1
|
Esplin ED, Hanson C, Wu S, Horning AM, Barapour N, Nevins SA, Jiang L, Contrepois K, Lee H, Guha TK, Hu Z, Laquindanum R, Mills MA, Chaib H, Chiu R, Jian R, Chan J, Ellenberger M, Becker WR, Bahmani B, Khan A, Michael B, Weimer AK, Esplin DG, Shen J, Lancaster S, Monte E, Karathanos TV, Ladabaum U, Longacre TA, Kundaje A, Curtis C, Greenleaf WJ, Ford JM, Snyder MP. Multiomic analysis of familial adenomatous polyposis reveals molecular pathways associated with early tumorigenesis. NATURE CANCER 2024; 5:1737-1753. [PMID: 39478120 PMCID: PMC11584401 DOI: 10.1038/s43018-024-00831-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/29/2024] [Indexed: 11/24/2024]
Abstract
Familial adenomatous polyposis (FAP) is a genetic disease causing hundreds of premalignant polyps in affected persons and is an ideal model to study transitions of early precancer states to colorectal cancer (CRC). We performed deep multiomic profiling of 93 samples, including normal mucosa, benign polyps and dysplastic polyps, from six persons with FAP. Transcriptomic, proteomic, metabolomic and lipidomic analyses revealed a dynamic choreography of thousands of molecular and cellular events that occur during precancerous transitions toward cancer formation. These involve processes such as cell proliferation, immune response, metabolic alterations (including amino acids and lipids), hormones and extracellular matrix proteins. Interestingly, activation of the arachidonic acid pathway was found to occur early in hyperplasia; this pathway is targeted by aspirin and other nonsteroidal anti-inflammatory drugs, a preventative treatment under investigation in persons with FAP. Overall, our results reveal key genomic, cellular and molecular events during the earliest steps in CRC formation and potential mechanisms of pharmaceutical prophylaxis.
Collapse
Affiliation(s)
- Edward D Esplin
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Casey Hanson
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Si Wu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Aaron M Horning
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Nasim Barapour
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | - Lihua Jiang
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Hayan Lee
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Tuhin K Guha
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Zheng Hu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | | | - Meredith A Mills
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Hassan Chaib
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Roxanne Chiu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Joanne Chan
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | - Winston R Becker
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Bahareh Bahmani
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Aziz Khan
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Basil Michael
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Annika K Weimer
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jeanne Shen
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Emma Monte
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | - Uri Ladabaum
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Teri A Longacre
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - James M Ford
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA.
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Su M, Zheng S, Liu H, Tang TS, Hu Y. Ca 2+ homeostasis: a potential target for cancer therapies. BIOPHYSICS REPORTS 2024; 10:283-292. [PMID: 39539289 PMCID: PMC11554574 DOI: 10.52601/bpr.2024.230023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/19/2024] [Indexed: 11/16/2024] Open
Abstract
Calcium ions (Ca2+) play a crucial role as secondary messengers in both excitable and non-excitable cells. A complex system of proteins and molecules involved in calcium handling allows Ca2+ signals to be transduced. In cancer cells, mutations, aberrant expression, and dysregulation of these calcium handling toolkit proteins disrupt the normal Ca2+ flux between extracellular space, cytosol, endoplasmic reticulum and mitochondria, as well as the spatio-temporal patterns of Ca2+ signalling. This leads to the dysregulation of calcium-dependent effectors that control key signaling pathways involved in cancer cell proliferation, survival and invasion. Although there has been progressing in understanding the remodelling of calcium homeostasis in cancer cells and identifying key calcium transport molecules that promote malignant phenotypes, much work remains to be done to translate these fundamental findings into new tools for diagnosing and treating cancer by targeting Ca2+ homeostasis.
Collapse
Affiliation(s)
- Min Su
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Department of Medicine and Health, Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou 450000, China
| | - Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Department of Medicine and Health, Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou 450000, China
| | - Hao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Department of Medicine and Health, Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou 450000, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Department of Medicine and Health, Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou 450000, China
| |
Collapse
|
3
|
Zhou S, Liu S, Jiang A, Li Z, Duan C, Li B. New insights into the stromal interaction molecule 2 function and its impact on the immunomodulation of tumor microenvironment. Cell Biosci 2024; 14:119. [PMID: 39272139 PMCID: PMC11395313 DOI: 10.1186/s13578-024-01292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Immune cells-enhanced immunotherapy exhibits unprecedented overall survival-prolongation even curable in some cancer patients. Although so, most of the patients show no response. Tumor microenvironment (TME) where immune cells settle down has multi-faceted influences, but usually creates an immunosuppressive niche that facilitating tumor cells escape from immune attack. The metabolites and malnutrition of TME exert enormous effects on the resident immune cells, but the underlying mechanism is largely unknown. The stromal interaction molecules 2 (STIM2) is an endoplasmic reticulum (ER) calcium (Ca2+) sensor to maintain Ca2+ homeostasis. Notably, the cytosol STIM2 C-terminus is long with various domains that are available for the combination or/and molecular modification. This distinct structure endows STIM2 with a high susceptibility to numerous permeable physico-chemical molecules or protein interactions. STIM2 and its variants are extensively expressed in various immune cells, especially in T immune cells. STIM2 was reported closely correlated with the function of immune cells via regulating Ca2+ signaling, energy metabolism and cell fitness. Herein, we sum the latest findings on the STIM2 structure, focusing on its distinct characteristics and profound effect on the regulation of Ca2+ homeostasis and multi-talented functionality. We also outline the advancements on the underlying mechanism how STIM2 anomalies influence the function of immune cells and on the turbulent expression or/and amenably modification of STIM2 within the tumor niches. Then we discuss the translation of these researches into antitumor approaches, emphasizing the potential of STIM2 as a therapeutic target for direct inhibition of tumor cells or more activation towards immune cells driving to flare TME. This review is an update on STIM2, aiming to rationalize the potential of STIM2 as a therapeutic target for immunomodulation, engaging immune cells to exert the utmost anti-tumor effect.
Collapse
Affiliation(s)
- Shishan Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shujie Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Anfeng Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhiyuan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Dimberg J, Shamoun L, Af Geijerstam K, Landerholm K, Wågsäter D. Significance of Gene Polymorphism and Gene Expression of BACE2 in Swedish Patients with Colorectal Cancer. Oncology 2024:1-8. [PMID: 39217971 DOI: 10.1159/000540887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION β-site amyloid precursor protein (APP) cleaving enzyme 2 (BACE2) cleaves APP which is ubiquitously expressed in a variety of cell types including cancer cells. BACE2 can process APP in several ways and appears to be involved in the pathogenesis of cancer. Our purpose was to assess the association of mRNA expression and genetic polymorphism of BACE2 in colorectal cancer (CRC) susceptibility and its association to clinicopathological factors in Swedish patients with CRC. METHODS A total of 720 CRC patients and 470 healthy controls were genotyped for BACE2 gene polymorphism rs2012050, using TaqMan single nucleotide polymorphism (SNP) assays based on polymerase chain reaction. Reverse transcription quantitative PCR was used to investigate the BACE2 gene expression in 192 CRC tissue and 181 paired normal tissue. RESULTS Assessing clinicopathological factors, we noted that carrying of T allele in C/T and C/T+T/T was significantly associated with a protective role against disseminated cancer and higher lymph node status. Moreover, individuals carrying T/T genotype were significantly more likely to have poorly differentiated cancer. Follow-up data for patients in poorly differentiated cancer and the Kaplan-Meier analysis showed that the cancer-specific survival curves differed between C/C and C/T+T/T for the BACE2 gene polymorphism and that the carriers of the genotype C/C were associated with more favorable prognosis. We found no significant differences in the genotypic frequencies between the patients and healthy controls. BACE2 mRNA level was significantly 2.2-fold upregulated in CRC tissue when compared to noncancerous tissue. A higher BACE2 mRNA level was observed in smaller tumors and in rectal cancer when compared to colon cancer. CONCLUSION In patients with CRC, our results indicate BACE2 rs2012050 as a useful potential predictor of poor differentiation, disseminated cancer and lymph node status and that the BACE2 mRNA expression is associated to tumor size and cancer location.
Collapse
Affiliation(s)
- Jan Dimberg
- Department of Clinical Diagnostics, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Levar Shamoun
- Department of Laboratory Medicine and Pathology, Region Jönköping County, Jönköping, Sweden
| | | | - Kalle Landerholm
- Department of Surgery, Region Jönköping County, Jönköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Dick Wågsäter
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Macias‐Diaz A, Lopez JJ, Bravo M, Jardín I, Garcia‐Jimenez WL, Blanco‐Blanco FJ, Cerrato R, Rosado JA. Postbiotics of Lacticaseibacillus paracasei CECT 9610 and Lactiplantibacillus plantarum CECT 9608 attenuates store-operated calcium entry and FAK phosphorylation in colorectal cancer cells. Mol Oncol 2024; 18:1123-1142. [PMID: 38514909 PMCID: PMC11076996 DOI: 10.1002/1878-0261.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a major mechanism for Ca2+ influx in colorectal cancer (CRC) cells. This mechanism, regulated by the filling state of the intracellular Ca2+ stores, is mediated by the endoplasmic reticulum Ca2+ sensors of the stromal interaction molecules (STIM) family [stromal interaction molecule 1 (STIM1) and STIM2] and the Ca2+-release-activated Ca2+ channels constituted by Orai family members, with predominance of calcium release-activated calcium channel protein 1 (Orai1). CRC cells exhibit enhanced SOCE due to remodeling of the expression of the key SOCE molecular components. The enhanced SOCE supports a variety of cancer hallmarks. Here, we show that treatment of the colorectal adenocarcinoma cell lines HT-29 and Caco-2 with inanimate Lacticaseibacillus paracasei (CECT9610) and Lactiplantibacillus plantarum (CECT9608) attenuates SOCE, although no detectable effect is seen on SOCE in normal colon mucosa cells. The effect of Lacticaseibacillus paracasei and Lactiplantibacillus plantarum postbiotics was mediated by downregulation of Orai1 and STIM1, while the expression levels of Orai3 and STIM2 remained unaltered. Treatment of HT-29 and Caco-2 cells with inanimate Lacticaseibacillus paracasei and Lactiplantibacillus plantarum impairs in vitro migration by a mechanism likely involving attenuation of focal adhesion kinase (FAK) tyrosine phosphorylation. Cell treatment with the Orai1 inhibitor synta-66 attenuates SOCE and prevents any further effect of Lacticaseibacillus paracasei and Lactiplantibacillus plantarum postbiotics. Together, our results indicate for the first time that Lacticaseibacillus paracasei and Lactiplantibacillus plantarum postbiotics selectively exert negative effects on Ca2+ influx through SOCE in colorectal adenocarcinoma cell lines, providing evidence for an attractive strategy against CRC.
