |
Collapse
|
3
|
Ghafouri E, Bigdeli M, Khalafiyan A, Amirkhani Z, Ghanbari R, Hasan A, Khanahmad H, Boshtam M, Makvandi P. Unmasking the complex roles of hypocalcemia in cancer, COVID-19, and sepsis: Engineered nanodelivery and diagnosis. ENVIRONMENTAL RESEARCH 2023; 238:116979. [PMID: 37660871 DOI: 10.1016/j.envres.2023.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Calcium (Ca2+) homeostasis is essential for maintaining physiological processes in the body. Disruptions in Ca2+ signaling can lead to various pathological conditions including inflammation, fibrosis, impaired immune function, and accelerated senescence. Hypocalcemia, a common symptom in diseases such as acute respiratory distress syndrome (ARDS), cancer, septic shock, and COVID-19, can have both potential protective and detrimental effects. This article explores the multifaceted role of Ca2+ dysregulation in inflammation, fibrosis, impaired immune function, and accelerated senescence, contributing to disease severity. Targeting Ca2+ signaling pathways may provide opportunities to develop novel therapeutics for age-related diseases and combat viral infections. However, the role of Ca2+ in viral infections is complex, and evidence suggests that hypocalcemia may have a protective effect against certain viruses, while changes in Ca2+ homeostasis can influence susceptibility to viral infections. The effectiveness and safety of Ca2+ supplements in COVID-19 patients remain a subject of ongoing research and debate. Further investigations are needed to understand the intricate interplay between Ca2+ signaling and disease pathogenesis.
Collapse
Affiliation(s)
- Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Anis Khalafiyan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohre Amirkhani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roham Ghanbari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK.
| |
Collapse
|
4
|
Ke C, Long S. Dysregulated transient receptor potential channel 1 expression and its correlation with clinical features and survival profile in surgical non-small-cell lung cancer patients. J Clin Lab Anal 2022; 36:e24229. [PMID: 35106847 PMCID: PMC8906054 DOI: 10.1002/jcla.24229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Transient receptor potential channel 1 (TRPC1) facilitates the tumor growth, metastasis, and chemoresistance in a series of neoplasms, while its correlation with clinical features and survival profile in NSCLC patients remains elusive. Hence, this study aimed to explore this topic. METHODS Totally, 192 NSCLC patients were enrolled. Protein and mRNA expression of TRPC1 in carcinoma tissue and para-carcinoma tissue were evaluated by immunohistochemistry (IHC) assay and reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay, respectively. RESULTS Immunohistochemistry score and mRNA expression of TRPC1 were higher in carcinoma tissue compared with para-carcinoma tissue (both p < 0.001). Besides, increased TRPC1 IHC score (p = 0.004) and elevated TRPC1 mRNA overexpression (p = 0.016) were linked with occurrence of LYN metastasis; meanwhile, increased TRPC1 IHC score (p = 0.015) and raised TRPC1 mRNA expression (p = 0.009) were also linked with advanced TNM stage, whereas TRPC1 IHC score and TRPC1 mRNA expression were not correlated with other clinical features (all p > 0.05). Additionally, TRPC1 protein high (p = 0.007) and TRPC1 mRNA high (p = 0.015) were correlated with poor disease-free survival (DFS) but not correlated with overall survival (OS). Moreover, multivariate Cox's proportional hazards regression analysis showed that high TRPC1 protein expression (p = 0.046) and advanced TNM stage (p < 0.001) were independently correlated with poor DFS. However, TRPC1 protein and mRNA expression were not linked with OS (both p > 0.05), while poor differentiation (p = 0.003) and advanced TNM stage (p < 0.001) were independently associated with worse OS. CONCLUSIONS TRPC1 is unregulated in NSCLC tissue with its overexpression relating to the occurrence of LYN metastasis and worse DFS in NSCLC patients.
Collapse
Affiliation(s)
- Changjiang Ke
- Department of Respiratory and Critical Care Medicine (Respiratory Medicine), Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei, China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Hubei, China
| | - Shenghua Long
- Department of Respiratory and Critical Care Medicine (Respiratory Medicine), Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei, China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Hubei, China
| |
Collapse
|
5
|
The Important Role of Ion Transport System in Cervical Cancer. Int J Mol Sci 2021; 23:ijms23010333. [PMID: 35008759 PMCID: PMC8745646 DOI: 10.3390/ijms23010333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cervical cancer is a significant gynecological cancer and causes cancer-related deaths worldwide. Human papillomavirus (HPV) is implicated in the etiology of cervical malignancy. However, much evidence indicates that HPV infection is a necessary but not sufficient cause in cervical carcinogenesis. Therefore, the cellular pathophysiology of cervical cancer is worthy of study. This review summarizes the recent findings concerning the ion transport processes involved in cell volume regulation and intracellular Ca2+ homeostasis of epithelial cells and how these transport systems are themselves regulated by the tumor microenvironment. For cell volume regulation, we focused on the volume-sensitive Cl− channels and K+-Cl− cotransporter (KCC) family, important regulators for ionic and osmotic homeostasis of epithelial cells. Regarding intracellular Ca2+ homeostasis, the Ca2+ store sensor STIM molecules and plasma membrane Ca2+ channel Orai proteins, the predominant Ca2+ entry mechanism in epithelial cells, are discussed. Furthermore, we evaluate the potential of these membrane ion transport systems as diagnostic biomarkers and pharmacological interventions and highlight the challenges.
Collapse
|
6
|
Huang YT, Hsu YT, Chen YF, Shen MR. Super-Resolution Microscopy Reveals That Stromal Interaction Molecule 1 Trafficking Depends on Microtubule Dynamics. Front Physiol 2021; 12:762387. [PMID: 34803742 PMCID: PMC8602801 DOI: 10.3389/fphys.2021.762387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is an essential pathway for Ca2+ signaling, and regulates various vital cellular functions. It is triggered by the endoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1). Illustration of STIM1 spatiotemporal structure at the nanometer scale during SOCE activation provides structural and functional insights into the fundamental Ca2+ homeostasis. In this study, we used direct stochastic optical reconstruction microscopy (dSTORM) to revisit the dynamic process of the interaction between STIM1, end-binding protein (EB), and microtubules to the ER-plasma membrane. Using dSTORM, we found that“powder-like”STIM1 aggregates into “trabecular-like” architectures toward the cell periphery during SOCE, and that an intact microtubule network and EB1 are essential for STIM1 trafficking. After thapsigargin treatment, STIM1 can interact with EB1 regardless of undergoing aggregation. We generated STIM1 variants adapted from a real-world database and introduced them into SiHa cells to clarify the impact of STIM1 mutations on cancer cell behavior. The p.D76G and p.D84Y variants locating on the Ca2+ binding domain of STIM1 result in inhibition of focal adhesion turnover, Ca2+ influx during SOCE and subsequent cell migration. Inversely, the p.R643C variant on the microtubule interacting domain of STIM1 leads to dissimilar consequence and aggravates cell migration. These findings imply that STIM1 mutational patterns have an impact on cancer metastasis, and therefore could be either a prognostic marker or a novel therapeutic target to inhibit the malignant behavior of STIM1-mediated cancer cells. Altogether, we generated novel insight into the role of STIM1 during SOCE activation, and uncovered the impact of real-world STIM1 variants on cancer cells.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Pharmacology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Ting Hsu
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yih-Fung Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Meng-Ru Shen
- Department of Pharmacology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Hammad AS, Yu F, Botheju WS, Elmi A, Alcantara-Adap E, Machaca K. Phosphorylation of STIM1 at ERK/CDK sites is dispensable for cell migration and ER partitioning in mitosis. Cell Calcium 2021; 100:102496. [PMID: 34715400 DOI: 10.1016/j.ceca.2021.102496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ influx pathway required for multiple physiological functions including cell motility. SOCE is triggered in response to depletion of intracellular Ca2+ stores following the activation of the endoplasmic reticulum (ER) Ca2+ sensor STIM1, which recruits the plasma membrane (PM) Ca2+ channel Orai1 at ER-PM junctions. STIM1 is phosphorylated dynamically, and this phosphorylation has been implicated in several processes including SOCE inactivation during M-phase, maximal SOCE activation, ER segregation during mitosis, and cell migration. Human STIM1 has 10 Ser/Thr residues in its cytosolic domain that match the ERK/CDK consensus phosphorylation. We recently generated a mouse knock-in line where wild-type STIM1 was replaced by a non-phosphorylatable STIM1 with all ten S/Ts mutated to Ala (STIM1-10A). Here, we generate mouse embryonic fibroblasts (MEF) from the STIM1-10A mouse line and a control MEF line (WT) that express wild-type STIM1 from a congenic mouse strain. These lines offer a unique model to address the role of STIM1 phosphorylation at endogenous expression levels in contrast to previous studies that relied mostly on overexpression. We show that STIM1 phosphorylation at ERK/CDK sites is not required for SOCE activation, cell migration, or ER partitioning during mitosis. These results rule out STIM1 phosphorylation as a regulator of SOCE, migration, and ER distribution in mitosis.
