1
|
Kuang Y, Liang X, Ye W, Fu S, Qin Y, Ma Y, Luo Z. Abnormal brain regional activity in acute thyrotoxic myopathy assessed by resting-state functional MRI. Acta Radiol 2024; 65:1347-1358. [PMID: 39314056 DOI: 10.1177/02841851241280115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
BACKGROUND The neurophysiological mechanisms underlying manifestations of bulbar paralysis in acute thyrotoxic myopathy (ATM) and the afflicted brain areas are unclear. PURPOSE We used resting-state functional magnetic resonance imaging (rs-fMRI) to evaluate the regional brain activities in patients with ATM. MATERIAL AND METHODS In total, 16 patients with ATM, 16 patients with hyperthyroidism without ATM, and 16 healthy controls underwent functional MRI scans. By calculating the fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and functional connectivity (FC), we assessed variations in resting-state cerebral activity. The correlation between the resting-state functional indexes and clinical assessments was also explored. RESULTS Compared to the hyperthyroid patients, patients with ATM had stronger ReHo in the left precentral gyrus, reduced ReHo in the left orbitofrontal gyrus (OFG), and decreased FC in the left precentral gyri, left superior frontal gyrus (SFG), and left middle frontal gyrus (MFG). Patients with ATM showed reduced fALFF and ReHo in the right SFG and decreased ReHo in the bilateral supplementary motor area (SMA). A significantly decreased FC in the left SFG and left MFG, right precentral gyrus, and the orbital part of the right interior frontal gyrus was observed in patients with ATM compared to healthy controls. Additionally, fALFF and ReHo values were positively correlated with serum thyroid-related hormones and antibodies. CONCLUSION The findings of rs-fMRI demonstrate that particular brain regions' functional activity was aberrant in individuals with ATM, especially in SFG area. This finding may help with better understanding of underlying pathophysiology of patients with ATM.
Collapse
Affiliation(s)
- Yaqi Kuang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Xinghuan Liang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Wei Ye
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Shien Fu
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Yan Ma
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| |
Collapse
|
2
|
Sun S, Jin W, Hou T, Tong S, Zhou S, Hong L, Yao K, Zhao K, Zheng T. Psychotic symptoms in Chinese adolescent patients with major depressive disorder: prevalence and related endocrine clinical factors. BMC Psychiatry 2024; 24:598. [PMID: 39237962 PMCID: PMC11376036 DOI: 10.1186/s12888-024-06023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE Major depressive disorder (MDD) is often accompanied by psychotic symptoms. However, few studies have examined the relationship between psychotic symptoms and endocrine factors in adolescent patients with MDD. Therefore, this study aimed to investigate the prevalence and related endocrine clinical factors of psychotic symptoms in Chinese adolescent patients with MDD. METHODS In total, 601 patients (aged 12-18) with MDD were recruited. The Patient Health Questionnaire - 9 items (PHQ - 9) was utilized for assessing depressive symptoms. Psychotic symptoms were assessed through clinical interviews. Prolactin (PRL), thyroid-stimulating hormone (TSH), triiodothyronine (T3), free triiodothyronine (FT3), thyroxine (T4), and free thyroxine (FT4) were also measured. RESULTS The incidence of psychotic symptoms in adolescent patients with MDD was 22.6%. The findings demonstrated that age, self-harming behavior, PHQ-9 score, FT4, and normalized PRL were independently associated with psychotic symptoms in patients with MDD (All p < 0.05). CONCLUSIONS PRL and FT4 levels are more likely to be abnormally elevated in major depressive adolescents with psychotic symptoms. Prolactin and thyroid hormones in patients with MDD should be paid more attention.
Collapse
Affiliation(s)
- Shiyu Sun
- Department of Mental Health, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wei Jin
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Tianle Hou
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Siyu Tong
- Lishui Second People's Hospital, Wenzhou Medical University, Lishui, China
| | | | - Lan Hong
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- The Third Hospital of Quzhou, Quzhou, China
| | - Keqing Yao
- Shenzhen Mental Health Center, Shenzhen, Guangdong, China.