Collapse
Affiliation(s)
- Alvaro Macias‐Diaz
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB)Universidad de ExtremaduraCáceresSpain
| | - Jose J. Lopez
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB)Universidad de ExtremaduraCáceresSpain
| | - Maria Bravo
- Innovación en Gestión y Conservación de Ungulados S.LCáceresSpain
| | - Isaac Jardín
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB)Universidad de ExtremaduraCáceresSpain
| | | | | | - Rosario Cerrato
- Innovación en Gestión y Conservación de Ungulados S.LCáceresSpain
| | - Juan A. Rosado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB)Universidad de ExtremaduraCáceresSpain
| |
Collapse
|
6
|
Bozdag A, Kuloglu T, Artas G, Aydin S. Investigation of Trpa1 and Trpc1 Immunreactivities in Colon Adenocarcinomas. Cancer Manag Res 2024; 16:377-384. [PMID: 38699653 PMCID: PMC11063473 DOI: 10.2147/cmar.s447549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Purpose As the normal colon epithelium differentiates into adenoma, invasive cancer and metastatic cancer, the cell acquires new characteristics such as apoptosis, proliferation, differentiation, invasion and metastasis. Many mechanisms are effective in acquiring these qualities. One of these is the regulation of the functioning of ion channels. This study aimed to examine TRPA1 and TRPC1 expression in colorectal adenocarcinomas showing different degrees of differentiation. Patients and Methods We examined the biopsy specimens of 60 patients diagnosed with colorectal adenocarcinomas, including those of patients with well-differentiated (n = 20), moderately differentiated (n = 20) and poorly differentiated (n = 20) carcinomas. Moreover, 20 biopsy specimens of individuals with normal colonic mucosa were examined. Histoscores were calculated for TRPA1 and TRPC1 based on the extent of diffusion and intensity of immunoreactivity, and these scores were compared statistically. Results A statistically significant increase in both TRPA1 and TRPC1 immunoreactivity was observed in low-grade and high-grade colon adenocarcinomas compared to the control group (p<0.001). A statistically significant decrease in both TRPA1 and TRPC1 immunoreactivity was observed in high-grade colon adenocarcinomas compared to low-grade colon adenocarcinomas (p<0.001). Conclusion TRPA1 and TRPC1 immunoreactivites are increased in colorectal adenocarcinoma tissue compared with the healthy tissue. Furthermore, the immunoreactivity decreases as the grade of cancer increases.
Collapse
Affiliation(s)
- Ahmet Bozdag
- Department of General Surgery, School of Medicine, Firat University, Elazig, Turkey
| | - Tuncay Kuloglu
- Department of Histology and Embryology, School of Medicine, Firat University, Elazig, Turkey
| | - Gokhan Artas
- Department of Pathology, School of Medicine, Firat University, Elazig, Turkey
| | - Suleyman Aydin
- Department of Biochemistry, School of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
7
|
Lange F, Porath K, Sellmann T, Einsle A, Jaster R, Linnebacher M, Köhling R, Kirschstein T. Direct-Current Electrical Field Stimulation of Patient-Derived Colorectal Cancer Cells. BIOLOGY 2023; 12:1032. [PMID: 37508461 PMCID: PMC10376471 DOI: 10.3390/biology12071032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Several cues for a directional migration of colorectal cancer cells were identified as being crucial in tumor progression. However, galvanotaxis, the directional migration in direct-current electrical fields, has not been investigated so far. Therefore, we asked whether direct-current electrical fields could be used to mobilize colorectal cancer cells along field vectors. For this purpose, five patient-derived low-passage cell lines were exposed to field strengths of 150-250 V/m in vitro, and migration along the field vectors was investigated. To further study the role of voltage-gated calcium channels on galvanotaxis and intracellular signaling pathways that are associated with migration of colorectal cancer cells, the cultures were exposed to selective inhibitors. In three out of five colorectal cancer cell lines, we found a preferred cathodal migration. The cellular integrity of the cells was not impaired by exposure of the cells to the selected field strengths. Galvanotaxis was sensitive to inhibition of voltage-gated calcium channels. Furthermore, signaling pathways such as AKT and MEK, but not STAT3, were also found to contribute to galvanotaxis in our in vitro model system. Overall, we identify electrical fields as an important contributor to the directional migration of colorectal cancer cells.
Collapse
Affiliation(s)
- Falko Lange
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Tina Sellmann
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Anne Einsle
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Robert Jaster
- Division of Gastroenterology and Endocrinology, Department of Medicine II, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
8
|
Pérez-Riesgo E, Hernando-Pérez E, Feijóo V, Tajada S, Núñez L, Villalobos C. Transcriptional Basis of Ca 2+ Remodeling Reversal Induced by Polyamine Synthesis Inhibition in Colorectal Cancer Cells. Cancers (Basel) 2023; 15:cancers15051600. [PMID: 36900391 PMCID: PMC10000432 DOI: 10.3390/cancers15051600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer (CRC) is associated with mutations in APC/Wnt leading to c-myc activation and the overexpression of ODC1, the limiting step in polyamine synthesis. CRC cells also display a remodeling of intracellular Ca2+ homeostasis that contributes to cancer hallmarks. As polyamines may modulate Ca2+ homeostasis during epithelial tissue repair, we investigated whether polyamine synthesis inhibition may reverse Ca2+ remodeling in CRC cells and, if so, the molecular basis for this reversal. To this end, we used calcium imaging and transcriptomic analysis in normal and CRC cells treated with DFMO, an ODC1 suicide inhibitor. We found that polyamine synthesis inhibition partially reversed changes in Ca2+ homeostasis associated with CRC, including a decrease in resting Ca2+ and SOCE along with an increased Ca2+ store content. We also found that polyamine synthesis inhibition reversed transcriptomic changes in CRC cells without affecting normal cells. Specifically, DFMO treatment enhanced the transcription of SOCE modulators CRACR2A; ORMDL3; and SEPTINS 6, 7, 8, 9, and 11, whereas it decreased SPCA2, involved in store-independent Orai1 activation. Therefore, DFMO treatment probably decreased store-independent Ca2+ entry and enhanced SOCE control. Conversely, DFMO treatment decreased the transcription of the TRP channels TRPC1 and 5, TRPV6, and TRPP1 while increasing TRPP2, thus probably decreasing Ca2+ entry through TRP channels. Finally, DFMO treatment enhanced the transcription of the PMCA4 Ca2+ pump and mitochondrial channels MCU and VDAC3 for enhanced Ca2+ extrusion through the plasma membrane and mitochondria. Collectively, these findings suggested the critical role of polyamines in Ca2+ remodeling in colorectal cancer.
Collapse
Affiliation(s)
- Enrique Pérez-Riesgo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Correspondence: (E.P.-R.); (C.V.); Tel.: +34-983-184822 (E.P.-R.); +34-983-184821 (C.V.)
| | - Elena Hernando-Pérez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Verónica Feijóo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Sendoa Tajada
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Lucía Núñez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Carlos Villalobos
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Correspondence: (E.P.-R.); (C.V.); Tel.: +34-983-184822 (E.P.-R.); +34-983-184821 (C.V.)
| |
Collapse
|
9
|
Li L, Xiao Z, He P, Zou W, Deng Z, Zhang G, Liu R. Molecular subtyping based on TRP family and prognostic assessment for TRP-associated lncRNAs in pancreatic adenocarcinoma. BMC Gastroenterol 2022; 22:454. [PMID: 36371178 PMCID: PMC9652922 DOI: 10.1186/s12876-022-02552-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
Background Transient receptor potential (TRP) channels have high permeability to Ca2+ ions because they are non-selective ion channels. TRP channels have been implicated in tumor onset and progression, proliferation, and migration in recent years. However, the prognostic value of genes related to TRP and their specific mechanism in pancreatic adenocarcinoma (PAAD) are yet to be understood. Methods Public databases such as TCGA and GEO were used to retrieve data on gene expression and clinical information of patients with pancreatic adenocarcinoma for our study. ConsensusClusterPlus package was used for unsupervised clustering analysis. The microenvironment cell population (MCP)-counter approach was employed to measure the immune cells infiltration status. The Pearson correlation was performed to identify TRP-associated lncRNAs. Results Initially, we separated PAAD patients into three clusters depending on TRP-related genes, and of the three clusters, cluster B showed the least immune cell infiltration, which was correlated with poor prognosis. Moreover, GSVA enrichment analysis further revealed that cluster A was subjected to a considerable enrichment in carcinogenic signaling pathways, whereas cluster C was enriched in immune-related pathways. Then, using TRP-associated lncRNAs as a starting point, we constructed a prognostic risk model for PAAD patients that could efficiently predict their prognosis. Further, GSEA revealed that cancer-related pathways, for instance, the cell cycle, p53 signaling pathway, etc. were considerably enriched in the high-risk group. In addition, we looked into the link between the prognostic model and the immunological microenvironment. Lower cytotoxic lymphocytes, NK cells, CD8 T cells, and endothelial cells infiltration were found to be associated with high risk using the MCP-counter algorithm. The expression of CD274, POLE2, MCM6, and LOXL2 was also found to be higher in the high-risk group. TMB was also considerably greater in high-risk individuals, indicating that immune checkpoint inhibitors (ICIs) therapy may benefit them more. Lastly, qRT-PCR further confirmed the differential expression of these prognostic TRP-associated lncRNAs, indicating that these lncRNAs play an imperative role in PAAD tumorigenesis. Conclusion TRP family genes may represent a new class of candidate molecular markers of the occurrence and progression of PAAD. Risk models based on TRP-associated lncRNAs could provide important new references for immunotargeted therapy of pancreatic adenocarcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02552-y.
Collapse
|
10
|
Wang G, Wang JJ, Xu XN, Shi F, Fu XL. Targeting cellular energy metabolism- mediated ferroptosis by small molecule compounds for colorectal cancer therapy. J Drug Target 2022; 30:819-832. [PMID: 35481396 DOI: 10.1080/1061186x.2022.2071909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Alterations in cellular energy metabolism, including glycolysis, glutamine and lipid metabolism that affects ferroptosis in the tumour microenvironment (TME), play a critical role in the development and progression of colorectal cancer (CRC) and offer evolutionary advantages to tumour cells and even enhance their aggressive phenotype. This review summarises the findings on the dysregulated energy metabolism pathways, including lipid and fatty acid metabolism especially for regulating the ferroptosis in TME. Moreover, the cellular energy metabolism and tumour ferroptosis to be regulated by small molecule compounds, which targeting the different aspects of metabolic pathways of energy production as well as metabolic enzymes that connect with the tumour cell growth and ferroptosis in CRC are also discussed. In this review, we will provide a comprehensive summary on small molecule compounds regulatory function of different energy metabolic routes on ferroptosis in tumour cells and discuss those metabolic vulnerabilities for the development of potential ferroptosis-based tumour therapies for colorectal cancer.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Xiao-Na Xu
- Department of Medicine, Jiangsu University, Zhenjiang City, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang City, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang City, China
| |
Collapse
|
11
|
Chokshi R, Bennett O, Zhelay T, Kozak JA. NSAIDs Naproxen, Ibuprofen, Salicylate, and Aspirin Inhibit TRPM7 Channels by Cytosolic Acidification. Front Physiol 2021; 12:727549. [PMID: 34733174 PMCID: PMC8558630 DOI: 10.3389/fphys.2021.727549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/10/2021] [Indexed: 01/23/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are used for relieving pain and inflammation accompanying numerous disease states. The primary therapeutic mechanism of these widely used drugs is the inhibition of cyclooxygenase 1 and 2 (COX1, 2) enzymes that catalyze the conversion of arachidonic acid into prostaglandins. At higher doses, NSAIDs are used for prevention of certain types of cancer and as experimental treatments for Alzheimer’s disease. In the immune system, various NSAIDs have been reported to influence neutrophil function and lymphocyte proliferation, and affect ion channels and cellular calcium homeostasis. Transient receptor potential melastatin 7 (TRPM7) cation channels are highly expressed in T lymphocytes and are inhibited by Mg2+, acidic pH, and polyamines. Here, we report a novel effect of naproxen, ibuprofen, salicylate, and acetylsalicylate on TRPM7. At concentrations of 3–30mM, they reversibly inhibited TRPM7 channel currents. By measuring intracellular pH with the ratiometric indicator BCECF, we found that at 300μM to 30mM, these NSAIDs reversibly acidified the cytoplasm in a concentration-dependent manner, and propose that TRPM7 channel inhibition is a consequence of cytosolic acidification, rather than direct. NSAID inhibition of TRPM7 channels was slow, voltage-independent, and displayed use-dependence, increasing in potency upon repeated drug applications. The extent of channel inhibition by salicylate strongly depended on cellular PI(4,5)P2 levels, as revealed when this phospholipid was depleted with voltage-sensitive lipid phosphatase (VSP). Salicylate inhibited heterologously expressed wildtype TRPM7 channels but not the S1107R variant, which is insensitive to cytosolic pH, Mg2+, and PI(4,5)P2 depletion. NSAID-induced acidification was also observed in Schneider 2 cells from Drosophila, an organism that lacks orthologous COX genes, suggesting that this effect is unrelated to COX enzyme activity. A 24-h exposure to 300μM–10mM naproxen resulted in a concentration-dependent reduction in cell viability. In addition to TRPM7, the described NSAID effect would be expected to apply to other ion channels and transporters sensitive to intracellular pH.
