1
|
Bhaduri S, Braza MKE, Stanchev S, Tauber M, Al-Bawab R, Liu LJ, Trujillo DF, Solorio-Kirpichyan K, Srivastava A, Sanlley-Hernandez J, O'Donoghue AJ, Lemberg MK, Amario R, Strisovsky K, Neal SE. An in vitro platform for the enzymatic characterization of the rhomboid protease RHBDL4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618094. [PMID: 39415989 PMCID: PMC11483055 DOI: 10.1101/2024.10.13.618094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Rhomboid proteases are ubiquitous intramembrane serine proteases that can cleave transmembrane substrates within lipid bilayers. They exhibit many and diverse functions, such as but not limited to, growth factor signaling, immune and inflammatory response, protein quality control, and parasitic invasion. Human rhomboid protease RHBDL4 has been demonstrated to play a critical role in removing misfolded proteins from the Endoplasmic Reticulum and is implicated in severe diseases such as various cancers and Alzheimer's disease. Therefore, RHBDL4 is expected to constitute an important therapeutic target for such devastating diseases. Despite its critical role in many biological processes, the enzymatic properties of RHBDL4 remain largely unknown. To enable a comprehensive characterization of RHBDL4's kinetics, catalytic parameters, substrate specificity, and binding modality we expressed and purified recombinant RHBDL4, and employed it in a Förster Resonance Energy Transfer-based cleavage assay. Until now, kinetic studies have been limited mostly to bacterial rhomboid proteases. Our in vitro platform offers a new method for studying RHBDL4's enzymatic function and substrate preferences. Furthermore, we developed and tested potential inhibitors using our assay and successfully identified peptidyl α-ketoamide inhibitors of RHBDL4 that are highly effective against recombinant RHBDL4. We utilize ensemble docking and molecular dynamics (MD) simulations to explore the binding modality of substrate-derived peptides bound to RHBDL4. Our analysis focused on key interactions and dynamic movements within RHBDL4's active site that contributed to binding stability, offering valuable insights for optimizing the non-prime side of RHBDL4 ketoamide inhibitors. In summary, our study offers fundamental insights into RHBDL4's catalytic activities and substrate preferences, laying the foundation for downstream applications such as drug inhibitor screenings and structure-function studies, which will enable the identification of lead drug compounds for RHBDL4.
Collapse
|
2
|
Gong H, Zhang Y, Chen X, Cao X, Tang L, Wang Y. The prognostic value of RHBDF2 in Pan-Cancer, and its correlation with cell Adhesion of Hepatocellular Carcinoma. Biotechnol Genet Eng Rev 2024; 40:1024-1048. [PMID: 36943153 DOI: 10.1080/02648725.2023.2191092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
The impact of RHBDF2 on the expression and potential function in many cancers is still unknown. Therefore, the expression and methylation modification of RHBDF2 were evaluated across TCGA cancers in this study. Moreover, two methods, COX regression and Kaplan-Meier, were utilized for analyses of the prognoses of RHBDF2 in patients. Besides, the association between RHBDF2 and immune microenvironment, mutation, tumor mutation burden and microsatellite instability was analyzed with Pearson correlation. We verified RHBDF2 expression in hepatocellular carcinoma (HCC) compared with normal cell and tissue samples, detected the effects of RHBDF2 knockdown on biological functions in HCC cells, and detected CD4, CD8 and CD68 expression in hepatocellular carcinoma tissues and paired normal tissues. Given these results, the significant mRNA overexpression and promoter hypomethylation of RHBDF2 in various tumor types was showed, and a clear relationship between RHBDF2 overexpression and unfavourable overall survival and progression-free survival was observed, including liver hepatocellular carcinoma (LIHC), glioma (GBMLGG) and pancreatic adenocarcinoma (PAAD). Additionally, hypomethylation of RHBDF2 can affect the overall survival in some tumors. Furthermore, a clear correlation between RHBDF2 and infiltration of immune cells, immune-related molecules, TMB and MSI was observed. Besides, RHBDF2 expression is upregulated in HCC cells and tissues, and RHBDF2 knockdown could decrease the cell adhesion ability of HCC cells. More importantly, the expression of CD4, CD8 and CD68 was higher in HCC tissues. Altogether, the research denoted that RHBDF2 can be a prognostic biomarker for cancers according to these results and participate in cell adhesion of HCC cells.
Collapse
Affiliation(s)
- Hanjuan Gong
- Department of Pathology, Molecular Medicine and Cancer Research Center, Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Yuxin Zhang
- Department of pathophysiology, Chongqing Medical University, Chongqing, China
| | - Xiaodan Chen
- Department of Pathology, Molecular Medicine and Cancer Research Center, Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Xingliang Cao
- Department of Pathology, Molecular Medicine and Cancer Research Center, Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Li Tang
- Department of pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yalan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Basic Medicine College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Davies C, Hu RM, Kamitsuka PJ, Morais GN, de Gonzalez RS, Bustin KA, Matthews ML, Parsons WH. Activity-Based Protein Profiling of RHBDL4 Reveals Proteolysis of the Enzyme and a Distinct Inhibitor Profile. ACS Chem Biol 2024; 19:1674-1682. [PMID: 39041925 PMCID: PMC11334910 DOI: 10.1021/acschembio.4c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Rhomboid proteases have fascinated scientists by virtue of their membrane-embedded active sites and proposed involvement in physiological and disease pathways. The human rhomboid protease RHBDL4 has generated particular interest due to its role in endoplasmic reticulum-associated protein degradation and upregulation in several cancers; however, chemical tools for studying this enzyme are currently lacking. Here, we describe the development of an activity-based protein profiling (ABPP) assay for RHBDL4. We have employed this assay to determine that human RHBDL4 undergoes proteolytic processing in cells to produce multiple active proteoforms with truncated C-termini. We have also used this assay to identify chemical scaffolds capable of inhibiting RHBDL4 activity and have observed distinct inhibitor preferences between RHBDL4 and a second human rhomboid protease PARL. Our work demonstrates the power of ABPP technology to characterize active forms of enzymes that might otherwise elude detection and the potential to achieve selective inhibition among the human rhomboid proteases.
Collapse
Affiliation(s)
- Cassondra
C. Davies
- Department
of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Ren-Ming Hu
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paul J. Kamitsuka
- Department
of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Gabriel N. Morais
- Department
of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | | | - Katelyn A. Bustin
- Department
of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Megan L. Matthews
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - William H. Parsons
- Department
of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| |
Collapse
|
4
|
Zhang P, Pronovost SM, Marchetti M, Zhang C, Kang X, Kandelouei T, Li C, Edgar BA. Inter-cell type interactions that control JNK signaling in the Drosophila intestine. Nat Commun 2024; 15:5493. [PMID: 38944657 PMCID: PMC11214625 DOI: 10.1038/s41467-024-49786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/14/2024] [Indexed: 07/01/2024] Open
Abstract
JNK signaling is a critical regulator of inflammation and regeneration, but how it is controlled in specific tissue contexts remains unclear. Here we show that, in the Drosophila intestine, the TNF-type ligand, Eiger (Egr), is expressed exclusively by intestinal stem cells (ISCs) and enteroblasts (EBs), where it is induced by stress and during aging. Egr preferentially activates JNK signaling in a paracrine fashion in differentiated enterocytes (ECs) via its receptor, Grindelwald (Grnd). N-glycosylation genes (Alg3, Alg9) restrain this activation, and stress-induced downregulation of Alg3 and Alg9 correlates with JNK activation, suggesting a regulatory switch. JNK activity in ECs induces expression of the intermembrane protease Rhomboid (Rho), driving secretion of EGFR ligands Keren (Krn) and Spitz (Spi), which in turn activate EGFR signaling in progenitor cells (ISCs and EBs) to stimulate their growth and division, as well as to produce more Egr. This study uncovers an N-glycosylation-controlled, paracrine JNK-EGFR-JNK feedforward loop that sustains ISC proliferation during stress-induced gut regeneration.
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Stephen M Pronovost
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Marco Marchetti
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Chenge Zhang
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Xiaoyu Kang
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Tahmineh Kandelouei
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Christopher Li
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Harvard University, Cambridge, MA, 02138, USA
| | - Bruce A Edgar
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
5
|
Höppner S, Schröder B, Fluhrer R. Structure and function of SPP/SPPL proteases: insights from biochemical evidence and predictive modeling. FEBS J 2023; 290:5456-5474. [PMID: 37786993 DOI: 10.1111/febs.16968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/13/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
More than 20 years ago, signal peptide peptidase (SPP) and its homologues, the signal peptide peptidase-like (SPPL) proteases have been identified based on their sequence similarity to presenilins, a related family of intramembrane aspartyl proteases. Other than those for the presenilins, no high-resolution structures for the SPP/SPPL proteases are available. Despite this limitation, over the years bioinformatical and biochemical data have accumulated, which altogether have provided a picture of the overall structure and topology of these proteases, their localization in the cell, the process of substrate recognition, their cleavage mechanism, and their function. Recently, the artificial intelligence-based structure prediction tool AlphaFold has added high-confidence models of the expected fold of SPP/SPPL proteases. In this review, we summarize known structural aspects of the SPP/SPPL family as well as their substrates. Of particular interest are the emerging substrate recognition and catalytic mechanisms that might lead to the prediction and identification of more potential substrates and deeper insight into physiological and pathophysiological roles of proteolysis.
