1
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
2
|
Garavaglia ML, Bodega F, Porta C, Milzani A, Sironi C, Dalle-Donne I. Molecular Impact of Conventional and Electronic Cigarettes on Pulmonary Surfactant. Int J Mol Sci 2023; 24:11702. [PMID: 37511463 PMCID: PMC10380520 DOI: 10.3390/ijms241411702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.
Collapse
Affiliation(s)
| | - Francesca Bodega
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Porta
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Aldo Milzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Sironi
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
3
|
Liekkinen J, Olżyńska A, Cwiklik L, Bernardino de la Serna J, Vattulainen I, Javanainen M. Surfactant Proteins SP-B and SP-C in Pulmonary Surfactant Monolayers: Physical Properties Controlled by Specific Protein-Lipid Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4338-4350. [PMID: 36917773 PMCID: PMC10061932 DOI: 10.1021/acs.langmuir.2c03349] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The lining of the alveoli is covered by pulmonary surfactant, a complex mixture of surface-active lipids and proteins that enables efficient gas exchange between inhaled air and the circulation. Despite decades of advancements in the study of the pulmonary surfactant, the molecular scale behavior of the surfactant and the inherent role of the number of different lipids and proteins in surfactant behavior are not fully understood. The most important proteins in this complex system are the surfactant proteins SP-B and SP-C. Given this, in this work we performed nonequilibrium all-atom molecular dynamics simulations to study the interplay of SP-B and SP-C with multicomponent lipid monolayers mimicking the pulmonary surfactant in composition. The simulations were complemented by z-scan fluorescence correlation spectroscopy and atomic force microscopy measurements. Our state-of-the-art simulation model reproduces experimental pressure-area isotherms and lateral diffusion coefficients. In agreement with previous research, the inclusion of either SP-B and SP-C increases surface pressure, and our simulations provide a molecular scale explanation for this effect: The proteins display preferential lipid interactions with phosphatidylglycerol, they reside predominantly in the lipid acyl chain region, and they partition into the liquid expanded phase or even induce it in an otherwise packed monolayer. The latter effect is also visible in our atomic force microscopy images. The research done contributes to a better understanding of the roles of specific lipids and proteins in surfactant function, thus helping to develop better synthetic products for surfactant replacement therapy used in the treatment of many fatal lung-related injuries and diseases.
Collapse
Affiliation(s)
- Juho Liekkinen
- Department
of Physics, University of Helsinki, FI-00560 Helsinki, Finland
| | - Agnieszka Olżyńska
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of
Sciences, CZ-18223 Prague, Czech Republic
| | - Lukasz Cwiklik
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of
Sciences, CZ-18223 Prague, Czech Republic
| | - Jorge Bernardino de la Serna
- National
Heart and Lung Institute, Imperial College
London, Sir Alexander Fleming Building, London SW7 2AZ, U.K.
- NIHR
Imperial Biomedical Research Centre, London SW7 2AZ, U.K.
| | - Ilpo Vattulainen
- Department
of Physics, University of Helsinki, FI-00560 Helsinki, Finland
| | - Matti Javanainen
- Institute
of Biotechnology, University of Helsinki, FI-00790 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-16100 Prague 6, Czech Republic
| |
Collapse
|
4
|
A recipe for a good clinical pulmonary surfactant. Biomed J 2022; 45:615-628. [PMID: 35272060 PMCID: PMC9486245 DOI: 10.1016/j.bj.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
The lives of thousands premature babies have been saved along the last thirty years thanks to the establishment and consolidation of pulmonary surfactant replacement therapies (SRT). It took some time to close the gap between the identification of the biophysical and molecular causes of the high mortality associated with respiratory distress syndrome in very premature babies and the development of a proper therapy. Closing the gap required the elucidation of some key questions defining the structure–function relationships in surfactant as well as the particular role of the different molecular components assembled into the surfactant system. On the other hand, the application of SRT as part of treatments targeting other devastating respiratory pathologies, in babies and adults, is depending on further extensive research still required before enough amounts of good humanized clinical surfactants will be available. This review summarizes our current concepts on the compositional and structural determinants defining pulmonary surfactant activity, the principles behind the development of efficient natural animal-derived or recombinant or synthetic therapeutic surfactants, as well as a the most promising lines of research that are already opening new perspectives in the application of tailored surfactant therapies to treat important yet unresolved respiratory pathologies.
Collapse
|
5
|
Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. COATINGS 2022. [DOI: 10.3390/coatings12020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pollution is currently a public health problem associated with different cardiovascular and respiratory diseases. These are commonly originated as a result of the pollutant transport to the alveolar cavity after their inhalation. Once pollutants enter the alveolar cavity, they are deposited on the lung surfactant (LS) film, altering their mechanical performance which increases the respiratory work and can induce a premature alveolar collapse. Furthermore, the interactions of pollutants with LS can induce the formation of an LS corona decorating the pollutant surface, favoring their penetration into the bloodstream and distribution along different organs. Therefore, it is necessary to understand the most fundamental aspects of the interaction of particulate pollutants with LS to mitigate their effects, and design therapeutic strategies. However, the use of animal models is often invasive, and requires a careful examination of different bioethics aspects. This makes it necessary to design in vitro models mimicking some physico-chemical aspects with relevance for LS performance, which can be done by exploiting the tools provided by the science and technology of interfaces to shed light on the most fundamental physico-chemical bases governing the interaction between LS and particulate matter. This review provides an updated perspective of the use of fluid films of LS models for shedding light on the potential impact of particulate matter in the performance of LS film. It should be noted that even though the used model systems cannot account for some physiological aspects, it is expected that the information contained in this review can contribute on the understanding of the potential toxicological effects of air pollution.