Collapse
Affiliation(s)
- Rikki Chokshi
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH, United States
| | - Orville Bennett
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH, United States
| | - Tetyana Zhelay
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH, United States
| | - J Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH, United States
| |
Collapse
|
12
|
TRPC1 promotes the genesis and progression of colorectal cancer via activating CaM-mediated PI3K/AKT signaling axis. Oncogenesis 2021; 10:67. [PMID: 34642309 PMCID: PMC8511127 DOI: 10.1038/s41389-021-00356-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023] Open
Abstract
Transient receptor potential canonical (TRPC) channels are the most prominent nonselective cation channels involved in various diseases. However, the function, clinical significance, and molecular mechanism of TRPCs in colorectal cancer (CRC) progression remain unclear. In this study, we identified that TRPC1 was the major variant gene of the TRPC family in CRC patients. TRPC1 was upregulated in CRC tissues compared with adjacent normal tissues and high expression of TRPC1 was associated with more aggressive tumor progression and poor overall survival. TRPC1 knockdown inhibited cell proliferation, cell-cycle progression, invasion, and migration in vitro, as well as tumor growth in vivo; whereas TRPC1 overexpression promoted colorectal tumor growth and metastasis in vitro and in vivo. In addition, colorectal tumorigenesis was significantly attenuated in Trpc1-/- mice. Mechanistically, TRPC1 could enhance the interaction between calmodulin (CaM) and the PI3K p85 subunit by directly binding to CaM, which further activated the PI3K/AKT and its downstream signaling molecules implicated in cell cycle progression and epithelial-mesenchymal transition. Silencing of CaM attenuated the oncogenic effects of TRPC1. Taken together, these results provide evidence that TRPC1 plays a pivotal oncogenic role in colorectal tumorigenesis and tumor progression by activating CaM-mediated PI3K/AKT signaling axis. Targeting TRPC1 represents a novel and specific approach for CRC treatment.
Collapse
|
13
|
Haskins IN, Wang BD, Bernot JP, Cauley E, Horvath A, Marks JH, Lee NH, Agarwal S. Genomics of Black American colon cancer disparities: An RNA sequencing (RNA-Seq) study from an academic, tertiary referral center. Surgery 2021; 170:1160-1167. [PMID: 34016457 PMCID: PMC8490290 DOI: 10.1016/j.surg.2021.03.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/10/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Black Americans have a higher incidence and mortality rate from colorectal cancer compared to their non-Hispanic White American counterparts. Even when controlling for sociodemographic differences between these 2 populations, Black Americans remain disproportionately affected by colorectal cancer. The purpose of our study was to determine if differences in gene expression between Black American and non-Hispanic White American colon cancer specimens could help explain differences in the incidence and mortality rate between these 2 populations. METHODS Black Americans and non-Hispanic White Americans undergoing colon resection for stages I, II, or III colon cancer at a single institution were identified. Black American and non-Hispanic White American patients were matched for age, sex, and colon cancer stage to minimize the risk of confounding variables. Tissue samples were obtained at the time of colon resection and were analyzed using RNA sequencing to determine if there were differences in the expression of genes and biologic processes between the 2 groups. RESULTS A total of 17 colon cancer specimens were analyzed; 8 (47.1%) patients were Black Americans. A total of 456 genes were identified as being expressed differently (ie, up or downregulated) in Black American compared to non-Hispanic White American colon cancer specimens. Moreover, 500 different genetic pathways were noted to be significantly over-represented with differentially expressed genes in our comparison of Black American and non-Hispanic White American colon cancer specimens, the majority of which plays a role in inflammation and immune cell function. CONCLUSION Significant differences in gene expression and genetic pathways exist between Black Americans and non-Hispanic White Americans. Additional and multi-institutional and registry-based studies are needed to validate our findings and to further elucidate the contribution that these differences have to the overall incidence and mortality rate from colon cancer in these 2 patient populations.
Collapse
Affiliation(s)
- Ivy N Haskins
- Department of Surgery, George Washington University, Washington, DC; Department of Surgery, University of Nebraska Medical Center, Omaha, NE. https://twitter.com/IvyNHaskinsMD
| | - Bi-Dar Wang
- Department of Pharmacology & Physiology, School of Medicine and Health Sciences, GW Cancer Center, George Washington University, Washington, DC
| | - James P Bernot
- Department of Pharmacology & Physiology, School of Medicine and Health Sciences, GW Cancer Center, George Washington University, Washington, DC
| | - Edmund Cauley
- Department of Pharmacology & Physiology, School of Medicine and Health Sciences, GW Cancer Center, George Washington University, Washington, DC
| | - Anelia Horvath
- Department of Pharmacology & Physiology, School of Medicine and Health Sciences, GW Cancer Center, George Washington University, Washington, DC
| | - John H Marks
- Division of Colorectal Surgery, Lankenau Medical Center, Wynnewood, PA. https://twitter.com/JohnMarksMD
| | - Norman H Lee
- Department of Pharmacology & Physiology, School of Medicine and Health Sciences, GW Cancer Center, George Washington University, Washington, DC.
| | - Samir Agarwal
- Department of Surgery, George Washington University, Washington, DC; Department of Colorectal Surgery, Cleveland Clinic Florida, Weston, FL.
| |
Collapse
|
14
|
Paul B, Kysenius K, Hilton JB, Jones MWM, Hutchinson RW, Buchanan DD, Rosty C, Fryer F, Bush AI, Hergt JM, Woodhead JD, Bishop DP, Doble PA, Hill MM, Crouch PJ, Hare DJ. An integrated mass spectrometry imaging and digital pathology workflow for objective detection of colorectal tumours by unique atomic signatures. Chem Sci 2021; 12:10321-10333. [PMID: 34476052 PMCID: PMC8386113 DOI: 10.1039/d1sc02237g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/29/2021] [Indexed: 12/21/2022] Open
Abstract
Tumours are abnormal growths of cells that reproduce by redirecting essential nutrients and resources from surrounding tissue. Changes to cell metabolism that trigger the growth of tumours are reflected in subtle differences between the chemical composition of healthy and malignant cells. We used LA-ICP-MS imaging to investigate whether these chemical differences can be used to spatially identify tumours and support detection of primary colorectal tumours in anatomical pathology. First, we generated quantitative LA-ICP-MS images of three colorectal surgical resections with case-matched normal intestinal wall tissue and used this data in a Monte Carlo optimisation experiment to develop an algorithm that can classify pixels as tumour positive or negative. Blinded testing and interrogation of LA-ICP-MS images with micrographs of haematoxylin and eosin stained and Ki67 immunolabelled sections revealed Monte Carlo optimisation accurately identified primary tumour cells, as well as returning false positive pixels in areas of high cell proliferation. We analysed an additional 11 surgical resections of primary colorectal tumours and re-developed our image processing method to include a random forest regression machine learning model to correctly identify heterogenous tumours and exclude false positive pixels in images of non-malignant tissue. Our final model used over 1.6 billion calculations to correctly discern healthy cells from various types and stages of invasive colorectal tumours. The imaging mass spectrometry and data analysis methods described, developed in partnership with clinical cancer researchers, have the potential to further support cancer detection as part of a comprehensive digital pathology approach to cancer care through validation of a new chemical biomarker of tumour cells.
Collapse
Affiliation(s)
- Bence Paul
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne Parkville Victoria 3010 Australia
| | - Kai Kysenius
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, The University of Melbourne Parkville Victoria 3010 Australia
| | - James B Hilton
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, The University of Melbourne Parkville Victoria 3010 Australia
| | - Michael W M Jones
- Central Analytical Research Facility, Queensland University of Technology Brisbane Queensland 4000 Australia
| | | | - Daniel D Buchanan
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne Parkville Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, The University of Melbourne Parkville Victoria 3010 Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital Melbourne Victoria 3000 Australia
| | - Christophe Rosty
- Envoi Pathology Brisbane Queensland 4000 Australia
- Faculty of Medicine, The University of Queensland Brisbane Queensland 4000 Australia
- Department of Clinical Pathology, The University of Melbourne Parkville Victoria 3010 Australia
| | - Fred Fryer
- Agilent Technologies Australia Mulgrave Victoria 3170 Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre at the Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville Victoria 3010 Australia
| | - Janet M Hergt
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne Parkville Victoria 3010 Australia
| | - Jon D Woodhead
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne Parkville Victoria 3010 Australia
| | - David P Bishop
- Atomic Medicine Initiative, University of Technology Sydney Broadway NSW 2007 Australia
| | - Philip A Doble
- Atomic Medicine Initiative, University of Technology Sydney Broadway NSW 2007 Australia
| | - Michelle M Hill
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland Herston Qld 4006 Australia
- QIMR Berghofer Medical Research Institute Herston Queensland 4006 Australia
| | - Peter J Crouch
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, The University of Melbourne Parkville Victoria 3010 Australia
| | - Dominic J Hare
- Melbourne Dementia Research Centre at the Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville Victoria 3010 Australia
- Atomic Medicine Initiative, University of Technology Sydney Broadway NSW 2007 Australia
- School of BioSciences, The University of Melbourne Parkville Victoria 3010 Australia
- Monash eResearch Centre, Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
15
|
Store-operated Ca 2+ entry as a key oncogenic Ca 2+ signaling driving tumor invasion-metastasis cascade and its translational potential. Cancer Lett 2021; 516:64-72. [PMID: 34089807 DOI: 10.1016/j.canlet.2021.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
Tumor metastasis is the primary cause of treatment failure and cancer-related deaths. Store-operated Ca2+ entry (SOCE), which is mediated by stromal interaction molecules (STIM) and ORAI proteins, has been implicated in the tumor invasion-metastasis cascade. Epithelial-mesenchymal transition (EMT) is a cellular program that enables tumor cells to acquire the capacities needed for migration and invasion and the formation of distal metastases. Tumor-associated angiogenesis contributes to metastasis because aberrantly developed vessels offer a path for tumor cell dissemination as well as supply sufficient nutrients for the metastatic colony to develop into metastasis. Recently, increasing evidence has indicated that SOCE alterations actively participate in the multi-step process of tumor metastasis. In addition, the dysregulated expression of STIM/ORAI has been reported to be a predictor of poor prognosis. Herein, we review the latest advances about the critical role of SOCE in the tumor metastasis cascade and the underlying regulatory mechanisms. We emphasize the contributions of SOCE to the EMT program, tumor cell migration and invasion, and angiogenesis. We further discuss the possibility of modulating SOCE or intervening in the downstream signaling pathways as a feasible targeting therapy for cancer treatment.