Collapse
Affiliation(s)
- Sabine Höppner
- Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Theoretical Medicine, University of Augsburg, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Theoretical Medicine, University of Augsburg, Germany
- Center for Interdisciplinary Health Research, University of Augsburg, Germany
| |
Collapse
|
6
|
Wagner AH, Klersy A, Sultan CS, Hecker M. Potential role of soluble CD40 receptor in chronic inflammatory diseases. Biochem Pharmacol 2023; 217:115858. [PMID: 37863325 DOI: 10.1016/j.bcp.2023.115858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
The CD40 receptor and its ligand CD154 are widely expressed in various immune-competent cells. Interaction of CD154 with CD40 is essential for B-cell growth, differentiation, and immunoglobulin class switching. Many other immune-competent cells involved in innate and adaptive immunity communicate through this co-stimulatory ligand-receptor dyad. CD40-CD154 interaction is involved in the pathogenesis of numerous inflammatory and autoimmune diseases. While CD40 and CD154 are membrane-bound proteins, their soluble counterparts are generated by proteolytic cleavage or alternative splicing. This review summarises current knowledge about the impact of single nucleotide polymorphisms in the human CD40 gene and compensatory changes in the plasma level of the soluble CD40 receptor (sCD40) isoform in related pro-inflammatory diseases. It discusses regulation patterns of the disintegrin metalloprotease ADAM17 function leading to ectodomain shedding of transmembrane proteins, such as pro-inflammatory adhesion molecules or CD40. The role of sCD40 as a potential biomarker for chronic inflammatory diseases will also be discussed.
Collapse
Affiliation(s)
- A H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
| | - A Klersy
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - C S Sultan
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - M Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Bhaduri S, Scott NA, Neal SE. The Role of the Rhomboid Superfamily in ER Protein Quality Control: From Mechanisms and Functions to Diseases. Cold Spring Harb Perspect Biol 2023; 15:a041248. [PMID: 35940905 PMCID: PMC9899648 DOI: 10.1101/cshperspect.a041248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) is an essential organelle in eukaryotic cells and is a major site for protein folding, modification, and lipid synthesis. Perturbations within the ER, such as protein misfolding and high demand for protein folding, lead to dysregulation of the ER protein quality control network and ER stress. Recently, the rhomboid superfamily has emerged as a critical player in ER protein quality control because it has diverse cellular functions, including ER-associated degradation (ERAD), endosome Golgi-associated degradation (EGAD), and ER preemptive quality control (ERpQC). This breadth of function both illustrates the importance of the rhomboid superfamily in health and diseases and emphasizes the necessity of understanding their mechanisms of action. Because dysregulation of rhomboid proteins has been implicated in various diseases, such as neurological disorders and cancers, they represent promising potential therapeutic drug targets. This review provides a comprehensive account of the various roles of rhomboid proteins in the context of ER protein quality control and discusses their significance in health and disease.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Nicola A Scott
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Sonya E Neal
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
8
|
Poláchová E, Bach K, Heuten E, Stanchev S, Tichá A, Lampe P, Majer P, Langer T, Lemberg MK, Stříšovský K. Chemical Blockage of the Mitochondrial Rhomboid Protease PARL by Novel Ketoamide Inhibitors Reveals Its Role in PINK1/Parkin-Dependent Mitophagy. J Med Chem 2022; 66:251-265. [PMID: 36540942 PMCID: PMC9841525 DOI: 10.1021/acs.jmedchem.2c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mitochondrial rhomboid protease PARL regulates mitophagy by balancing intramembrane proteolysis of PINK1 and PGAM5. It has been implicated in the pathogenesis of Parkinson's disease, but its investigation as a possible therapeutic target is challenging in this context because genetic deficiency of PARL may result in compensatory mechanisms. To address this problem, we undertook a hitherto unavailable chemical biology strategy. We developed potent PARL-targeting ketoamide inhibitors and investigated the effects of acute PARL suppression on the processing status of PINK1 intermediates and on Parkin activation. This approach revealed that PARL inhibition leads to a robust activation of the PINK1/Parkin pathway without major secondary effects on mitochondrial properties, which demonstrates that the pharmacological blockage of PARL to boost PINK1/Parkin-dependent mitophagy is a feasible approach to examine novel therapeutic strategies for Parkinson's disease. More generally, this study showcases the power of ketoamide inhibitors for cell biological studies of rhomboid proteases.
Collapse
Affiliation(s)
- Edita Poláchová
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic,First
Faculty of Medicine, Charles University, Kateřinská 32, Prague 121 08, Czech Republic
| | - Kathrin Bach
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic,Department
of Molecular Genetics, Faculty of Science, Charles University, Viničná 5, Prague 128 44, Czech Republic
| | - Elena Heuten
- Center
for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer
Feld 282, Heidelberg 69120, Germany,Center
for Biochemistry and Cologne Excellence Cluster on Cellular Stress
Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany
| | - Stancho Stanchev
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic
| | - Anežka Tichá
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic
| | - Philipp Lampe
- Institute
for Genetics and Cologne Excellence Cluster on Cellular Stress Responses
in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany
| | - Pavel Majer
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic
| | - Thomas Langer
- Institute
for Genetics and Cologne Excellence Cluster on Cellular Stress Responses
in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany,Center
for Molecular Medicine (CMMC), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany,Max-Planck-Institute
for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne 50931, Germany
| | - Marius K. Lemberg
- Center
for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer
Feld 282, Heidelberg 69120, Germany,Center
for Biochemistry and Cologne Excellence Cluster on Cellular Stress
Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany,
| | - Kvido Stříšovský
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic,
| |
Collapse
|
9
|
Eden A, Zhao J, Xiao Y, Gibson J, Wang C. Covalent fragment inhibits intramembrane proteolysis. Front Mol Biosci 2022; 9:958399. [PMID: 36158579 PMCID: PMC9490316 DOI: 10.3389/fmolb.2022.958399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a serious public health crisis with only one current modifying treatment. The reduction of amyloid load by targeting γ-secretase (GS) has been a leading approach in AD drug discovery and development. Despite the focus on GS inhibition, multiple GS inhibitors (GSIs) have failed in clinical trials as a result of side effects including exacerbated cognitive decline. These side effects are largely attributable to inhibition of normal GS function. Standard enzyme inhibitors target catalytic or allosteric sites of the enzyme, including the active site presenilin, as previous GSIs did. To avoid issues observed from broad-spectrum GSIs we discovered that fragment 6H8 that covalently binds to the substrate of GS, the transmembrane domain of amyloid precursor protein (APPTM). Nuclear Magnetic Resonance (NMR) Spectroscopy combined with MALDI-TOF-MS established 6H8 covalently binds to APPTM. 6H8 acts as a Michael acceptor and covalently links to the side chain amines of lysine residues, specifically targeting a cluster of C-terminal lysines K53-K55. Through this modification, 6H8 can inhibit intramembrane proteolysis of an archaeal homolog of presenilin (the active subunit of GS) via substrate binding with a 2-4 μM IC50, determined by a gel-based cleavage assay. 6H8, while too small to be an effective drug candidate, can be combined with a specific non-covalent partner and function as an effective covalent warhead of a targeted covalent inhibitor (TCI). The future development of the 6H8 fragment into the covalent warhead of a TCI is, to our knowledge, a novel approach to AD drug discovery.
Collapse
Affiliation(s)
- Angela Eden
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Troy, NY, United States
- Department of Biological Sciences, Troy, NY, United States
| | - Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Yuanyuan Xiao
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - James Gibson
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Troy, NY, United States
- Department of Biological Sciences, Troy, NY, United States
| |
Collapse
|
10
|
Chen SY, Zacharias M. An internal docking site stabilizes substrate binding to γ-secretase: Analysis by molecular dynamics simulations. Biophys J 2022; 121:2330-2344. [PMID: 35598043 PMCID: PMC9279352 DOI: 10.1016/j.bpj.2022.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022] Open
Abstract
Amyloid precursor protein (APP) is cleaved and processed sequentially by γ-secretase yielding amyloid β (Aβ) peptides of different lengths. Longer Aβ peptides are associated with the formation of neurotoxic plaques related to Alzheimer's disease. Based on the APP substrate-bound structure of γ-secretase, we investigated the enzyme-substrate interaction using molecular dynamics simulations and generated model structures that represent the sequentially cleaved intermediates during the processing reaction. The simulations indicated an internal docking site providing strong enzyme-substrate packing interaction. In the enzyme-substrate complex, it is located close to the region where the helical conformation of the substrate is interrupted and continues toward the active site in an extended conformation. The internal docking site consists of two non-polar pockets that are preferentially filled by large hydrophobic or aromatic substrate side chains to stabilize binding. Placement of smaller residues such as glycine can trigger a shift in the cleavage pattern during the simulations or results in destabilization of substrate binding. The reduced packing by smaller residues also influences the hydration of the active site and the formation of a catalytically active state. The simulations on processed substrate intermediates and a substrate G33I mutation offer an explanation of the experimentally observed relative increase of short Aβ fragment production for this mutation. In addition, studies on a substrate K28A mutation indicate that the internal docking site opposes the tendency of substrate dissociation due to a hydrophobic mismatch at the membrane boundary caused by K28 during processing and substrate movement toward the enzyme active site. The proposed internal docking site could also be useful for the specific design of new γ-secretase modulators.