Collapse
Affiliation(s)
- Ayat S Hammad
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar; College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar; Department of Physiology & Biophysicis, Weill Cornell Medicine, New York, USA
| | | | - Asha Elmi
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar; College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Ethel Alcantara-Adap
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar; Department of Physiology & Biophysicis, Weill Cornell Medicine, New York, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar; Department of Physiology & Biophysicis, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
8
|
Rodat-Despoix L, Chamlali M, Ouadid-Ahidouch H. Ion channels as key partners of cytoskeleton in cancer disease. Biochim Biophys Acta Rev Cancer 2021; 1876:188627. [PMID: 34520803 DOI: 10.1016/j.bbcan.2021.188627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
Several processes occur during tumor development including changes in cell morphology, a reorganization of the expression and distribution of the cytoskeleton proteins as well as ion channels. If cytoskeleton proteins and ion channels have been widely investigated in understanding cancer mechanisms, the interaction between these two elements and the identification of the associated signaling pathways are only beginning to emerge. In this review, we summarize the work published over the past 15 years relating to the roles played by ion channels in these mechanisms of reorganization of the cellular morphology, essential to metastatic dissemination, both through the physical interactions with elements of the cytoskeleton and by intracellular signaling pathways involved.
Collapse
Affiliation(s)
- Lise Rodat-Despoix
- Laboratoire de Physiologie Cellulaire et Moléculaire (UR 4667), Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France.
| | - Mohamed Chamlali
- Laboratoire de Physiologie Cellulaire et Moléculaire (UR 4667), Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire (UR 4667), Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| |
Collapse
|
9
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
10
|
Neutrophils in Tumorigenesis: Missing Targets for Successful Next Generation Cancer Therapies? Int J Mol Sci 2021; 22:ijms22136744. [PMID: 34201758 PMCID: PMC8268516 DOI: 10.3390/ijms22136744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophils—once considered as simple killers of pathogens and unexciting for cancer research—are now acknowledged for their role in the process of tumorigenesis. Neutrophils are recruited to the tumor microenvironment where they turn into tumor-associated neutrophils (TANs), and are able to initiate and promote tumor progression and metastasis. Conversely, anti-tumorigenic properties of neutrophils have been documented, highlighting the versatile nature and high pleiotropic plasticity of these polymorphonuclear leukocytes (PMN-L). Here, we dissect the ambivalent roles of TANs in cancer and focus on selected functional aspects that could be therapeutic targets. Indeed, the critical point of targeting TAN functions lies in the fact that an immunosuppressive state could be induced, resulting in unwanted side effects. A deeper knowledge of the mechanisms linked to diverse TAN functions in different cancer types is necessary to define appropriate therapeutic strategies that are able to induce and maintain an anti-tumor microenvironment.
Collapse
|
11
|
Elzamzamy OM, Johnson BE, Chen WC, Hu G, Penner R, Hazlehurst LA. Transient Receptor Potential C 1/4/5 Is a Determinant of MTI-101 Induced Calcium Influx and Cell Death in Multiple Myeloma. Cells 2021; 10:cells10061490. [PMID: 34199280 PMCID: PMC8231892 DOI: 10.3390/cells10061490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
Multiple myeloma (MM) is a currently incurable hematologic cancer. Patients that initially respond to therapeutic intervention eventually relapse with drug resistant disease. Thus, novel treatment strategies are critically needed to improve patient outcomes. Our group has developed a novel cyclic peptide referred to as MTI-101 for the treatment of MM. We previously reported that acquired resistance to HYD-1, the linear form of MTI-101, correlated with the repression of genes involved in store operated Ca2+ entry (SOCE): PLCβ, SERCA, ITPR3, and TRPC1 expression. In this study, we sought to determine the role of TRPC1 heteromers in mediating MTI-101 induced cationic flux. Our data indicate that, consistent with the activation of TRPC heteromers, MTI-101 treatment induced Ca2+ and Na+ influx. However, replacing extracellular Na+ with NMDG did not reduce MTI-101-induced cell death. In contrast, decreasing extracellular Ca2+ reduced both MTI-101-induced Ca2+ influx as well as cell death. The causative role of TRPC heteromers was established by suppressing STIM1, TRPC1, TRPC4, or TRPC5 function both pharmacologically and by siRNA, resulting in a reduction in MTI-101-induced Ca2+ influx. Mechanistically, MTI-101 treatment induces trafficking of TRPC1 to the membrane and co-immunoprecipitation studies indicate that MTI-101 treatment induces a TRPC1-STIM1 complex. Moreover, treatment with calpeptin inhibited MTI-101-induced Ca2+ influx and cell death, indicating a role of calpain in the mechanism of MTI-101-induced cytotoxicity. Finally, components of the SOCE pathway were found to be poor prognostic indicators among MM patients, suggesting that this pathway is attractive for the treatment of MM.
Collapse
Affiliation(s)
- Osama M. Elzamzamy
- Clinical and Translational Sciences Institute, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
- WVU Cancer Institute, West Virginia University, Morganton, WV 26506, USA; (W.-C.C.); (G.H.)
| | - Brandon E. Johnson
- Center for Biomedical Research, The Queen’s Medical Center, Honolulu, HI 96813, USA; (B.E.J.); (R.P.)
| | - Wei-Chih Chen
- WVU Cancer Institute, West Virginia University, Morganton, WV 26506, USA; (W.-C.C.); (G.H.)
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morganton, WV 26506, USA
| | - Gangqing Hu
- WVU Cancer Institute, West Virginia University, Morganton, WV 26506, USA; (W.-C.C.); (G.H.)
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Reinhold Penner
- Center for Biomedical Research, The Queen’s Medical Center, Honolulu, HI 96813, USA; (B.E.J.); (R.P.)
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI 96813, USA
| | - Lori A. Hazlehurst
- WVU Cancer Institute, West Virginia University, Morganton, WV 26506, USA; (W.-C.C.); (G.H.)
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morganton, WV 26506, USA
- Correspondence: ; Tel.: +1-304-293-3398
| |
Collapse
|
12
|
Store-operated Ca 2+ entry as a key oncogenic Ca 2+ signaling driving tumor invasion-metastasis cascade and its translational potential. Cancer Lett 2021; 516:64-72. [PMID: 34089807 DOI: 10.1016/j.canlet.2021.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
Tumor metastasis is the primary cause of treatment failure and cancer-related deaths. Store-operated Ca2+ entry (SOCE), which is mediated by stromal interaction molecules (STIM) and ORAI proteins, has been implicated in the tumor invasion-metastasis cascade. Epithelial-mesenchymal transition (EMT) is a cellular program that enables tumor cells to acquire the capacities needed for migration and invasion and the formation of distal metastases. Tumor-associated angiogenesis contributes to metastasis because aberrantly developed vessels offer a path for tumor cell dissemination as well as supply sufficient nutrients for the metastatic colony to develop into metastasis. Recently, increasing evidence has indicated that SOCE alterations actively participate in the multi-step process of tumor metastasis. In addition, the dysregulated expression of STIM/ORAI has been reported to be a predictor of poor prognosis. Herein, we review the latest advances about the critical role of SOCE in the tumor metastasis cascade and the underlying regulatory mechanisms. We emphasize the contributions of SOCE to the EMT program, tumor cell migration and invasion, and angiogenesis. We further discuss the possibility of modulating SOCE or intervening in the downstream signaling pathways as a feasible targeting therapy for cancer treatment.
