1
|
Ke H, Su X, Dong C, He Z, Song Q, song C, Zhou J, Liao W, Wang C, Yang S, Xiong Y. Sigma-1 receptor exerts protective effects on ameliorating nephrolithiasis by modulating endoplasmic reticulum-mitochondrion association and inhibiting endoplasmic reticulum stress-induced apoptosis in renal tubular epithelial cells. Redox Rep 2024; 29:2391139. [PMID: 39138590 PMCID: PMC11328816 DOI: 10.1080/13510002.2024.2391139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Oxalate-induced damage to renal tubular epithelial cells (RTECs) is an essential factor in the incident kidney stone, but the specific mechanism is unclear. Recent research has pinpointed interacting areas within the endoplasmic reticulum and mitochondria, called mitochondria-associated membranes (MAMs). These studies have linked endoplasmic reticulum stress (ERS) and oxidative imbalance to kidney disease development. The sigma-1 receptor (S1R), a specific protein found in MAMs, is involved in various physiological processes, but its role in oxalate-induced kidney stone formation remains unclear. In this study, we established cellular and rat models of oxalate-induced kidney stone formation to elucidate the S1R's effects against ERS and apoptosis and its mechanism in oxalate-induced RTEC injury. We found that oxalate downregulated S1R expression in RTECs and escalated oxidative stress and ERS, culminating in increased apoptosis. The S1R agonist dimemorfan up-regulated S1R expression and mitigated ERS and oxidative stress, thereby reducing apoptosis. This protective effect was mediated through S1R inhibition of the CHOP pathway. Animal experiments demonstrated that S1R's activation attenuated oxalate-induced kidney injury and alleviated kidney stone formation. This is the first study to establish the connection between S1R and kidney stones, suggesting S1R's protective role in inhibiting ERS-mediated apoptosis to ameliorate kidney stone formation.
Collapse
Affiliation(s)
- Hu Ke
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Xiaozhe Su
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Caitao Dong
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Ziqi He
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Qianlin Song
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Chao song
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jiawei Zhou
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Wenbiao Liao
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Chuan Wang
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Sixing Yang
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yunhe Xiong
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Xian T, Liu Y, Ye Y, Peng B, Huang J, Liang L, Zhang J, Wu H, Lin Z. Human salivary histatin 1 regulating IP3R1/GRP75/VDAC1 mediated mitochondrial-associated endoplasmic reticulum membranes (MAMs) inhibits cell senescence for diabetic wound repair. Free Radic Biol Med 2024; 225:164-180. [PMID: 39343182 DOI: 10.1016/j.freeradbiomed.2024.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
RATIONALE Difficulty in skin wound healing is a concern for diabetic patients across the world. Impaired mitochondrial dysfunction and aging-related vascular dysfunction in human umbilical vein endothelial cells (HUVECs) caused by oxidative stress are major impediments to diabetic wound healing. However, research on skin repair at the mechanistic level by improving mitochondrial function and inhibiting oxidative stress-induced HUVEC senescence remains lacking. METHODS AND RESULTS Human saliva effectively inhibits the natural aging of HUVECs through immunodepletion experiments. Histatin 1 (Hst1), a short peptide comprising 38 amino acids, is the primary component of human saliva that prevents HUVEC aging. Based on in vitro findings, Hst1 decreased staining for senescence-associated β-galactosidase activity and expression of mediators of senescence signaling, including p53, p21, and p16. Mechanistically, HUVEC senescence is associated with Hst1-modulated nuclear factor Nrf2 signaling as Hst1 induces ERK-mediated Nrf2 nuclear translocation through NADPH oxidase-dependent ROS regulation, reinforced Nrf2 antioxidant response, and suppressed oxidative stress. RNA sequencing identified that the mitochondrial-related gene set was enriched in the Hst1 group. Coimmunoprecipitation indicated that Hst1 delayed hydrogen peroxide-induced HUVEC senescence by inhibiting mitochondria-associated endoplasmic reticulum (ER) membrane formation mediated by inositol 1,4,5-trisphosphate receptor 1-glucose-regulated protein 75-voltage-dependent anion channel 1 (VDAC1) complex interactions. Furthermore, in aging HUVECs, Hst1 treatment or VDAC1 silencing with small interfering RNA hindered calcium (Ca2+) transfer from the ER to the mitochondria, thereby ameliorating mitochondrial Ca2+ overload and restoring mitochondrial function. In an in vivo mouse model of diabetes mellitus skin defects, Hst1 facilitated wound healing by stimulating the new blood vessel formation and impeding the expression of senescent biomarkers. CONCLUSIONS This study proposes a theoretical solution that Hst1 can restore mitochondrial function by inhibiting oxidative stress or cellular senescence, thereby promoting angiogenesis and diabetic wound repair.
Collapse
Affiliation(s)
- Tinghui Xian
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Jinan University, 601 West Huangpu Avenue, Guangzhou, Guangdong, 510632, China.
| | - Yi Liu
- Department of Oral Implantology, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongsheng Ye
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China; Department of Orthopedics, Dongguan Hospital of Traditional Chinese Medicine, Dongcheng District, Dongguan, Guangdong, 523000, China
| | - Bohua Peng
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, No. 613 11 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Jie Huang
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, No. 613 11 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Lin Liang
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, No. 613 11 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Jiaqing Zhang
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Jinan University, 601 West Huangpu Avenue, Guangzhou, Guangdong, 510632, China
| | - Hao Wu
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, No. 613 11 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Zhen Lin
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, No. 613 11 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China
| |
Collapse
|
3
|
Pedriali G, Ramaccini D, Bouhamida E, Wieckowski MR, Giorgi C, Tremoli E, Pinton P. Perspectives on mitochondrial relevance in cardiac ischemia/reperfusion injury. Front Cell Dev Biol 2022; 10:1082095. [PMID: 36561366 PMCID: PMC9763599 DOI: 10.3389/fcell.2022.1082095] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the most common cause of death worldwide and in particular, ischemic heart disease holds the most considerable position. Even if it has been deeply studied, myocardial ischemia-reperfusion injury (IRI) is still a side-effect of the clinical treatment for several heart diseases: ischemia process itself leads to temporary damage to heart tissue and obviously the recovery of blood flow is promptly required even if it worsens the ischemic injury. There is no doubt that mitochondria play a key role in pathogenesis of IRI: dysfunctions of these important organelles alter cell homeostasis and survival. It has been demonstrated that during IRI the system of mitochondrial quality control undergoes alterations with the disruption of the complex balance between the processes of mitochondrial fusion, fission, biogenesis and mitophagy. The fundamental role of mitochondria is carried out thanks to the finely regulated connection to other organelles such as plasma membrane, endoplasmic reticulum and nucleus, therefore impairments of these inter-organelle communications exacerbate IRI. This review pointed to enhance the importance of the mitochondrial network in the pathogenesis of IRI with the aim to focus on potential mitochondria-targeting therapies as new approach to control heart tissue damage after ischemia and reperfusion process.