Collapse
|
6
|
Castillo-Sánchez JC, Roldán N, García-Álvarez B, Batllori E, Galindo A, Cruz A, Perez-Gil J. The highly packed and dehydrated structure of pre-formed unexposed human pulmonary surfactant isolated from amniotic fluid. Am J Physiol Lung Cell Mol Physiol 2021; 322:L191-L203. [PMID: 34851730 DOI: 10.1152/ajplung.00230.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
By coating the alveolar air-liquid interface, lung surfactant overwhelms surface tension forces that, otherwise, would hinder the lifetime effort of breathing. Years of research have provided a picture of how highly hydrophobic and specialized proteins in surfactant promote rapid and efficient formation of phospholipid-based complex three-dimensional films at the respiratory surface, highly stable under the demanding breathing mechanics. However, recent evidence suggest that the structure and performance of surfactant typically isolated from bronchoalveolar lung lavages may be far from that of nascent, still unused, surfactant as freshly secreted by type II pneumocytes into the alveolar airspaces. In the present work, we report the isolation of lung surfactant from human amniotic fluid (amniotic fluid surfactant, AFS) and a detailed description of its composition, structure and surface activity in comparison to a natural surfactant (NS) purified from porcine bronchoalveolar lavages. We observe that the lipid/protein complexes in AFS exhibit a substantially higher lipid packing and dehydration than in NS. AFS shows melting transitions at higher temperatures than NS and a conspicuous presence of non-lamellar phases. The surface activity of AFS is not only comparable to that of NS under physiologically-meaningful conditions, but displays significantly higher resistance to inhibition by serum or meconium, agents that inactivate surfactant in the context of severe respiratory pathologies. We propose that AFS may be the optimal model to study the molecular mechanisms sustaining pulmonary surfactant performance in health and disease, and the reference material to develop improved therapeutic surfactant preparations to treat yet unresolved respiratory pathologies.
Collapse
Affiliation(s)
- José Carlos Castillo-Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| | - Nuria Roldán
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| | - Begoña García-Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Emma Batllori
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| | - Alberto Galindo
- Department of Obstetrics and Gynecology, Hospital Universitario 12 de Octubre. Red de Salud Materno Infantil y del Desarrollo (SAMID). Instituto de Investigación Hospital 12 de Octubre (imas12). Universidad Complutense de Madrid, Spain
| | - Antonio Cruz
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| | - Jesus Perez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| |
Collapse
|
7
|
Compositional, structural and functional properties of discrete coexisting complexes within bronchoalveolar pulmonary surfactant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1864:183808. [PMID: 34687755 DOI: 10.1016/j.bbamem.2021.183808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022]
Abstract
Lung surfactant (LS) stabilizes the respiratory surface by forming a film at the alveolar air-liquid interface that reduces surface tension and minimizes the work of breathing. Typically, this surface-active agent has been isolated from animal lungs both for research and biomedical applications. However, these materials are constituted by complex membranous architectures including surface-active and inactive lipid/protein assemblies. In this work, we describe the composition, structure and surface activity of discrete membranous entities that are part of a LS preparation isolated from bronchoalveolar lavages of porcine lungs. Seven different fractions could be resolved from whole surfactant subjected to sucrose density gradient centrifugation. Detailed compositional characterization revealed differences in protein and cholesterol content but no distinct saturated:unsaturated phosphatidylcholine ratios. Moreover, no significant differences were detected regarding apparent hydration at the headgroup region of membranes, as reported by the probe Laurdan, and lipid chain mobility analysed by electron spin resonance (ESR) in spite of the variety of membranous assemblies observed by transmission electron microscopy. In addition, six of the seven separated LS subfractions formed similar, essentially disordered-like, interfacial films and performed efficient surface activity, under physiologically relevant conditions. Altogether, our work show that a LS isolated from porcine lungs is comprised by a heterogenous population of membranous assemblies lacking freshly secreted unused LS complexes sustaining highly dehydrated and ordered membranous assemblies as previously reported. We propose that surfactant subfractions may illustrate intermediates in sequential structural steps within the structural transformations occurring along the respiratory compression-expansion cycles.
Collapse
|
8
|
Pioselli B, Salomone F, Mazzola G, Amidani D, Sgarbi E, Amadei F, Murgia X, Catinella S, Villetti G, De Luca D, Carnielli V, Civelli M. Pulmonary surfactant: a unique biomaterial with life-saving therapeutic applications. Curr Med Chem 2021; 29:526-590. [PMID: 34525915 DOI: 10.2174/0929867328666210825110421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Pulmonary surfactant is a complex lipoprotein mixture secreted into the alveolar lumen by type 2 pneumocytes, which is composed by tens of different lipids (approximately 90% of its entire mass) and surfactant proteins (approximately 10% of the mass). It is crucially involved in maintaining lung homeostasis by reducing the values of alveolar liquid surface tension close to zero at end-expiration, thereby avoiding the alveolar collapse, and assembling a chemical and physical barrier against inhaled pathogens. A deficient amount of surfactant or its functional inactivation is directly linked to a wide range of lung pathologies, including the neonatal respiratory distress syndrome. This paper reviews the main biophysical concepts of surfactant activity and its inactivation mechanisms, and describes the past, present and future roles of surfactant replacement therapy, focusing on the exogenous surfactant preparations marketed worldwide and new formulations under development. The closing section describes the pulmonary surfactant in the context of drug delivery. Thanks to its peculiar composition, biocompatibility, and alveolar spreading capability, the surfactant may work not only as a shuttle to the branched anatomy of the lung for other drugs but also as a modulator for their release, opening to innovative therapeutic avenues for the treatment of several respiratory diseases.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Sgarbi
- Preclinical R&D, Chiesi Farmaceutici, Parma. Italy
| | | | - Xabi Murgia
- Department of Biotechnology, GAIKER Technology Centre, Zamudio. Spain
| | | | | | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Antoine Béclère Medical Center, APHP, South Paris University Hospitals, Paris, France; Physiopathology and Therapeutic Innovation Unit-U999, South Paris-Saclay University, Paris. France
| | - Virgilio Carnielli
- Division of Neonatology, G Salesi Women and Children's Hospital, Polytechnical University of Marche, Ancona. Italy
| | | |
Collapse
|
9
|
Ai Q, Lin X, Xie H, Li B, Liao M, Fan H. Proteome Analysis in PAM Cells Reveals That African Swine Fever Virus Can Regulate the Level of Intracellular Polyamines to Facilitate Its Own Replication through ARG1. Viruses 2021; 13:v13071236. [PMID: 34206713 PMCID: PMC8310191 DOI: 10.3390/v13071236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
In 2018, African swine fever broke out in China, and the death rate after infection was close to 100%. There is no effective and safe vaccine in the world. In order to better characterize and understand the virus–host-cell interaction, quantitative proteomics was performed on porcine alveolar macrophages (PAM) infected with ASFV through tandem mass spectrometry (TMT) technology, high-performance liquid chromatography (HPLC), and mass spectrometry (MS). The proteome difference between the simulated group and the ASFV-infected group was found at 24 h. A total of 4218 proteins were identified, including 306 up-regulated differentially expressed proteins and 238 down-regulated differentially expressed proteins. Western blot analysis confirmed changes in the expression level of the selected protein. Pathway analysis is used to reveal the regulation of protein and interaction pathways after ASFV infection. Functional network and pathway analysis can provide an insight into the complexity and dynamics of virus–host cell interactions. Further study combined with proteomics data found that ARG1 has a very important effect on ASFV replication. It should be noted that the host metabolic pathway of ARG1-polyamine is important for virus replication, revealing that the virus may facilitate its own replication by regulating the level of small molecules in the host cell.