Collapse
|
13
|
Kang Q, Peng X, Li X, Hu D, Wen G, Wei Z, Yuan B. Calcium Channel Protein ORAI1 Mediates TGF-β Induced Epithelial-to-Mesenchymal Transition in Colorectal Cancer Cells. Front Oncol 2021; 11:649476. [PMID: 34055617 PMCID: PMC8149897 DOI: 10.3389/fonc.2021.649476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/28/2021] [Indexed: 01/06/2023] Open
Abstract
Accumulating evidence suggested that calcium release-activated calcium modulator 1(ORAI1), a key calcium channel pore-forming protein-mediated store-operated Ca2+ entry (SOCE), is associated with human cancer. However, its role in colorectal cancer (CRC) progression has not been well studied. Epithelial-mesenchymal transition (EMT) is a multistep process that occurs during the progression of cancers and is necessary for metastasis of epithelial cancer. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that has been shown to induce EMT. In this study, we are aimed at exploring the effects of ORAI1 on TGF-β1-induced EMT process in CRC cells. Herein, we confirmed ORAI1 expression was higher in CRC tissues than in adjacent non-cancerous tissues by using immunohistochemical staining and Western blot analysis. Higher ORAI1 expression was associated with more advanced clinical stage, higher incidence of metastasis and shorter overall survival. We compared ORAI1 expression in SW480 and SW620 cells, two CRC cell lines with the same genetic background, but different metastatic potential. We found ORAI1 expression was significantly higher in SW620 cells which exhibited higher EMT characteristics. Furthermore, knockdown of ORAI1 suppressed the EMT of SW620 Cells. After induced the EMT process in SW480 cells with TGF-β1, we found treatment of TGF-β1 showed a significant increase in cell migration along with the loss of E-cadherin and an increase in N-cadherin and Vimentin protein levels. Also, TGF-β1 treatment increased ORAI1 expression and was closely associated with the increase of SOCE. Silencing ORAI1 significantly suppressed Ca2+ entry, reversed the changes of EMT-relevant marks expression induced by TGF-β1, and inhibited TGF-β1-mediated calpain activation and cell migration. Finally, we blocked SOCE with 2-APB (2-Aminoethyl diphenylborinate), a pharmacological inhibitor. Interestingly, 2-APB and sh-ORAI1 both exhibited similar inhibition effects to the SW480 cells. In conclusion, our results demonstrated that ORAI1 could mediate TGF-β-Induced EMT by promoting Ca2+ entry and calpain activity in Colorectal Cancer Cells.
Collapse
Affiliation(s)
- Qingjie Kang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangshu Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Denghua Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangxu Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengqiang Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Baohong Yuan
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Galeano-Otero I, Del Toro R, Khatib AM, Rosado JA, Ordóñez-Fernández A, Smani T. SARAF and Orai1 Contribute to Endothelial Cell Activation and Angiogenesis. Front Cell Dev Biol 2021; 9:639952. [PMID: 33748129 PMCID: PMC7970240 DOI: 10.3389/fcell.2021.639952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Angiogenesis is a multistep process that controls endothelial cells (ECs) functioning to form new blood vessels from preexisting vascular beds. This process is tightly regulated by pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), which promote signaling pathways involving the increase in the intracellular Ca2+ concentration ([Ca2+]i). Recent evidence suggests that store-operated calcium entry (SOCE) might play a role in angiogenesis. However, little is known regarding the role of SARAF, SOCE-associated regulatory factor, and Orai1, the pore-forming subunit of the store-operated calcium channel (SOCC), in angiogenesis. Here, we show that SOCE inhibition with GSK-7975A blocks aorta sprouting, as well as human umbilical vein endothelial cell (HUVEC) tube formation and migration. The intraperitoneal injection of GSK-7975A also delays the development of retinal vasculature assessed at postnatal day 6 in mice, since it reduces vessel length and the number of junctions, while it increases lacunarity. Moreover, we find that SARAF and Orai1 are involved in VEGF-mediated [Ca2+]i increase, and their knockdown using siRNA impairs HUVEC tube formation, proliferation, and migration. Finally, immunostaining and in situ proximity ligation assays indicate that SARAF likely interacts with Orai1 in HUVECs. Therefore, these findings show for the first time a functional interaction between SARAF and Orai1 in ECs and highlight their essential role in different steps of the angiogenesis process.
Collapse
Affiliation(s)
- Isabel Galeano-Otero
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain.,CIBERCV, Madrid, Spain
| | - Raquel Del Toro
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain.,CIBERCV, Madrid, Spain
| | | | | | - Antonio Ordóñez-Fernández
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain.,CIBERCV, Madrid, Spain.,Department of Surgery, University of Seville, Seville, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain.,CIBERCV, Madrid, Spain
| |
Collapse
|
15
|
Alharbi A, Zhang Y, Parrington J. Deciphering the Role of Ca 2+ Signalling in Cancer Metastasis: From the Bench to the Bedside. Cancers (Basel) 2021; 13:E179. [PMID: 33430230 PMCID: PMC7825727 DOI: 10.3390/cancers13020179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 01/03/2023] Open
Abstract
Metastatic cancer is one of the major causes of cancer-related mortalities. Metastasis is a complex, multi-process phenomenon, and a hallmark of cancer. Calcium (Ca2+) is a ubiquitous secondary messenger, and it has become evident that Ca2+ signalling plays a vital role in cancer. Ca2+ homeostasis is dysregulated in physiological processes related to tumour metastasis and progression-including cellular adhesion, epithelial-mesenchymal transition, cell migration, motility, and invasion. In this review, we looked at the role of intracellular and extracellular Ca2+ signalling pathways in processes that contribute to metastasis at the local level and also their effects on cancer metastasis globally, as well as at underlying molecular mechanisms and clinical applications. Spatiotemporal Ca2+ homeostasis, in terms of oscillations or waves, is crucial for hindering tumour progression and metastasis. They are a limited number of clinical trials investigating treating patients with advanced stages of various cancer types. Ca2+ signalling may serve as a novel hallmark of cancer due to the versatility of Ca2+ signals in cells, which suggests that the modulation of specific upstream/downstream targets may be a therapeutic approach to treat cancer, particularly in patients with metastatic cancers.
Collapse
Affiliation(s)
- Abeer Alharbi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
- Pharmaceutical Sciences Department, College of Pharmacy, King Saud Bin Abdul-Aziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Yuxuan Zhang
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| | - John Parrington
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| |
Collapse
|
16
|
Liu N, Li X, Fu Y, Li Y, Lu W, Pan Y, Yang J, Kong J. Inhibition of lung cancer by vitamin D depends on downregulation of histidine-rich calcium-binding protein. J Adv Res 2020; 29:13-22. [PMID: 33842001 PMCID: PMC8020154 DOI: 10.1016/j.jare.2020.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022] Open
Abstract
Introduction Intrinsic vitamin D affects the proliferation, apoptosis, invasion, metastasis, and tumorigenesis of lung cancer by regulating tumor signaling pathways. Histidine-rich calcium-binding protein (HRC) maintains Ca2+ homeostasis, which plays crucial roles in the occurrence and development of cancer. Objectives Our study aims to investigate the ability of vitamin D in the regulation of HRC and the role of HRC playing in lung cancer. Methods We investigated the effects of vitamin D on lung cancer and the underlying mechanisms, by measuring HRC and vitamin D receptor (VDR) expression in lung cancer, paracancer, and normal tissues from patients using immunohistochemistry, western blotting, and real time RT-PCR. We transfected H460 lung cancer cells (supplemented or not with vitamin D) with PX458-HRC and pcDNA3.1-HRC plasmids and injected mice with lung cancer cells harboring pcDNA3.1-vector or pcDNA3.1-HRC plasmids. Results Vitamin D inhibited HRC expression and H460 cell migration and proliferation, and promoted apoptosis compared with controls. The expression of HRC and VDR was significantly upregulated and downregulated, respectively, in lung cancer versus paracancer or normal tissues. Cell proliferation and migration were reduced, apoptotic cells were more and tumors were smaller in mice treated with vitamin D/cholecalciferol cholesterol emulsion (CCE) than in vitamin D/CCE+HRC+/+ mice. Conclusion Vitamin D inhibited lung cancer tumor growth, migration, and proliferation by downregulating HRC.