Collapse
Affiliation(s)
- Shu-Yu Chen
- Physics Department and Center of Functional Protein Assemblies, Technical University of Munich, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department and Center of Functional Protein Assemblies, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
11
|
Gallenti R, Hussein HE, Alzan HF, Suarez CE, Ueti M, Asurmendi S, Benitez D, Araujo FR, Rolls P, Sibeko-Matjila K, Schnittger L, Florin-Christensen M. Unraveling the Complexity of the Rhomboid Serine Protease 4 Family of Babesia bovis Using Bioinformatics and Experimental Studies. Pathogens 2022; 11:pathogens11030344. [PMID: 35335668 PMCID: PMC8956091 DOI: 10.3390/pathogens11030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 11/17/2022] Open
Abstract
Babesia bovis, a tick-transmitted apicomplexan protozoon, infects cattle in tropical and subtropical regions around the world. In the apicomplexans Toxoplasma gondii and Plasmodium falciparum, rhomboid serine protease 4 (ROM4) fulfills an essential role in host cell invasion. We thus investigated B. bovis ROM4 coding genes; their genomic organization; their expression in in vitro cultured asexual (AS) and sexual stages (SS); and strain polymorphisms. B. bovis contains five rom4 paralogous genes in chromosome 2, which we have named rom4.1, 4.2, 4.3, 4.4 and 4.5. There are moderate degrees of sequence identity between them, except for rom4.3 and 4.4, which are almost identical. RT-qPCR analysis showed that rom4.1 and rom4.3/4.4, respectively, display 18-fold and 218-fold significantly higher (p < 0.01) levels of transcription in SS than in AS, suggesting a role in gametogenesis-related processes. In contrast, transcription of rom4.4 and 4.5 differed non-significantly between the stages. ROM4 polymorphisms among geographic isolates were essentially restricted to the number of tandem repeats of a 29-amino acid sequence in ROM4.5. This sequence repeat is highly conserved and predicted as antigenic. B. bovis ROMs likely participate in relevant host−pathogen interactions and are possibly useful targets for the development of new control strategies against this pathogen.
Collapse
Affiliation(s)
- Romina Gallenti
- Instituto de Patobiología Veterinaria (IPVET), Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria—Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), Hurlingham 1686, Argentina; (R.G.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Hala E. Hussein
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (H.E.H.); (H.F.A.); (C.E.S.); (M.U.)
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (H.E.H.); (H.F.A.); (C.E.S.); (M.U.)
- Tick and Tick-Borne Disease Research Unit, National Research Center, Giza 12622, Egypt
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (H.E.H.); (H.F.A.); (C.E.S.); (M.U.)
- US Department of Agriculture, Animal Disease Research Unit, (USDA-ARS), Pullman, WA 99163, USA
| | - Massaro Ueti
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (H.E.H.); (H.F.A.); (C.E.S.); (M.U.)
- US Department of Agriculture, Animal Disease Research Unit, (USDA-ARS), Pullman, WA 99163, USA
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Instituto Nacional de Tecnología Agropecuaria—Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), Hurlingham 1686, Argentina;
| | - Daniel Benitez
- Estación Experimental Agropecuaria (EEA)-Mercedes, Instituto Nacional de Tecnología Agropecuaria (INTA), Mercedes 3470, Argentina;
| | | | - Peter Rolls
- Department of Agriculture & Fisheries, Tick Fever Centre, Wacol, QLD 4076, Australia;
| | - Kgomotso Sibeko-Matjila
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa;
| | - Leonhard Schnittger
- Instituto de Patobiología Veterinaria (IPVET), Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria—Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), Hurlingham 1686, Argentina; (R.G.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Mónica Florin-Christensen
- Instituto de Patobiología Veterinaria (IPVET), Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria—Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), Hurlingham 1686, Argentina; (R.G.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
- Correspondence:
| |
Collapse
|
12
|
Derler I. Proteolysis of Orai1 controls cellular Ca2+ influx. Cell Calcium 2022; 102:102535. [DOI: 10.1016/j.ceca.2022.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 11/02/2022]
|
13
|
Florin-Christensen M, Wieser SN, Suarez CE, Schnittger L. In Silico Survey and Characterization of Babesia microti Functional and Non-Functional Proteases. Pathogens 2021; 10:1457. [PMID: 34832610 PMCID: PMC8621943 DOI: 10.3390/pathogens10111457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/23/2022] Open
Abstract
Human babesiosis caused by the intraerythrocytic apicomplexan Babesia microti is an expanding tick-borne zoonotic disease that may cause severe symptoms and death in elderly or immunocompromised individuals. In light of an increasing resistance of B. microti to drugs, there is a lack of therapeutic alternatives. Species-specific proteases are essential for parasite survival and possible chemotherapeutic targets. However, the repertoire of proteases in B. microti remains poorly investigated. Herein, we employed several combined bioinformatics tools and strategies to organize and identify genes encoding for the full repertoire of proteases in the B. microti genome. We identified 64 active proteases and 25 nonactive protease homologs. These proteases can be classified into cysteine (n = 28), serine (n = 21), threonine (n = 14), asparagine (n = 7), and metallopeptidases (n = 19), which, in turn, are assigned to a total of 38 peptidase families. Comparative studies between the repertoire of B. bovis and B. microti proteases revealed differences among sensu stricto and sensu lato Babesia parasites that reflect their distinct evolutionary history. Overall, this data may help direct future research towards our understanding of the biology and pathogenicity of Babesia parasites and to explore proteases as targets for developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Monica Florin-Christensen
- Instituto de Patobiologia Veterinaria (IPVET), Centro de Investigaciones en Ciencias Veterinarias y Agronomicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham C1033AAE, Argentina; (S.N.W.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Sarah N. Wieser
- Instituto de Patobiologia Veterinaria (IPVET), Centro de Investigaciones en Ciencias Veterinarias y Agronomicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham C1033AAE, Argentina; (S.N.W.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Carlos E. Suarez
- Animal Disease Research Unit, USDA-ARS, Pullman, WA 99163, USA;
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99163, USA
| | - Leonhard Schnittger
- Instituto de Patobiologia Veterinaria (IPVET), Centro de Investigaciones en Ciencias Veterinarias y Agronomicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham C1033AAE, Argentina; (S.N.W.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
14
|
González-García P, Barriocanal-Casado E, Díaz-Casado ME, López-Herrador S, Hidalgo-Gutiérrez A, López LC. Animal Models of Coenzyme Q Deficiency: Mechanistic and Translational Learnings. Antioxidants (Basel) 2021; 10:antiox10111687. [PMID: 34829558 PMCID: PMC8614664 DOI: 10.3390/antiox10111687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022] Open
Abstract
Coenzyme Q (CoQ) is a vital lipophilic molecule that is endogenously synthesized in the mitochondria of each cell. The CoQ biosynthetic pathway is complex and not completely characterized, and it involves at least thirteen catalytic and regulatory proteins. Once it is synthesized, CoQ exerts a wide variety of mitochondrial and extramitochondrial functions thank to its redox capacity and its lipophilicity. Thus, low levels of CoQ cause diseases with heterogeneous clinical symptoms, which are not always understood. The decreased levels of CoQ may be primary caused by defects in the CoQ biosynthetic pathway or secondarily associated with other diseases. In both cases, the pathomechanisms are related to the CoQ functions, although further experimental evidence is required to establish this association. The conventional treatment for CoQ deficiencies is the high doses of oral CoQ10 supplementation, but this therapy is not effective for some specific clinical presentations, especially in those involving the nervous system. To better understand the CoQ biosynthetic pathway, the biological functions linked to CoQ and the pathomechanisms of CoQ deficiencies, and to improve the therapeutic outcomes of this syndrome, a variety of animal models have been generated and characterized in the last decade. In this review, we show all the animal models available, remarking on the most important outcomes that each model has provided. Finally, we also comment some gaps and future research directions related to CoQ metabolism and how the current and novel animal models may help in the development of future research studies.
Collapse
Affiliation(s)
- Pilar González-García
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
- Correspondence: (P.G.-G.); (L.C.L.)
| | - Eliana Barriocanal-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - María Elena Díaz-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Sergio López-Herrador
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Agustín Hidalgo-Gutiérrez
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Luis C. López
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
- Correspondence: (P.G.-G.); (L.C.L.)
| |
Collapse
|
15
|
Nejatfard A, Wauer N, Bhaduri S, Conn A, Gourkanti S, Singh N, Kuo T, Kandel R, Amaro RE, Neal SE. Derlin rhomboid pseudoproteases employ substrate engagement and lipid distortion to enable the retrotranslocation of ERAD membrane substrates. Cell Rep 2021; 37:109840. [PMID: 34686332 PMCID: PMC8641752 DOI: 10.1016/j.celrep.2021.109840] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 01/13/2023] Open
Abstract
Nearly one-third of proteins are initially targeted to the endoplasmic reticulum (ER) membrane, where they are correctly folded and then delivered to their final cellular destinations. To prevent the accumulation of misfolded membrane proteins, ER-associated degradation (ERAD) moves these clients from the ER membrane to the cytosol, a process known as retrotranslocation. Our recent work in Saccharomyces cerevisiae reveals a derlin rhomboid pseudoprotease, Dfm1, is involved in the retrotranslocation of ubiquitinated ERAD membrane substrates. In this study, we identify conserved residues of Dfm1 that are critical for retrotranslocation. We find several retrotranslocation-deficient Loop 1 mutants that display impaired binding to membrane substrates. Furthermore, Dfm1 possesses lipid thinning function to facilitate in the removal of ER membrane substrates, and this feature is conserved in its human homolog, Derlin-1, further implicating that derlin-mediated retrotranslocation is a well-conserved process.