- Shenzhen Kangning Hospital, 77 Zhenbi Road, Pingshan District, Shenzhen, Guangdong, China.
| | - Ke Zhao
- Lishui Second People's Hospital, Wenzhou Medical University, Lishui, China.
| | - Tiansheng Zheng
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, China.
| |
Collapse
|
3
|
Alcaide Martin A, Mayerl S. Local Thyroid Hormone Action in Brain Development. Int J Mol Sci 2023; 24:12352. [PMID: 37569727 PMCID: PMC10418487 DOI: 10.3390/ijms241512352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Proper brain development essentially depends on the timed availability of sufficient amounts of thyroid hormone (TH). This, in turn, necessitates a tightly regulated expression of TH signaling components such as TH transporters, deiodinases, and TH receptors in a brain region- and cell-specific manner from early developmental stages onwards. Abnormal TH levels during critical stages, as well as mutations in TH signaling components that alter the global and/or local thyroidal state, result in detrimental consequences for brain development and neurological functions that involve alterations in central neurotransmitter systems. Thus, the question as to how TH signaling is implicated in the development and maturation of different neurotransmitter and neuromodulator systems has gained increasing attention. In this review, we first summarize the current knowledge on the regulation of TH signaling components during brain development. We then present recent advances in our understanding on how altered TH signaling compromises the development of cortical glutamatergic neurons, inhibitory GABAergic interneurons, cholinergic and dopaminergic neurons. Thereby, we highlight novel mechanistic insights and point out open questions in this evolving research field.
Collapse
Affiliation(s)
| | - Steffen Mayerl
- Department of Endocrinology Diabetes & Metabolism, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
4
|
New Insights into TRP Ion Channels in Stem Cells. Int J Mol Sci 2022; 23:ijms23147766. [PMID: 35887116 PMCID: PMC9318110 DOI: 10.3390/ijms23147766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Transient receptor potential (TRP) ion channels are cationic permeable proteins located on the plasma membrane. TRPs are cellular sensors for perceiving diverse physical and/or chemical stimuli; thus, serving various critical physiological functions, including chemo-sensation, hearing, homeostasis, mechano-sensation, pain, taste, thermoregulation, vision, and even carcinogenesis. Dysregulated TRPs are found to be linked to many human hereditary diseases. Recent studies indicate that TRP ion channels are not only involved in sensory functions but are also implicated in regulating the biological characteristics of stem cells. In the present review, we summarize the expressions and functions of TRP ion channels in stem cells, including cancer stem cells. It offers an overview of the current understanding of TRP ion channels in stem cells.
Collapse
|
5
|
Fang Y, Dang P, Liang Y, Zhao D, Wang R, Xi Y, Zhang D, Wang W, Shan Z, Teng W, Teng X. Histological, functional and transcriptomic alterations in the juvenile hippocampus in a mouse model of thyroid hormone resistance. Eur Thyroid J 2022; 11:e210097. [PMID: 35262510 PMCID: PMC9066571 DOI: 10.1530/etj-21-0097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Proper thyroid hormone signaling via the TRα1 nuclear receptor is required for normal neurodevelopmental processes. The specific downstream mechanisms mediated by TRα1 that impact brain development remain to be investigated. METHODS In this study, the structure, function and transcriptome of hippocampal tissue in a mouse model expressing the first RTHα mutation discovered in a patient, THRA E403X, were analyzed. RNAscope was used to visualize the spatial and temporal expression of Thra1 mRNA in the hippocampus of WT mice, which is corresponding to THRA1 mRNA in humans. The morphological structure was analyzed by Nissl staining, and the synaptic transmission was analyzed on the basis of long-term potentiation. The Morris water maze test and the zero maze test were used to evaluate the behavior. RNA-seq and quantitative real-time PCR were used to analyze the differentially expressed genes (DEGs) of the hippocampal tissues in the mouse model expressing the Thra E403X mutation. RESULTS The juvenile mutant Thra E403X mice presented with delayed neuronal migration, disordered neuronal distribution, and decreased synaptic plasticity. A total of 754 DEGs, including 361 upregulated genes and 393 downregulated genes, were identified by RNA-seq. DEG-enriched Gene Ontology (GO) and KEGG pathways were associated with PI3K-Akt signaling, ECM-receptor interaction, neuroactive ligand-receptor interaction, and a range of immune-related pathways. 25 DEGs were validated by qPCR. CONCLUSIONS The ThraE403X mutation results in histological and functional abnormalities, as well as transcriptomic alterations in the juvenile mouse hippocampus. This study of the ThraE403X mutant offers new insights into the biological cause of RTHα-associated neurological diseases.