Collapse
Affiliation(s)
- Gaia Pedriali
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | | | - Esmaa Bouhamida
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy,*Correspondence: Paolo Pinton, ; Elena Tremoli,
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy,Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy,*Correspondence: Paolo Pinton, ; Elena Tremoli,
| |
Collapse
|
4
|
Sun Y, Zboril EK, De La Chapa JJ, Chai X, Da Conceicao VN, Valdez MC, McHardy SF, Gonzales CB, Singh BB. Inhibition of Ca 2+ entry by capsazepine analog CIDD-99 prevents oral squamous carcinoma cell proliferation. Front Physiol 2022; 13:969000. [PMID: 36187775 PMCID: PMC9521718 DOI: 10.3389/fphys.2022.969000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Oral cancer patients have a poor prognosis, with approximately 66% of patients surviving 5-years after diagnosis. Treatments for oral cancer are limited and have many adverse side effects; thus, further studies are needed to develop drugs that are more efficacious. To achieve this objective, we developed CIDD-99, which produces cytotoxic effects in multiple oral squamous cell carcinoma (OSCC) cell lines. While we demonstrated that CIDD-99 induces ER stress and apoptosis in OSCC, the mechanism was unclear. Investigation of the Bcl-family of proteins showed that OSCC cells treated with CIDD-99 undergo downregulation of Bcl-XL and Bcl-2 anti-apoptotic proteins and upregulation of Bax (pro-apoptotic). Importantly, OSCC cells treated with CIDD-99 displayed decreased calcium signaling in a dose and time-dependent manner, suggesting that blockage of calcium signaling is the key mechanism that induces cell death in OSCC. Indeed, CIDD-99 anti-proliferative effects were reversed by the addition of exogenous calcium. Moreover, electrophysiological properties further established that calcium entry was via the non-selective TRPC1 channel and prolonged CIDD-99 incubation inhibited STIM1 expression. CIDD-99 inhibition of calcium signaling also led to ER stress and inhibited mitochondrial complexes II and V in vitro. Taken together, these findings suggest that inhibition of TRPC mediates induction of ER stress and mitochondrial dysfunction as a part of the cellular response to CIDD-99 in OSCC.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Emily K. Zboril
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Jorge J. De La Chapa
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Xiufang Chai
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, United States
| | | | - Matthew C. Valdez
- Department of Chemistry and the Center for Innovative Drug Discovery, University of Texas at San Antonio, San Antonio, TX, United States
| | - Stanton F. McHardy
- Department of Chemistry and the Center for Innovative Drug Discovery, University of Texas at San Antonio, San Antonio, TX, United States
| | - Cara B. Gonzales
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Brij B. Singh
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
5
|
Yu S, Gao L, Zhang C, Wang Y, Lan H, Chu Q, Li S, Zheng X. Glycine Ameliorates Endoplasmic Reticulum Stress Induced by Thapsigargin in Porcine Oocytes. Front Cell Dev Biol 2021; 9:733860. [PMID: 34917610 PMCID: PMC8670231 DOI: 10.3389/fcell.2021.733860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle in the cytoplasm that plays important roles in female mammalian reproduction. The endoplasmic reticulum and mitochondria interact to maintain the normal function of cells by maintaining intracellular calcium homeostasis. As proven by previous research, glycine (Gly) can regulate the intracellular free calcium concentration ([Ca2+]i) and enhance mitochondrial function to improve oocyte maturation in vitro. The effect of Gly on ER function during oocyte in vitro maturation (IVM) is not clear. In this study, we induced an ER stress model with thapsigargin (TG) to explore whether Gly can reverse the ER stress induced by TG treatment and whether it is associated with calcium regulation. The results showed that the addition of Gly could improve the decrease in the average cumulus diameter, the first polar body excretion rate caused by TG-induced ER stress, the cleavage rate and the blastocyst rate. Gly supplementation could reduce the ER stress induced by TG by significantly improving the ER levels and significantly downregulating the expression of genes related to ER stress (Xbp1, ATF4, and ATF6). Moreover, Gly also significantly alleviated the increase in reactive oxygen species (ROS) levels and the decrease in mitochondrial membrane potential (ΔΨ m) to improve mitochondrial function in porcine oocytes exposed to TG. Furthermore, Gly reduced the [Ca2+]i and mitochondrial Ca2+ ([Ca2+]m) levels and restored the ER Ca2+ ([Ca2+]ER) levels in TG-exposed porcine oocytes. Moreover, we found that the increase in [Ca2+]i may be caused by changes in the distribution and expression of inositol 1,4,5-triphosphate receptor (IP3R1) and voltage-dependent anion channel 1 (VDAC1), while Gly can restore the distribution and expression of IP3R1 and VDAC1 to normal levels. Apoptosis-related indexes (Caspase 3 activity and Annexin-V) and gene expression Bax, Cyto C, and Caspase 3) were significantly increased in the TG group, but they could be restored by adding Gly. Our results suggest that Gly can ameliorate ER stress and apoptosis in TG-exposed porcine oocytes and can further enhance the developmental potential of porcine oocytes in vitro.
Collapse
Affiliation(s)
- Sicong Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Lepeng Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yumeng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qianran Chu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Suo Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Olgar Y, Durak A, Degirmenci S, Tuncay E, Billur D, Ozdemir S, Turan B. Ticagrelor alleviates high-carbohydrate intake induced altered electrical activity of ventricular cardiomyocytes by regulating sarcoplasmic reticulum-mitochondria miscommunication. Mol Cell Biochem 2021; 476:3827-3844. [PMID: 34114148 DOI: 10.1007/s11010-021-04205-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
Metabolic syndrome (MetS) is associated with additional cardiovascular risk in mammalians while there are relationships between hyperglycemia-associated cardiovascular dysfunction and increased platelet P2Y12 receptor activation. Although P2Y12 receptor antagonist ticagrelor (Tica) plays roles in reduction of cardiovascular events, its beneficial mechanism remains poorly understood. Therefore, we aimed to clarify whether Tica can exert a direct protective effect in ventricular cardiomyocytes from high-carbohydrate diet-induced MetS rats, at least, through affecting sarcoplasmic reticulum (SR)-mitochondria (Mit) miscommunication. Tica treatment of MetS rats (150 mg/kg/day for 15 days) significantly reversed the altered parameters of action potentials by reversing sarcolemmal ionic currents carried by voltage-dependent Na+ and K+ channels, and Na+/Ca2+-exchanger in the cells, expressed P2Y12 receptors. The increased basal-cytosolic Ca2+ level and depressed SR Ca2+ load were also reversed in Tica-treated cells, at most, though recoveries in the phosphorylation levels of ryanodine receptors and phospholamban. Moreover, there were marked recoveries in Mit structure and function (including increases in both autophagosomes and fragmentations) together with recoveries in Mit proteins and the factors associated with Ca2+ transfer between SR-Mit. There were further significant recoveries in markers of both ER stress and oxidative stress. Taken into consideration the Tica-induced prevention of ER stress and mitochondrial dysfunction, our data provided an important document on the pleiotropic effects of Tica in the electrical activity of the cardiomyocytes from MetS rats. This protective effect seems through recoveries in SR-Mit miscommunication besides modulation of different sarcolemmal ion-channel activities, independent of P2Y12 receptor antagonism.
Collapse
Affiliation(s)
- Yusuf Olgar
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Aysegul Durak
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Sinan Degirmenci
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Deniz Billur
- Faculty of Medicine, Department of Histology and Embryology, Ankara University, Ankara, Turkey
| | - Semir Ozdemir
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey.
| | - Belma Turan
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey.