Collapse
Affiliation(s)
- Qiangyun Ai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiwei Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
| | - Hangao Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China;
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence: (M.L.); (H.F.); Tel.: +86-20-85280240 (M.L.); +86-20-85283309 (H.F.)
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.A.); (X.L.); (H.X.)
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence: (M.L.); (H.F.); Tel.: +86-20-85280240 (M.L.); +86-20-85283309 (H.F.)
| |
Collapse
|
10
|
Kiener M, Roldan N, Machahua C, Sengupta A, Geiser T, Guenat OT, Funke-Chambour M, Hobi N, Kruithof-de Julio M. Human-Based Advanced in vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19. Front Med (Lausanne) 2021; 8:644678. [PMID: 34026781 PMCID: PMC8139419 DOI: 10.3389/fmed.2021.644678] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused considerable socio-economic burden, which fueled the development of treatment strategies and vaccines at an unprecedented speed. However, our knowledge on disease recovery is sparse and concerns about long-term pulmonary impairments are increasing. Causing a broad spectrum of symptoms, COVID-19 can manifest as acute respiratory distress syndrome (ARDS) in the most severely affected patients. Notably, pulmonary infection with Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the causing agent of COVID-19, induces diffuse alveolar damage (DAD) followed by fibrotic remodeling and persistent reduced oxygenation in some patients. It is currently not known whether tissue scaring fully resolves or progresses to interstitial pulmonary fibrosis. The most aggressive form of pulmonary fibrosis is idiopathic pulmonary fibrosis (IPF). IPF is a fatal disease that progressively destroys alveolar architecture by uncontrolled fibroblast proliferation and the deposition of collagen and extracellular matrix (ECM) proteins. It is assumed that micro-injuries to the alveolar epithelium may be induced by inhalation of micro-particles, pathophysiological mechanical stress or viral infections, which can result in abnormal wound healing response. However, the exact underlying causes and molecular mechanisms of lung fibrosis are poorly understood due to the limited availability of clinically relevant models. Recently, the emergence of SARS-CoV-2 with the urgent need to investigate its pathogenesis and address drug options, has led to the broad application of in vivo and in vitro models to study lung diseases. In particular, advanced in vitro models including precision-cut lung slices (PCLS), lung organoids, 3D in vitro tissues and lung-on-chip (LOC) models have been successfully employed for drug screens. In order to gain a deeper understanding of SARS-CoV-2 infection and ultimately alveolar tissue regeneration, it will be crucial to optimize the available models for SARS-CoV-2 infection in multicellular systems that recapitulate tissue regeneration and fibrotic remodeling. Current evidence for SARS-CoV-2 mediated pulmonary fibrosis and a selection of classical and novel lung models will be discussed in this review.
Collapse
Affiliation(s)
- Mirjam Kiener
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Nuria Roldan
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Carlos Machahua
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olivier Thierry Guenat
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuela Funke-Chambour
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nina Hobi
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research DBMR, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
- Organoid Core, Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Structural hallmarks of lung surfactant: Lipid-protein interactions, membrane structure and future challenges. Arch Biochem Biophys 2021; 703:108850. [PMID: 33753033 DOI: 10.1016/j.abb.2021.108850] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022]
Abstract
Lung surfactant (LS) is an outstanding example of how a highly regulated and dynamic membrane-based system has evolved to sustain a wealth of structural reorganizations in order to accomplish its biophysical function, as it coats and stabilizes the respiratory air-liquid interface in the mammalian lung. The present review dissects the complexity of the structure-function relationships in LS through an updated description of the lipid-protein interactions and the membrane structures that sustain its synthesis, secretion, interfacial performance and recycling. We also revise the current models and the biophysical techniques employed to study the membranous architecture of LS. It is important to consider that the structure and functional properties of LS are often studied in bulk or under static conditions, in spite that surfactant function is strongly connected with a highly dynamic behaviour, sustained by very polymorphic structures and lipid-lipid, lipid-protein and protein-protein interactions that reorganize in precise spatio-temporal coordinates. We have tried to underline the evidences available of the existence of such structural dynamism in LS. A last important aspect is that the synthesis and assembly of LS is a strongly regulated intracellular process to ensure the establishment of the proper interactions driving LS surface activity, while protecting the integrity of other cell membranes. The use of simplified lipid models or partial natural materials purified from animal tissues could be too simplistic to understand the true molecular mechanisms defining surfactant function in vivo. In this line, we will bring into the attention of the reader the methodological challenges and the questions still open to understand the structure-function relationships of LS at its full biological relevance.