Collapse
Affiliation(s)
- Anahita Nejatfard
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Wauer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Satarupa Bhaduri
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Adam Conn
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Saroj Gourkanti
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Narinderbir Singh
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Tiffany Kuo
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rachel Kandel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Sonya E Neal
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Bohg C, Öster C, Utesch T, Bischoff S, Lange S, Shi C, Sun H, Lange A. A combination of solid-state NMR and MD simulations reveals the binding mode of a rhomboid protease inhibitor. Chem Sci 2021; 12:12754-12762. [PMID: 34703562 PMCID: PMC8494044 DOI: 10.1039/d1sc02146j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
Intramembrane proteolysis plays a fundamental role in many biological and pathological processes. Intramembrane proteases thus represent promising pharmacological targets, but few selective inhibitors have been identified. This is in contrast to their soluble counterparts, which are inhibited by many common drugs, and is in part explained by the inherent difficulty to characterize the binding of drug-like molecules to membrane proteins at atomic resolution. Here, we investigated the binding of two different inhibitors to the bacterial rhomboid protease GlpG, an intramembrane protease characterized by a Ser–His catalytic dyad, using solid-state NMR spectroscopy. H/D exchange of deuterated GlpG can reveal the binding position while chemical shift perturbations additionally indicate the allosteric effects of ligand binding. Finally, we determined the exact binding mode of a rhomboid protease-inhibitor using a combination of solid-state NMR and molecular dynamics simulations. We believe this approach can be widely adopted to study the structure and binding of other poorly characterized membrane protein–ligand complexes in a native-like environment and under physiological conditions. Proton-detected solid-state NMR in combination with molecular docking and molecular dynamics (MD) simulations allow the study of rhomboid protease inhibition under native-like conditions.![]()
Collapse
Affiliation(s)
- Claudia Bohg
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Carl Öster
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Tillmann Utesch
- Structural Chemistry and Computational Biophysics Group, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Susanne Bischoff
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Sascha Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany .,Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China Huangshan Road 443 Hefei 230027 People's Republic of China
| | - Han Sun
- Structural Chemistry and Computational Biophysics Group, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Germany .,Institut für Biologie, Humboldt-Universität zu Berlin Invalidenstraße 42 10115 Berlin Germany
| |
Collapse
|
17
|
Arutyunova E, Lysyk L, Morrison M, Brooks C, Joanne Lemieux M. Expression and Purification of Human Mitochondrial Intramembrane Protease PARL. Methods Mol Biol 2021; 2302:1-20. [PMID: 33877619 DOI: 10.1007/978-1-0716-1394-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Rhomboid proteases are a ubiquitous superfamily of serine intramembrane peptidases that play a role in a wide variety of cellular processes. The mammalian mitochondrial rhomboid protease, Presenilin-Associated Rhomboid Like (PARL), is a critical regulator of mitochondrial homeostasis through the cleavage of its substrates, which have roles in mitochondrial quality control and apoptosis. However, neither structural nor functional information for this important protease is available, because the expression of eukaryotic membrane proteins to sufficient levels in an active form often represents a major bottleneck for in vitro studies. Here we present an optimized protocol for expression and purification of the human PARL protease using the eukaryotic expression host Pichia pastoris. The PARL gene construct was generated in tandem with green fluorescent protein (GFP), which allowed for the selection of high expressing clones and monitoring during the large-scale expression and purification steps. We discuss the production protocol with precise details for each step. The protocol yields 1 mg of pure PARL per liter of yeast culture.
Collapse
Affiliation(s)
- Elena Arutyunova
- Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| | - Laine Lysyk
- Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| | - Melissa Morrison
- Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| | - Cory Brooks
- Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada.,Department of Chemistry, California State University, Fresno, CA, USA
| | - M Joanne Lemieux
- Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Caengprasath N, Theerapanon T, Porntaveetus T, Shotelersuk V. MBTPS2, a membrane bound protease, underlying several distinct skin and bone disorders. J Transl Med 2021; 19:114. [PMID: 33743732 PMCID: PMC7981912 DOI: 10.1186/s12967-021-02779-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
The MBTPS2 gene on the X-chromosome encodes the membrane-bound transcription factor protease, site-2 (MBTPS2) or site-2 protease (S2P) which cleaves and activates several signaling and regulatory proteins from the membrane. The MBTPS2 is critical for a myriad of cellular processes, ranging from the regulation of cholesterol homeostasis to unfolded protein responses. While its functional role has become much clearer in the recent years, how mutations in the MBTPS2 gene lead to several human disorders with different phenotypes including Ichthyosis Follicularis, Atrichia and Photophobia syndrome (IFAP) with or without BRESHECK syndrome, Keratosis Follicularis Spinulosa Decalvans (KFSD), Olmsted syndrome, and Osteogenesis Imperfecta type XIX remains obscure. This review presents the biological role of MBTPS2 in development, summarizes its mutations and implicated disorders, and discusses outstanding unanswered questions.
Collapse
Affiliation(s)
- Natarin Caengprasath
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Thanakorn Theerapanon
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
19
|
Yap JQ, Seflova J, Sweazey R, Artigas P, Robia SL. FXYD proteins and sodium pump regulatory mechanisms. J Gen Physiol 2021; 153:211866. [PMID: 33688925 PMCID: PMC7953255 DOI: 10.1085/jgp.202012633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The sodium/potassium-ATPase (NKA) is the enzyme that establishes gradients of sodium and potassium across the plasma membrane. NKA activity is tightly regulated for different physiological contexts through interactions with single-span transmembrane peptides, the FXYD proteins. This diverse family of regulators has in common a domain containing a Phe-X-Tyr-Asp (FXYD) motif, two conserved glycines, and one serine residue. In humans, there are seven tissue-specific FXYD proteins that differentially modulate NKA kinetics as appropriate for each system, providing dynamic responsiveness to changing physiological conditions. Our understanding of how FXYD proteins contribute to homeostasis has benefitted from recent advances described in this review: biochemical and biophysical studies have provided insight into regulatory mechanisms, genetic models have uncovered remarkable complexity of FXYD function in integrated physiological systems, new posttranslational modifications have been identified, high-resolution structural studies have revealed new details of the regulatory interaction with NKA, and new clinical correlations have been uncovered. In this review, we address the structural determinants of diverse FXYD functions and the special roles of FXYDs in various physiological systems. We also discuss the possible roles of FXYDs in protein trafficking and regulation of non-NKA targets.
Collapse
Affiliation(s)
- John Q Yap
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Jaroslava Seflova
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Ryan Sweazey
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| |
Collapse
|
20
|
Ng MYW, Wai T, Simonsen A. Quality control of the mitochondrion. Dev Cell 2021; 56:881-905. [PMID: 33662258 DOI: 10.1016/j.devcel.2021.02.009] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Mitochondria are essential organelles that execute and coordinate various metabolic processes in the cell. Mitochondrial dysfunction severely affects cell fitness and contributes to disease. Proper organellar function depends on the biogenesis and maintenance of mitochondria and its >1,000 proteins. As a result, the cell has evolved mechanisms to coordinate protein and organellar quality control, such as the turnover of proteins via mitochondria-associated degradation, the ubiquitin-proteasome system, and mitoproteases, as well as the elimination of mitochondria through mitophagy. Specific quality control mechanisms are engaged depending upon the nature and severity of mitochondrial dysfunction, which can also feed back to elicit transcriptional or proteomic remodeling by the cell. Here, we will discuss the current understanding of how these different quality control mechanisms are integrated and overlap to maintain protein and organellar quality and how they may be relevant for cellular and organismal health.
Collapse
Affiliation(s)
- Matthew Yoke Wui Ng
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| | - Timothy Wai
- Institut Pasteur CNRS UMR 3691, 25-28 Rue du Docteur Roux, Paris, France.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
21
|
The repertoire of serine rhomboid proteases of piroplasmids of importance to animal and human health. Int J Parasitol 2021; 51:455-462. [PMID: 33610524 DOI: 10.1016/j.ijpara.2020.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Babesia, Theileria and Cytauxzoon are tick-borne apicomplexan protozoans of the order Piroplasmida, notorious for the diseases they cause in livestock, pets and humans. Host cell invasion is their Achilles heel, allowing for the development of drug or vaccine-based therapies. In other apicomplexans, cleavage of the transmembrane domain of adhesins by the serine rhomboid proteinase ROM4 is required for successful completion of invasion. In this study, we record and classify the rhomboid repertoire encoded in the genomes of 10 piroplasmid species pertaining to the lineages Babesia sensu stricto (s.s., Clade VI), Theileria sensu stricto (Clade IV), Theileria equi (Clade IV), Cytauxzoon felis (Clade IIIb) and Babesia microti (Clade I), as defined by Schnittger et al. (2012). Fifty-six piroplasmid rhomboid-like proteins were assigned by phylogenetic analysis and bidirectional best hit to the ROM4, ROM6, ROM7 or ROM8 groups, and their crucial motifs for conformation and function were identified. Forty-four of these rhomboids had either been incorrectly classified or misannotated. Babesia s.s. encode five or three ROM4 proteinase paralogs, whereas the remaining piroplasmids encode two ROM4 paralogs. All piroplasmids encode a single ROM6, ROM7 and ROM8. Thus, an increased paralog number of ROM4 is the only feature distinguishing Babesia s.s. from other piroplasmid lineages. Piroplasmid ROM6 is related to the mammalian mitochondrial rhomboid and, accordingly, N-terminal mitochondrial targeting signal sequences was found in some cases. ROM6 is the only rhomboid encoded by piroplasmids that is ubiquitous in other organisms. ROM8 represents a pseudoproteinase that is highly conserved between studied piroplasmids, suggesting that it is important in regulatory functions. ROM4, ROM6, ROM7 and ROM8 are exclusively present in Aconoidasida, which comprises piroplasmids and Plasmodium, suggesting a relevant functional role in erythrocyte invasion. The correct classification and designation of piroplasmid rhomboids presented in this study facilitates an informed choice for future in-depth study of their functions.