- Faculty of Medicine, Department of Biophysics, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
7
|
Erustes AG, D'Eletto M, Guarache GC, Ureshino RP, Bincoletto C, da Silva Pereira GJ, Piacentini M, Smaili SS. Overexpression of α-synuclein inhibits mitochondrial Ca 2+ trafficking between the endoplasmic reticulum and mitochondria through MAMs by altering the GRP75-IP3R interaction. J Neurosci Res 2021; 99:2932-2947. [PMID: 34510532 DOI: 10.1002/jnr.24952] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022]
Abstract
Mitochondria-associated ER membranes (MAMs) are formed by close and specific components in the contact sites between the endoplasmic reticulum (ER) and mitochondria, which participate in several cell functions, including lipid metabolism, autophagy, and Ca2+ signaling. Particularly, the presence of α-synuclein (α-syn) in MAMs was previously demonstrated, indicating a physical interaction among some proteins in this region and a potential involvement in cell dysfunctions. MAMs alterations are associated with neurodegenerative diseases such as Parkinson's disease (PD) and contribute to the pathogenesis features. Here, we investigated the effects of α-syn on MAMs and Ca2+ transfer from the ER to mitochondria in WT- and A30P α-syn-overexpressing SH-SY5Y or HEK293 cells. We observed that α-syn potentiates the mitochondrial membrane potential (Δψm ) loss induced by rotenone, increases mitophagy and mitochondrial Ca2+ overload. Additionally, in α-syn-overexpressing cells, we found a reduction in ER-mitochondria contact sites through the impairment of the GRP75-IP3R interaction, however, with no alteration in VDAC1-GRP75 interaction. Consequently, after Ca2+ release from the ER, α-syn-overexpressing cells demonstrated a reduction in Ca2+ buffering by mitochondria, suggesting a deregulation in MAM activity. Taken together, our data highlight the importance of the α-syn/MAMs/Ca2+ axis that potentially affects cell functions in PD.
Collapse
Affiliation(s)
- Adolfo Garcia Erustes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Manuela D'Eletto
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Gabriel Cicolin Guarache
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil.,Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Claudia Bincoletto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Soraya Soubhi Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
9
|
Mollinedo F, Gajate C. Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer. Cancers (Basel) 2021; 13:4173. [PMID: 34439330 PMCID: PMC8394177 DOI: 10.3390/cancers13164173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, shows a dismal and grim overall prognosis and survival rate, which have remained virtually unchanged for over half a century. PDAC is the most lethal of all cancers, with the highest mortality-to-incidence ratio. PDAC responds poorly to current therapies and remains an incurable malignancy. Therefore, novel therapeutic targets and drugs are urgently needed for pancreatic cancer treatment. Selective induction of apoptosis in cancer cells is an appealing approach in cancer therapy. Apoptotic cell death is highly regulated by different signaling routes that involve a variety of subcellular organelles. Endoplasmic reticulum (ER) stress acts as a double-edged sword at the interface of cell survival and death. Pancreatic cells exhibit high hormone and enzyme secretory functions, and thereby show a highly developed ER. Thus, pancreatic cancer cells display a prominent ER. Solid tumors have to cope with adverse situations in which hypoxia, lack of certain nutrients, and the action of certain antitumor agents lead to a complex interplay and crosstalk between ER stress and autophagy-the latter acting as an adaptive survival response. ER stress also mediates cell death induced by a number of anticancer drugs and experimental conditions, highlighting the pivotal role of ER stress in modulating cell fate. The alkylphospholipid analog prototype edelfosine is selectively taken up by tumor cells, accumulates in the ER of a number of human solid tumor cells-including pancreatic cancer cells-and promotes apoptosis through a persistent ER-stress-mediated mechanism both in vitro and in vivo. Here, we discuss and propose that direct ER targeting may be a promising approach in the therapy of pancreatic cancer, opening up a new avenue for the treatment of this currently incurable and deadly cancer. Furthermore, because autophagy acts as a cytoprotective response to ER stress, potentiation of the triggering of a persistent ER response by combination therapy, together with the use of autophagy blockers, could improve the current gloomy expectations for finding a cure for this type of cancer.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, C/Ramiro de Maeztu 9, E-28040 Madrid, Spain;
| | | |
Collapse
|
10
|
Tran MT. Overview of Ca2+ signaling in lung cancer progression and metastatic lung cancer with bone metastasis. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:249-265. [PMID: 36046435 PMCID: PMC9400727 DOI: 10.37349/etat.2021.00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
Intracellular Ca2+ ions that are thought to be one of the most important second messengers for cellular signaling, have a substantial diversity of roles in regulating a plethora of fundamental cellular physiology such as gene expression, cell division, cell motility and apoptosis. It has been suggestive of the Ca2+ signaling-dependent cellular processes to be tightly regulated by the numerous types of Ca2+ channels, pumps, exchangers and sensing receptors. Consequently, dysregulated Ca2+ homeostasis leads to a series of events connected to elevated malignant phenotypes including uncontrolled proliferation, migration, invasion and metastasis, all of which are frequently observed in advanced stage lung cancer cells. The incidence of bone metastasis in patients with advanced stage lung cancer is estimated in a range of 30% to 40%, bringing about a significant negative impact on both morbidity and survival. This review dissects and summarizes the important roles of Ca2+ signaling transduction in contributing to lung cancer progression, and address the question: if and how Ca2+ signaling might have been engaged in metastatic lung cancer with bone metastasis, thereby potentially providing the multifaceted and promising solutions for therapeutic intervention.
Collapse
Affiliation(s)
- Manh Tien Tran
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| |
Collapse
|
11
|
Bonora M, Missiroli S, Perrone M, Fiorica F, Pinton P, Giorgi C. Mitochondrial Control of Genomic Instability in Cancer. Cancers (Basel) 2021; 13:cancers13081914. [PMID: 33921106 PMCID: PMC8071454 DOI: 10.3390/cancers13081914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer cells display among its hallmark genomic instability. This is a progressive tendency in accumulate genome alteration which contributes to the damage of genes regulating cell division and tumor suppression. Genomic instability favors the appearance of survival-promoting mutations, increasing the likelihood that those mutations will propagate into daughter cells and have a significant impact on cancer progression. Among the many factor influencing this phenomenon, mitochondrial physiology is emerging. Mitochondria are bound to genomic instability by responding to DNA alteration to trigger cell death programs and as a source for DNA damage. Mitochondrial alterations prototypical of cancer can desensitize the mitochondrial route of cell death, facilitating the survival of cell acquiring new mutations, or can stimulate mitochondrial mediated DNA damage, boosting the mutation rate and genomic instability itself. Abstract Mitochondria are well known to participate in multiple aspects of tumor formation and progression. They indeed can alter the susceptibility of cells to engage regulated cell death, regulate pro-survival signal transduction pathways and confer metabolic plasticity that adapts to specific tumor cell demands. Interestingly, a relatively poorly explored aspect of mitochondria in neoplastic disease is their contribution to the characteristic genomic instability that underlies the evolution of the disease. In this review, we summarize the known mechanisms by which mitochondrial alterations in cancer tolerate and support the accumulation of DNA mutations which leads to genomic instability. We describe recent studies elucidating mitochondrial responses to DNA damage as well as the direct contribution of mitochondria to favor the accumulation of DNA alterations.