Collapse
|
12
|
Post-correlation on-lamella cryo-CLEM reveals the membrane architecture of lamellar bodies. Commun Biol 2021; 4:137. [PMID: 33514845 PMCID: PMC7846596 DOI: 10.1038/s42003-020-01567-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/04/2020] [Indexed: 11/12/2022] Open
Abstract
Lamellar bodies (LBs) are surfactant-rich organelles in alveolar cells. LBs disassemble into a lipid-protein network that reduces surface tension and facilitates gas exchange in the alveolar cavity. Current knowledge of LB architecture is predominantly based on electron microscopy studies using disruptive sample preparation methods. We established and validated a post-correlation on-lamella cryo-correlative light and electron microscopy approach for cryo-FIB milled cells to structurally characterize and validate the identity of LBs in their unperturbed state. Using deconvolution and 3D image registration, we were able to identify fluorescently labeled membrane structures analyzed by cryo-electron tomography. In situ cryo-electron tomography of A549 cells as well as primary Human Small Airway Epithelial Cells revealed that LBs are composed of membrane sheets frequently attached to the limiting membrane through “T”-junctions. We report a so far undescribed outer membrane dome protein complex (OMDP) on the limiting membrane of LBs. Our data suggest that LB biogenesis is driven by parallel membrane sheet import and by the curvature of the limiting membrane to maximize lipid storage capacity. Using the post-correlation on-lamella cryo-CLEM workflow, Klein, Wimmer et al. show that lamellar bodies (LBs) are composed of membrane sheets frequently attached to the limiting membrane through T-junctions in ABCA3 overexpressing cells and in primary human small airway epithelial cells. This study provides insights into LB biogenesis and membrane packing inside the LB.
Collapse
|
13
|
Martínez-Calle M, Parra-Ortiz E, Cruz A, Olmeda B, Pérez-Gil J. Towards the Molecular Mechanism of Pulmonary Surfactant Protein SP-B: At the Crossroad of Membrane Permeability and Interfacial Lipid Transfer. J Mol Biol 2020; 433:166749. [PMID: 33309854 DOI: 10.1016/j.jmb.2020.166749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/14/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022]
Abstract
Pulmonary surfactant is a lipid-protein complex that coats the alveolar air-liquid interface, enabling the proper functioning of lung mechanics. The hydrophobic surfactant protein SP-B, in particular, plays an indispensable role in promoting the rapid adsorption of phospholipids into the interface. For this, formation of SP-B ring-shaped assemblies seems to be important, as oligomerization could be required for the ability of the protein to generate membrane contacts and to mediate lipid transfer among surfactant structures. SP-B, together with the other hydrophobic surfactant protein SP-C, also promotes permeability of surfactant membranes to polar molecules although the molecular mechanisms underlying this property, as well as its relevance for the surface activity of the protein, remain undefined. In this work, the contribution of SP-B and SP-C to surfactant membrane permeability has been further investigated, by evaluation of the ability of differently-sized fluorescent polar probes to permeate through giant vesicles with different lipid/protein composition. Our results are consistent with the generation by SP-B of pores with defined size in surfactant membranes. Furthermore, incubation of surfactant with an anti-SP-B antibody not only blocked membrane permeability but also affected lipid transfer into the air-water interface, as observed in a captive bubble surfactometer device. Our findings include the identification of SP-C and anionic phospholipids as modulators required for maintaining native-like permeability features in pulmonary surfactant membranes. Proper permeability through membrane assemblies could be crucial to complement the overall role of surfactant in maintaining alveolar equilibrium, beyond its biophysical function in stabilizing the respiratory air-liquid interface.
Collapse
Affiliation(s)
- Marta Martínez-Calle
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, Madrid, Spain
| | - Elisa Parra-Ortiz
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain
| | - Antonio Cruz
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, Madrid, Spain
| | - Barbara Olmeda
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, Madrid, Spain.
| | - Jesús Pérez-Gil
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, Madrid, Spain
| |
Collapse
|
14
|
Oseliero Filho PL, Gerbelli BB, Fornasier F, Chaves Filho AB, Yoshinaga MY, Miyamoto S, Mortara L, Lacerda CD, Cuccovia IM, Pimentel AS, Oliveira CLP. Structure and Thermotropic Behavior of Bovine- and Porcine-Derived Exogenous Lung Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14514-14529. [PMID: 33210931 DOI: 10.1021/acs.langmuir.0c02224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two commercial exogenous pulmonary surfactants, Curosurf and Survanta, are investigated. Their thermotropic behavior and associated structural changes for the samples in bulk are characterized and described. For Survanta, the obtained results of differential scanning calorimetry showed a thermogram with three peaks on heating and only a single peak on cooling. Curosurf on the other hand, presents calorimetric thermograms with only one peak in both the heating and cooling scans. This distinct thermotropic behavior between the two pulmonary surfactants, a consequence of their particular compositions, is associated with structural changes that were evaluated by simultaneous small- and wide-angle X-ray scattering experiments with in situ temperature variation. Interestingly, for temperatures below ∼35 °C for Curosurf and ∼53 °C for Survanta, the scattering data indicated the coexistence of two lamellar phases with different carbon chain organizations. For temperatures above these limits, the coexistence of phases disappears, giving rise to a fluid phase in both pulmonary surfactants, with multilamelar vesicles for Curosurf and unilamellar vesicles for Survanta. This process is quasi-reversible under cooling, and advanced data analysis for the scattering data indicated differences in the structural and elastic properties of the pulmonary surfactants. The detailed and systematic investigation shown in this work expands on the knowledge of the structure and thermodynamic behavior of Curosurf and Survanta, being relevant from both physiological and biophysical perspectives and also providing a basis for further studies on other types of pulmonary surfactants.