Collapse
Affiliation(s)
- Ning Liu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaofeng Li
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Children's Neurorehabilitation Laboratory, Shenyang Children's Hospital, Shenyang 110032, China
| | - Yu Fu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ye Li
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wanyi Lu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yiming Pan
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jingxin Yang
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Kong
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Corresponding author at: Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
17
|
Leverrier-Penna S, Destaing O, Penna A. Insights and perspectives on calcium channel functions in the cockpit of cancerous space invaders. Cell Calcium 2020; 90:102251. [PMID: 32683175 DOI: 10.1016/j.ceca.2020.102251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Development of metastasis causes the most serious clinical consequences of cancer and is responsible for over 90 % of cancer-related deaths. Hence, a better understanding of the mechanisms that drive metastasis formation appears critical for drug development designed to prevent the spread of cancer and related mortality. Metastasis dissemination is a multistep process supported by the increased motility and invasiveness capacities of tumor cells. To succeed in overcoming the mechanical constraints imposed by the basement membrane and surrounding tissues, cancer cells reorganize their focal adhesions or extend acto-adhesive cellular protrusions, called invadosomes, that can both contact the extracellular matrix and tune its degradation through metalloprotease activity. Over the last decade, accumulating evidence has demonstrated that altered Ca2+ channel activities and/or expression promote tumor cell-specific phenotypic changes, such as exacerbated migration and invasion capacities, leading to metastasis formation. While several studies have addressed the molecular basis of Ca2+ channel-dependent cancer cell migration, we are still far from having a comprehensive vision of the Ca2+ channel-regulated mechanisms of migration/invasion. This is especially true regarding the specific context of invadosome-driven invasion. This review aims to provide an overview of the current evidence supporting a central role for Ca2+ channel-dependent signaling in the regulation of these dynamic degradative structures. It will present available data on the few Ca2+ channels that have been studied in that specific context and discuss some potential interesting actors that have not been fully explored yet.
Collapse
Affiliation(s)
| | - Olivier Destaing
- Institute for Advanced BioSciences, CNRS UMR 5309, INSERM U1209, Institut Albert Bonniot, University Grenoble Alpes, 38700 Grenoble, France.
| | - Aubin Penna
- STIM, CNRS ERL7003, University of Poitiers, 86000 Poitiers, France.
| |
Collapse
|
18
|
D'Souza RS, Lim JY, Turgut A, Servage K, Zhang J, Orth K, Sosale NG, Lazzara MJ, Allegood J, Casanova JE. Calcium-stimulated disassembly of focal adhesions mediated by an ORP3/IQSec1 complex. eLife 2020; 9:54113. [PMID: 32234213 PMCID: PMC7159923 DOI: 10.7554/elife.54113] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Coordinated assembly and disassembly of integrin-mediated focal adhesions (FAs) is essential for cell migration. Many studies have shown that FA disassembly requires Ca2+ influx, however our understanding of this process remains incomplete. Here, we show that Ca2+ influx via STIM1/Orai1 calcium channels, which cluster near FAs, leads to activation of the GTPase Arf5 via the Ca2+-activated GEF IQSec1, and that both IQSec1 and Arf5 activation are essential for adhesion disassembly. We further show that IQSec1 forms a complex with the lipid transfer protein ORP3, and that Ca2+ influx triggers PKC-dependent translocation of this complex to ER/plasma membrane (PM) contact sites adjacent to FAs. In addition to allosterically activating IQSec1, ORP3 also extracts PI4P from the PM, in exchange for phosphatidylcholine. ORP3-mediated lipid exchange is also important for FA turnover. Together, these findings identify a new pathway that links calcium influx to FA turnover during cell migration.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Jun Y Lim
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Alper Turgut
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Kelly Servage
- Department of Molecular Biology, University of Texas Southwest Medical Center, Dallas, United States.,Howard Hughes Medical Institute, Dallas, United States
| | - Junmei Zhang
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwest Medical Center, Dallas, United States.,Howard Hughes Medical Institute, Dallas, United States
| | - Nisha G Sosale
- Department of Chemical Engineering, University of Virginia, Charlottesville, United States
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, United States
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, United States
| | - James E Casanova
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| |
Collapse
|
19
|
Wei J, Ye J, Luo Y, Weng J, He Q, Liu F, Li M, Lin Y, Li Y, Zhang Z, Qu S, Zhang J. EB virus promotes metastatic potential by boosting STIM1-dependent Ca 2+ signaling in nasopharyngeal carcinoma cells. Cancer Lett 2020; 478:122-132. [PMID: 32165272 DOI: 10.1016/j.canlet.2020.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a unique head and neck malignancy with highly metastatic cell-biological characteristics, for which latent EBV-infection is responsible. Our earlier studies showed that EGF-stimulated Ca2+ signaling via store-operated Ca2+ entry (SOCE) was amplified in NPC cells expressing EBV-encoded LMP1, thus contributing to EBV-enhanced metastatic capacities. However, the pathway through which EBV modulates cytosolic Ca2+ signaling still remains unclear. Here, we demonstrated that EBV-infection amplified EGF-stimulated Ca2+ responses through the promotion of intracellular aggregation of STIM1, which serves as a Ca2+ sensor to activate SOCE. Blockage of EBV-remodeled Ca2+ signaling by STIM1-silencing inhibited cell migration by interrupting epithelial-mesenchymal transition (EMT) in vitro, and suppressed tumor dissemination in zebrafish and lymph node metastasis in mice. In addition, STIM1 expression was upregulated in primary NPC tissues compared with normal nasopharyngeal epithelium and stronger among the patients with advanced lymph node metastatic disease (N2-3 stage). Our findings thus indicate that EBV promotes metastatic potential by enhancing STIM1-dependent Ca2+ signaling that manipulates EMT in NPC cells. EBV-modulated Ca2+ signaling could serve as a candidate anti-metastatic target for NPC treatment.
Collapse
Affiliation(s)
- Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, 530021, China
| | - Jiaxiang Ye
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021, China
| | - Yue Luo
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021, China
| | - Jingjin Weng
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, 530021, China
| | - Qian He
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, China
| | - Fei Liu
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Min Li
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, 530021, China
| | - Yan Lin
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021, China
| | - Yongqiang Li
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021, China
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Shenhong Qu
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, 530021, China.
| | - Jinyan Zhang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021, China.
| |
Collapse
|
20
|
Elzamzamy OM, Penner R, Hazlehurst LA. The Role of TRPC1 in Modulating Cancer Progression. Cells 2020; 9:cells9020388. [PMID: 32046188 PMCID: PMC7072717 DOI: 10.3390/cells9020388] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/22/2022] Open
Abstract
Calcium ions (Ca2+) play an important role as second messengers in regulating a plethora of physiological and pathological processes, including the progression of cancer. Several selective and non-selective Ca2+-permeable ion channels are implicated in mediating Ca2+ signaling in cancer cells. In this review, we are focusing on TRPC1, a member of the TRP protein superfamily and a potential modulator of store-operated Ca2+ entry (SOCE) pathways. While TRPC1 is ubiquitously expressed in most tissues, its dysregulated activity may contribute to the hallmarks of various types of cancers, including breast cancer, pancreatic cancer, glioblastoma multiforme, lung cancer, hepatic cancer, multiple myeloma, and thyroid cancer. A range of pharmacological and genetic tools have been developed to address the functional role of TRPC1 in cancer. Interestingly, the unique role of TRPC1 has elevated this channel as a promising target for modulation both in terms of pharmacological inhibition leading to suppression of tumor growth and metastasis, as well as for agonistic strategies eliciting Ca2+ overload and cell death in aggressive metastatic tumor cells.