Collapse
|
22
|
Phosphatidylglyerol Lipid Binding at the Active Site of an Intramembrane Protease. J Membr Biol 2020; 253:563-576. [PMID: 33210155 PMCID: PMC7688093 DOI: 10.1007/s00232-020-00152-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 10/25/2022]
Abstract
Transmembrane substrate cleavage by the small Escherichia coli rhomboid protease GlpG informs on mechanisms by which lipid interactions shape reaction coordinates of membrane-embedded enzymes. Here, I review and discuss new work on the molecular picture of protein-lipid interactions that might govern the formation of the substrate-enzyme complex in fluid lipid membranes. Negatively charged PG-type lipids are of particular interest, because they are a major component of bacterial membranes. Atomistic computer simulations indicate POPG and DOPG lipids bridge remote parts of GlpG and might pre-occupy the substrate-docking site. Inhibition of catalytic activity by PG lipids could arise from ligand-like lipid binding at the active site, which could delay or prevent substrate docking. Dynamic protein-lipid H-bond networks, water access to the active site, and fluctuations in the orientation of GlpG suggest that GlpG has lipid-coupled dynamics that could shape the energy landscape of transmembrane substrate docking.
Collapse
|
23
|
Adrain C, Cavadas M. The complex life of rhomboid pseudoproteases. FEBS J 2020; 287:4261-4283. [DOI: 10.1111/febs.15548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Colin Adrain
- Instituto Gulbenkian de Ciência (IGC) Oeiras Portugal
- Centre for Cancer Research and Cell Biology Queen's University Belfast UK
| | | |
Collapse
|
24
|
Kandel RR, Neal SE. The role of rhomboid superfamily members in protein homeostasis: Mechanistic insight and physiological implications. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118793. [PMID: 32645330 PMCID: PMC7434706 DOI: 10.1016/j.bbamcr.2020.118793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/30/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
Cells are equipped with protein quality control pathways in order to maintain a healthy proteome; a process known as protein homeostasis. Dysfunction in protein homeostasis leads to the development of many diseases that are associated with proteinopathies. Recently, the rhomboid superfamily has attracted much attention concerning their involvement in protein homeostasis. While their functional role has become much clearer in the last few years, their systemic significance in mammals remains elusive. Here we delineate the current knowledge of rhomboids in protein quality control and how these functions are integrated at the organismal level.
Collapse
Affiliation(s)
- Rachel R Kandel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Sonya E Neal
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
25
|
iRhom2: An Emerging Adaptor Regulating Immunity and Disease. Int J Mol Sci 2020; 21:ijms21186570. [PMID: 32911849 PMCID: PMC7554728 DOI: 10.3390/ijms21186570] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The rhomboid family are evolutionary conserved intramembrane proteases. Their inactive members, iRhom in Drosophila melanogaster and iRhom1 and iRhom2 in mammals, lack the catalytic center and are hence labelled “inactive” rhomboid family members. In mammals, both iRhoms are involved in maturation and trafficking of the ubiquitous transmembrane protease a disintegrin and metalloprotease (ADAM) 17, which through cleaving many biologically active molecules has a critical role in tumor necrosis factor alpha (TNFα), epidermal growth factor receptor (EGFR), interleukin-6 (IL-6) and Notch signaling. Accordingly, with iRhom2 having a profound influence on ADAM17 activation and substrate specificity it regulates these signaling pathways. Moreover, iRhom2 has a role in the innate immune response to both RNA and DNA viruses and in regulation of keratin subtype expression in wound healing and cancer. Here we review the role of iRhom2 in immunity and disease, both dependent and independent of its regulation of ADAM17.
Collapse
|
26
|
Liu X, Zhao J, Zhang Y, Ubarretxena-Belandia I, Forth S, Lieberman RL, Wang C. Substrate-Enzyme Interactions in Intramembrane Proteolysis: γ-Secretase as the Prototype. Front Mol Neurosci 2020; 13:65. [PMID: 32508589 PMCID: PMC7248309 DOI: 10.3389/fnmol.2020.00065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/03/2020] [Indexed: 11/15/2022] Open
Abstract
Intramembrane-cleaving proteases (I-CLiPs) catalyze the hydrolysis of peptide bonds within the transmembrane regions of membrane protein substrates, releasing bioactive fragments that play roles in many physiological and pathological processes. Based on their catalytic mechanism and nucleophile, I-CLiPs are classified into metallo, serine, aspartyl, and glutamyl proteases. Presenilin is the most prominent among I-CLiPs, as the catalytic subunit of γ-secretase (GS) complex responsible for cleaving the amyloid precursor protein (APP) and Notch, as well as many other membrane substrates. Recent cryo-electron microscopy (cryo-EM) structures of GS provide new details on how presenilin recognizes and cleaves APP and Notch. First, presenilin transmembrane helix (TM) 2 and 6 are dynamic. Second, upon binding to GS, the substrate TM helix is unwound from the C-terminus, resulting in an intermolecular β-sheet between the substrate and presenilin. The transition of the substrate C-terminus from α-helix to β-sheet is proposed to expose the scissile peptide bond in an extended conformation, leaving it susceptible to protease cleavage. Despite the astounding new insights in recent years, many crucial questions remain unanswered regarding the inner workings of γ-secretase, however. Key unanswered questions include how the enzyme recognizes and recruits substrates, how substrates are translocated from an initial docking site to the active site, how active site aspartates recruit and coordinate catalytic water, and the nature of the mechanisms of processive trimming of the substrate and product release. Answering these questions will have important implications for drug discovery aimed at selectively reducing the amyloid load in Alzheimer's disease (AD) with minimal side effects.
Collapse
Affiliation(s)
- Xinyue Liu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY, United States
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Scott Forth
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
27
|
Wu X, Siggel M, Ovchinnikov S, Mi W, Svetlov V, Nudler E, Liao M, Hummer G, Rapoport TA. Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex. Science 2020; 368:368/6489/eaaz2449. [PMID: 32327568 DOI: 10.1126/science.aaz2449] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/18/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Misfolded luminal endoplasmic reticulum (ER) proteins undergo ER-associated degradation (ERAD-L): They are retrotranslocated into the cytosol, polyubiquitinated, and degraded by the proteasome. ERAD-L is mediated by the Hrd1 complex (composed of Hrd1, Hrd3, Der1, Usa1, and Yos9), but the mechanism of retrotranslocation remains mysterious. Here, we report a structure of the active Hrd1 complex, as determined by cryo-electron microscopy analysis of two subcomplexes. Hrd3 and Yos9 jointly create a luminal binding site that recognizes glycosylated substrates. Hrd1 and the rhomboid-like Der1 protein form two "half-channels" with cytosolic and luminal cavities, respectively, and lateral gates facing one another in a thinned membrane region. These structures, along with crosslinking and molecular dynamics simulation results, suggest how a polypeptide loop of an ERAD-L substrate moves through the ER membrane.
Collapse
Affiliation(s)
- Xudong Wu
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marc Siggel
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Sergey Ovchinnikov
- Faculty of Arts and Sciences, Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Wei Mi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.,Present address: Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Vladimir Svetlov
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Palma S, Raffa CI, Garcia-Fabiani MB, Ferretti VA, Zwenger A, Perez Verdera PV, Llontop A, Rojas Bilbao E, Cuartero V, Abba MC, Lacunza E. RHBDD2 overexpression promotes a chemoresistant and invasive phenotype to rectal cancer tumors via modulating UPR and focal adhesion genes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165810. [PMID: 32339641 DOI: 10.1016/j.bbadis.2020.165810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 12/29/2022]
Abstract
The current standard of care for locally advanced rectal cancer (RC) is neoadjuvant radio-chemotherapy (NRC) with 5-fluorouracil (5Fu) as the main drug, followed by surgery and adjuvant chemotherapy. While a group of patients will achieve a pathological complete response, a significant percentage will not respond to the treatment. The Unfolding Protein Response (UPR) pathway is generally activated in tumors and results in resistance to radio-chemotherapy. We previously showed that RHBDD2 gene is overexpressed in the advanced stages of colorectal cancer (CRC) and that it could modulate the UPR pathway. Moreover, RHBDD2 expression is induced by 5Fu. In this study, we demonstrate that the overexpression of RHBDD2 in CACO2 cell line confers resistance to 5Fu, favors cell migration, adhesion and proliferation and has a profound impact on the expression of both, the UPR genes BiP, PERK and CHOP, and on the cell adhesion genes FAK and PXN. We also determined that RHBDD2 binds to BiP protein, the master UPR regulator. Finally, we confirmed that a high expression of RHBDD2 in RC tumors after NRC treatment is associated with the development of local or distant metastases. The collected evidence positions RHBDD2 as a promising prognostic biomarker to predict the response to neoadjuvant therapy in patients with RC.