Collapse
Affiliation(s)
| | - Barbara Bianca Gerbelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-580, Brazil
| | - Franccesca Fornasier
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 22453-900, Brazil
| | - Adriano B Chaves Filho
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - Marcos Yukio Yoshinaga
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - Sayuri Miyamoto
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - Laura Mortara
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - Caroline Dutra Lacerda
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - Iolanda Midea Cuccovia
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, Butantã, São Paulo, SP 05508-000, Brazil
| | - André Silva Pimentel
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 22453-900, Brazil
| | | |
Collapse
|
15
|
Lipid-Protein and Protein-Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis. Int J Mol Sci 2020; 21:ijms21103708. [PMID: 32466119 PMCID: PMC7279303 DOI: 10.3390/ijms21103708] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary surfactant is a lipid/protein complex synthesized by the alveolar epithelium and secreted into the airspaces, where it coats and protects the large respiratory air–liquid interface. Surfactant, assembled as a complex network of membranous structures, integrates elements in charge of reducing surface tension to a minimum along the breathing cycle, thus maintaining a large surface open to gas exchange and also protecting the lung and the body from the entrance of a myriad of potentially pathogenic entities. Different molecules in the surfactant establish a multivalent crosstalk with the epithelium, the immune system and the lung microbiota, constituting a crucial platform to sustain homeostasis, under health and disease. This review summarizes some of the most important molecules and interactions within lung surfactant and how multiple lipid–protein and protein–protein interactions contribute to the proper maintenance of an operative respiratory surface.
Collapse
|
16
|
Liekkinen J, Enkavi G, Javanainen M, Olmeda B, Pérez-Gil J, Vattulainen I. Pulmonary Surfactant Lipid Reorganization Induced by the Adsorption of the Oligomeric Surfactant Protein B Complex. J Mol Biol 2020; 432:3251-3268. [DOI: 10.1016/j.jmb.2020.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
|
17
|
Martínez-Calle M, Alonso A, Pérez-Gil J, Olmeda B. Native supramolecular protein complexes in pulmonary surfactant: Evidences for SP-A/SP-B interactions. J Proteomics 2019; 207:103466. [DOI: 10.1016/j.jprot.2019.103466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/08/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022]
|
18
|
Beck-Broichsitter M, Bohr A. Bioinspired polymer nanoparticles omit biophysical interactions with natural lung surfactant. Nanotoxicology 2019; 13:964-976. [PMID: 31109226 DOI: 10.1080/17435390.2019.1621400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Herein, we report the attenuated impact of bioinspired nanoparticles on the essential function of lung surfactant. Colloidal particles made from poly(lactide) caused a significant loss of surfactant protein B (and C) from a natural lung surfactant accompanied by a decline in surface activity under static conditions and surface area cycling. No such perturbation of lung surfactant composition and function was observed for polymer nanoparticles coated with bioinspired poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC). More specifically, increasing the PMPC-coating layer thickness (≥3 nm) and density (dense conformation, distance of individual polymer chains of ≤3 nm) on the polymer nanoparticle surface diminished bioadverse events. PMPC-coated poly(lactide) nanoparticles provoked a less severe perturbation of the utilized lung surfactant when compared to colloidal counterparts coated with poly(ethylene glycol). Overall, a steric shielding of colloidal drug delivery vehicles with bioinspired PMPC can be considered as a valuable approach for the rationale development of biocompatible nanomedicines intended for lung delivery.
Collapse
Affiliation(s)
- Moritz Beck-Broichsitter
- Medical Clinic II, Department of Internal Medicine, Justus-Liebig-Universität , Giessen , Germany
| | - Adam Bohr
- Department of Pharmacy, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
19
|
Johansson J, Curstedt T. Synthetic surfactants with SP-B and SP-C analogues to enable worldwide treatment of neonatal respiratory distress syndrome and other lung diseases. J Intern Med 2019; 285:165-186. [PMID: 30357986 DOI: 10.1111/joim.12845] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Treatment of neonatal respiratory distress syndrome (RDS) using animal-derived lung surfactant preparations has reduced the mortality of handling premature infants with RDS to a 50th of that in the 1960s. The supply of animal-derived lung surfactants is limited and only a part of the preterm babies is treated. Thus, there is a need to develop well-defined synthetic replicas based on key components of natural surfactant. A synthetic product that equals natural-derived surfactants would enable cost-efficient production and could also facilitate the development of the treatments of other lung diseases than neonatal RDS. Recently the first synthetic surfactant that contains analogues of the two hydrophobic surfactant proteins B (SP-B) and SP-C entered clinical trials for the treatment of neonatal RDS. The development of functional synthetic analogues of SP-B and SP-C, however, is considerably more challenging than anticipated 30 years ago when the first structural information of the native proteins became available. For SP-B, a complex three-dimensional dimeric structure stabilized by several disulphides has necessitated the design of miniaturized analogues. The main challenge for SP-C has been the pronounced amyloid aggregation propensity of its transmembrane region. The development of a functional non-aggregating SP-C analogue that can be produced synthetically was achieved by designing the amyloidogenic native sequence so that it spontaneously forms a stable transmembrane α-helix.
Collapse
Affiliation(s)
- J Johansson
- Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - T Curstedt
- Laboratory for Surfactant Research, Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Paget TL, Parkinson-Lawrence EJ, Orgeig S. Interstitial lung disease and surfactant dysfunction as a secondary manifestation of disease: insights from lysosomal storage disorders. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ddmod.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Guagliardo R, Pérez-Gil J, De Smedt S, Raemdonck K. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins. J Control Release 2018; 291:116-126. [PMID: 30321577 DOI: 10.1016/j.jconrel.2018.10.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Pulmonary surfactant (PS) has been extensively studied because of its primary role in mammalian breathing. The deposition of this surface-active material at the alveolar air-water interface is essential to lower surface tension, thus avoiding alveolar collapse during expiration. In addition, PS is involved in host defense, facilitating the clearance of potentially harmful particulates. PS has a unique composition, including 92% of lipids and 8% of surfactant proteins (SPs) by mass. Although they constitute the minor fraction, SPs to a large extent orchestrate PS-related functions. PS contains four surfactant proteins (SPs) that can be structurally and functionally divided in two groups, i.e. the large hydrophilic SP-A and SP-D and the smaller hydrophobic SP-B and SP-C. The former belong to the family of collectins and are involved in opsonization processes, thus promoting uptake of pathogens and (nano)particles by phagocytic cell types. The latter SPs regulate interfacial surfactant adsorption dynamics, facilitating (phospho)lipid transfer and membrane fusion processes. In the context of pulmonary drug delivery, the exploitation of PS as a carrier to promote drug spreading along the alveolar interface is gaining interest. In addition, recent studies investigated the interaction of PS with drug-loaded nanoparticles (nanomedicines) following pulmonary administration, which strongly influences their biological fate, drug delivery efficiency and toxicological profile. Interestingly, the specific biophysical mode-of-action of the four SPs affect the drug delivery process of nanomedicines both on the extra-and intracellular level, modulating pulmonary distribution, cell targeting and intracellular delivery. This knowledge can be harnessed to exploit SPs for the design of unique and bio-inspired drug delivery strategies.