Collapse
Affiliation(s)
- Massimo Bonora
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
| | - Sonia Missiroli
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
| | - Mariasole Perrone
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
| | - Francesco Fiorica
- Department of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, 37100 Verona, Italy;
| | - Paolo Pinton
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
| | - Carlotta Giorgi
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
- Correspondence:
| |
Collapse
|
12
|
Zhang SS, Zhou S, Crowley-McHattan ZJ, Wang RY, Li JP. A Review of the Role of Endo/Sarcoplasmic Reticulum-Mitochondria Ca 2+ Transport in Diseases and Skeletal Muscle Function. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18083874. [PMID: 33917091 PMCID: PMC8067840 DOI: 10.3390/ijerph18083874] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
The physical contact site between a mitochondrion and endoplasmic reticulum (ER), named the mitochondria-associated membrane (MAM), has emerged as a fundamental platform for regulating the functions of the two organelles and several cellular processes. This includes Ca2+ transport from the ER to mitochondria, mitochondrial dynamics, autophagy, apoptosis signalling, ER stress signalling, redox reaction, and membrane structure maintenance. Consequently, the MAM is suggested to be involved in, and as a possible therapeutic target for, some common diseases and impairment in skeletal muscle function, such as insulin resistance and diabetes, obesity, neurodegenerative diseases, Duchenne muscular dystrophy, age-related muscle atrophy, and exercise-induced muscle damage. In the past decade, evidence suggests that alterations in Ca2+ transport from the ER to mitochondria, mediated by the macromolecular complex formed by IP3R, Grp75, and VDAC1, may be a universal mechanism for how ER-mitochondria cross-talk is involved in different physiological/pathological conditions mentioned above. A better understanding of the ER (or sarcoplasmic reticulum in muscle)-mitochondria Ca2+ transport system may provide a new perspective for exploring the mechanism of how the MAM is involved in the pathology of diseases and skeletal muscle dysfunction. This review provides a summary of recent research findings in this area.
Collapse
Affiliation(s)
- Shuang-Shuang Zhang
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (S.-S.Z.); (J.-P.L.)
- Faculty of Health, Southern Cross University, East Lismore, NSW 2480, Australia; (S.Z.); (Z.J.C.-M.)
| | - Shi Zhou
- Faculty of Health, Southern Cross University, East Lismore, NSW 2480, Australia; (S.Z.); (Z.J.C.-M.)
| | | | - Rui-Yuan Wang
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (S.-S.Z.); (J.-P.L.)
- Correspondence:
| | - Jun-Ping Li
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (S.-S.Z.); (J.-P.L.)
| |
Collapse
|
13
|
Shen ZQ, Huang YL, Teng YC, Wang TW, Kao CH, Yeh CH, Tsai TF. CISD2 maintains cellular homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118954. [PMID: 33422617 DOI: 10.1016/j.bbamcr.2021.118954] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
CDGSH Iron Sulfur Domain 2 (CISD2) is the causative gene for the disease Wolfram syndrome 2 (WFS2; MIM 604928), which is an autosomal recessive disorder showing metabolic and neurodegenerative manifestations. CISD2 protein can be localized on the endoplasmic reticulum (ER), outer mitochondrial membrane (OMM) and mitochondria-associated membrane (MAM). CISD2 plays a crucial role in the regulation of cytosolic Ca2+ homeostasis, ER integrity and mitochondrial function. Here we summarize the most updated publications and discuss the central role of CISD2 in maintaining cellular homeostasis. This review mainly focuses on the following topics. Firstly, that CISD2 has been recognized as a prolongevity gene and the level of CISD2 is a key determinant of lifespan and healthspan. In mice, Cisd2 deficiency shortens lifespan and accelerates aging. Conversely, a persistently high level of Cisd2 promotes longevity. Intriguingly, exercise stimulates Cisd2 gene expression and thus, the beneficial effects offered by exercise may be partly related to Cisd2 activation. Secondly, that Cisd2 is down-regulated in a variety of tissues and organs during natural aging. Three potential mechanisms that may mediate the age-dependent decrease of Cisd2, via regulating at different levels of gene expression, are discussed. Thirdly, the relationship between CISD2 and cell survival, as well as the potential mechanisms underlying the cell death control, are discussed. Finally we discuss that, in cancers, CISD2 may functions as a double-edged sword, either suppressing or promoting cancer development. This review highlights the importance of the CISD2 in aging and age-related diseases and identifies the urgent need for the translation of available genetic evidence into pharmaceutic interventions in order to alleviate age-related disorders and extend a healthy lifespan in humans.
Collapse
Affiliation(s)
- Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Long Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan; Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yuan-Chi Teng
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tai-Wen Wang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linko, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan; Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
14
|
Pratt SJP, Hernández-Ochoa E, Martin SS. Calcium signaling: breast cancer's approach to manipulation of cellular circuitry. Biophys Rev 2020; 12:1343-1359. [PMID: 33569087 PMCID: PMC7755621 DOI: 10.1007/s12551-020-00771-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Calcium is a versatile element that participates in cell signaling for a wide range of cell processes such as death, cell cycle, division, migration, invasion, metabolism, differentiation, autophagy, transcription, and others. Specificity of calcium in each of these processes is achieved through modulation of intracellular calcium concentrations by changing the characteristics (amplitude/frequency modulation) or location (spatial modulation) of the signal. Breast cancer utilizes calcium signaling as an advantage for survival and progression. This review integrates evidence showing that increases in expression of calcium channels, GPCRs, pumps, effectors, and enzymes, as well as resulting intracellular calcium signals, lead to high calcium and/or an elevated calcium- mobilizing capacity necessary for malignant functions such as migratory, invasive, proliferative, tumorigenic, or metastatic capacities.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Program in Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-020 D, Baltimore, MD 21201 USA
| | - Erick Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Stuart S Martin
- Program in Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-020 D, Baltimore, MD 21201 USA
| |
Collapse
|
15
|
Moro L. The Mitochondrial Proteome of Tumor Cells: A SnapShot on Methodological Approaches and New Biomarkers. BIOLOGY 2020; 9:biology9120479. [PMID: 33353059 PMCID: PMC7766083 DOI: 10.3390/biology9120479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary Mitochondria are central hubs of cellular signaling, energy metabolism, and redox balance. The plasticity of these cellular organelles is an essential requisite for the cells to cope with different stimuli and stress conditions. Cancer cells are characterized by changes in energy metabolism, mitochondrial signaling, and dynamics. These changes are driven by alterations in the mitochondrial proteome. For this reason, in the last years a focus of basic and cancer research has been the implementation and optimization of technologies to investigate changes in the mitochondrial proteome during cancer initiation and progression. This review presents an overview of the most used technologies to investigate the mitochondrial proteome and recent evidence on changes in the expression levels and delocalization of certain proteins in and out the mitochondria for shaping the functional properties of tumor cells. Abstract Mitochondria are highly dynamic and regulated organelles implicated in a variety of important functions in the cell, including energy production, fatty acid metabolism, iron homeostasis, programmed cell death, and cell signaling. Changes in mitochondrial metabolism, signaling and dynamics are hallmarks of cancer. Understanding whether these modifications are associated with alterations of the mitochondrial proteome is particularly relevant from a translational point of view because it may contribute to better understanding the molecular bases of cancer development and progression and may provide new potential prognostic and diagnostic biomarkers as well as novel molecular targets for anti-cancer treatment. Making an inventory of the mitochondrial proteins has been particularly challenging given that there is no unique consensus targeting sequence that directs protein import into mitochondria, some proteins are present at very low levels, while other proteins are expressed only in some cell types, in a particular developmental stage or under specific stress conditions. This review aims at providing the state-of-the-art on methodologies used to characterize the mitochondrial proteome in tumors and highlighting the biological relevance of changes in expression and delocalization of proteins in and out the mitochondria in cancer biology.