Collapse
Affiliation(s)
- Osama M Elzamzamy
- Clinical and Translational Sciences Institute, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Reinhold Penner
- The Queen’s Medical Center and University of Hawaii, Honolulu, HI 96813, USA;
| | - Lori A Hazlehurst
- Pharmaceutical Sciences, School of Pharmacy and WVU Cancer Institute, West Virginia University, Morganton, WV 26506, USA
- Correspondence: ; Tel.: +1-304-293-3398
| |
Collapse
|
21
|
Avila-Medina J, Mayoral-González I, Galeano-Otero I, Redondo PC, Rosado JA, Smani T. Pathophysiological Significance of Store-Operated Calcium Entry in Cardiovascular and Skeletal Muscle Disorders and Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:489-504. [PMID: 31646522 DOI: 10.1007/978-3-030-12457-1_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Store-Operated Ca2+ Entry (SOCE) is an important Ca2+ influx pathway expressed by several excitable and non-excitable cell types. SOCE is recognized as relevant signaling pathway not only for physiological process, but also for its involvement in different pathologies. In fact, independent studies demonstrated the implication of essential protein regulating SOCE, such as STIM, Orai and TRPCs, in different pathogenesis and cell disorders, including cardiovascular disease, muscular dystrophies and angiogenesis. Compelling evidence showed that dysregulation in the function and/or expression of isoforms of STIM, Orai or TRPC play pivotal roles in cardiac hypertrophy and heart failure, vascular remodeling and hypertension, skeletal myopathies, and angiogenesis. In this chapter, we summarized the current knowledge concerning the mechanisms underlying abnormal SOCE and its involvement in some diseases, as well as, we discussed the significance of STIM, Orai and TRPC isoforms as possible therapeutic targets for the treatment of angiogenesis, cardiovascular and skeletal muscle diseases.
Collapse
Affiliation(s)
- Javier Avila-Medina
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Isabel Mayoral-González
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- Department of Surgery, University of Seville, Sevilla, Spain
| | - Isabel Galeano-Otero
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Pedro C Redondo
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain.
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain.
- CIBERCV, Madrid, Spain.
| |
Collapse
|
22
|
Lin HH, Chen SJ, Shen MR, Huang YT, Hsieh HP, Lin SY, Lin CC, Chang WSW, Chang JY. Lysosomal cysteine protease cathepsin S is involved in cancer cell motility by regulating store-operated Ca2+ entry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118517. [DOI: 10.1016/j.bbamcr.2019.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
|
23
|
Miao Y, Shen Q, Zhang S, Huang H, Meng X, Zheng X, Yao Z, He Z, Lu S, Cai C, Zou F. Calcium-sensing stromal interaction molecule 2 upregulates nuclear factor of activated T cells 1 and transforming growth factor-β signaling to promote breast cancer metastasis. Breast Cancer Res 2019; 21:99. [PMID: 31464639 PMCID: PMC6716836 DOI: 10.1186/s13058-019-1185-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background Stromal interaction molecule (STIM) 2 is a key calcium-sensing molecule that regulates the stabilization of calcium ions (Ca2+) and therefore regulates downstream Ca2+-associated signaling and cellular events. We hypothesized that STIM2 regulates epithelial-mesenchymal transition (EMT) to promote breast cancer metastasis. Methods We determined the effects of gain, loss, and rescue of STIM2 on cellular motility, levels of EMT-related proteins, and secretion of transforming growth factor-β (TGF-β). We also conducted bioinformatics analyses and in vivo assessments of breast cancer growth and metastasis using xenograft models. Results We found a significant association between STIM2 overexpression and metastatic breast cancer. STIM2 overexpression activated the nuclear factor of activated T cells 1 (NFAT1) and TGF-β signaling. Knockdown of STIM2 inhibited the motility of breast cancer cells by inhibiting EMT via specific suppression of NFAT1 and inhibited mammary tumor metastasis in mice. In contrast, STIM2 overexpression promoted metastasis. These findings were validated in human tissue arrays of 340 breast cancer samples for STIM2. Conclusion Taken together, our results demonstrated that STIM2 specifically regulates NFAT1, which in turn regulates the expression and secretion of TGF-β1 to promote EMT in vitro and in vivo, leading to metastasis of breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-019-1185-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yutian Miao
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siheng Zhang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Hehai Huang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xianchong Zheng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhuocheng Yao
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhanxin He
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Sitong Lu
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chunqing Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
24
|
Uwada J, Yazawa T, Nakazawa H, Mikami D, Krug SM, Fromm M, Sada K, Muramatsu I, Taniguchi T. Store-operated calcium entry (SOCE) contributes to phosphorylation of p38 MAPK and suppression of TNF-α signalling in the intestinal epithelial cells. Cell Signal 2019; 63:109358. [PMID: 31295519 DOI: 10.1016/j.cellsig.2019.109358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/25/2019] [Accepted: 07/06/2019] [Indexed: 01/31/2023]
Abstract
Calcium influx via store-operated calcium entry (SOCE) has an important role for regulation of vast majority of cellular physiological events. MAPK signalling is also another pivotal modulator of many cellular functions. However, the relationship between SOCE and MAPK is not well understood. In this study, we elucidated the involvement of SOCE in Gαq/11 protein-mediated activation of p38 MAPK in an intestinal epithelial cell line HT-29/B6. In this cell line, we previously showed that the stimulation of M3 muscarinic acetylcholine receptor (M3-mAChR) but not histamine H1 receptor (H1R) led to phosphorylation of p38 MAPK which suppressed tumor necrosis factor-α (TNF-α)-induced NF-κB signalling through ADAM17 protease-mediated shedding of TNF receptor-1 (TNFR1). First, we found that stimulation of M3-mAChR and protease-activated receptor-2 (PAR-2) but not H1R induced persistent upregulation of cytosolic Ca2+ concentration through SOCE. Activation of M3-mAChR or PAR-2 also suppressed TNF-α-induced NF-κB phosphorylation, which was dependent on the p38 MAPK activity. Time course experiments revealed that M3-mAChR stimulation evoked intracellular Ca2+-dependent early phase p38 MAPK phosphorylation and extracellular Ca2+-dependent later phase p38 MAPK phosphorylation. This later phase p38 MAPK phosphorylation, evoked by M3-mAChRs or PAR-2, was abolished by inhibition of SOCE. Thapsigargin or ionomycin also phosphorylate p38 MAPK by Ca2+ influx through SOCE, leading to suppression of TNF-α-induced NF-κB phosphorylation. Finally, we showed that p38 MAPK was essential for thapsigargin-induced cleavage of TNFR1 and suppression of TNF-α-induced NF-κB phosphorylation. In conclusion, SOCE is important for p38 MAPK phosphorylation and is involved in TNF-α signalling suppression.
Collapse
Affiliation(s)
- Junsuke Uwada
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan.
| | - Takashi Yazawa
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Hitomi Nakazawa
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Daisuke Mikami
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Susanne M Krug
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Michael Fromm
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Kiyonao Sada
- Department of Genome Science and Microbiology, University of Fukui, Fukui 910-1193, Japan
| | - Ikunobu Muramatsu
- Department of Pharmacology, Kanazawa Medical University, Kanazawa 920-0293, Japan
| | - Takanobu Taniguchi
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| |
Collapse
|
25
|
Store-Operated Ca 2+ Entry in Tumor Progression: From Molecular Mechanisms to Clinical Implications. Cancers (Basel) 2019; 11:cancers11070899. [PMID: 31252656 PMCID: PMC6678533 DOI: 10.3390/cancers11070899] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
The remodeling of Ca2+ homeostasis has been implicated as a critical event in driving malignant phenotypes, such as tumor cell proliferation, motility, and metastasis. Store-operated Ca2+ entry (SOCE) that is elicited by the depletion of the endoplasmic reticulum (ER) Ca2+ stores constitutes the major Ca2+ influx pathways in most nonexcitable cells. Functional coupling between the plasma membrane Orai channels and ER Ca2+-sensing STIM proteins regulates SOCE activation. Previous studies in the human breast, cervical, and other cancer types have shown the functional significance of STIM/Orai-dependent Ca2+ signals in cancer development and progression. This article reviews the information on the regulatory mechanisms of STIM- and Orai-dependent SOCE pathways in the malignant characteristics of cancer, such as proliferation, resistance, migration, invasion, and metastasis. The recent investigations focusing on the emerging importance of SOCE in the cells of the tumor microenvironment, such as tumor angiogenesis and antitumor immunity, are also reviewed. The clinical implications as cancer therapeutics are discussed.