Collapse
Affiliation(s)
- Roberta Guagliardo
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Stefaan De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
22
|
Medium throughput breathing human primary cell alveolus-on-chip model. Sci Rep 2018; 8:14359. [PMID: 30254327 PMCID: PMC6156575 DOI: 10.1038/s41598-018-32523-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Organs-on-chips have the potential to improve drug development efficiency and decrease the need for animal testing. For the successful integration of these devices in research and industry, they must reproduce in vivo contexts as closely as possible and be easy to use. Here, we describe a ‘breathing’ lung-on-chip array equipped with a passive medium exchange mechanism that provide an in vivo-like environment to primary human lung alveolar cells (hAEpCs) and primary lung endothelial cells. This configuration allows the preservation of the phenotype and the function of hAEpCs for several days, the conservation of the epithelial barrier functionality, while enabling simple sampling of the supernatant from the basal chamber. In addition, the chip design increases experimental throughput and enables trans-epithelial electrical resistance measurements using standard equipment. Biological validation revealed that human primary alveolar type I (ATI) and type II-like (ATII) epithelial cells could be successfully cultured on the chip over multiple days. Moreover, the effect of the physiological cyclic strain showed that the epithelial barrier permeability was significantly affected. Long-term co-culture of primary human lung epithelial and endothelial cells demonstrated the potential of the lung-on-chip array for reproducible cell culture under physiological conditions. Thus, this breathing lung-on-chip array, in combination with patients’ primary ATI, ATII, and lung endothelial cells, has the potential to become a valuable tool for lung research, drug discovery and precision medicine.
Collapse
|
23
|
Madsen J, Panchal MH, Mackay RMA, Echaide M, Koster G, Aquino G, Pelizzi N, Perez-Gil J, Salomone F, Clark HW, Postle AD. Metabolism of a synthetic compared with a natural therapeutic pulmonary surfactant in adult mice. J Lipid Res 2018; 59:1880-1892. [PMID: 30108154 PMCID: PMC6168297 DOI: 10.1194/jlr.m085431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/09/2018] [Indexed: 11/24/2022] Open
Abstract
Secreted pulmonary surfactant phosphatidylcholine (PC) has a complex intra-alveolar metabolism that involves uptake and recycling by alveolar type II epithelial cells, catabolism by alveolar macrophages, and loss up the bronchial tree. We compared the in vivo metabolism of animal-derived poractant alfa (Curosurf) and a synthetic surfactant (CHF5633) in adult male C57BL/6 mice. The mice were dosed intranasally with either surfactant (80 mg/kg body weight) containing universally 13C-labeled dipalmitoyl PC (DPPC) as a tracer. The loss of [U13C]DPPC from bronchoalveolar lavage and lung parenchyma, together with the incorporation of 13C-hydrolysis fragments into new PC molecular species, was monitored by electrospray ionization tandem mass spectrometry. The catabolism of CHF5633 was considerably delayed compared with poractant alfa, the hydrolysis products of which were cleared more rapidly. There was no selective resynthesis of DPPC and, strikingly, acyl remodeling resulted in preferential synthesis of polyunsaturated PC species. In conclusion, both surfactants were metabolized by similar pathways, but the slower catabolism of CHF5633 resulted in longer residence time in the airways and enhanced recycling of its hydrolysis products into new PC species.
Collapse
Affiliation(s)
- Jens Madsen
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Madhuriben H Panchal
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Rose-Marie A Mackay
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mercedes Echaide
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Hospital 12 de Octubre Research Institute, Complutense University, Madrid, Spain
| | - Grielof Koster
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research, Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | | | | | - Jesus Perez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Hospital 12 de Octubre Research Institute, Complutense University, Madrid, Spain
| | | | - Howard W Clark
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research, Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Anthony D Postle
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom .,National Institute for Health Research, Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| |
Collapse
|
24
|
Martínez‐Calle M, Olmeda B, Dietl P, Frick M, Pérez‐Gil J. Pulmonary surfactant protein SP‐B promotes exocytosis of lamellar bodies in alveolar type II cells. FASEB J 2018. [DOI: 10.1096/fj.201701462rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marta Martínez‐Calle
- Department of Biochemistry and Molecular BiologyFaculty of BiologyComplutense UniversityMadridSpain
- Research Institute “Hospital 12 de Octubre”Complutense UniversityMadridSpain
| | - Bárbara Olmeda
- Department of Biochemistry and Molecular BiologyFaculty of BiologyComplutense UniversityMadridSpain
- Research Institute “Hospital 12 de Octubre”Complutense UniversityMadridSpain
| | - Paul Dietl
- Institute of General PhysiologyUlm UniversityUlmGermany
| | - Manfred Frick
- Institute of General PhysiologyUlm UniversityUlmGermany
| | - Jesús Pérez‐Gil
- Department of Biochemistry and Molecular BiologyFaculty of BiologyComplutense UniversityMadridSpain
- Research Institute “Hospital 12 de Octubre”Complutense UniversityMadridSpain
| |
Collapse
|
25
|
Beck-Broichsitter M, Bohr A, Ruge CA. Poloxamer-Decorated Polymer Nanoparticles for Lung Surfactant Compatibility. Mol Pharm 2017; 14:3464-3472. [PMID: 28813610 DOI: 10.1021/acs.molpharmaceut.7b00477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lung-delivered polymer nanoparticles provoked dysfunction of the essential lung surfactant system. A steric shielding of the nanoparticle surface with poloxamers could minimize the unwanted interference of polymer nanoparticles with the biophysical function of lung surfactant. The extent of poly(styrene) and poly(lactide) nanoparticle-induced lung surfactant inhibition could be related to the type and content of the applied poloxamer. Escalations of the adsorbed coating layer thickness (>3 nm) as well as concentration (brush- rather than mushroom-like conformation of poly(ethylene glycol), chain-to-chain distance of <5 nm) on the colloidal surface were capable of circumventing bioadverse effects. Accordingly, specific formulations (i.e., poloxamer 188, 338, and 407) avoided a perturbation of the microstructure and surface activity of Alveofact and a depletion of the content of surfactant-associated proteins. Poloxamer-modified polymer nanoparticles represent a promising nanomedicine platform intended for respiratory delivery revealing negligible effects on the biophysical functionality of the lining layer present in the deep lungs.