Collapse
Affiliation(s)
- Loredana Moro
- Institute of Biomembranes, Bioenergetic and Molecular Biotechnologies, National Research Council, Via Amendola 122/O, 70125 Bari, Italy
| |
Collapse
|
16
|
Yeh CH, Chou YJ, Kao CH, Tsai TF. Mitochondria and Calcium Homeostasis: Cisd2 as a Big Player in Cardiac Ageing. Int J Mol Sci 2020; 21:ijms21239238. [PMID: 33287440 PMCID: PMC7731030 DOI: 10.3390/ijms21239238] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022] Open
Abstract
The ageing of human populations has become a problem throughout the world. In this context, increasing the healthy lifespan of individuals has become an important target for medical research and governments. Cardiac disease remains the leading cause of morbidity and mortality in ageing populations and results in significant increases in healthcare costs. Although clinical and basic research have revealed many novel insights into the pathways that drive heart failure, the molecular mechanisms underlying cardiac ageing and age-related cardiac dysfunction are still not fully understood. In this review we summarize the most updated publications and discuss the central components that drive cardiac ageing. The following characters of mitochondria-related dysfunction have been identified during cardiac ageing: (a) disruption of the integrity of mitochondria-associated membrane (MAM) contact sites; (b) dysregulation of energy metabolism and dynamic flexibility; (c) dyshomeostasis of Ca2+ control; (d) disturbance to mitochondria–lysosomal crosstalk. Furthermore, Cisd2, a pro-longevity gene, is known to be mainly located in the endoplasmic reticulum (ER), mitochondria, and MAM. The expression level of Cisd2 decreases during cardiac ageing. Remarkably, a high level of Cisd2 delays cardiac ageing and ameliorates age-related cardiac dysfunction; this occurs by maintaining correct regulation of energy metabolism and allowing dynamic control of metabolic flexibility. Together, our previous studies and new evidence provided here highlight Cisd2 as a novel target for developing therapies to promote healthy ageing
Collapse
Affiliation(s)
- Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linko 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan
| | - Yi-Ju Chou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Taiwan;
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (C.-H.K.); (T.-F.T.); Tel.: +886-3-211-8800 (ext. 5149) (C.-H.K.); +886-2-2826-7293 (T.-F.T.); Fax: +886-3-211-8700 (C.-H.K.); +886-2-2828-0872 (T.-F.T.)
| | - Ting-Fen Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Taiwan;
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 350, Taiwan
- Aging and Health Research Center, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (C.-H.K.); (T.-F.T.); Tel.: +886-3-211-8800 (ext. 5149) (C.-H.K.); +886-2-2826-7293 (T.-F.T.); Fax: +886-3-211-8700 (C.-H.K.); +886-2-2828-0872 (T.-F.T.)
| |
Collapse
|
17
|
Ricciardi CA, Gnudi L. The endoplasmic reticulum stress and the unfolded protein response in kidney disease: Implications for vascular growth factors. J Cell Mol Med 2020; 24:12910-12919. [PMID: 33067928 PMCID: PMC7701511 DOI: 10.1111/jcmm.15999] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/14/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) represent an important challenge for healthcare providers. The identification of new biomarkers/pharmacological targets for kidney disease is required for the development of more effective therapies. Several studies have shown the importance of the endoplasmic reticulum (ER) stress in the pathophysiology of AKI and CKD. ER is a cellular organelle devolved to protein biosynthesis and maturation, and cellular detoxification processes which are activated in response to an insult. This review aimed to dissect the cellular response to ER stress which manifests with activation of the unfolded protein response (UPR) with its major branches, namely PERK, IRE1α, ATF6 and the interplay between ER and mitochondria in the pathophysiology of kidney disease. Further, we will discuss the relationship between mediators of renal injury (with specific focus on vascular growth factors) and ER stress and UPR in the pathophysiology of both AKI and CKD with the aim to propose potential new targets for treatment for kidney disease.
Collapse
Affiliation(s)
- Carlo Alberto Ricciardi
- King's College of London, Faculty of Life Sciences & Medicine, School of Cardiovascular Medicine & Sciences, Section Vascular Biology and Inflammation, British Heart Foundation Centre for Research Excellence, London, UK
| | - Luigi Gnudi
- King's College of London, Faculty of Life Sciences & Medicine, School of Cardiovascular Medicine & Sciences, Section Vascular Biology and Inflammation, British Heart Foundation Centre for Research Excellence, London, UK
| |
Collapse
|
18
|
Missiroli S, Perrone M, Genovese I, Pinton P, Giorgi C. Cancer metabolism and mitochondria: Finding novel mechanisms to fight tumours. EBioMedicine 2020; 59:102943. [PMID: 32818805 PMCID: PMC7452656 DOI: 10.1016/j.ebiom.2020.102943] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are dynamic organelles that have essential metabolic activity and are regarded as signalling hubs with biosynthetic, bioenergetics and signalling functions that orchestrate key biological pathways. However, mitochondria can influence all processes linked to oncogenesis, starting from malignant transformation to metastatic dissemination. In this review, we describe how alterations in the mitochondrial metabolic status contribute to the acquisition of typical malignant traits, discussing the most recent discoveries and the many unanswered questions. We also highlight that expanding our understanding of mitochondrial regulation and function mechanisms in the context of cancer cell metabolism could be an important task in biomedical research, thus offering the possibility of targeting mitochondria for the treatment of cancer.
Collapse
Affiliation(s)
- Sonia Missiroli
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariasole Perrone
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ilaria Genovese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
19
|
Sasi USS, Ganapathy S, Palayyan SR, Gopal RK. Mitochondria Associated Membranes (MAMs): Emerging Drug Targets for Diabetes. Curr Med Chem 2020; 27:3362-3385. [PMID: 30747057 DOI: 10.2174/0929867326666190212121248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/01/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
MAMs, the physical association between the Endoplasmic Reticulum (ER) and mitochondria are, functional domains performing a significant role in the maintenance of cellular homeostasis. It is evolving as an important signaling center that coordinates nutrient and hormonal signaling for the proper regulation of hepatic insulin action and glucose homeostasis. Moreover, MAMs can be considered as hot spots for the transmission of stress signals from ER to mitochondria. The altered interaction between ER and mitochondria results in the amendment of several insulin-sensitive tissues, revealing the role of MAMs in glucose homeostasis. The development of mitochondrial dysfunction, ER stress, altered lipid and Ca2+ homeostasis are typically co-related with insulin resistance and β cell dysfunction. But little facts are known about the role played by these stresses in the development of metabolic disorders. In this review, we highlight the mechanisms involved in maintaining the contact site with new avenues of investigations for the development of novel preventive and therapeutic targets for T2DM.
Collapse
Affiliation(s)
- U S Swapna Sasi
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIRNational Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sindhu Ganapathy
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIRNational Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Salin Raj Palayyan
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIRNational Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raghu K Gopal
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIRNational Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
20
|
Zhou Y, Tong Z, Jiang S, Zheng W, Zhao J, Zhou X. The Roles of Endoplasmic Reticulum in NLRP3 Inflammasome Activation. Cells 2020; 9:cells9051219. [PMID: 32423023 PMCID: PMC7291288 DOI: 10.3390/cells9051219] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
The NLRP3 (nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3) inflammasome senses pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), and activates caspase-1, which provokes release of proinflammatory cytokines such as interleukin-1β (IL-1β) and IL-18 as well as pyroptosis to engage in innate immune defense. The endoplasmic reticulum (ER) is a large and dynamic endomembrane compartment, critical to cellular function of organelle networks. Recent studies have unveiled the pivotal roles of the ER in NLRP3 inflammasome activation. ER–mitochondria contact sites provide a location for NLRP3 activation, its association with ligands released from or residing in mitochondria, and rapid Ca2+ mobilization from ER stores to mitochondria. ER-stress signaling plays a critical role in NLRP3 inflammasome activation. Lipid perturbation and cholesterol trafficking to the ER activate the NLRP3 inflammasome. These findings emphasize the importance of the ER in initiation and regulation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yang Zhou
- College of Animal Science, Southwest University, Chongqing 402460, China; (Z.T.); (S.J.); (W.Z.); (J.Z.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence:
| | - Zhizi Tong
- College of Animal Science, Southwest University, Chongqing 402460, China; (Z.T.); (S.J.); (W.Z.); (J.Z.)