Collapse
|
16
|
Gaiani F, Marchesi F, Negri F, Greco L, Malesci A, de’Angelis GL, Laghi L. Heterogeneity of Colorectal Cancer Progression: Molecular Gas and Brakes. Int J Mol Sci 2021; 22:ijms22105246. [PMID: 34063506 PMCID: PMC8156342 DOI: 10.3390/ijms22105246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
The review begins with molecular genetics, which hit the field unveiling the involvement of oncogenes and tumor suppressor genes in the pathogenesis of colorectal cancer (CRC) and uncovering genetic predispositions. Then the notion of molecular phenotypes with different clinical behaviors was introduced and translated in the clinical arena, paving the way to next-generation sequencing that captured previously unrecognized heterogeneity. Among other molecular regulators of CRC progression, the extent of host immune response within the tumor micro-environment has a critical position. Translational sciences deeply investigated the field, accelerating the pace toward clinical transition, due to its strong association with outcomes. While the perturbation of gut homeostasis occurring in inflammatory bowel diseases can fuel carcinogenesis, micronutrients like vitamin D and calcium can act as brakes, and we discuss underlying molecular mechanisms. Among the components of gut microbiota, Fusobacterium nucleatum is over-represented in CRC, and may worsen patient outcome. However, any translational knowledge tracing the multifaceted evolution of CRC should be interpreted according to the prognostic and predictive frame of the TNM-staging system in a perspective of clinical actionability. Eventually, we examine challenges and promises of pharmacological interventions aimed to restrain disease progression at different disease stages.
Collapse
Affiliation(s)
- Federica Gaiani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, via Gramsci 14, 43126 Parma, Italy
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy; (F.M.); (A.M.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20132 Milan, Italy
| | - Francesca Negri
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy;
| | - Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy;
| | - Alberto Malesci
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy; (F.M.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| | - Gian Luigi de’Angelis
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, via Gramsci 14, 43126 Parma, Italy
| | - Luigi Laghi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy;
- Correspondence:
| |
Collapse
|
17
|
Differential Ca 2+ responses and store operated Ca 2+ entry in primary cells from human brain tumors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119060. [PMID: 33992673 DOI: 10.1016/j.bbamcr.2021.119060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022]
Abstract
Brain tumors comprise a large series of tumor cancer from benign to highly malignant gliomas and metastases from primary tumors outside the brain. Intracellular Ca2+ homeostasis is involved in a large series of cell functions including cell proliferation, migration, and cell death. Store-operated Ca2+ entry (SOCE), the most important Ca2+ entry pathway in non-excitable cells, is involved in cell proliferation and migration and enhanced in tumor cells from breast cancer, colon cancer and cell lines derived from glioblastoma but there are almost no studies in human primary glioblastoma cells or other brain tumors. We have developed a single procedure to obtain primary cells from a large series (n = 49) of human brain tumors including schwannomas, meningiomas, oligodendrogliomas, astrocytomas, glioblastomas and brain metastases from ovary, breast and lung. Cells were characterized by immunofluorescence and subjected to Ca2+ imaging to investigate resting intracellular Ca2+ levels, Ca2+ responses to physiological agonists as well as voltage-operated Ca2+ entry and SOCE. We found significant differences in resting intracellular Ca2+ and Ca2+ responses to plasma membrane depolarization and ATP among the different tumor cells. Only malignant tumor cells, displayed Ca2+ responses to ATP. SOCE is significantly increased in malignant gliomas whereas voltage-gated Ca2+ entry is decreased. In addition, SOCE is significantly larger in high grade gliomas than in low grade gliomas suggesting that SOCE increases with glioma progression. These data may provide new insights on the role of intracellular Ca2+ and purinergic signalling in brain tumors.
Collapse
|
18
|
Kang Q, Peng X, Li X, Hu D, Wen G, Wei Z, Yuan B. Calcium Channel Protein ORAI1 Mediates TGF-β Induced Epithelial-to-Mesenchymal Transition in Colorectal Cancer Cells. Front Oncol 2021; 11:649476. [PMID: 34055617 PMCID: PMC8149897 DOI: 10.3389/fonc.2021.649476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/28/2021] [Indexed: 01/06/2023] Open
Abstract
Accumulating evidence suggested that calcium release-activated calcium modulator 1(ORAI1), a key calcium channel pore-forming protein-mediated store-operated Ca2+ entry (SOCE), is associated with human cancer. However, its role in colorectal cancer (CRC) progression has not been well studied. Epithelial-mesenchymal transition (EMT) is a multistep process that occurs during the progression of cancers and is necessary for metastasis of epithelial cancer. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that has been shown to induce EMT. In this study, we are aimed at exploring the effects of ORAI1 on TGF-β1-induced EMT process in CRC cells. Herein, we confirmed ORAI1 expression was higher in CRC tissues than in adjacent non-cancerous tissues by using immunohistochemical staining and Western blot analysis. Higher ORAI1 expression was associated with more advanced clinical stage, higher incidence of metastasis and shorter overall survival. We compared ORAI1 expression in SW480 and SW620 cells, two CRC cell lines with the same genetic background, but different metastatic potential. We found ORAI1 expression was significantly higher in SW620 cells which exhibited higher EMT characteristics. Furthermore, knockdown of ORAI1 suppressed the EMT of SW620 Cells. After induced the EMT process in SW480 cells with TGF-β1, we found treatment of TGF-β1 showed a significant increase in cell migration along with the loss of E-cadherin and an increase in N-cadherin and Vimentin protein levels. Also, TGF-β1 treatment increased ORAI1 expression and was closely associated with the increase of SOCE. Silencing ORAI1 significantly suppressed Ca2+ entry, reversed the changes of EMT-relevant marks expression induced by TGF-β1, and inhibited TGF-β1-mediated calpain activation and cell migration. Finally, we blocked SOCE with 2-APB (2-Aminoethyl diphenylborinate), a pharmacological inhibitor. Interestingly, 2-APB and sh-ORAI1 both exhibited similar inhibition effects to the SW480 cells. In conclusion, our results demonstrated that ORAI1 could mediate TGF-β-Induced EMT by promoting Ca2+ entry and calpain activity in Colorectal Cancer Cells.
Collapse
Affiliation(s)
- Qingjie Kang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangshu Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Denghua Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangxu Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengqiang Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Baohong Yuan
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Han JW, Heo W, Lee D, Kang C, Kim HY, Jun I, So I, Hur H, Lee MG, Jung M, Kim JY. Plasma Membrane Localized GCaMP-MS4A12 by Orai1 Co-Expression Shows Thapsigargin- and Ca 2+-Dependent Fluorescence Increases. Mol Cells 2021; 44:223-232. [PMID: 33935043 PMCID: PMC8112172 DOI: 10.14348/molcells.2021.2031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/27/2022] Open
Abstract
Uniquely expressed in the colon, MS4A12 exhibits store-operated Ca2+ entry (SOCE) activity. However, compared to MS4A1 (CD20), a Ca2+ channel and ideal target for successful leukaemia immunotherapy, MS4A12 has rarely been studied. In this study, we investigated the involvement of MS4A12 in Ca2+ influx and expression changes in MS4A12 in human colonic malignancy. Fluorescence of GCaMP-fused MS4A12 (GCaMP-M12) was evaluated to analyse MS4A12 activity in Ca2+ influx. Plasma membrane expression of GCaMP-M12 was achieved by homo- or hetero-complex formation with no-tagged MS4A12 (nt-M12) or Orai1, respectively. GCaMP-M12 fluorescence in plasma membrane increased only after thapsigargin-induced depletion of endoplasmic reticulum Ca2+ stores, and this fluorescence was inhibited by typical SOCE inhibitors and siRNA for Orai1. Furthermore, GCaMP-MS4A12 and Orai1 co-transfection elicited greater plasma membrane fluorescence than GCaMP-M12 co-transfected with nt-M12. Interestingly, the fluorescence of GCaMP-M12 was decreased by STIM1 over-expression, while increased by siRNA for STIM1 in the presence of thapsigargin and extracellular Ca2+. Moreover, immunoprecipitation assay revealed that Orai1 co-expression decreased protein interactions between MS4A12 and STIM1. In human colon tissue, MS4A12 was expressed in the apical region of the colonic epithelium, although its expression was dramatically decreased in colon cancer tissues. In conclusion, we propose that MS4A12 contributes to SOCE through complex formation with Orai1, but does not cooperate with STIM1. Additionally, we discovered that MS4A12 is expressed in the apical membrane of the colonic epithelium and that its expression is decreased with cancer progression.
Collapse
Affiliation(s)
- Jung Woo Han
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03080, Korea
| | - Woon Heo
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03080, Korea
| | - Donghyuk Lee
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03080, Korea
| | - Choeun Kang
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03080, Korea
| | - Hye-Yeon Kim
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03080, Korea
| | - Ikhyun Jun
- The Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyuk Hur
- Department of Surgery, Yonsei University College of Medicine, Seoul 03080, Korea
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03080, Korea
| | - Minkyu Jung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03080, Korea
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
20
|
Diercks BP, Jensen HH, Chalmers SB, Coode E, Vaughan MB, Tadayon R, Sáez PJ, Davis FM, Brohus M. The first junior European Calcium Society meeting: calcium research across scales, Kingdoms and countries. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118999. [PMID: 33711364 DOI: 10.1016/j.bbamcr.2021.118999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/20/2021] [Indexed: 01/09/2023]
Abstract
The first junior European Calcium Society online meeting, held October 20-21, 2020, aimed to promote junior researchers in the Ca2+ community. The meeting included four scientific sessions, covering Ca2+ research from molecular detail to whole organisms. Each session featured one invited speaker and three speakers selected based on submitted abstracts, with the overall aim of actively involving early-career researchers. Consequently, the meeting underlined the diversity of Ca2+ physiology, by showcasing research across scales and Kingdoms, as presented by a correspondingly diverse speaker panel across career stages and countries. In this meeting report, we introduce the visions of the junior European Calcium Society board and summarize the meeting content.
Collapse
Affiliation(s)
- Björn-Philipp Diercks
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg - Eppendorf, Hamburg, Germany.
| | - Helene H Jensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| | - Silke B Chalmers
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Emily Coode
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Michael B Vaughan
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Roya Tadayon
- Department of Biochemistry, School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Pablo J Sáez
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg - Eppendorf, Hamburg, Germany
| | - Felicity M Davis
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
21
|
SK4 oncochannels regulate calcium entry and promote cell migration in KRAS-mutated colorectal cancer. Cell Calcium 2021; 96:102384. [PMID: 33676318 DOI: 10.1016/j.ceca.2021.102384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) metastases are the main cause of CRC mortality. Intracellular Ca2+ regulates cell migration and invasion, key factors for metastases. Ca2+ also activates Ca2+-dependent potassium channels which in turn affect Ca2+ driving force. We have previously reported that the expression of the Ca2+ activated potassium channel KCNN4 (SK4) is higher in CRC primary tumors compared to normal tissues. Here, we aimed to investigate the role of SK4 in the physiology of CRC. RESULTS SK4 protein expression is enhanced in CRC tissues compared to normal colon tissues, with a higher level of KCNN4 in CRC patients with KRAS mutations. At the cellular level, we found that SK4 regulates the membrane potential of HCT116 cells. We also found that its inhibition reduced store operated Ca2+ entry (SOCE) and constitutive Ca2+ entry (CCE), while reducing cell migration. We also found that the activity of SK4 is linked to resistance pathways such as KRAS mutation and the expression of NRF2 and HIF-1α. In addition, the pharmacological inhibition of SK4 reduced intracellular reactive oxygen species (ROS) production, NRF2 expression and HIF1α stabilization. CONCLUSION Our results suggest that SK4 contributes to colorectal cancer cell migration and invasion by modulating both Ca2+ entry and ROS regulation. Therefore, SK4 could be a potential target to reduce metastasis in KRAS-mutated CRC.