Collapse
Affiliation(s)
- Moritz Beck-Broichsitter
- Medical Clinic II, Department of Internal Medicine, Justus-Liebig-Universität , Giessen D-35392, Germany.,Institut Galien, Faculté de Pharmacie, Université Paris-Sud XI , Châtenay-Malabry F-92296, France
| | - Adam Bohr
- Institut Galien, Faculté de Pharmacie, Université Paris-Sud XI , Châtenay-Malabry F-92296, France.,Department of Pharmacy, University of Copenhagen , Copenhagen DK-2100, Denmark
| | - Christian A Ruge
- Institut Galien, Faculté de Pharmacie, Université Paris-Sud XI , Châtenay-Malabry F-92296, France
| |
Collapse
|
26
|
Tang X, Sun L, Jin X, Chen Y, Zhu H, Liang Y, Wu Q, Han X, Liang J, Liu X, Liang Z, Wang G, Luo F. Runt-Related Transcription Factor 1 Regulates LPS-Induced Acute Lung Injury via NF-κB Signaling. Am J Respir Cell Mol Biol 2017; 57:174-183. [PMID: 28314106 DOI: 10.1165/rcmb.2016-0319oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Runt-related transcription factor 1 (RUNX1), a transcription factor expressed in multiple organs, plays important roles in embryonic development and hematopoiesis. Although RUNX1 is highly expressed in pulmonary tissues, its roles in lung function and homeostasis are unknown. We sought to assess the role of RUNX1 in lung development and inflammation after LPS challenge. Expression of RUNX1 was assessed in the developing and postnatal lung. RUNX1 was conditionally deleted in pulmonary epithelial cells. Pulmonary maturation was evaluated in the developing and postnatal lung, and lung inflammation was investigated in adult mice after LPS challenge. Interactions between RUNX1 and inflammatory signaling via NF-κB-IkB kinase β were assessed in vitro. RUNX1 was expressed in both mesenchymal and epithelial compartments of the developing and postnatal lung. The RUNX1 gene was efficiently deleted from respiratory epithelial cells producing Runx1∆/∆ mice. Although lung maturation was delayed, Runx1∆/∆ mice survived postnatally and subsequent growth and maturation of the lung proceeded normally. Increased respiratory distress, inflammation, and proinflammatory cytokines were observed in the Runx1-deleted mice after pulmonary LPS exposure. RUNX1 deletion was associated with the activation of NF-κB in respiratory epithelial cells. RUNX1 was required for the suppression of NF-κB signaling pathway via inhibition of IkB kinase β in in vitro studies. RUNX1 plays a critical role in the lung inflammation after LPS-induced injury.
Collapse
Affiliation(s)
- Xiaoju Tang
- 1 Department of Respiratory Medicine.,2 Laboratory of Cardiovascular Diseases, Research Center of Regeneration Medicine, and
| | - Ling Sun
- 2 Laboratory of Cardiovascular Diseases, Research Center of Regeneration Medicine, and
| | - Xiaodong Jin
- 3 Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hui Zhu
- 1 Department of Respiratory Medicine
| | - Yasha Liang
- 4 First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qingbo Wu
- 1 Department of Respiratory Medicine
| | - Xing Han
- 5 Fourth People's Hospital of Sichuan Province, Chengdu, China
| | - Jianing Liang
- 6 Department of Respiratory Medicine, Fourth Military Medical University, Xian, China
| | - Xiaojing Liu
- 2 Laboratory of Cardiovascular Diseases, Research Center of Regeneration Medicine, and
| | | | - Gang Wang
- 1 Department of Respiratory Medicine
| | | |
Collapse
|
27
|
Beck-Broichsitter M, Ruge CA, Bohr A. Impact of triblock copolymers on the biophysical function of naturally-derived lung surfactant. Colloids Surf B Biointerfaces 2017; 156:262-269. [PMID: 28544958 DOI: 10.1016/j.colsurfb.2017.05.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 12/28/2022]
Abstract
The current study aimed at investigating the general applicability of triblock copolymers consisting of poly(ethylene glycol) and poly(propylene glycol) (Pluronic®) as excipients for lung delivery. After thorough physicochemical characterization of the diverse polymers, their cytotoxicity was evaluated using alveolar epithelial cells. Next, a naturally-derived lung surfactant was challenged with the distinct triblock copolymers with respect to changes in microstructure, adsorption to the air/liquid interface and dynamic surface tension behavior under bubble pulsation. Biocompatibility assessment of triblock copolymers in A549 cells demonstrated some cytotoxicity, dependent on the hydrophobicity and dose of the substance applied (effective at ≥0.1mg/ml). Supplementing triblock copolymers onto Alveofact® had an obvious influence on the aggregation state and surface activity (>25 and >5mN/m during adsorption and bubble pulsation, respectively) of the lung surfactant. Interestingly, Pluronic® F127, a rather hydrophilic triblock copolymer, showed the most intense effect on the microstructure and biophysical performance of Alveofact®. This is likely due to the synergistic interplay of its low critical micelle concentration and rather high molecular weight, leading to the penetration of lung surfactant film/vesicles and accompanied by a partial replacement of relevant surfactant components from the air/liquid interface. Overall, suitable compositions and concentrations of triblock copolymers were identified with respect to compatibility with the physiological environment of the deep lungs.