| | - Songhong Jiang
- College of Animal Science, Southwest University, Chongqing 402460, China; (Z.T.); (S.J.); (W.Z.); (J.Z.)
| | - Wenyan Zheng
- College of Animal Science, Southwest University, Chongqing 402460, China; (Z.T.); (S.J.); (W.Z.); (J.Z.)
| | - Jianjun Zhao
- College of Animal Science, Southwest University, Chongqing 402460, China; (Z.T.); (S.J.); (W.Z.); (J.Z.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
21
|
The Role of Mitochondria in Inflammation: From Cancer to Neurodegenerative Disorders. J Clin Med 2020; 9:jcm9030740. [PMID: 32182899 PMCID: PMC7141240 DOI: 10.3390/jcm9030740] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
The main features that are commonly attributed to mitochondria consist of the regulation of cell proliferation, ATP generation, cell death and metabolism. However, recent scientific advances reveal that the intrinsic dynamicity of the mitochondrial compartment also plays a central role in proinflammatory signaling, identifying these organelles as a central platform for the control of innate immunity and the inflammatory response. Thus, mitochondrial dysfunctions have been related to severe chronic inflammatory disorders. Strategies aimed at reestablishing normal mitochondrial physiology could represent both preventive and therapeutic interventions for various pathologies related to exacerbated inflammation. Here, we explore the current understanding of the intricate interplay between mitochondria and the innate immune response in specific inflammatory diseases, such as neurological disorders and cancer.
Collapse
|
22
|
King AP, Wilson JJ. Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Chem Soc Rev 2020; 49:8113-8136. [DOI: 10.1039/d0cs00259c] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal anticancer agents are rapidly emerging as selective, potent therapeutics that exhibit anticancer activity by inducing endoplasmic reticulum stress.
Collapse
Affiliation(s)
- A. Paden King
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
23
|
Danese A, Marchi S, Vitto VAM, Modesti L, Leo S, Wieckowski MR, Giorgi C, Pinton P. Cancer-Related Increases and Decreases in Calcium Signaling at the Endoplasmic Reticulum-Mitochondria Interface (MAMs). Rev Physiol Biochem Pharmacol 2020; 185:153-193. [PMID: 32789789 DOI: 10.1007/112_2020_43] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER)-mitochondria regions are specialized subdomains called also mitochondria-associated membranes (MAMs). MAMs allow regulation of lipid synthesis and represent hubs for ion and metabolite signaling. As these two organelles can module both the amplitude and the spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls several Ca2+-dependent pathways well known for their contribution to tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis. Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload, permeabilization of the mitochondrial outer membrane, and the release of mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the ER-mitochondria interface are being studied in depth as failure of apoptotic-dependent cell death is one of the predominant characteristics of cancer cells. However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation to tumor onset and progression have aroused the interest of the scientific community.In this review, we will describe how different MAMs-localized proteins modulate the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+ signaling.
Collapse
Affiliation(s)
- Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Veronica Angela Maria Vitto
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Modesti
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sara Leo
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
24
|
The role of mitochondria-associated membranes in cellular homeostasis and diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:119-196. [PMID: 32138899 DOI: 10.1016/bs.ircmb.2019.11.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria and endoplasmic reticulum (ER) are fundamental in the control of cell physiology regulating several signal transduction pathways. They continuously communicate exchanging messages in their contact sites called MAMs (mitochondria-associated membranes). MAMs are specific microdomains acting as a platform for the sorting of vital and dangerous signals. In recent years increasing evidence reported that multiple scaffold proteins and regulatory factors localize to this subcellular fraction suggesting MAMs as hotspot signaling domains. In this review we describe the current knowledge about MAMs' dynamics and processes, which provided new correlations between MAMs' dysfunctions and human diseases. In fact, MAMs machinery is strictly connected with several pathologies, like neurodegeneration, diabetes and mainly cancer. These pathological events are characterized by alterations in the normal communication between ER and mitochondria, leading to deep metabolic defects that contribute to the progression of the diseases.
Collapse
|
25
|
Marchi S, Vitto VAM, Danese A, Wieckowski MR, Giorgi C, Pinton P. Mitochondrial calcium uniporter complex modulation in cancerogenesis. Cell Cycle 2019; 18:1068-1083. [PMID: 31032692 DOI: 10.1080/15384101.2019.1612698] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrations in mitochondrial Ca2+ homeostasis have been associated with different pathological conditions, including neurological defects, cardiovascular diseases, and, in the last years, cancer. With the recent molecular identification of the mitochondrial calcium uniporter (MCU) complex, the channel that allows Ca2+ accumulation into the mitochondrial matrix, alterations in the expression levels or functioning in one or more MCU complex members have been linked to different cancers and cancer-related phenotypes. In this review, we will analyze the role of the uniporter and mitochondrial Ca2+ derangements in modulating cancer cell sensitivity to death, invasiveness, and migratory capacity, as well as cancer progression in vivo. We will also discuss some critical points and contradictory results to highlight the consequence of MCU complex modulation in tumor development.
Collapse
Affiliation(s)
- Saverio Marchi
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy.,b Department of Clinical and Molecular Sciences, Polytechnical University of Marche , Ancona , Italy
| | - Veronica Angela Maria Vitto
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy
| | - Alberto Danese
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy
| | | | - Carlotta Giorgi
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy
| | - Paolo Pinton
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy.,d Maria Cecilia Hospital, GVM Care & Research, 48033 , Cotignola , Ravenna , Italy
| |
Collapse
|
26
|
Romero-Garcia S, Prado-Garcia H. Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review). Int J Oncol 2019; 54:1155-1167. [PMID: 30720054 DOI: 10.3892/ijo.2019.4696] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/06/2018] [Indexed: 11/05/2022] Open
Abstract
In addition to their role in providing cellular energy, mitochondria fulfill a key function in cellular calcium management. The present review provides an integrative view of cellular and mitochondrial calcium homeostasis, and discusses how calcium regulates mitochondrial dynamics and functionality, thus affecting various cellular processes. Calcium crosstalk exists in the domain created between the endoplasmic reticulum and mitochondria, which is known as the mitochondria‑associated membrane (MAM), and controls cellular homeostasis. Calcium signaling participates in numerous biochemical and cellular processes, where calcium concentration, temporality and durability are part of a regulated, finely tuned interplay in non‑transformed cells. In addition, cancer cells modify their MAMs, which consequently affects calcium homeostasis to support mesenchymal transformation, migration, invasiveness, metastasis and autophagy. Alterations in calcium homeostasis may also support resistance to apoptosis, which is a serious problem facing current chemotherapeutic treatments. Notably, mitochondrial dynamics are also affected by mitochondrial calcium concentration to promote cancer survival responses. Dysregulated levels of mitochondrial calcium, alongside other signals, promote mitoflash generation in tumor cells, and an increased frequency of mitoflashes may induce epithelial‑to‑mesenchymal transition. Therefore, cancer cells remodel their calcium balance through numerous mechanisms that support their survival and growth.