Collapse
Affiliation(s)
- S Palma
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - C I Raffa
- Gastroenterology and Proctology Department, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | - M B Garcia-Fabiani
- Instituto de Investigaciones Bioquímicas de La Plata Rodolfo R. Brenner, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - V A Ferretti
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - A Zwenger
- Grupo Oncológico Cooperativo del Sur (GOCS), Neuquén, Argentina
| | | | - A Llontop
- Pathology Department, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - E Rojas Bilbao
- Pathology Department, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - V Cuartero
- Clinic Oncology Department, Functional Unit of Digestive Tumors, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | - M C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - E Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
29
|
Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol 2020; 55:111-165. [PMID: 32290726 DOI: 10.1080/10409238.2020.1742090] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Škerle J, Humpolíčková J, Johnson N, Rampírová P, Poláchová E, Fliegl M, Dohnálek J, Suchánková A, Jakubec D, Strisovsky K. Membrane Protein Dimerization in Cell-Derived Lipid Membranes Measured by FRET with MC Simulations. Biophys J 2020; 118:1861-1875. [PMID: 32246901 DOI: 10.1016/j.bpj.2020.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/06/2020] [Accepted: 03/13/2020] [Indexed: 11/19/2022] Open
Abstract
Many membrane proteins are thought to function as dimers or higher oligomers, but measuring membrane protein oligomerization in lipid membranes is particularly challenging. Förster resonance energy transfer (FRET) and fluorescence cross-correlation spectroscopy are noninvasive, optical methods of choice that have been applied to the analysis of dimerization of single-spanning membrane proteins. However, the effects inherent to such two-dimensional systems, such as the excluded volume of polytopic transmembrane proteins, proximity FRET, and rotational diffusion of fluorophore dipoles, complicate interpretation of FRET data and have not been typically accounted for. Here, using FRET and fluorescence cross-correlation spectroscopy, we introduce a method to measure surface protein density and to estimate the apparent Förster radius, and we use Monte Carlo simulations of the FRET data to account for the proximity FRET effect occurring in confined two-dimensional environments. We then use FRET to analyze the dimerization of human rhomboid protease RHBDL2 in giant plasma membrane vesicles. We find no evidence for stable oligomers of RHBDL2 in giant plasma membrane vesicles of human cells even at concentrations that highly exceed endogenous expression levels. This indicates that the rhomboid transmembrane core is intrinsically monomeric. Our findings will find use in the application of FRET and fluorescence correlation spectroscopy for the analysis of oligomerization of transmembrane proteins in cell-derived lipid membranes.
Collapse
Affiliation(s)
- Jan Škerle
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Humpolíčková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic.
| | - Nicholas Johnson
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Petra Rampírová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Edita Poláchová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Fliegl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Jan Dohnálek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic; University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Anna Suchánková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - David Jakubec
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic.
| |
Collapse
|
31
|
Dulloo I, Muliyil S, Freeman M. The molecular, cellular and pathophysiological roles of iRhom pseudoproteases. Open Biol 2020; 9:190003. [PMID: 30890028 PMCID: PMC6451368 DOI: 10.1098/rsob.190003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
iRhom proteins are catalytically inactive relatives of rhomboid intramembrane proteases. There is a rapidly growing body of evidence that these pseudoenzymes have a central function in regulating inflammatory and growth factor signalling and consequent roles in many diseases. iRhom pseudoproteases have evolved new domains from their proteolytic ancestors, which are integral to their modular regulation and functions. Although we cannot yet conclude the full extent of their molecular and cellular mechanisms, there is a clearly emerging theme that they regulate the stability and trafficking of other membrane proteins. In the best understood case, iRhoms act as regulatory cofactors of the ADAM17 protease, controlling its function of shedding cytokines and growth factors. It seems likely that as the involvement of iRhoms in human diseases is increasingly recognized, they will become the focus of pharmaceutical interest, and here we discuss what is known about their molecular mechanisms and relevance in known pathologies.
Collapse
Affiliation(s)
- Iqbal Dulloo
- Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE , UK
| | - Sonia Muliyil
- Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE , UK
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE , UK
| |
Collapse
|
32
|
Rhomboid-Like-2 Intramembrane Protease Mediates Metalloprotease-Independent Regulation of Cadherins. Int J Mol Sci 2019; 20:ijms20235958. [PMID: 31783481 PMCID: PMC6928865 DOI: 10.3390/ijms20235958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
Cadherins are a major family of cell-cell adhesive receptors, which are implicated in development, tissue homeostasis, and cancer. Here, we show a novel mechanism of post-translational regulation of E-cadherin in cancer cells by an intramembrane protease of the Rhomboid family, RHBDL2, which leads to the shedding of E-cadherin extracellular domain. In addition, our data indicate that RHBDL2 mediates a similar activity on VE-cadherin, which is selectively expressed by endothelial cells. We show that RHBDL2 promotes cell migration, which is consistent with its ability to interfere with the functional role of cadherins as negative regulators of motility; moreover, the two players appear to lie in the same functional pathway. Importantly, we show that RHBDL2 expression is induced by the inflammatory chemokine TNFα. The E-cadherin extracellular domain is known to be released by metalloproteases (MMPs); however, here, we provide evidence of a novel MMP-independent, TNFα inducible, E-cadherin processing mechanism that is mediated by RHBDL2. Thus, the intramembrane protease RHBDL2 is a novel regulator of cadherins promoting cell motility.
Collapse
|
33
|
Shi C, Öster C, Bohg C, Li L, Lange S, Chevelkov V, Lange A. Structure and Dynamics of the Rhomboid Protease GlpG in Liposomes Studied by Solid-State NMR. J Am Chem Soc 2019; 141:17314-17321. [DOI: 10.1021/jacs.9b08952] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Huangshan Road 443, Hefei 230027, People’s Republic of China
| | - Carl Öster
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Claudia Bohg
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Longmei Li
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Huangshan Road 443, Hefei 230027, People’s Republic of China
| | - Sascha Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany
| |
Collapse
|
34
|
Cho S, Baker RP, Ji M, Urban S. Ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide release. Nat Struct Mol Biol 2019; 26:910-918. [PMID: 31570873 PMCID: PMC6858540 DOI: 10.1038/s41594-019-0296-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/09/2019] [Indexed: 12/04/2022]
Abstract
Protein cleavage inside the cell membrane triggers various patho-physiological signaling pathways, but the mechanism of catalysis is poorly understood. We solved ten structures of the Escherichia coli rhomboid protease in a bicelle membrane undergoing time-resolved steps that encompass the entire proteolytic reaction on a transmembrane substrate and an aldehyde inhibitor. Extensive gate opening accompanied substrate, but not inhibitor, binding, revealing that substrates and inhibitors take different paths to the active site. Catalysis unexpectedly commenced with, and was guided through subsequent catalytic steps by, motions of an extracellular loop, with local contributions from active site residues. We even captured the elusive tetrahedral intermediate that is uncleaved but covalently attached to the catalytic serine, around which the substrate was forced to bend dramatically. This unexpectedly stable intermediate indicates rhomboid catalysis uses an unprecedented reaction coordinate that may involve mechanically stressing the peptide bond, and could be selectively targeted by inhibitors.
Collapse
Affiliation(s)
- Sangwoo Cho
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosanna P Baker
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ming Ji
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Siniša Urban
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
35
|
García-González L, Pilat D, Baranger K, Rivera S. Emerging Alternative Proteinases in APP Metabolism and Alzheimer's Disease Pathogenesis: A Focus on MT1-MMP and MT5-MMP. Front Aging Neurosci 2019; 11:244. [PMID: 31607898 PMCID: PMC6769103 DOI: 10.3389/fnagi.2019.00244] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Processing of amyloid beta precursor protein (APP) into amyloid-beta peptide (Aβ) by β-secretase and γ-secretase complex is at the heart of the pathogenesis of Alzheimer’s disease (AD). Targeting this proteolytic pathway effectively reduces/prevents pathology and cognitive decline in preclinical experimental models of the disease, but therapeutic strategies based on secretase activity modifying drugs have so far failed in clinical trials. Although this may raise some doubts on the relevance of β- and γ-secretases as targets, new APP-cleaving enzymes, including meprin-β, legumain (δ-secretase), rhomboid-like protein-4 (RHBDL4), caspases and membrane-type matrix metalloproteinases (MT-MMPs/η-secretases) have confirmed that APP processing remains a solid mechanism in AD pathophysiology. This review will discuss recent findings on the roles of all these proteinases in the nervous system, and in particular on the roles of MT-MMPs, which are at the crossroads of pathological events involving not only amyloidogenesis, but also inflammation and synaptic dysfunctions. Assessing the potential of these emerging proteinases in the Alzheimer’s field opens up new research prospects to improve our knowledge of fundamental mechanisms of the disease and help us establish new therapeutic strategies.
Collapse
Affiliation(s)
| | - Dominika Pilat
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
36
|
Status update on iRhom and ADAM17: It's still complicated. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1567-1583. [PMID: 31330158 DOI: 10.1016/j.bbamcr.2019.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Several membrane-bound proteins with a single transmembrane domain are subjected to limited proteolysis at the cell surface. This cleavage leads to the release of their biologically active ectodomains, which can trigger different signalling pathways. In many cases, this ectodomain shedding is mediated by members of the family of a disintegrins and metalloproteinases (ADAMs). ADAM17 in particular is responsible for the cleavage of several proinflammatory mediators, growth factors, receptors and adhesion molecules. Due to its direct involvement in the release of these signalling molecules, ADAM17 can be positively and negatively involved in various physiological processes as well as in inflammatory, fibrotic and malignant pathologies. This central role of ADAM17 in a variety of processes requires strict multi-level regulation, including phosphorylation, various conformational changes and endogenous inhibitors. Recent research has shown that an early, crucial control mechanism is interaction with certain adapter proteins identified as iRhom1 and iRhom2, which are pseudoproteases of the rhomboid superfamily. Thus, iRhoms have also a decisive influence on physiological and pathophysiological signalling processes regulated by ADAM17. Their characteristic gene expression profiles, the specific consequences of gene knockouts and finally the occurrence of disease-associated mutations suggest that iRhom1 and iRhom2 undergo different gene regulation in order to fulfil their function in different cell types and are therefore only partially redundant. Therefore, there is not only interest in ADAM17, but also in iRhoms as therapeutic targets. However, to exploit the therapeutic potential, the regulation of ADAM17 activity and in particular its interaction with iRhoms must be well understood.