Collapse
|
22
|
Rizopoulos T, Assimakopoulou M. Transient receptor potential (TRP) channels in human colorectal cancer: evidence and perspectives. Histol Histopathol 2021; 36:515-526. [PMID: 33528023 DOI: 10.14670/hh-18-308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of death in the civilized world. Transient receptor potential channels (TRPs) are a heterogeneous family of cation channels that play an important role in gastrointestinal physiology. TRPs have been linked with carcinogenesis in the colon and their role as potential therapeutic targets and prognostic biomarkers is under investigation.
Collapse
Affiliation(s)
- Theodoros Rizopoulos
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Martha Assimakopoulou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Patras, Greece.
| |
Collapse
|
23
|
Zhao Q, He Y, Wang K, Wang C, Wu H, Gao L, Hu A, Yang W, Wang S. Dairy Consumption and Liver Cancer Risk: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies. Nutr Cancer 2020; 73:2821-2831. [PMID: 33349059 DOI: 10.1080/01635581.2020.1862255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The relationship of dairy consumption and liver cancer risk is still controversial. We conducted a meta-analysis of published cohort and case-control studies to summarize the epidemiologic evidence on the relationship between dairy products consumption and the risk of liver cancer. The literatures were screened from PubMed, EMBASE, and Cochrane Library before May 2020. A total of seven cohort studies and eight case-control studies (5,121 cases) were included. The summary relative risks (RRs) were 1.17 (95% CI: 0.87‒1.57) and 1.08 (95% CI: 0.78‒1.51) for milk and total dairy, respectively. 0.50 (95% CI: 0.27-0.91) and 1.16 (95% CI: 0.83-1.52) were yogurt, cheese, and curd. Subgroup analysis revealed that study duration, alcohol, and design were associated the RRs. Dose-response analysis showed that the liver cancer risk was decreased by 5.4% (P for linear trend = 0.002) with a 40 g/day increment of yogurt intake. These results suggested that total dairy, milk, cheese, and curd were positive associations with the liver cancer risk although they were not statistically significant, however higher yogurt intake would reduce the risk. Further studies are necessary to verify the relationship of dairy foods with cancer.
Collapse
Affiliation(s)
- Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Yue He
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Kexin Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Chen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Hanhan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Lei Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Anla Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Sufang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Pratt SJP, Hernández-Ochoa E, Martin SS. Calcium signaling: breast cancer's approach to manipulation of cellular circuitry. Biophys Rev 2020; 12:1343-1359. [PMID: 33569087 PMCID: PMC7755621 DOI: 10.1007/s12551-020-00771-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Calcium is a versatile element that participates in cell signaling for a wide range of cell processes such as death, cell cycle, division, migration, invasion, metabolism, differentiation, autophagy, transcription, and others. Specificity of calcium in each of these processes is achieved through modulation of intracellular calcium concentrations by changing the characteristics (amplitude/frequency modulation) or location (spatial modulation) of the signal. Breast cancer utilizes calcium signaling as an advantage for survival and progression. This review integrates evidence showing that increases in expression of calcium channels, GPCRs, pumps, effectors, and enzymes, as well as resulting intracellular calcium signals, lead to high calcium and/or an elevated calcium- mobilizing capacity necessary for malignant functions such as migratory, invasive, proliferative, tumorigenic, or metastatic capacities.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Program in Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-020 D, Baltimore, MD 21201 USA
| | - Erick Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Stuart S Martin
- Program in Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-020 D, Baltimore, MD 21201 USA
| |
Collapse
|
25
|
Aslam A, Ahmad J, Baghdadi MA, Idris S, Almaimani R, Alsaegh A, Alhadrami M, Refaat B. Chemopreventive effects of vitamin D 3 and its analogue, paricalcitol, in combination with 5-fluorouracil against colorectal cancer: The role of calcium signalling molecules. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166040. [PMID: 33338596 DOI: 10.1016/j.bbadis.2020.166040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/07/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Although vitamin D (VD) is chemoprotective and enhances 5-fluorouracil (5-FU) cytotoxicity against colorectal cancer (CRC), little is known about its potential calcium (Ca2+)-mediated anti-tumorigenic actions. Therefore, this study compared between VD and its non-calcaemic analogue, Paricalcitol (Pcal), ± 5-FU in relation to chemoprevention and Ca2+-mediated apoptosis in vivo and in vitro. METHODS Seventy male mice were distributed to: negative controls, positive controls (PC), VD, Pcal, 5-FU, VD + 5-FU and Pcal+5-FU groups. All groups, except negative, received two consecutive azoxymethane (AOM)-injections (10 mg/Kg/week) for CRC induction. VD3 (1000 IU/kg; three times/week) and Pcal (1.25 μg/kg; three times/week) injections started week-16 post-AOM and for 10 weeks. Three successive 5-FU cycles began at week-21 (50 mg/Kg/week). Similar protocols with VD3, Pcal and/or 5-FU were applied in the HT29 colon cancer cells. RESULTS The PC group had abundant malignant tumours, markedly elevated proliferation markers (survivin/CCND1) and declines in cyclin-dependent kinase-inhibitor-1A, pro-apoptotic molecules (p53/BAX/cytochrome_C/caspase-3), tissue Ca2+ concentrations and Ca2+-dependent proteins (CaSR/CAM/CAMKIIA). All monotherapies equally reduced tumour numbers and proliferation markers whilst promoting the anti-tumorigenic molecules. VD and/or 5-FU, but not Pcal monotherapy, enhanced Ca2+ levels and Ca2+-related molecules (CaSR/CAM/CAMKIIA/BAX/cytochrome_C) in vivo and in vitro. However, VD + 5-FU co-therapy showed the lowest tumour numbers, the highest cell numbers in sub-G1 phase of cell cycle, alongside the most effective modulations of oncogenes, tumour suppressors and Ca2+-related molecules at the gene and protein levels in vivo and in vitro. CONCLUSIONS VD3 was superior than Paricalcitol in potentiating 5-FU cytotoxicity, possibly by upregulating several Ca2+-related molecules involved in tumour suppression.
Collapse
Affiliation(s)
- Akhmed Aslam
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | | | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Riyad Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah, Saudi Arabia
| | - Aiman Alsaegh
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Mai Alhadrami
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| |
Collapse
|
26
|
Faris P, Ferulli F, Vismara M, Tanzi M, Negri S, Rumolo A, Lefkimmiatis K, Maestri M, Shekha M, Pedrazzoli P, Guidetti GF, Montagna D, Moccia F. Hydrogen Sulfide-Evoked Intracellular Ca 2+ Signals in Primary Cultures of Metastatic Colorectal Cancer Cells. Cancers (Basel) 2020; 12:cancers12113338. [PMID: 33187307 PMCID: PMC7696676 DOI: 10.3390/cancers12113338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the most common type of gastrointestinal cancer and the third most predominant cancer in the world. CRC is potentially curable with surgical resection of the primary tumor. The clinical problem of colorectal cancer, however, is the spread and outgrowth of metastases, which are difficult to eradicate and lead to a patient’s death. The failure of conventional treatment to significantly improved outcomes in mCRC has prompted the search for alternative molecular targets with the goal of ameliorating the prognosis of these patients. The present investigation revealed that exogenous delivery of hydrogen sulfide (H2S) suppresses proliferation in metastatic colorectal cancer cells by inducing an increase in intracellular Ca2+ concentration. H2S was effective on metastatic, but not normal, cells. Therefore, we propose that exogenous administration of H2S to patients affected by metastatic colorectal carcinoma could represent a promising therapeutic alternative. Abstract Exogenous administration of hydrogen sulfide (H2S) is emerging as an alternative anticancer treatment. H2S-releasing compounds have been shown to exert a strong anticancer effect by suppressing proliferation and/or inducing apoptosis in several cancer cell types, including colorectal carcinoma (CRC). The mechanism whereby exogenous H2S affects CRC cell proliferation is yet to be clearly elucidated, but it could involve an increase in intracellular Ca2+ concentration ([Ca2+]i). Herein, we sought to assess for the first time whether (and how) sodium hydrosulfide (NaHS), one of the most widely employed H2S donors, induced intracellular Ca2+ signals in primary cultures of human metastatic CRC (mCRC) cells. We provided the evidence that NaHS induced extracellular Ca2+ entry in mCRC cells by activating the Ca2+-permeable channel Transient Receptor Potential Vanilloid 1 (TRPV1) followed by the Na+-dependent recruitment of the reverse-mode of the Na+/Ca2+ (NCX) exchanger. In agreement with these observations, TRPV1 protein was expressed and capsaicin, a selective TRPV1 agonist, induced Ca2+ influx by engaging both TRPV1 and NCX in mCRC cells. Finally, NaHS reduced mCRC cell proliferation, but did not promote apoptosis or aberrant mitochondrial depolarization. These data support the notion that exogenous administration of H2S may prevent mCRC cell proliferation through an increase in [Ca2+]i, which is triggered by TRPV1.
Collapse
Affiliation(s)
- Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
- Department of Biology, Cihan University-Erbil, 44001 Erbil, Iraq
| | - Federica Ferulli
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Mauro Vismara
- Laboratory of Biochemistry, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.V.); (G.F.G.)
| | - Matteo Tanzi
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
| | - Agnese Rumolo
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Kostantinos Lefkimmiatis
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35131 Padua, Italy
| | - Marcello Maestri
- Medical Surgery, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Mudhir Shekha
- Faculty of Science, Department of Medical Analysis, Tishk International University-Erbil, 44001 Erbil, Iraq;
| | - Paolo Pedrazzoli
- Medical Oncology, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gianni Francesco Guidetti
- Laboratory of Biochemistry, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.V.); (G.F.G.)
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
- Diagnostic and Pediatric, Department of Sciences Clinic-Surgical, University of Pavia, 27100 Pavia, Italy
- Correspondence: (D.M.); (F.M.); Tel.: +39-382-987-619 (F.M.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
- Correspondence: (D.M.); (F.M.); Tel.: +39-382-987-619 (F.M.)
| |
Collapse
|
27
|
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:129-222. [PMID: 32875386 DOI: 10.1007/112_2020_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.
Collapse
|
28
|
Tajada S, Villalobos C. Calcium Permeable Channels in Cancer Hallmarks. Front Pharmacol 2020; 11:968. [PMID: 32733237 PMCID: PMC7358640 DOI: 10.3389/fphar.2020.00968] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer, the second cause of death worldwide, is characterized by several common criteria, known as the “cancer hallmarks” such as unrestrained cell proliferation, cell death resistance, angiogenesis, invasion and metastasis. Calcium permeable channels are proteins present in external and internal biological membranes, diffusing Ca2+ ions down their electrochemical gradient. Numerous physiological functions are mediated by calcium channels, ranging from intracellular calcium homeostasis to sensory transduction. Consequently, calcium channels play important roles in human physiology and it is not a surprise the increasing number of evidences connecting calcium channels disorders with tumor cells growth, survival and migration. Multiple studies suggest that calcium signals are augmented in various cancer cell types, contributing to cancer hallmarks. This review focuses in the role of calcium permeable channels signaling in cancer with special attention to the mechanisms behind the remodeling of the calcium signals. Transient Receptor Potential (TRP) channels and Store Operated Channels (SOC) are the main extracellular Ca2+ source in the plasma membrane of non-excitable cells, while inositol trisphosphate receptors (IP3R) are the main channels releasing Ca2+ from the endoplasmic reticulum (ER). Alterations in the function and/or expression of these calcium channels, as wells as, the calcium buffering by mitochondria affect intracellular calcium homeostasis and signaling, contributing to the transformation of normal cells into their tumor counterparts. Several compounds reported to counteract several cancer hallmarks also modulate the activity and/or the expression of these channels including non-steroidal anti-inflammatory drugs (NSAIDs) like sulindac and aspirin, and inhibitors of polyamine biosynthesis, like difluoromethylornithine (DFMO). The possible role of the calcium permeable channels targeted by these compounds in cancer and their action mechanism will be discussed also in the review.