Collapse
Affiliation(s)
- Yingxin Fang
- Department of Endocrinology and Metabolism, Institute of Endocrine, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Pingping Dang
- Department of Endocrinology and Metabolism, Institute of Endocrine, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yue Liang
- Department of Endocrinology and Metabolism, Institute of Endocrine, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Defa Zhao
- Department of Endocrinology and Metabolism, Institute of Endocrine, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Ranran Wang
- Department of Endocrinology and Metabolism, Institute of Endocrine, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yue Xi
- Department of Endocrinology and Metabolism, Institute of Endocrine, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, People’s Republic of China
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Dan Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrine, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, People’s Republic of China
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Wei Wang
- Department of Endocrinology and Metabolism, Institute of Endocrine, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrine, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrine, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, People’s Republic of China
- Correspondence should be addressed to X Teng:
| | - Xiaochun Teng
- Department of Endocrinology and Metabolism, Institute of Endocrine, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, People’s Republic of China
- Correspondence should be addressed to X Teng:
| |
Collapse
|
6
|
Zhuang ZX, Chen SE, Chen CF, Lin EC, Huang SY. Single-nucleotide polymorphisms in genes related to oxidative stress and ion channels in chickens are associated with semen quality and hormonal responses to thermal stress. J Therm Biol 2022; 105:103220. [DOI: 10.1016/j.jtherbio.2022.103220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/18/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
7
|
Ji Q, Li X. Mechanism of Dopaminergic Nerve Transmission in Different Doses of Morphine Addiction and Stress-Induced Depression. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9987441. [PMID: 34055279 PMCID: PMC8131158 DOI: 10.1155/2021/9987441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022]
Abstract
Depression not only threatens the health and quality of life of patients but also brings a huge mental and economic burden to the patients' families. This paper mainly studies the mechanism of dopaminergic neurotransmission in different doses of morphine addiction and stress-induced depression. In the experiment, 40 male SD rats were selected. The experiment established a rat model of chronic stress depression. The rats used in this model are all raised in a single cage, and there will be various stimuli every day for 21 days, but high-intensity continuous stimuli must be avoided, and the same stimuli will not appear continuously. The experiment established a depression animal model through chronic unpredictable mild stress (CUMS), combined with the conditioned position preference (CPP) model of morphine addiction to detect the establishment of CPP in such animals, so as to explore certain stress stimuli or depression, the influence on morphine addiction, and the relationship between them. The second or third branches of pyramidal neurons were selected to analyze the PL and CA3 regions. When analyzing the density of dendrites, each animal selected at least 8 dendrites in order to count the number of dendrites and selected a length of 20 μm on each branch to record the number of dendrites. All measured values are expressed as average ± standard deviation and analyzed by SPSS17.0 statistical software, and Levene test is used in the scattered consistency test. The average NIV of PEN before injection was 11.92 ± 2.90 Hz, and the average latency was 0.16 ± 0.03 s. The results indicate that CUMS may reduce the conditioned learning and memory ability by damaging the learning loop, rather than affecting the reward loop to weaken the establishment of morphine-dependent CPP.