Collapse
|
26
|
Sun G, Chen H, Liang WZ, Jan CR. Exploration of the effect of the alkaloid colchicine on Ca2+ handling and its related physiology in human oral cancer cells. Arch Oral Biol 2019; 102:179-185. [DOI: 10.1016/j.archoralbio.2019.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/15/2019] [Accepted: 04/27/2019] [Indexed: 10/26/2022]
|
27
|
Tang B, Wu J, Zhu MX, Sun X, Liu J, Xie R, Dong TX, Xiao Y, Carethers JM, Yang S, Dong H. VPAC1 couples with TRPV4 channel to promote calcium-dependent gastric cancer progression via a novel autocrine mechanism. Oncogene 2019; 38:3946-3961. [PMID: 30692637 DOI: 10.1038/s41388-019-0709-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 01/20/2023]
Abstract
Although VPAC1 and its ligand vasoactive intestinal peptide (VIP) are important in gastrointestinal physiology, their involvements in progression of gastrointestinal tumor have not been explored. Here, we found that higher expression of VIP/VPAC1 was observed in gastric cancer compared to the adjacent normal tissues. The increased expression of VIP/VPAC1 in gastric cancer correlated positively with invasion, tumor stage, lymph node, distant metastases, and poor survival. Moreover, high expression of VIP and VPAC1, advanced tumor stage and distant metastasis were independent prognostic factors. VPAC1 activation by VIP markedly induced TRPV4-mediated Ca2+ entry, and eventually promoted gastric cancer progression in a Ca2+ signaling-dependent manner. Inhibition of VPAC1 and its signaling pathway could block the progressive responses. VPAC1/TRPV4/Ca2+ signaling in turn enhanced the expression and secretion of VIP in gastric cancer cells, enforcing a positive feedback regulation mechanism. Taken together, our study demonstrate that VPAC1 is significantly overexpressed in gastric cancer and VPAC1/TRPV4/Ca2+ signaling axis could enforce a positive feedback regulation in gastric cancer progression. VIP/VPAC1 may serve as potential prognostic markers and therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| | - Jilin Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Michael X Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xuemei Sun
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rui Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi, China
| | - Tobias Xiao Dong
- Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - John M Carethers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China. .,Department of Medicine, School of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
28
|
Kappel S, Borgström A, Stokłosa P, Dörr K, Peinelt C. Store-operated calcium entry in disease: Beyond STIM/Orai expression levels. Semin Cell Dev Biol 2019; 94:66-73. [PMID: 30630032 DOI: 10.1016/j.semcdb.2019.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/29/2018] [Accepted: 01/05/2019] [Indexed: 12/19/2022]
Abstract
Precise intracellular calcium signaling is crucial to numerous cellular functions. In non-excitable cells, store-operated calcium entry (SOCE) is a key step in the generation of intracellular calcium signals. Tight regulation of SOCE is important, and dysregulation is involved in several pathophysiological cellular malfunctions. The current underlying SOCE, calcium release-activated calcium current (ICRAC), was first discovered almost three decades ago. Since its discovery, the molecular components of ICRAC, Orai1 and stromal interaction molecule 1 (STIM1), have been extensively investigated. Several regulatory mechanisms and proteins contribute to alterations in SOCE and cellular malfunctions in cancer, immune and neurodegenerative diseases, inflammation, and neuronal disorders. This review summarizes these regulatory mechanisms, including glycosylation, pH sensing, and the regulatory proteins golli, α-SNAP, SARAF, ORMDL3, CRACR2A, and TRPM4 channels.
Collapse
Affiliation(s)
- Sven Kappel
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Anna Borgström
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | | | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
29
|
Chen J, Wu Y, Zhang L, Fang X, Hu X. Evidence for calpains in cancer metastasis. J Cell Physiol 2018; 234:8233-8240. [PMID: 30370545 DOI: 10.1002/jcp.27649] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
Metastatic dissemination represents the final stage of tumor progression as well as the principal cause of cancer-associated deaths. Calpains are a conserved family of calcium-dependent cysteine proteinases with ubiquitous or tissue-specific expression. Accumulating evidence indicates a central role for calpains in tumor migration and invasion via participating in several key processes, including focal adhesion dynamics, cytoskeletal remodeling, epithelial-to-mesenchymal transition, and apoptosis. Activated after the increased intracellular calcium concentration ( [ Ca 2 + ] i ) induced by membrane channels and extracellular or intracellular stimuli, calpains induce the limited cleavage or functional modulation of various substrates that serve as metastatic mediators. This review covers established literature to summarize the mechanisms and underlying signaling pathways of calpains in cancer metastasis, making calpains attractive targets for aggressive tumor therapies.
Collapse
Affiliation(s)
- Jiaxin Chen
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yizheng Wu
- Department of Orthopaedic Surgery and Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lumin Zhang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiao Fang
- Department of Anesthesiology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Chen Y, Chen L, Shen M. The distinct role of STIM1 and STIM2 in the regulation of store‐operated Ca
2+
entry and cellular function. J Cell Physiol 2018; 234:8727-8739. [DOI: 10.1002/jcp.27532] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/10/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Yih‐Fung Chen
- Graduate Institute of Natural Products, College of Pharmacy Kaohsiung Medical University Kaohsiung Taiwan
- Department of Medical Research Kaohsiung Medical University Hospital Kaohsiung Taiwan
| | - Li‐Hsien Chen
- Department of Pharmacology, College of Medicine National Cheng Kung University Tainan Taiwan
| | - Meng‐Ru Shen
- Department of Pharmacology, College of Medicine National Cheng Kung University Tainan Taiwan
- Department of Obstetrics and Gynecology National Cheng Kung University Hospital Tainan Taiwan
| |
Collapse
|
31
|
Liu X, Wan X, Kan H, Wang Y, Yu F, Feng L, Jin J, Zhang P, Ma X. Hypoxia-induced upregulation of Orai1 drives colon cancer invasiveness and angiogenesis. Eur J Pharmacol 2018; 832:1-10. [DOI: 10.1016/j.ejphar.2018.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
|
32
|
Pierro C, Zhang X, Kankeu C, Trebak M, Bootman MD, Roderick HL. Oncogenic KRAS suppresses store-operated Ca 2+ entry and I CRAC through ERK pathway-dependent remodelling of STIM expression in colorectal cancer cell lines. Cell Calcium 2018; 72:70-80. [PMID: 29748135 PMCID: PMC6291847 DOI: 10.1016/j.ceca.2018.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/30/2022]
Abstract
The KRAS GTPase plays a fundamental role in transducing signals from plasma membrane growth factor receptors to downstream signalling pathways controlling cell proliferation, survival and migration. Activating KRAS mutations are found in 20% of all cancers and in up to 40% of colorectal cancers, where they contribute to dysregulation of cell processes underlying oncogenic transformation. Multiple KRAS-regulated cell functions are also influenced by changes in intracellular Ca2+ levels that are concurrently modified by receptor signalling pathways. Suppression of intracellular Ca2+ release mechanisms can confer a survival advantage in cancer cells, and changes in Ca2+ entry across the plasma membrane modulate cell migration and proliferation. However, inconsistent remodelling of Ca2+ influx and its signalling role has been reported in studies of transformed cells. To isolate the interaction between altered Ca2+ handling and mutated KRAS in colorectal cancer, we have previously employed isogenic cell line pairs, differing by the presence of an oncogenic KRAS allele (encoding KRASG13D), and have shown that reduced Ca2+ release from the ER and mitochondrial Ca2+ uptake contributes to the survival advantage conferred by oncogenic KRAS. Here we show in the same cell lines, that Store-Operated Ca2+ Entry (SOCE) and its underlying current, ICRAC are under the influence of KRASG13D. Specifically, deletion of the oncogenic KRAS allele resulted in enhanced STIM1 expression and greater Ca2+ influx. Consistent with the role of KRAS in the activation of the ERK pathway, MEK inhibition in cells with KRASG13D resulted in increased STIM1 expression. Further, ectopic expression of STIM1 in HCT 116 cells (which express KRASG13D) rescued SOCE, demonstrating a fundamental role of STIM1 in suppression of Ca2+ entry downstream of KRASG13D. These results add to the understanding of how ERK controls cancer cell physiology and highlight STIM1 as an important biomarker in cancerogenesis.