Collapse
Affiliation(s)
- Sendoa Tajada
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| |
Collapse
|
29
|
Li X, Spelat R, Bartolini A, Cesselli D, Ius T, Skrap M, Caponnetto F, Manini I, Yang Y, Torre V. Mechanisms of malignancy in glioblastoma cells are linked to mitochondrial Ca 2 + uniporter upregulation and higher intracellular Ca 2+ levels. J Cell Sci 2020; 133:jcs.237503. [PMID: 32051286 DOI: 10.1242/jcs.237503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/28/2020] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma (GBM) is one of the most malignant brain tumours and, despite advances in treatment modalities, it remains largely incurable. Ca2+ regulation and dynamics play crucial roles in different aspects of cancer, but they have never been investigated in detail in GBM. Here, we report that spontaneous Ca2+ waves in GBM cells cause unusual intracellular Ca2+ ([Ca2+]i) elevations (>1 μM), often propagating through tumour microtubes (TMs) connecting adjacent cells. This unusual [Ca2+]i elevation is not associated with the induction of cell death and is concomitant with overexpression of mitochondrial Ca2+ uniporter (MCU). We show that MCU silencing decreases proliferation and alters [Ca2+]i dynamics in U87 GBM cells, while MCU overexpression increases [Ca2+]i elevation in human astrocytes (HAs). These results suggest that changes in the expression level of MCU, a protein involved in intracellular Ca2+ regulation, influences GBM cell proliferation, contributing to GBM malignancy.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xiaoyun Li
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Renza Spelat
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Anna Bartolini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
| | - Daniela Cesselli
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy.,Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy
| | | | - Ivana Manini
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Yili Yang
- Joint SISSA-ISM Laboratory, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, 215000 Suzhou, Jiangsu, China
| | - Vincent Torre
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy .,Joint SISSA-ISM Laboratory, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, 215000 Suzhou, Jiangsu, China
| |
Collapse
|
30
|
Cui WQ, Wang ST, Pan D, Chang B, Sang LX. Caffeine and its main targets of colorectal cancer. World J Gastrointest Oncol 2020; 12:149-172. [PMID: 32104547 PMCID: PMC7031145 DOI: 10.4251/wjgo.v12.i2.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023] Open
Abstract
Caffeine is a purine alkaloid and is widely consumed in coffee, soda, tea, chocolate and energy drinks. To date, a growing number of studies have indicated that caffeine is associated with many diseases including colorectal cancer. Caffeine exerts its biological activity through binding to adenosine receptors, inhibiting phosphodiesterases, sensitizing calcium channels, antagonizing gamma-aminobutyric acid receptors and stimulating adrenal hormones. Some studies have indicated that caffeine can interact with signaling pathways such as transforming growth factor β, phosphoinositide-3-kinase/AKT/mammalian target of rapamycin and mitogen-activated protein kinase pathways through which caffeine can play an important role in colorectal cancer pathogenesis, metastasis and prognosis. Moreover, caffeine can act as a general antioxidant that protects cells from oxidative stress and also as a regulatory factor of the cell cycle that modulates the DNA repair system. Additionally, as for intestinal homeostasis, through the interaction with receptors and cytokines, caffeine can modulate the immune system mediating its effects on T lymphocytes, B lymphocytes, natural killer cells and macrophages. Furthermore, caffeine can not only directly inhibit species in the gut microbiome, such as Escherichia coli and Candida albicans but also can indirectly exert inhibition by increasing the effects of other antimicrobial drugs. This review summarizes the association between colorectal cancer and caffeine that is being currently studied.
Collapse
Affiliation(s)
- Wen-Qi Cui
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- China Medical University 101K class 87, Shenyang 110001, Liaoning Province, China
| | - Shi-Tong Wang
- Department of Cardiovascular Ultrasound, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- China Medical University 101K class 87, Shenyang 110001, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
31
|
Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer. World J Gastroenterol 2019; 25:5732-5772. [PMID: 31636470 PMCID: PMC6801186 DOI: 10.3748/wjg.v25.i38.5732] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell. The functions of ion channels in the gastrointestinal (GI) tract influence a variety of cellular processes, many of which overlap with these hallmarks of cancer. In this review we focus on the roles of the calcium (Ca2+), sodium (Na+), potassium (K+), chloride (Cl-) and zinc (Zn2+) transporters in GI cancer, with a special emphasis on the roles of the KCNQ1 K+ channel and CFTR Cl- channel in colorectal cancer (CRC). Ca2+ is a ubiquitous second messenger, serving as a signaling molecule for a variety of cellular processes such as control of the cell cycle, apoptosis, and migration. Various members of the TRP superfamily, including TRPM8, TRPM7, TRPM6 and TRPM2, have been implicated in GI cancers, especially through overexpression in pancreatic adenocarcinomas and down-regulation in colon cancer. Voltage-gated sodium channels (VGSCs) are classically associated with the initiation and conduction of action potentials in electrically excitable cells such as neurons and muscle cells. The VGSC NaV1.5 is abundantly expressed in human colorectal CRC cell lines as well as being highly expressed in primary CRC samples. Studies have demonstrated that conductance through NaV1.5 contributes significantly to CRC cell invasiveness and cancer progression. Zn2+ transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in all major GI organ cancers, in particular, ZIP4 up-regulation in pancreatic cancer (PC). More than 70 K+ channel genes, clustered in four families, are found expressed in the GI tract, where they regulate a range of cellular processes, including gastrin secretion in the stomach and anion secretion and fluid balance in the intestinal tract. Several distinct types of K+ channels are found dysregulated in the GI tract. Notable are hERG1 upregulation in PC, gastric cancer (GC) and CRC, leading to enhanced cancer angiogenesis and invasion, and KCNQ1 down-regulation in CRC, where KCNQ1 expression is associated with enhanced disease-free survival in stage II, III, and IV disease. Cl- channels are critical for a range of cellular and tissue processes in the GI tract, especially fluid balance in the colon. Most notable is CFTR, whose deficiency leads to mucus blockage, microbial dysbiosis and inflammation in the intestinal tract. CFTR is a tumor suppressor in several GI cancers. Cystic fibrosis patients are at a significant risk for CRC and low levels of CFTR expression are associated with poor overall disease-free survival in sporadic CRC. Two other classes of chloride channels that are dysregulated in GI cancers are the chloride intracellular channels (CLIC1, 3 & 4) and the chloride channel accessory proteins (CLCA1,2,4). CLIC1 & 4 are upregulated in PC, GC, gallbladder cancer, and CRC, while the CLCA proteins have been reported to be down-regulated in CRC. In summary, it is clear, from the diverse influences of ion channels, that their aberrant expression and/or activity can contribute to malignant transformation and tumor progression. Further, because ion channels are often localized to the plasma membrane and subject to multiple layers of regulation, they represent promising clinical targets for therapeutic intervention including the repurposing of current drugs.
Collapse
Affiliation(s)
- Kyle J Anderson
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Robert T Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Patricia M Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| |
Collapse
|
32
|
TRPC1 and ORAI1 channels in colon cancer. Cell Calcium 2019; 81:59-66. [DOI: 10.1016/j.ceca.2019.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
|
33
|
Human colorectal cancer derived-MSCs promote tumor cells escape from senescence via P53/P21 pathway. Clin Transl Oncol 2019; 22:503-511. [PMID: 31218648 DOI: 10.1007/s12094-019-02152-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study was to evaluate effect of MSCs on CRC cell. METHODS in this study the MSC was isolated from CRC tissue, its effect on CRC cells was investigated in vivo and vitro, and the underlying mechanism was investigated. RESULTS In this study we found that MSC-CM could promote colorectal cancer cells escape from senescence both in vitro and in vivo. Further research we demonstrated that MSC-CM acted in colorectal cancer cells senescence through P53/P21 pathway. Next we found that MSC-CM regulate P53 via posttranscription method. CONCLUSION Collectively, these results reveal that MSCs can help colorectal cancer cells defend against senescence through P53/P21 pathway, which may be a new strategy for colorectal cancer therapy.
Collapse
|
34
|
Kouba S, Ouldamer L, Garcia C, Fontaine D, Chantome A, Vandier C, Goupille C, Potier-Cartereau M. Lipid metabolism and Calcium signaling in epithelial ovarian cancer. Cell Calcium 2019; 81:38-50. [PMID: 31200184 DOI: 10.1016/j.ceca.2019.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
Epithelial Ovarian cancer (EOC) is the deadliest gynecologic malignancy and represents the fifth leading cause of all cancer-related deaths in women. The majority of patients are diagnosed at an advanced stage of the disease that has spread beyond the ovaries to the peritoneum or to distant organs (stage FIGO III-IV) with a 5-year overall survival of about 29%. Consequently, it is necessary to understand the pathogenesis of this disease. Among the factors that contribute to cancer development, lipids and ion channels have been described to be associated to cancerous diseases particularly in breast, colorectal and prostate cancers. Here, we reviewed the literature data to determine how lipids or lipid metabolites may influence EOC risk or progression. We also highlighted the role and the expression of the calcium (Ca2+) and calcium-activated potassium (KCa) channels in EOC and how lipids might regulate them. Although lipids and some subclasses of nutritional lipids may be associated to EOC risk, lipid metabolism of LPA (lysophosphatidic acid) and AA (arachidonic acid) emerges as an important signaling network in EOC. Clinical data showed that they are found at high concentrations in EOC patients and in vitro and in vivo studies referred to them as triggers of the Ca2+entry in the cancer cells inducing their proliferation, migration or drug resistance. The cross-talk between lipid mediators and Ca2+ and/or KCa channels needs to be elucidated in EOC in order to facilitate the understanding of its outcomes and potentially suggest novel therapeutic strategies including treatment and prevention.
Collapse
Affiliation(s)
- Sana Kouba
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Lobna Ouldamer
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Université de Tours, INSERM, N2C UMR 1069, CHRU de Tours, Service de gynécologie et d'obstétrique, Tours, France
| | - Céline Garcia
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Delphine Fontaine
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Aurélie Chantome
- Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France; Université de Tours, INSERM, N2C UMR 1069, Faculté de Pharmacie, Tours, France
| | - Christophe Vandier
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Caroline Goupille
- Réseau CASTOR du Cancéropôle Grand Ouest, France; Université de Tours, INSERM, N2C UMR 1069, CHRU de Tours, Faculté de Médecine, Tours, France
| | - Marie Potier-Cartereau
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France.
| |
Collapse
|
35
|
Expression Profiling of Calcium Channels and Calcium-Activated Potassium Channels in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11040561. [PMID: 31010205 PMCID: PMC6521016 DOI: 10.3390/cancers11040561] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/11/2023] Open
Abstract
Background: Colorectal cancer (CRC) is a highly devastating cancer. Ca2+-dependent channels are now considered key regulators of tumor progression. In this study, we aimed to investigate the association of non-voltage gated Ca2+ channels and Ca2+-dependent potassium channels (KCa) with CRC using the transcriptional profile of their genes. Methods: We selected a total of 35 genes covering KCa channels KCNN1–4, KCNMA1 and their subunits KCNMB1–4, endoplasmic reticulum (ER) calcium sensors STIM1 and STIM2, Ca2+ channels ORAI1–3 and the family of cation channels TRP (TRPC1–7, TRPA1, TRPV1/2,4–6 and TRPM1–8). We analyzed their expression in two public CRC datasets from The Cancer Genome Atlas (TCGA) and GSE39582. Results: KCNN4 and TRPM2 were induced while KCNMA1 and TRPM6 were downregulated in tumor tissues comparing to normal tissues. In proximal tumors, STIM2 and KCNN2 were upregulated while ORAI2 and TRPM6 were downregulated. ORAI1 decreased in lymph node metastatic tumors. TRPC1 and ORAI3 predicted poor prognosis in CRC patients. Moreover, we found that ORAI3/ORAI1 ratio is increased in CRC progression and predicted poor prognosis. Conclusions: KCa and Ca2+ channels could be important contributors to CRC initiation and progression. Our results provide new insights on KCa and Ca2+ channels remodeling in CRC.