Collapse
|
37
|
Paschkowsky S, Hsiao JM, Young JC, Munter LM. The discovery of proteases and intramembrane proteolysis. Biochem Cell Biol 2019; 97:265-269. [DOI: 10.1139/bcb-2018-0186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sandra Paschkowsky
- Department of Pharmacology & Therapeutics, McGill University, Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
| | - Jacqueline Melissa Hsiao
- Department of Biochemistry, McGill University, McIntyre Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Jason C. Young
- Department of Biochemistry, McGill University, McIntyre Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Lisa Marie Munter
- Department of Pharmacology & Therapeutics, McGill University, Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
| |
Collapse
|
38
|
Abstract
Membranes surrounding the biological cell and its internal compartments host proteins that catalyze chemical reactions essential for the functioning of the cell. Rather than being a passive structural matrix that holds membrane-embedded proteins in place, the membrane can largely shape the conformational energy landscape of membrane proteins and impact the energetics of their chemical reaction. Here, we highlight the challenges in understanding how lipids impact the conformational energy landscape of macromolecular membrane complexes whose functioning involves chemical reactions including proton transfer. We review here advances in our understanding of how chemical reactions occur at membrane interfaces gleaned with both theoretical and experimental advances using simple protein systems as guides. Our perspective is that of bridging experiments with theory to understand general physicochemical principles of membrane reactions, with a long term goal of furthering our understanding of the role of the lipids on the functioning of complex macromolecular assemblies at the membrane interface.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - M Joanne Lemieux
- University of Alberta , Department of Biochemistry, Membrane Protein Disease Research Group , Edmonton , Alberta T6G 2H7 , Canada
| |
Collapse
|
39
|
Düsterhöft S, Lokau J, Garbers C. The metalloprotease ADAM17 in inflammation and cancer. Pathol Res Pract 2019; 215:152410. [PMID: 30992230 DOI: 10.1016/j.prp.2019.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/23/2022]
Abstract
Proteolytic cleavage of transmembrane proteins is an important post-translational modification that regulates the biological function of numerous transmembrane proteins. Among the 560 proteases encoded in the human genome, the metalloprotease A Disintegrin and Metalloprotease 17 (ADAM17) has gained much attention in recent years and has emerged as a central regulatory hub in inflammation, immunity and cancer development. In order to do so, ADAM17 cleaves a variety of substrates, among them the interleukin-6 receptor (IL-6R), the pro-inflammatory cytokine tumor necrosis factor α (TNFα) and most ligands of the epidermal growth factor receptor (EGFR). This review article provides an overview of the functions of ADAM17 with a special focus on its cellular regulation. It highlights the importance of ADAM17 to understand the biology of IL-6 and TNFα and their role in inflammatory diseases. Finally, the role of ADAM17 in the formation and progression of different tumor entities is discussed.
Collapse
Affiliation(s)
- Stefan Düsterhöft
- Institute for Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
40
|
Lapek JD, Jiang Z, Wozniak JM, Arutyunova E, Wang SC, Lemieux MJ, Gonzalez DJ, O'Donoghue AJ. Quantitative Multiplex Substrate Profiling of Peptidases by Mass Spectrometry. Mol Cell Proteomics 2019; 18:968-981. [PMID: 30705125 DOI: 10.1074/mcp.tir118.001099] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/31/2018] [Indexed: 12/14/2022] Open
Abstract
Proteolysis is an integral component of life and has been implicated in many disease processes. To improve our understanding of peptidase function, it is imperative to develop tools to uncover substrate specificity and cleavage efficiency. Here, we combine the quantitative power of tandem mass tags (TMTs) with an established peptide cleavage assay to yield quantitative Multiplex Substrate Profiling by Mass Spectrometry (qMSP-MS). This assay was validated with papain, a well-characterized cysteine peptidase, to generate cleavage efficiency values for hydrolysis of 275 unique peptide bonds in parallel. To demonstrate the breath of this assay, we show that qMSP-MS can uncover the substrate specificity of minimally characterized intramembrane rhomboid peptidases, as well as define hundreds of proteolytic activities in complex biological samples, including secretions from lung cancer cell lines. Importantly, our qMSP-MS library uses synthetic peptides whose termini are unmodified, allowing us to characterize not only endo- but also exo-peptidase activity. Each cleaved peptide sequence can be ranked by turnover rate, and the amino acid sequence of the best substrates can be used for designing fluorescent reporter substrates. Discovery of peptide substrates that are selectively cleaved by peptidases which are active at the site of disease highlights the potential for qMSP-MS to guide the development of peptidase-activating drugs for cancer and infectious disease.
Collapse
Affiliation(s)
- John D Lapek
- From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093
| | - Zhenze Jiang
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; ¶Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093
| | - Jacob M Wozniak
- From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093
| | - Elena Arutyunova
- ‖Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Steven C Wang
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; **Division of Biological Sciences, University of California, San Diego, 9500, Gilman Drive, La Jolla, California 92093
| | - M Joanne Lemieux
- ‖Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - David J Gonzalez
- From the ‡Department of Pharmacology, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;; §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;.
| | - Anthony J O'Donoghue
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive La Jolla, California 92093;.
| |
Collapse
|
41
|
Abstract
Proteases drive the life cycle of all proteins, ensuring the transportation and activation of newly minted, would-be proteins into their functional form while recycling spent or unneeded proteins. Far from their image as engines of protein digestion, proteases play fundamental roles in basic physiology and regulation at multiple levels of systems biology. Proteases are intimately associated with disease and modulation of proteolytic activity is the presumed target for successful therapeutics. "Proteases: Pivot Points in Functional Proteomics" examines the crucial roles of proteolysis across a wide range of physiological processes and diseases. The existing and potential impacts of proteolysis-related activity on drug and biomarker development are presented in detail. All told the decisive roles of proteases in four major categories comprising 23 separate subcategories are addressed. Within this construct, 15 sets of subject-specific, tabulated data are presented that include identification of proteases, protease inhibitors, substrates, and their actions. Said data are derived from and confirmed by over 300 references. Cross comparison of datasets indicates that proteases, their inhibitors/promoters and substrates intersect over a range of physiological processes and diseases, both chronic and pathogenic. Indeed, "Proteases: Pivot Points …" closes by dramatizing this very point through association of (pro)Thrombin and Fibrin(ogen) with: hemostasis, innate immunity, cardiovascular and metabolic disease, cancer, neurodegeneration, and bacterial self-defense.
Collapse
Affiliation(s)
- Ingrid M Verhamme
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sarah E Leonard
- Chemical and Biomolecular Engineering, University of Illinois Champaign-Urbana School of Chemical Sciences, Champaign, IL, USA
| | - Ray C Perkins
- New Liberty Proteomics Corporation, New Liberty, KY, USA.
| |
Collapse
|
42
|
PARL deficiency in mouse causes Complex III defects, coenzyme Q depletion, and Leigh-like syndrome. Proc Natl Acad Sci U S A 2018; 116:277-286. [PMID: 30578322 DOI: 10.1073/pnas.1811938116] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial intramembrane rhomboid protease PARL has been implicated in diverse functions in vitro, but its physiological role in vivo remains unclear. Here we show that Parl ablation in mouse causes a necrotizing encephalomyelopathy similar to Leigh syndrome, a mitochondrial disease characterized by disrupted energy production. Mice with conditional PARL deficiency in the nervous system, but not in muscle, develop a similar phenotype as germline Parl KOs, demonstrating the vital role of PARL in neurological homeostasis. Genetic modification of two major PARL substrates, PINK1 and PGAM5, do not modify this severe neurological phenotype. Parl -/- brain mitochondria are affected by progressive ultrastructural changes and by defects in Complex III (CIII) activity, coenzyme Q (CoQ) biosynthesis, and mitochondrial calcium metabolism. PARL is necessary for the stable expression of TTC19, which is required for CIII activity, and of COQ4, which is essential in CoQ biosynthesis. Thus, PARL plays a previously overlooked constitutive role in the maintenance of the respiratory chain in the nervous system, and its deficiency causes progressive mitochondrial dysfunction and structural abnormalities leading to neuronal necrosis and Leigh-like syndrome.
Collapse
|
43
|
Arutyunova E, Jiang Z, Yang J, Kulepa AN, Young HS, Verhelst S, O’Donoghue AJ, Lemieux MJ. An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases. Biol Chem 2018; 399:1389-1397. [DOI: 10.1515/hsz-2018-0255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022]
Abstract
AbstractRhomboids are ubiquitous intramembrane serine proteases that cleave transmembrane substrates. Their functions include growth factor signaling, mitochondrial homeostasis, and parasite invasion. A recent study revealed that theEscherichia colirhomboid protease EcGlpG is essential for its extraintestinal pathogenic colonization within the gut. Crystal structures of EcGlpG and theHaemophilus influenzaerhomboid protease HiGlpG have deciphered an active site that is buried within the lipid bilayer but exposed to the aqueous environment via a cavity at the periplasmic face. A lack of physiological transmembrane substrates has hampered progression for understanding their catalytic mechanism and screening inhibitor libraries. To identify a soluble substrate for use in the study of rhomboid proteases, an array of internally quenched peptides were assayed with HiGlpG, EcGlpG and PsAarA fromProvidencia stuartti. One substrate was identified that was cleaved by all three rhomboid proteases, with HiGlpG having the highest cleavage efficiency. Mass spectrometry analysis determined that all enzymes hydrolyze this substrate between norvaline and tryptophan. Kinetic analysis in both detergent and bicellular systems demonstrated that this substrate can be cleaved in solution and in the lipid environment. The substrate was subsequently used to screen a panel of benzoxazin-4-one inhibitors to validate its use in inhibitor discovery.