Collapse
Affiliation(s)
- Cristina Pierro
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Previously at Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology and Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey PA 17033, United States
| | - Cynthia Kankeu
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology and Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey PA 17033, United States
| | - Martin D Bootman
- Previously at Babraham Institute, Babraham Research Campus, Cambridge, UK; School of Life, Health and Chemical Sciences, The Open University, UK
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Previously at Babraham Institute, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
33
|
Deregulation of calcium homeostasis in Bcr-Abl-dependent chronic myeloid leukemia. Oncotarget 2018; 9:26309-26327. [PMID: 29899861 PMCID: PMC5995172 DOI: 10.18632/oncotarget.25241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Background Chronic myeloid leukemia (CML) results from hematopoietic stem cell transformation by the bcr-abl chimeric oncogene, encoding a 210 kDa protein with constitutive tyrosine kinase activity. In spite of the efficiency of tyrosine kinase inhibitors (TKI; Imatinib), other strategies are explored to eliminate CML leukemia stem cells, such as calcium pathways. Results In this work, we showed that Store-Operated Calcium Entry (SOCE) and thrombin induced calcium influx were decreased in Bcr-Abl expressing 32d cells (32d-p210). The 32d-p210 cells showed modified Orai1/STIM1 ratio and reduced TRPC1 expression that could explain SOCE reduction. Decrease in SOCE and thrombin induced calcium entry was associated to reduced Nuclear Factor of Activated T cells (NFAT) nucleus translocation in 32d-p210 cells. We demonstrated that SOCE blockers enhanced cell mobility of 32d-p210 cells and reduced the proliferation rate in both 32d cell lines. TKI treatment slightly reduced the thrombin-induced response, but imatinib restored SOCE to the wild type level. Bcr-Abl is also known to deregulate Protein Kinase C (PKC), which was described to modulate calcium entries. We showed that PKC enhances SOCE and thrombin induced calcium entries in control cells while this effect is lost in Bcr-Abl-expressing cells. Conclusion The tyrosine kinase activity seems to regulate calcium entries probably not directly but through a global cellular reorganization involving a PKC pathway. Altogether, calcium entries are deregulated in Bcr-Abl-expressing cells and could represent an interesting therapeutic target in combination with TKI.
Collapse
|
34
|
Stevenson RJ, Azimi I, Flanagan JU, Inserra M, Vetter I, Monteith GR, Denny WA. An SAR study of hydroxy-trifluoromethylpyrazolines as inhibitors of Orai1-mediated store operated Ca 2+ entry in MDA-MB-231 breast cancer cells using a convenient Fluorescence Imaging Plate Reader assay. Bioorg Med Chem 2018; 26:3406-3413. [PMID: 29776832 DOI: 10.1016/j.bmc.2018.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
The proteins Orai1 and STIM1 control store-operated Ca2+ entry (SOCE) into cells. SOCE is important for migration, invasion and metastasis of MDA-MB-231 human triple negative breast cancer (TNBC) cells and has been proposed as a target for cancer drug discovery. Two hit compounds from a medium throughput screen, displayed encouraging inhibition of SOCE in MDA-MB-231 cells, as measured by a Fluorescence Imaging Plate Reader (FLIPR) Ca2+ assay. Following NMR spectroscopic analysis of these hits and reassignment of their structures as 5-hydroxy-5-trifluoromethylpyrazolines, a series of analogues was prepared via thermal condensation reactions between substituted acylhydrazones and trifluoromethyl 1,3-dicarbonyl arenes. Structure-activity relationship (SAR) studies showed that small lipophilic substituents at the 2- and 3-positions of the RHS and 2-, 3- and 4-postions of the LHS terminal benzene rings improved activity, resulting in a novel class of potent and selective inhibitors of SOCE.
Collapse
Affiliation(s)
- Ralph J Stevenson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Iman Azimi
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia; Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jack U Flanagan
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Marco Inserra
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Gregory R Monteith
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
35
|
Kerkhofs M, Bittremieux M, Morciano G, Giorgi C, Pinton P, Parys JB, Bultynck G. Emerging molecular mechanisms in chemotherapy: Ca 2+ signaling at the mitochondria-associated endoplasmic reticulum membranes. Cell Death Dis 2018; 9:334. [PMID: 29491433 PMCID: PMC5832420 DOI: 10.1038/s41419-017-0179-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022]
Abstract
Inter-organellar communication often takes the form of Ca2+ signals. These Ca2+ signals originate from the endoplasmic reticulum (ER) and regulate different cellular processes like metabolism, fertilization, migration, and cell fate. A prime target for Ca2+ signals are the mitochondria. ER-mitochondrial Ca2+ transfer is possible through the existence of mitochondria-associated ER membranes (MAMs), ER structures that are in the proximity of the mitochondria. This creates a micro-domain in which the Ca2+ concentrations are manifold higher than in the cytosol, allowing for rapid mitochondrial Ca2+ uptake. In the mitochondria, the Ca2+ signal is decoded differentially depending on its spatiotemporal characteristics. While Ca2+ oscillations stimulate metabolism and constitute pro-survival signaling, mitochondrial Ca2+ overload results in apoptosis. Many chemotherapeutics depend on efficient ER-mitochondrial Ca2+ signaling to exert their function. However, several oncogenes and tumor suppressors present in the MAMs can alter Ca2+ signaling in cancer cells, rendering chemotherapeutics ineffective. In this review, we will discuss recent studies that connect ER-mitochondrial Ca2+ transfer, tumor suppressors and oncogenes at the MAMs, and chemotherapy.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Mart Bittremieux
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, E.S: Health Science Foundation, Cotignola, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, E.S: Health Science Foundation, Cotignola, Italy
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Jan B Parys
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium.
| |
Collapse
|
36
|
Kappel S, Marques IJ, Zoni E, Stokłosa P, Peinelt C, Mercader N, Kruithof-de Julio M, Borgström A. Store-Operated Ca 2+ Entry as a Prostate Cancer Biomarker - a Riddle with Perspectives. ACTA ACUST UNITED AC 2017; 3:208-217. [PMID: 29951353 PMCID: PMC6010502 DOI: 10.1007/s40610-017-0072-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose of Review Store-operated calcium entry (SOCE) is dysregulated in prostate cancer, contributing to increased cellular migration and proliferation and preventing cancer cell apoptosis. We here summarize findings on gene expression levels and functions of SOCE components, stromal interaction molecules (STIM1 and STIM2), and members of the Orai protein family (Orai1, 2, and 3) in prostate cancer. Moreover, we introduce new research models that promise to provide insights into whether dysregulated SOCE signaling has clinically relevant implications in terms of increasing the migration and invasion of prostate cancer cells. Recent Findings Recent reports on Orai1 and Orai3 expression levels and function were in part controversial probably due to the heterogeneous nature of prostate cancer. Lately, in prostate cancer cells, transient receptor melastatin 4 channel was shown to alter SOCE and play a role in migration and proliferation. We specifically highlight new cancer research models: a subpopulation of cells that show tumor initiation and metastatic potential in mice and zebrafish models. Summary This review focuses on SOCE component dysregulation in prostate cancer and analyzes several preclinical, cellular, and animal cancer research models.