Collapse
Affiliation(s)
- Moritz Beck-Broichsitter
- Medical Clinic II, Department of Internal Medicine, Justus-Liebig-Universität, Giessen, Germany; Institut Galien, Faculté de Pharmacie, Université Paris-Sud XI, Châtenay-Malabry, France.
| | - Christian A Ruge
- Institut Galien, Faculté de Pharmacie, Université Paris-Sud XI, Châtenay-Malabry, France
| | - Adam Bohr
- Institut Galien, Faculté de Pharmacie, Université Paris-Sud XI, Châtenay-Malabry, France; Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Milos S, Khazaee R, McCaig LA, Nygard K, Gardiner RB, Zuo YY, Yamashita C, Veldhuizen R. Impact of ventilation-induced lung injury on the structure and function of lamellar bodies. Am J Physiol Lung Cell Mol Physiol 2017; 313:L524-L533. [PMID: 28546153 DOI: 10.1152/ajplung.00055.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 11/22/2022] Open
Abstract
Alterations to the pulmonary surfactant system have been observed consistently in ventilation-induced lung injury (VILI) including composition changes and impairments in the surface tension reducing ability of the isolated extracellular surfactant. However, there is limited information about the effects of VILI on the intracellular form of surfactant, the lamellar body. It is hypothesized that VILI leads to alterations of lamellar body numbers and function. To test this hypothesis, rats were randomized to one of three groups, nonventilated controls, control ventilation, and high tidal volume ventilation (VILI). Following physiological assessment to confirm lung injury, isolated lamellar bodies were tested for surfactant function on a constrained sessile drop surfactometer. A separate cohort of animals was used to fix the lungs followed by examination of lamellar body numbers and morphology using transmission electron microscopy. The results showed an impaired ability of reducing surface tension for the lamellar bodies isolated from the VILI group as compared with the two other groups. The morphological assessment revealed that the number, and the relative area covered by, lamellar bodies were significantly decreased in animals with VILI animals as compared with the other groups. It is concluded that VILI causes significant alterations to lamellar bodies. It is speculated that increased secretion causes a depletion of lamellar bodies that cannot be compensated by de novo synthesis of surfactant in these injured lungs.
Collapse
Affiliation(s)
- Scott Milos
- Lawson Health Research Institute, Western University, London Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London Ontario, Canada
| | - Reza Khazaee
- Lawson Health Research Institute, Western University, London Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London Ontario, Canada
| | - Lynda A McCaig
- Lawson Health Research Institute, Western University, London Ontario, Canada
| | - Karen Nygard
- Biotron Research Centre, Western University, London Ontario, Canada; and
| | - Richard B Gardiner
- Department of Biology, Western University, London Ontario, Canada.,Biotron Research Centre, Western University, London Ontario, Canada; and
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Cory Yamashita
- Lawson Health Research Institute, Western University, London Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London Ontario, Canada.,Department of Medicine, Western University, London Ontario, Canada
| | - Ruud Veldhuizen
- Lawson Health Research Institute, Western University, London Ontario, Canada; .,Department of Physiology and Pharmacology, Western University, London Ontario, Canada.,Department of Medicine, Western University, London Ontario, Canada
| |
Collapse
|
29
|
Olmeda B, Martínez-Calle M, Pérez-Gil J. Pulmonary surfactant metabolism in the alveolar airspace: Biogenesis, extracellular conversions, recycling. Ann Anat 2016; 209:78-92. [PMID: 27773772 DOI: 10.1016/j.aanat.2016.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/22/2016] [Accepted: 09/25/2016] [Indexed: 01/03/2023]
Abstract
Pulmonary surfactant is a lipid-protein complex that lines and stabilizes the respiratory interface in the alveoli, allowing for gas exchange during the breathing cycle. At the same time, surfactant constitutes the first line of lung defense against pathogens. This review presents an updated view on the processes involved in biogenesis and intracellular processing of newly synthesized and recycled surfactant components, as well as on the extracellular surfactant transformations before and after the formation of the surface active film at the air-water interface. Special attention is paid to the crucial regulation of surfactant homeostasis, because its disruption is associated with several lung pathologies.
Collapse
Affiliation(s)
- Bárbara Olmeda
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Marta Martínez-Calle
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Jesus Pérez-Gil
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
30
|
Beck-Broichsitter M. Biophysical Activity of Impaired Lung Surfactant upon Exposure to Polymer Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10422-10429. [PMID: 27641633 DOI: 10.1021/acs.langmuir.6b02893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Colloidal drug carriers could improve the therapy of numerous airway diseases. However, it remains unclear to what extent nanoscale particulate matter affects the biophysical function of the essential surface-active lining layer of the lungs, especially under predisposed conditions of airway diseases. Accordingly, the current study investigated the impact of defined polymer nanoparticles on impaired lung surfactants. Admixtures of plasma proteins (albumin and fibrinogen) to Curosurf led to a controllable decrease in surface activity (i.e., adsorption and minimal surface tension of >25 and >5 mN/m, respectively), which served as models for dysfunctional lung surfactants. Next, Curosurf preincubated with plasma proteins was challenged with negatively- and positively charged poly(lactide) nanoparticles. Negatively charged nanoparticles significantly perturbed the biophysical function of impaired Curosurf in a dose-dependent manner, most-likely due to a binding of essential surfactant components. By contrast, addition of positively charged nanoparticles led to no further loss of surface activity, but a remarkable depletion of plasma protein content. Once adsorbed to the surface of polymer nanoparticles, plasma proteins were hindered to displace relevant surfactant components from the air/liquid interface. Overall, the current study indicated that, depending on their physicochemical properties, colloidal drug carriers could compromise the biophysical function of impaired lung surfactants. Notably, a positive surface charge represents a parameter for the rationale design of polymer nanomedicines causing negligible adverse events on an impaired surface-active lining layer in the lungs.
Collapse
Affiliation(s)
- Moritz Beck-Broichsitter
- Medical Clinic II, Department of Internal Medicine, Justus-Liebig-Universität , 35392 Giessen, Germany
| |
Collapse
|