Collapse
|
44
|
Gadwal S, Johnson TL, Remmer H, Sandkvist M. C-terminal processing of GlyGly-CTERM containing proteins by rhombosortase in Vibrio cholerae. PLoS Pathog 2018; 14:e1007341. [PMID: 30352106 PMCID: PMC6219818 DOI: 10.1371/journal.ppat.1007341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/06/2018] [Accepted: 09/17/2018] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae and a subset of other Gram-negative bacteria, including Acinetobacter baumannii, express proteins with a C-terminal tripartite domain called GlyGly-CTERM, which consists of a motif rich in glycines and serines, followed by a hydrophobic region and positively charged residues. Here we show that VesB, a V. cholerae serine protease, requires the GlyGly-CTERM domain, the intramembrane rhomboid-like protease rhombosortase, and the type II secretion system (T2SS) for localization at the cell surface. VesB is cleaved by rhombosortase to expose the second glycine residue of the GlyGly-CTERM motif, which is then conjugated to a glycerophosphoethanolamine-containing moiety prior to engagement with the T2SS and outer membrane translocation. In support of this, VesB accumulates intracellularly in the absence of the T2SS, and surface-associated VesB activity is no longer detected when the rhombosortase gene is inactivated. In turn, when VesB is expressed without an intact GlyGly-CTERM domain, VesB is released to the extracellular milieu by the T2SS and does not accumulate on the cell surface. Collectively, our findings suggest that the posttranslational modification of the GlyGly-CTERM domain is essential for cell surface localization of VesB and other proteins expressed with this tripartite extension.
Collapse
Affiliation(s)
- Shilpa Gadwal
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Tanya L. Johnson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Henriette Remmer
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Maria Sandkvist
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
45
|
Friedman R, Khalid S, Aponte-Santamaría C, Arutyunova E, Becker M, Boyd KJ, Christensen M, Coimbra JTS, Concilio S, Daday C, van Eerden FJ, Fernandes PA, Gräter F, Hakobyan D, Heuer A, Karathanou K, Keller F, Lemieux MJ, Marrink SJ, May ER, Mazumdar A, Naftalin R, Pickholz M, Piotto S, Pohl P, Quinn P, Ramos MJ, Schiøtt B, Sengupta D, Sessa L, Vanni S, Zeppelin T, Zoni V, Bondar AN, Domene C. Understanding Conformational Dynamics of Complex Lipid Mixtures Relevant to Biology. J Membr Biol 2018; 251:609-631. [PMID: 30350011 PMCID: PMC6244758 DOI: 10.1007/s00232-018-0050-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/03/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences and Centre of Excellence "Biomaterials Chemistry", Linnæus University, Kalmar, Sweden.
| | - Syma Khalid
- University of Southampton, Southampton, SO17 1BJ, UK
| | - Camilo Aponte-Santamaría
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Elena Arutyunova
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | - Kevin J Boyd
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Mikkel Christensen
- Department of Chemistry, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience center (iNANO), Aarhus University, Aarhus, Denmark.,Sino-Danish Center for Education and Research, Beijing, China
| | - João T S Coimbra
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Simona Concilio
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
| | - Csaba Daday
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | | | - Pedro A Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Frauke Gräter
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.,Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | | | | | - Konstantina Karathanou
- Department of Physics, Theoretical Molecular Biophysics Group, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | | | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Antara Mazumdar
- GBB Institute, University of Groningen, Groningen, The Netherlands
| | - Richard Naftalin
- Physiology and Vascular Biology Departments, King's College London School of Medicine, London, UK
| | - Mónica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, IFIBA, Buenos Aires, Argentina
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Peter Quinn
- Biochemistry Department, King's College London, London, UK
| | - Maria J Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience center (iNANO), Aarhus University, Aarhus, Denmark
| | - Durba Sengupta
- Physical Chemistry Division, National Chemical Laboratory, Pune, India
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Talia Zeppelin
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Valeria Zoni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ana-Nicoleta Bondar
- Department of Physics, Theoretical Molecular Biophysics Group, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down Bath, BA2 7AY, UK.,Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
46
|
Xu MX, Qin YT, Ge CX, Gu TT, Lou DS, Li Q, Hu LF, Li YY, Yang WW, Tan J. Activated iRhom2 drives prolonged PM2.5 exposure-triggered renal injury in Nrf2-defective mice. Nanotoxicology 2018; 12:1045-1067. [DOI: 10.1080/17435390.2018.1513093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Min-Xuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, PR China
| | - Yu-Ting Qin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Chen-Xu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, PR China
| | - Ting-Ting Gu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, PR China
| | - De-Shuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, PR China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, PR China
| | - Lin-Feng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, PR China
| | - Yuan-Yuan Li
- School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, PR China
| | - Wei-Wei Yang
- Department of Nephrology, Huai’an First People’s Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, PR China
| |
Collapse
|
47
|
The Rhomboid Superfamily: Structural Mechanisms and Chemical Biology Opportunities. Trends Biochem Sci 2018; 43:726-739. [DOI: 10.1016/j.tibs.2018.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/08/2018] [Accepted: 06/30/2018] [Indexed: 12/27/2022]
|
48
|
Paschkowsky S, Recinto SJ, Young JC, Bondar AN, Munter LM. Membrane cholesterol as regulator of human rhomboid protease RHBDL4. J Biol Chem 2018; 293:15556-15568. [PMID: 30143535 DOI: 10.1074/jbc.ra118.002640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/18/2018] [Indexed: 12/28/2022] Open
Abstract
In the last decade, intramembrane proteases have gained increasing attention because of their many links to various diseases. Nevertheless, our understanding as to how they function or how they are regulated is still limited, especially when it comes to human homologues. In this regard, here we sought to unravel mechanisms of regulation of the protease rhomboid-like protein-4 (RHBDL4), one of five active human serine intramembrane proteases. In view of our recent finding that human RHBDL4 efficiently cleaves the amyloid precursor protein (APP), a key protein in the pathology of Alzheimer's disease, we used established reagents to modulate the cellular cholesterol content and analyzed the effects of this modulation on RHBDL4-mediated processing of endogenous APP. We discovered that lowering membrane cholesterol levels increased the levels of RHBDL4-specific endogenous APP fragments, whereas high cholesterol levels had the opposite effect. Direct binding of cholesterol to APP did not mediate these modulating effects of cholesterol. Instead, using homology modeling, we identified two potential cholesterol-binding motifs in the transmembrane helices 3 and 6 of RHBDL4. Substitution of the essential tyrosine residues of the potential cholesterol-binding motifs to alanine increased the levels of endogenous APP C-terminal fragments, reflecting enhanced RHBDL4 activity. In summary, we provide evidence that the activity of RHBDL4 is regulated by cholesterol likely through a direct binding of cholesterol to the enzyme.
Collapse
Affiliation(s)
- Sandra Paschkowsky
- From the Department of Pharmacology and Therapeutics and Cell Information Systems Group and
| | | | - Jason C Young
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Ana-Nicoleta Bondar
- the Department of Physics, Theoretical Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Lisa Marie Munter
- From the Department of Pharmacology and Therapeutics and Cell Information Systems Group and
| |
Collapse
|
49
|
Goel P, Jumpertz T, Tichá A, Ogorek I, Mikles DC, Hubalek M, Pietrzik CU, Strisovsky K, Schmidt B, Weggen S. Discovery and validation of 2-styryl substituted benzoxazin-4-ones as a novel scaffold for rhomboid protease inhibitors. Bioorg Med Chem Lett 2018; 28:1417-1422. [DOI: 10.1016/j.bmcl.2018.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 11/26/2022]
|
50
|
Saita S, Tatsuta T, Lampe PA, König T, Ohba Y, Langer T. PARL partitions the lipid transfer protein STARD7 between the cytosol and mitochondria. EMBO J 2018; 37:embj.201797909. [PMID: 29301859 DOI: 10.15252/embj.201797909] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 11/09/2022] Open
Abstract
Intramembrane-cleaving peptidases of the rhomboid family regulate diverse cellular processes that are critical for development and cell survival. The function of the rhomboid protease PARL in the mitochondrial inner membrane has been linked to mitophagy and apoptosis, but other regulatory functions are likely to exist. Here, we identify the START domain-containing protein STARD7 as an intramitochondrial lipid transfer protein for phosphatidylcholine. We demonstrate that PARL-mediated cleavage during mitochondrial import partitions STARD7 to the cytosol and the mitochondrial intermembrane space. Negatively charged amino acids in STARD7 serve as a sorting signal allowing mitochondrial release of mature STARD7 upon cleavage by PARL On the other hand, membrane insertion of STARD7 mediated by the TIM23 complex promotes mitochondrial localization of mature STARD7. Mitochondrial STARD7 is necessary and sufficient for the accumulation of phosphatidylcholine in the inner membrane and for the maintenance of respiration and cristae morphogenesis. Thus, PARL preserves mitochondrial membrane homeostasis via STARD7 processing and is emerging as a critical regulator of protein localization between mitochondria and the cytosol.
Collapse
Affiliation(s)
- Shotaro Saita
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Takashi Tatsuta
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Philipp A Lampe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tim König
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Yohsuke Ohba
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thomas Langer
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany .,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.,Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| |
Collapse
|