Collapse
|
36
|
Inhibition of Polyamine Biosynthesis Reverses Ca 2+ Channel Remodeling in Colon Cancer Cells. Cancers (Basel) 2019; 11:cancers11010083. [PMID: 30642111 PMCID: PMC6357118 DOI: 10.3390/cancers11010083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/05/2019] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is the most important Ca2+ entry pathway in non-excitable cells. Colorectal cancer (CRC) shows decreased Ca2+ store content and enhanced SOCE that correlate with cancer hallmarks and are associated to remodeling of store-operated channels (SOCs). Normal colonic cells display small, Ca2+-selective currents driven by Orai1 channels. In contrast, CRC cells display larger, non-selective currents driven by Orai1 and transient receptor potential canonical type 1 channels (TRPC1). Difluoromethylornithine (DFMO), a suicide inhibitor of ornithine decarboxylase (ODC), the limiting step in polyamine biosynthesis, strongly prevents CRC, particularly when combined with sulindac. We asked whether DFMO may reverse SOC remodeling in CRC. We found that CRC cells overexpress ODC and treatment with DFMO decreases cancer hallmarks including enhanced cell proliferation and apoptosis resistance. Consistently, DFMO enhances Ca2+ store content and decreases SOCE in CRC cells. Moreover, DFMO abolish selectively the TRPC1-dependent component of SOCs characteristic of CRC cells and this effect is reversed by the polyamine putrescine. Combination of DFMO and sulindac inhibit both SOC components and abolish SOCE in CRC cells. Finally, DFMO treatment inhibits expression of TRPC1 and stromal interaction protein 1 (STIM1) in CRC cells. These results suggest that polyamines contribute to Ca2+ channel remodeling in CRC, and DFMO may prevent CRC by reversing channel remodeling.
Collapse
|
37
|
Farooqi AA, de la Roche M, Djamgoz MBA, Siddik ZH. Overview of the oncogenic signaling pathways in colorectal cancer: Mechanistic insights. Semin Cancer Biol 2019; 58:65-79. [PMID: 30633978 DOI: 10.1016/j.semcancer.2019.01.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is a multifaceted disease which is therapeutically challenging. Based on insights gleaned from almost a quarter century of research, it is obvious that deregulation of spatio-temporally controlled signaling pathways play instrumental role in development and progression of colorectal cancer. High-throughput technologies have helped to develop a sharper and broader understanding of the wide ranging signal transduction cascades which also contribute to development of drug resistance, loss of apoptosis and, ultimately, of metastasis. In this review, we have set the spotlight on role of JAK/STAT, TGF/SMAD, Notch, WNT/β-Catenin, SHH/GLI and p53 pathways in the development and progression of colorectal cancer. We have also highlighted recent reports on TRAIL-mediated pathways and molecularly distinct voltage-gated sodium channels in colorectal cancer.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Marc de la Roche
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom.
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London, SW7 2AZ, United Kingdom; Cyprus International University, Biotechnology Research Centre, Haspolat, Mersin 10, North Cyprus, Turkey.
| | - Zahid H Siddik
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
38
|
Jardin I, Diez-Bello R, Lopez JJ, Redondo PC, Salido GM, Smani T, Rosado JA. TRPC6 Channels Are Required for Proliferation, Migration and Invasion of Breast Cancer Cell Lines by Modulation of Orai1 and Orai3 Surface Exposure. Cancers (Basel) 2018; 10:cancers10090331. [PMID: 30223530 PMCID: PMC6162527 DOI: 10.3390/cancers10090331] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential channels convey signaling information from a number of stimuli to a wide variety of cellular functions, mainly by inducing changes in cytosolic Ca2+ concentration. Different members of the TRPC, TRPM and TRPV subfamilies have been reported to play a role in tumorigenesis. Here we show that the estrogen receptor positive and triple negative breast cancer cell lines, MCF7 and MDA-MB-231, respectively, exhibit enhanced expression of the TRPC6 channel as compared to the non-tumoral MCF10A cell line. In vitro TRPC6 knockdown using shRNA impaired MCF7 and MDA-MB-231 cell proliferation, migration and invasion detected by BrdU incorporation, wound healing and Boyden chamber assays, respectively. Using RNAi-mediated TRPC6 silencing as well as overexpression of the pore-dead dominant-negative TRPC6 mutant we have found that TRPC6 plays a relevant role in the activation of store-operated Ca2+ entry in the breast cancer cell lines but not in non-tumoral breast cells. Finally, we have found that TRPC6 interacts with Orai1 and Orai3 in MCF7 and MDA-MB-231 cells and is required for the translocation of Orai1 and Orai3 to the plasma membrane in MDA-MB-231 and MCF7 cells, respectively, upon Ca2+ store depletion. These findings introduce a novel mechanism for the modulation of Ca2+ influx and the development of different cancer hallmarks in breast cancer cells.
Collapse
Affiliation(s)
- Isaac Jardin
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Raquel Diez-Bello
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Jose J Lopez
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Pedro C Redondo
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Ginés M Salido
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Sevilla, 41013 Sevilla, Spain.
| | - Juan A Rosado
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
39
|
Villalobos C, Gutiérrez LG, Hernández-Morales M, del Bosque D, Núñez L. Mitochondrial control of store-operated Ca2+ channels in cancer: Pharmacological implications. Pharmacol Res 2018; 135:136-143. [DOI: 10.1016/j.phrs.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022]
|
40
|
Liu X, Wan X, Kan H, Wang Y, Yu F, Feng L, Jin J, Zhang P, Ma X. Hypoxia-induced upregulation of Orai1 drives colon cancer invasiveness and angiogenesis. Eur J Pharmacol 2018; 832:1-10. [DOI: 10.1016/j.ejphar.2018.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
|
41
|
Zuccolo E, Laforenza U, Ferulli F, Pellavio G, Scarpellino G, Tanzi M, Turin I, Faris P, Lucariello A, Maestri M, Kheder DA, Guerra G, Pedrazzoli P, Montagna D, Moccia F. Stim and Orai mediate constitutive Ca 2+ entry and control endoplasmic reticulum Ca 2+ refilling in primary cultures of colorectal carcinoma cells. Oncotarget 2018; 9:31098-31119. [PMID: 30123430 PMCID: PMC6089563 DOI: 10.18632/oncotarget.25785] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/23/2018] [Indexed: 12/18/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) provides a major Ca2+ entry route in cancer cells. SOCE is mediated by the assembly of Stim and Orai proteins at endoplasmic reticulum (ER)-plasma membrane junctions upon depletion of the ER Ca2+ store. Additionally, Stim and Orai proteins underpin constitutive Ca2+ entry in a growing number of cancer cell types due to the partial depletion of their ER Ca2+ reservoir. Herein, we investigated for the first time the structure and function of SOCE in primary cultures of colorectal carcinoma (CRC) established from primary tumor (pCRC) and metastatic lesions (mCRC) of human subjects. Stim1-2 and Orai1-3 transcripts were equally expressed in pCRC and mCRC cells, although Stim1 and Orai3 proteins were up-regulated in mCRC cells. The Mn2+-quenching technique revealed that constitutive Ca2+ entry was significantly enhanced in pCRC cells and was inhibited by the pharmacological and genetic blockade of Stim1, Stim2, Orai1 and Orai3. The larger resting Ca2+ influx in pCRC was associated to their lower ER Ca2+ content as compared to mCRC cells. Pharmacological and genetic blockade of Stim1, Stim2, Orai1 and Orai3 prevented ER-dependent Ca2+ release, thereby suggesting that constitutive SOCE maintains ER Ca2+ levels. Nevertheless, pharmacological and genetic blockade of Stim1, Stim2, Orai1 and Orai3 did not affect CRC cell proliferation and migration. These data provide the first evidence that Stim and Orai proteins mediate constitutive Ca2+ entry and replenish ER with Ca2+ in primary cultures of CRC cells. However, SOCE is not a promising target to design alternative therapies for CRC.
Collapse
Affiliation(s)
- Estella Zuccolo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | | | - Federica Ferulli
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Matteo Tanzi
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ilaria Turin
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pawan Faris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Department of Biology, College of Science, Salahaddin University, Erbil, Kurdistan-Region of Iraq, Iraq
| | - Angela Lucariello
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Marcello Maestri
- Unit of General Surgery, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dlzar Ali Kheder
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Department of Biology, University of Zakho, Zakho, Kurdistan-Region of Iraq, Iraq
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Paolo Pedrazzoli
- Medical Oncology, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
42
|
Pierro C, Zhang X, Kankeu C, Trebak M, Bootman MD, Roderick HL. Oncogenic KRAS suppresses store-operated Ca 2+ entry and I CRAC through ERK pathway-dependent remodelling of STIM expression in colorectal cancer cell lines. Cell Calcium 2018; 72:70-80. [PMID: 29748135 PMCID: PMC6291847 DOI: 10.1016/j.ceca.2018.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/30/2022]
Abstract
The KRAS GTPase plays a fundamental role in transducing signals from plasma membrane growth factor receptors to downstream signalling pathways controlling cell proliferation, survival and migration. Activating KRAS mutations are found in 20% of all cancers and in up to 40% of colorectal cancers, where they contribute to dysregulation of cell processes underlying oncogenic transformation. Multiple KRAS-regulated cell functions are also influenced by changes in intracellular Ca2+ levels that are concurrently modified by receptor signalling pathways. Suppression of intracellular Ca2+ release mechanisms can confer a survival advantage in cancer cells, and changes in Ca2+ entry across the plasma membrane modulate cell migration and proliferation. However, inconsistent remodelling of Ca2+ influx and its signalling role has been reported in studies of transformed cells. To isolate the interaction between altered Ca2+ handling and mutated KRAS in colorectal cancer, we have previously employed isogenic cell line pairs, differing by the presence of an oncogenic KRAS allele (encoding KRASG13D), and have shown that reduced Ca2+ release from the ER and mitochondrial Ca2+ uptake contributes to the survival advantage conferred by oncogenic KRAS. Here we show in the same cell lines, that Store-Operated Ca2+ Entry (SOCE) and its underlying current, ICRAC are under the influence of KRASG13D. Specifically, deletion of the oncogenic KRAS allele resulted in enhanced STIM1 expression and greater Ca2+ influx. Consistent with the role of KRAS in the activation of the ERK pathway, MEK inhibition in cells with KRASG13D resulted in increased STIM1 expression. Further, ectopic expression of STIM1 in HCT 116 cells (which express KRASG13D) rescued SOCE, demonstrating a fundamental role of STIM1 in suppression of Ca2+ entry downstream of KRASG13D. These results add to the understanding of how ERK controls cancer cell physiology and highlight STIM1 as an important biomarker in cancerogenesis.