Collapse
Affiliation(s)
- Susana Romero-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosío Villegas', CP 14080 Mexico City, Mexico
| | - Heriberto Prado-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosío Villegas', CP 14080 Mexico City, Mexico
| |
Collapse
|
27
|
Zhao W, Cui W, Xu S, Wang Y, Zhang K, Wang D, Cheong LZ, Besenbacher F, Shen C. Direct investigation of charge transfer in neurons by electrostatic force microscopy. Ultramicroscopy 2018; 196:24-32. [PMID: 30273806 DOI: 10.1016/j.ultramic.2018.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/05/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Abstract
Charge transfer plays fundamental roles in information transmission in cells, especially in neurons. To date, direct observation of charge propagation in neurons at nanometer level has not been achieved yet. Herein, a combined charge injection and Electrostatic Force Microscopy (EFM) detection approach is applied to directly study charge propagation and distribution at nanometer resolution in spines and synapses of hippocampal neurons. Charge density, charge mobility and membrane potential in neural signal transmission process through the spines of axons and dendrites of hippocampal neurons were investigated quantitatively. Postsynaptic densities (PSD) in spines of axons and dendrites were revealed and studied. The methods and results from present work provide insights into physiological activities and processes related with electrical properties in nervous system and other biological samples.
Collapse
Affiliation(s)
- Weidong Zhao
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan Road, Ningbo, Zhejiang, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shujun Xu
- Ningbo Key Laboratory of Behavioral Neuroscience, Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yuanyuan Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Ke Zhang
- Ningbo Key Laboratory of Behavioral Neuroscience, Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Deyu Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan Road, Ningbo, Zhejiang, China
| | - Ling-Zhi Cheong
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | | | - Cai Shen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan Road, Ningbo, Zhejiang, China.
| |
Collapse
|
28
|
Functions and dys-functions of promyelocytic leukemia protein PML. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0714-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis 2018; 9:329. [PMID: 29491386 PMCID: PMC5832426 DOI: 10.1038/s41419-017-0027-2] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria are tightly associated with very dynamic platforms termed mitochondria-associated membranes (MAMs). MAMs provide an excellent scaffold for crosstalk between the ER and mitochondria and play a pivotal role in different signaling pathways that allow rapid exchange of biological molecules to maintain cellular health. However, dysfunctions in the ER–mitochondria architecture are associated with pathological conditions and human diseases. Inflammation has emerged as one of the various pathways that MAMs control. Inflammasome components and other inflammatory factors promote the release of pro-inflammatory cytokines that sustain pathological conditions. In this review, we summarize the critical role of MAMs in initiating inflammation in the cellular defense against pathogenic infections and the association of MAMs with inflammation-mediated diseases.
Collapse
|
30
|
Ando H, Kawaai K, Bonneau B, Mikoshiba K. Remodeling of Ca 2+ signaling in cancer: Regulation of inositol 1,4,5-trisphosphate receptors through oncogenes and tumor suppressors. Adv Biol Regul 2017; 68:64-76. [PMID: 29287955 DOI: 10.1016/j.jbior.2017.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
The calcium ion (Ca2+) is a ubiquitous intracellular signaling molecule that regulates diverse physiological and pathological processes, including cancer. Increasing evidence indicates that oncogenes and tumor suppressors regulate the Ca2+ transport systems. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are IP3-activated Ca2+ release channels located on the endoplasmic reticulum (ER). They play pivotal roles in the regulation of cell death and survival by controlling Ca2+ transfer from the ER to mitochondria through mitochondria-associated ER membranes (MAMs). Optimal levels of Ca2+ mobilization to mitochondria are necessary for mitochondrial bioenergetics, whereas excessive Ca2+ flux into mitochondria causes loss of mitochondrial membrane integrity and apoptotic cell death. In addition to well-known functions on outer mitochondrial membranes, B-cell lymphoma 2 (Bcl-2) family proteins are localized on the ER and regulate IP3Rs to control Ca2+ transfer into mitochondria. Another regulatory protein of IP3R, IP3R-binding protein released with IP3 (IRBIT), cooperates with or counteracts the Bcl-2 family member depending on cellular states. Furthermore, several oncogenes and tumor suppressors, including Akt, K-Ras, phosphatase and tensin homolog (PTEN), promyelocytic leukemia protein (PML), BRCA1, and BRCA1 associated protein 1 (BAP1), are localized on the ER or at MAMs and negatively or positively regulate apoptotic cell death through interactions with IP3Rs and regulation of Ca2+ dynamics. The remodeling of Ca2+ signaling by oncogenes and tumor suppressors that interact with IP3Rs has fundamental roles in the pathology of cancers.
Collapse
Affiliation(s)
- Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Katsuhiro Kawaai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Benjamin Bonneau
- Institute NeuroMyoGene (INMG), CNRS UMR 5310, INSERM U1217, Gregor Mendel building, 16, rue Raphaël Dubois, 69100 Villeurbanne, France
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
31
|
Bustos G, Cruz P, Lovy A, Cárdenas C. Endoplasmic Reticulum-Mitochondria Calcium Communication and the Regulation of Mitochondrial Metabolism in Cancer: A Novel Potential Target. Front Oncol 2017; 7:199. [PMID: 28944215 PMCID: PMC5596064 DOI: 10.3389/fonc.2017.00199] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/18/2017] [Indexed: 01/15/2023] Open
Abstract
Cancer is characterized by an uncontrolled cell proliferation rate even under low nutrient availability, which is sustained by a metabolic reprograming now recognized as a hallmark of cancer. Warburg was the first to establish the relationship between cancer and mitochondria; however, he interpreted enhanced aerobic glycolysis as mitochondrial dysfunction. Today it is accepted that many cancer cell types need fully functional mitochondria to maintain their homeostasis. Calcium (Ca2+)—a key regulator of several cellular processes—has proven to be essential for mitochondrial metabolism. Inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ transfer from the endoplasmic reticulum to the mitochondria through the mitochondrial calcium uniporter (MCU) proves to be essential for the maintenance of mitochondrial function and cellular energy balance. Both IP3R and MCU are overexpressed in several cancer cell types, and the inhibition of the Ca2+ communication between these two organelles causes proliferation arrest, migration decrease, and cell death through mechanisms that are not fully understood. In this review, we summarize and analyze the current findings in this area, emphasizing the critical role of Ca2+ and mitochondrial metabolism in cancer and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Galdo Bustos
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Pablo Cruz
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Alenka Lovy
- Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, Boston, MA, United States
| | - César Cárdenas
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
32
|
Pedriali G, Rimessi A, Sbano L, Giorgi C, Wieckowski MR, Previati M, Pinton P. Regulation of Endoplasmic Reticulum-Mitochondria Ca 2+ Transfer and Its Importance for Anti-Cancer Therapies. Front Oncol 2017; 7:180. [PMID: 28913175 PMCID: PMC5583168 DOI: 10.3389/fonc.2017.00180] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022] Open
Abstract
Inter-organelle membrane contact sites are emerging as major sites for the regulation of intracellular Ca2+ concentration and distribution. Here, extracellular stimuli operate on a wide array of channels, pumps, and ion exchangers to redistribute intracellular Ca2+ among several compartments. The resulting highly defined spatial and temporal patterns of Ca2+ movement can be used to elicit specific cellular responses, including cell proliferation, migration, or death. Plasma membrane (PM) also can directly contact mitochondria and endoplasmic reticulum (ER) through caveolae, small invaginations of the PM that ensure inter-organelle contacts, and can contribute to the regulation of numerous cellular functions through scaffolding proteins such as caveolins. PM and ER organize specialized junctions. Here, many components of the receptor-dependent Ca2+ signals are clustered, including the ORAI1-stromal interaction molecule 1 complex. This complex constitutes a primary mechanism for Ca2+ entry into non-excitable cells, modulated by intracellular Ca2+. Several contact sites between the ER and mitochondria, termed mitochondria-associated membranes, show a very complex and specialized structure and host a wide number of proteins that regulate Ca2+ transfer. In this review, we summarize current knowledge of the particular action of several oncogenes and tumor suppressors at these specialized check points and analyze anti-cancer therapies that specifically target Ca2+ flow at the inter-organelle contacts to alter the metabolism and fate of the cancer cell.