Collapse
Affiliation(s)
- Sven Kappel
- 1Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | | | - Eugenio Zoni
- 3Urology Research Laboratory, Department of Urology and Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Paulina Stokłosa
- 1Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Christine Peinelt
- 1Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Nadia Mercader
- 2Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- 3Urology Research Laboratory, Department of Urology and Department of Clinical Research, University of Bern, Bern, Switzerland.,4Department of Urology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Anna Borgström
- 1Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Abstract
Cancer survival is largely impacted by the dissemination of cancer cells from the original tumor site to secondary tissues or organs through metastasis. Targets for antimetastatic therapies have recently become a focus of research, but progress will require a better understanding of the molecular mechanisms driving metastasis. Selenoproteins play important roles in many of the cellular activities underlying metastasis including cell adhesion, matrix degradation and migration, invasion into the blood and extravasation into secondary tissues, and subsequent proliferation into metastatic tumors along with the angiogenesis required for growth. In this review the roles identified for different selenoproteins in these steps and how they may promote or inhibit metastatic cancers is discussed. These roles include selenoenzyme modulation of redox tone and detoxification of reactive oxygen species, calcium homeostasis and unfolded protein responses regulated by endoplasmic reticulum selenoproteins, and the multiple physiological responses influenced by other selenoproteins.
Collapse
Affiliation(s)
- Michael P Marciel
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Peter R Hoffmann
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States.
| |
Collapse
|
38
|
Büsselberg D, Florea AM. Targeting Intracellular Calcium Signaling ([Ca 2+] i) to Overcome Acquired Multidrug Resistance of Cancer Cells: A Mini-Overview. Cancers (Basel) 2017; 9:cancers9050048. [PMID: 28486397 PMCID: PMC5447958 DOI: 10.3390/cancers9050048] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer is a main public health problem all over the world. It affects millions of humans no matter their age, gender, education, or social status. Although chemotherapy is the main strategy for the treatment of cancer, a major problem limiting its success is the intrinsic or acquired drug resistance. Therefore, cancer drug resistance is a major impediment in medical oncology resulting in a failure of a successful cancer treatment. This mini-overview focuses on the interdependent relationship between intracellular calcium ([Ca2+]i) signaling and multidrug resistance of cancer cells, acquired upon treatment of tumors with anticancer drugs. We propose that [Ca2+]i signaling modulates gene expression of multidrug resistant (MDR) genes which in turn can be modulated by epigenetic factors which in turn leads to modified protein expression in drug resistant tumor cells. A precise knowledge of these mechanisms will help to develop new therapeutic strategies for drug resistant tumors and will improve current chemotherapy.
Collapse
Affiliation(s)
- Dietrich Büsselberg
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, POB 24144 Doha, Qatar.
| | - Ana-Maria Florea
- Institute of Neuropathology, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
39
|
Calcium remodeling in colorectal cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:843-849. [PMID: 28087343 DOI: 10.1016/j.bbamcr.2017.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/07/2017] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) is the third most frequent form of cancer and the fourth leading cause of cancer-related death in the world. Basic and clinical data indicate that aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) may prevent colon cancer but mechanisms remain unknown. Aspirin metabolite salicylate and other NSAIDs may inhibit tumor cell growth acting on store-operated Ca2+ entry (SOCE), suggesting an important role for this pathway in CRC. Consistently, SOCE is emerging as a novel player in different forms of cancer, including CRC. SOCE and store-operated currents (SOCs) are dramatically enhanced in CRC while Ca2+ stores are partially empty in CRC cells. These features may contribute to CRC hallmarks including enhanced cell proliferation, migration, invasion and survival. At the molecular level, enhanced SOCE and depleted stores are mediated by overexpression of Orai1, Stromal interaction protein 1 (STIM1) and Transient receptor protein channel 1 (TRPC1) and downregulation of STIM2. In normal colonic cells, SOCE is mediated by Ca2+-release activated Ca2+ channels made of STIM1, STIM2 and Orai1. In CRC cells, SOCE is mediated by different store-operated currents (SOCs) driven by STIM1, Orai1 and TRPC1. Loss of STIM2 contributes to depletion of Ca2+ stores and enhanced resistance to cell death in CRC cells. Thus, SOCE is a novel key player in CRC and inhibition by salicylate and other NSAIDs may contribute to explain chemoprevention activity. SUMMARY Colorectal cancer (CRC) is the third most frequent form of cancer worldwide. Recent evidence suggests that intracellular Ca2+ remodeling may contribute to cancer hallmarks. In addition, aspirin and other NSAIDs might prevent CRC acting on remodeled Ca2+ entry pathways. In this review, we will briefly describe 1) the players involved in intracellular Ca2+ homeostasis with a particular emphasis on the mechanisms involved in SOCE activation and inactivation, 2) the evidence that aspirin metabolite salicylate and other NSAIDs inhibits tumor cell growth acting on SOCE, 3) evidences on the remodeling of intracellular Ca2+ in cancer with a particular emphasis in SOCE, 4) the remodeling of SOCE and Ca2+ store content in CRC and, finally, 5) the molecular basis of Ca2+ remodeling in CRC. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
|
40
|
Fouani L, Menezes SV, Paulson M, Richardson DR, Kovacevic Z. Metals and metastasis: Exploiting the role of metals in cancer metastasis to develop novel anti-metastatic agents. Pharmacol Res 2017; 115:275-287. [DOI: 10.1016/j.phrs.2016.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 01/06/2023]
|
41
|
Blatter LA. Tissue Specificity: SOCE: Implications for Ca 2+ Handling in Endothelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:343-361. [PMID: 28900923 DOI: 10.1007/978-3-319-57732-6_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many cellular functions of the vascular endothelium are regulated by fine-tuned global and local, microdomain-confined changes of cytosolic free Ca2+ ([Ca2+]i). Vasoactive agonist-induced stimulation of vascular endothelial cells (VECs) typically induces Ca2+ release through IP3 receptor Ca2+ release channels embedded in the membrane of the endoplasmic reticulum (ER) Ca2+ store, followed by Ca2+ entry from the extracellular space elicited by Ca2+ store depletion and referred to as capacitative or store-operated Ca2+ entry (SOCE). In vascular endothelial cells, SOCE is graded with the degree of store depletion and controlled locally in the subcellular microdomain where depletion occurs. SOCE provides distinct Ca2+ signals that selectively control specific endothelial functions: in calf pulmonary artery endothelial cells, the SOCE Ca2+ signal drives nitric oxide (an endothelium-derived relaxing factor of the vascular smooth muscle) production and controls activation and nuclear translocation of the transcription factor NFAT. Both cellular events are not affected by Ca2+ signals of comparable magnitude arising directly from Ca2+ release from intracellular stores, clearly indicating that SOCE regulates specific Ca2+-dependent cellular tasks by a unique and exclusive mechanism. This review discusses the mechanisms of intracellular Ca2+ regulation in vascular endothelial cells and the role of store-operated Ca2+ entry for endothelium-dependent smooth muscle relaxation and nitric oxide signaling, endothelial oxidative stress response, and excitation-transcription coupling in the vascular endothelium.
Collapse
Affiliation(s)
- Lothar A Blatter
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL, 60612, USA.
| |
Collapse
|
42
|
Capiod T, Haiech J, Heizmann CW, Krebs J, Mignen O. Calcium and Cell Fate. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1335-6. [PMID: 26944479 DOI: 10.1016/j.bbamcr.2016.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thierry Capiod
- Inserm U1151, Institut Necker Enfants Malades (INEM), Faculté de Médecine Paris Descartes, Paris, France; UMR7175, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS) and Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
| | - Jacques Haiech
- UMR7175, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS) and Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
| | - Claus W Heizmann
- Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University of Zurich, Zurich, Switzerland.
| | - Joachim Krebs
- NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Olivier Mignen
- Inserm U1078, Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France.
| |
Collapse
|