Collapse
Affiliation(s)
- Cristina Pierro
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Previously at Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology and Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey PA 17033, United States
| | - Cynthia Kankeu
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology and Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey PA 17033, United States
| | - Martin D Bootman
- Previously at Babraham Institute, Babraham Research Campus, Cambridge, UK; School of Life, Health and Chemical Sciences, The Open University, UK
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Previously at Babraham Institute, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
43
|
Marciel MP, Rose AH, Martinez V, Horio DT, Hashimoto AS, Hoffmann FW, Bertino P, Hoffmann PR. Calpain-2 inhibitor treatment preferentially reduces tumor progression for human colon cancer cells expressing highest levels of this enzyme. Cancer Med 2017; 7:175-183. [PMID: 29210197 PMCID: PMC5773958 DOI: 10.1002/cam4.1260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/05/2017] [Accepted: 10/15/2017] [Indexed: 12/18/2022] Open
Abstract
Calpain-2 levels are higher in colorectal tumors resistant to chemotherapy and previous work showed calpain-2 inhibitor therapy reduced inflammation-driven colorectal cancer, but direct effects of the inhibitor on colon cancer cells themselves were not demonstrated. In the present study, five human colon cancer cell lines were directly treated with a calpain-2 inhibitor and results showed increased cell death in 4 of 5 cell lines and decreased anchorage-independent growth for all cell five lines. When tested for levels of calpain-2, three cell lines exhibited increasing levels of this enzyme: HCT15 (low), HCC2998 (medium), and HCT116 (significantly higher). This was consistent with gel shift assays showing that calpain-2 inhibitor reduced of NF-κB nuclear translocation most effectively in HCT116 cells. Ability of calpain-2 inhibitor to impede tumor progression in vivo was evaluated using intrarectal transplant of luciferase-expressing cells for these three cell lines. Results showed that calpain-2 inhibitor therapy reduced tumor growth and increased survival only in mice injected with HCT116 cells. These data suggest calpain-2 inhibitor treatment may be most effective on colorectal tumors expressing highest levels of calpain-2.
Collapse
Affiliation(s)
- Michael P Marciel
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Aaron H Rose
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Verena Martinez
- Biotechnology Department, University of Applied Sciences Mannheim, Mannheim, Germany
| | - David T Horio
- Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Ann S Hashimoto
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - FuKun W Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Pietro Bertino
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| |
Collapse
|
44
|
Calcium signaling and cell cycle: Progression or death. Cell Calcium 2017; 70:3-15. [PMID: 28801101 DOI: 10.1016/j.ceca.2017.07.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/23/2017] [Accepted: 07/23/2017] [Indexed: 12/12/2022]
Abstract
Cytosolic Ca2+ concentration levels fluctuate in an ordered manner along the cell cycle, in line with the fact that Ca2+ is involved in the regulation of cell proliferation. Cell proliferation should be an error-free process, yet is endangered by mistakes. In fact, a complex network of proteins ensures that cell cycle does not progress until the previous phase has been successfully completed. Occasionally, errors occur during the cell cycle leading to cell cycle arrest. If the error is severe, and the cell cycle checkpoints work perfectly, this results into cellular demise by activation of apoptotic or non-apoptotic cell death programs. Cancer is characterized by deregulated proliferation and resistance against cell death. Ca2+ is a central key to these phenomena as it modulates signaling pathways that control oncogenesis and cancer progression. Here, we discuss how Ca2+ participates in the exogenous and endogenous signals controlling cell proliferation, as well as in the mechanisms by which cells die if irreparable cell cycle damage occurs. Moreover, we summarize how Ca2+ homeostasis remodeling observed in cancer cells contributes to deregulated cell proliferation and resistance to cell death. Finally, we discuss the possibility to target specific components of Ca2+ signal pathways to obtain cytostatic or cytotoxic effects.
Collapse
|
45
|
Takata N, Ohshima Y, Suzuki-Karasaki M, Yoshida Y, Tokuhashi Y, Suzuki-Karasaki Y. Mitochondrial Ca2+ removal amplifies TRAIL cytotoxicity toward apoptosis-resistant tumor cells via promotion of multiple cell death modalities. Int J Oncol 2017; 51:193-203. [PMID: 28560396 DOI: 10.3892/ijo.2017.4020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/16/2017] [Indexed: 11/06/2022] Open
Abstract
Ca2+ has emerged as a new target for cancer treatment since tumor-specific traits in Ca2+ dynamics contributes to tumorigenesis, malignant phenotypes, drug resistance, and survival in different tumor types. However, Ca2+ has a dual (pro-death and pro-survival) function in tumor cells depending on the experimental conditions. Therefore, it is necessary to minimize the onset of the pro-survival Ca2+ signals caused by the therapy. For this purpose, a better understanding of pro-survival Ca2+ pathways in cancer cells is critical. Here we report that Ca2+ protects malignant melanoma (MM) and osteosarcoma (OS) cells from tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) cytotoxicity. Simultaneous measurements using the site-specific Ca2+ probes showed that acute TRAIL treatment rapidly and dose-dependently increased the cytosolic Ca2+ concentration ([Ca2+]cyt) and mitochondrial Ca2+ concentration ([Ca2+]mit) Pharmacological analyses revealed that the [Ca2+]mit remodeling was under control of mitochondrial Ca2+ uniporter (MCU), mitochondrial permeability transition pore (MPTP), and a Ca2+ transport pathway sensitive to capsazepine and AMG9810. Ca2+ chelators and the MCU inhibitor ruthenium 360, an MPTP opener atractyloside, capsazepine, and AMG9810 all decreased [Ca2+]mit and sensitized these tumor cells to TRAIL cytotoxicity. The Ca2+ modulation enhanced both apoptotic and non-apoptotic cell death. Although the [Ca2+]mit reduction potentiated TRAIL-induced caspase-3/7 activation and cell membrane damage within 24 h, this potentiation of cell death became pronounced at 72 h, and not blocked by caspase inhibition. Our findings suggest that in MM and OS cells mitochondrial Ca2+ removal can promote apoptosis and non-apoptotic cell death induction by TRAIL. Therefore, mitochondrial Ca2+ removal can be exploited to overcome the resistance of these cancers to TRAIL.
Collapse
Affiliation(s)
- Natsuhiko Takata
- Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yohei Ohshima
- Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Miki Suzuki-Karasaki
- Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yukihiro Yoshida
- Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yasuaki Tokuhashi
- Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | | |
Collapse
|
46
|
Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium 2017; 70:76-86. [PMID: 28506443 DOI: 10.1016/j.ceca.2017.05.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/30/2017] [Indexed: 01/07/2023]
Abstract
The human selenoprotein family contains 25 members that share the common feature of containing the amino acid, selenocysteine (Sec). Seven selenoproteins are localized to the endoplasmic reticulum (ER) and exhibit different structural features contributing to a range of cellular functions. Some of these functions are either directly or indirectly related to calcium (Ca2+) flux or homeostasis. The presence of the unique Sec residue within these proteins allows some to exert oxidoreductase activity, while the function of the Sec in other ER selenoproteins remains unclear. Some functional insight has been achieved by identifying domains within the ER selenoproteins or through the identification of binding partners. For example, selenoproteins K and N (SELENOK AND SELENON) have been characterized through interactions detected with the inositol 1,4,5-triphosphate receptors (IP3Rs) and the SERCA2b pump, respectively. Others have been linked to chaperone functions related to ER stress or Ca2+ homeostasis. This review summarizes the details gathered to date regarding the ER-resident selenoproteins and their effect on Ca2+ regulated pathways and outcomes in cells.
Collapse
|
47
|
Transcriptomic Analysis of Calcium Remodeling in Colorectal Cancer. Int J Mol Sci 2017; 18:ijms18050922. [PMID: 28448473 PMCID: PMC5454835 DOI: 10.3390/ijms18050922] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 01/02/2023] Open
Abstract
Colorectal cancer (CRC) cells undergo the remodeling of intracellular Ca2+ homeostasis, which contributes to cancer hallmarks such as enhanced proliferation, invasion and survival. Ca2+ remodeling includes critical changes in store-operated Ca2+ entry (SOCE) and Ca2+ store content. Some changes have been investigated at the molecular level. However, since nearly 100 genes are involved in intracellular Ca2+ transport, a comprehensive view of Ca2+ remodeling in CRC is lacking. We have used Next Generation Sequencing (NGS) to investigate differences in expression of 77 selected gene transcripts involved in intracellular Ca2+ transport in CRC. To this end, mRNA from normal human colonic NCM460 cells and human colon cancer HT29 cells was isolated and used as a template for transcriptomic sequencing and expression analysis using Ion Torrent technology. After data transformation and filtering, exploratory analysis revealed that both cell types were well segregated. In addition, differential gene expression using R and bioconductor packages show significant differences in expression of selected voltage-operated Ca2+ channels and store-operated Ca2+ entry players, transient receptor potential (TRP) channels, Ca2+ release channels, Ca2+ pumps, Na+/Ca2+ exchanger isoforms and genes involved in mitochondrial Ca2+ transport. These data provide the first comprehensive transcriptomic analysis of Ca2+ remodeling in CRC.
Collapse
|
48
|
GabAllah GMK, El-din Habib MS, Soliman SES, Kasemy ZA, Gohar SF. Validity and clinical impact of glucose transporter 1 expression in colorectal cancer. Saudi J Gastroenterol 2017; 23:348-356. [PMID: 29205188 PMCID: PMC5738797 DOI: 10.4103/sjg.sjg_197_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND/AIM There is no doubt that colorectal cancer (CRC) poses a major threat to public health worldwide, and despite improvement in managements, prognosis still remains an irritating question with no definite answer. Being a fundamental player in cancer metabolism, glucose transporter 1 (GLUT1) could be utilized as a prognostic biomarker that could fuel development of new treatment strategies. The aim of this study was to assess the validity of GLUT1 expression as a prognostic biomarker and to elucidate to what extent it is immersed in poor clinical outcome among CRC patients. PATIENTS AND METHODS GLUT1 expression in peripheral blood specimens was analyzed by quantitative real-time polymerase chain reaction in 47 CRC patients and 20 healthy controls. RESULTS There was significantly elevated GLUT1 expression in peripheral blood of CRC patients than in controls (P < 0.001). The cutoff value of 0.605 provided 98% sensitivity and 100% specificity. There were significantly higher values of GLUT1 expression in patients under 50 years (P = 0.003), performance status 2 (P = 0.009), stage IV (P < 0.001), and presence of metastasis (P < 0.001). GLUT1 expression showed nonsignificant association with overall survival (P = 0.068), while tumor stage (P = 0.01) and metastasis (P = 0.009) were significantly associated with lower overall survival. CONCLUSION GLUT1 is sensitive and specific marker for CRC. It is overexpressed in young age patients, poor performance status, and stage IV patients. Although this was not statistically significant, GLUT 1 showed higher expression level in patients with lesser survival.
Collapse
Affiliation(s)
- Ghada M. K. GabAllah
- Department of Medical Biochemistry, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Mona Salah El-din Habib
- Department of Medical Biochemistry, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Shimaa El-Shafey Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Zienab A. Kasemy
- Department of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Suzy F. Gohar
- Department of Clinical Oncology, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt,Address for correspondence: Dr. Suzy Fawzy Gohar, Department of Clinical Oncology, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt. E-mail:
| |
Collapse
|