Collapse
Affiliation(s)
- Gaia Pedriali
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alessandro Rimessi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Luigi Sbano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Maurizio Previati
- Department of Morphology, Surgery and Experimental Medicine, Section of Human Anatomy and Histology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
33
|
Bootman MD, Chehab T, Bultynck G, Parys JB, Rietdorf K. The regulation of autophagy by calcium signals: Do we have a consensus? Cell Calcium 2017; 70:32-46. [PMID: 28847414 DOI: 10.1016/j.ceca.2017.08.005] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022]
Abstract
Macroautophagy (hereafter called 'autophagy') is a cellular process for degrading and recycling cellular constituents, and for maintenance of cell function. Autophagy initiates via vesicular engulfment of cellular materials and culminates in their degradation via lysosomal hydrolases, with the whole process often being termed 'autophagic flux'. Autophagy is a multi-step pathway requiring the interplay of numerous scaffolding and signalling molecules. In particular, orthologs of the family of ∼30 autophagy-regulating (Atg) proteins that were first characterised in yeast play essential roles in the initiation and processing of autophagic vesicles in mammalian cells. The serine/threonine kinase mTOR (mechanistic target of rapamycin) is a master regulator of the canonical autophagic response of cells to nutrient starvation. In addition, AMP-activated protein kinase (AMPK), which is a key sensor of cellular energy status, can trigger autophagy by inhibiting mTOR, or by phosphorylating other downstream targets. Calcium (Ca2+) has been implicated in autophagic signalling pathways encompassing both mTOR and AMPK, as well as in autophagy seemingly not involving these kinases. Numerous studies have shown that cytosolic Ca2+ signals can trigger autophagy. Moreover, introduction of an exogenous chelator to prevent cytosolic Ca2+ signals inhibits autophagy in response to many different stimuli, with suggestions that buffering Ca2+ affects not only the triggering of autophagy, but also proximal and distal steps during autophagic flux. Observations such as these indicate that Ca2+ plays an essential role as a pro-autophagic signal. However, cellular Ca2+ signals can exert anti-autophagic actions too. For example, Ca2+ channel blockers induce autophagy due to the loss of autophagy-suppressing Ca2+ signals. In addition, the sequestration of Ca2+ by mitochondria during physiological signalling appears necessary to maintain cellular bio-energetics, thereby suppressing AMPK-dependent autophagy. This article attempts to provide an integrated overview of the evidence for the proposed roles of various Ca2+ signals, Ca2+ channels and Ca2+ sources in controlling autophagic flux.
Collapse
Affiliation(s)
- Martin D Bootman
- School of Life, Health and Chemical Sciences, The Open University, MK7 6AA, UK.
| | - Tala Chehab
- School of Life, Health and Chemical Sciences, The Open University, MK7 6AA, UK
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), B-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), B-3000 Leuven, Belgium
| | - Katja Rietdorf
- School of Life, Health and Chemical Sciences, The Open University, MK7 6AA, UK
| |
Collapse
|
34
|
White C. The Regulation of Tumor Cell Invasion and Metastasis by Endoplasmic Reticulum-to-Mitochondrial Ca 2+ Transfer. Front Oncol 2017; 7:171. [PMID: 28848710 PMCID: PMC5554129 DOI: 10.3389/fonc.2017.00171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/26/2017] [Indexed: 12/23/2022] Open
Abstract
Cell migration is one of the many processes orchestrated by calcium (Ca2+) signaling, and its dysregulation drives the increased invasive and metastatic potential of cancer cells. The ability of Ca2+ to function effectively as a regulator of migration requires the generation of temporally complex signals within spatially restricted microdomains. The generation and maintenance of these Ca2+ signals require a specific structural architecture and tightly regulated communication between the extracellular space, intracellular organelles, and cytoplasmic compartments. New insights into how Ca2+ microdomains are shaped by interorganellar Ca2+ communication have shed light on how Ca2+ coordinates cell migration by directing cellular polarization and the rearrangement of structural proteins. Importantly, we are beginning to understand how cancer subverts normal migration through the activity of oncogenes and tumor suppressors that impinge directly on the physiological function or expression levels of Ca2+ signaling proteins. In this review, we present and discuss research at the forefront of interorganellar Ca2+ signaling as it relates to cell migration, metastasis, and cancer progression, with special focus on endoplasmic reticulum-to-mitochondrial Ca2+ transfer.
Collapse
Affiliation(s)
- Carl White
- Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
35
|
Herrera-Cruz MS, Simmen T. Cancer: Untethering Mitochondria from the Endoplasmic Reticulum? Front Oncol 2017; 7:105. [PMID: 28603693 PMCID: PMC5445141 DOI: 10.3389/fonc.2017.00105] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/05/2017] [Indexed: 01/18/2023] Open
Abstract
Following the discovery of the mitochondria-associated membrane (MAM) as a hub for lipid metabolism in 1990 and its description as one of the first examples for membrane contact sites at the turn of the century, the past decade has seen the emergence of this structure as a potential regulator of cancer growth and metabolism. The mechanistic basis for this hypothesis is that the MAM accommodates flux of Ca2+ from the endoplasmic reticulum (ER) to mitochondria. This flux then determines mitochondrial ATP production, known to be low in many tumors as part of the Warburg effect. However, low mitochondrial Ca2+ flux also reduces the propensity of tumor cells to undergo apoptosis, another cancer hallmark. Numerous regulators of this flux have been recently identified as MAM proteins. Not surprisingly, many fall into the groups of tumor suppressors and oncogenes. Given the important role that the MAM could play in cancer, it is expected that proteins mediating its formation are particularly implicated in tumorigenesis. Examples for such proteins are mitofusin-2 and phosphofurin acidic cluster sorting protein 2 that likely act as tumor suppressors. This review discusses how these proteins that mediate or regulate ER–mitochondria tethering are (or are not) promoting or inhibiting tumorigenesis. The emerging picture of MAMs in cancer seems to indicate that in addition to the downregulation of mitochondrial Ca2+ import, MAM defects are but one way how cancer cells control mitochondria metabolism and apoptosis.
Collapse
Affiliation(s)
- Maria Sol Herrera-Cruz
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Thomas Simmen
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
36
|
Abstract
Telocyte (TC) is a new identified interstitial cell type with a small nuclear and one or several long and thin prolongations with enlargements on them. They were found in many mammals including humans, mouse, rats, dogs, and monkeys and play vital roles in many physiological and pathological conditions. The ultrastructure of mitochondria was observed in TCs, and the alterations were found in TCs from inflammatory ureter tissue. MtDNA is associated with mitochondria normal functions and involved in physiological and pathological processes. However, mitochondria and mtDNA in TCs were not investigated deeply. This review will introduce the origin, distribution, morphology, and functions of TCs and the distribution and functions of TC mitochondria in order to improve a better understanding of the potential functions of mtDNA in TCs.
Collapse
|