Collapse
Affiliation(s)
- Qing Ji
- Graduate School, Jiamusi University, Jiamusi 154000, Heilongjiang, China
| | - Xin Li
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, Heilongjiang, China
| |
Collapse
|
8
|
Chen C, Ma Q, Deng P, Lin M, Gao P, He M, Lu Y, Pi H, He Z, Zhou C, Zhang Y, Yu Z, Zhang L. 1800 MHz Radiofrequency Electromagnetic Field Impairs Neurite Outgrowth Through Inhibiting EPHA5 Signaling. Front Cell Dev Biol 2021; 9:657623. [PMID: 33912567 PMCID: PMC8075058 DOI: 10.3389/fcell.2021.657623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
The increasing intensity of environmental radiofrequency electromagnetic fields (RF-EMF) has increased public concern about its health effects. Of particular concern are the influences of RF-EMF exposure on the development of the brain. The mechanisms of how RF-EMF acts on the developing brain are not fully understood. Here, based on high-throughput RNA sequencing techniques, we revealed that transcripts related to neurite development were significantly influenced by 1800 MHz RF-EMF exposure during neuronal differentiation. Exposure to RF-EMF remarkably decreased the total length of neurite and the number of branch points in neural stem cells-derived neurons and retinoic acid-induced Neuro-2A cells. The expression of Eph receptors 5 (EPHA5), which is required for neurite outgrowth, was inhibited remarkably after RF-EMF exposure. Enhancing EPHA5 signaling rescued the inhibitory effects of RF-EMF on neurite outgrowth. Besides, we identified that cAMP-response element-binding protein (CREB) and RhoA were critical downstream factors of EPHA5 signaling in mediating the inhibitory effects of RF-EMF on neurite outgrowth. Together, our finding revealed that RF-EMF exposure impaired neurite outgrowth through EPHA5 signaling. This finding explored the effects and key mechanisms of how RF-EMF exposure impaired neurite outgrowth and also provided a new clue to understanding the influences of RF-EMF on brain development.
Collapse
Affiliation(s)
- Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Qinglong Ma
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Min Lin
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Peng Gao
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Mindi He
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Yonghui Lu
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Zhixin He
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Chao Zhou
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yanwen Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Lei Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| |
Collapse
|
9
|
Ma Q, Deng P, Lin M, Yang L, Li L, Guo L, Zhang L, He M, Lu Y, Pi H, Zhang Y, Yu Z, Chen C, Zhou Z. Long-term bisphenol A exposure exacerbates diet-induced prediabetes via TLR4-dependent hypothalamic inflammation. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123926. [PMID: 33254826 DOI: 10.1016/j.jhazmat.2020.123926] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA), an environmental endocrine-disrupting compound, has been revealed associated with metabolic disorders such as obesity, prediabetes, and type 2 diabetes (T2D). However, its underlying mechanisms are still not fully understood. Here, we provide new evidence that BPA is a risk factor for T2D from a case-control study. To explore the detailed mechanisms, we used two types of diet models, standard diet (SD) and high-fat diet (HFD), to study the effects of long-term BPA exposure on prediabetes in 4-week-old mice. We found that BPA exposure for 12 weeks exacerbated HFD-induced prediabetic symptoms. Female mice showed increased body mass, serum insulin level, and impaired glucose tolerance, while male mice only exhibited impaired glucose tolerance. No change was found in SD-fed mice. Besides, BPA exposure enhanced astrocyte-dependent hypothalamic inflammation in both male and female mice, which impaired proopiomelanocortin (POMC) neuron functions. Moreover, eliminating inflammation by toll-like receptor 4 (TLR4) knockout significantly abolished the effects of BPA on the hypothalamus and diet-induced prediabetes. Taken together, our data establish a key role for TLR4-dependent hypothalamic inflammation in regulating the effects of BPA on prediabetes.
Collapse
Affiliation(s)
- Qinlong Ma
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Ping Deng
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Min Lin
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Lingling Yang
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Le Li
- Department of Health Management Center, Southwest Hospital, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Lu Guo
- Department of Neurology, Daping Hospital, Army Medical University (Former Name: Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Lei Zhang
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Mindi He
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Yonghui Lu
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Huifeng Pi
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Yanwen Zhang
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Zhengping Yu
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Chunhai Chen
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China.
| | - Zhou Zhou
- Department of Environmental Medicine, and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
10
|
Chen X, Sooch G, Demaree IS, White FA, Obukhov AG. Transient Receptor Potential Canonical (TRPC) Channels: Then and Now. Cells 2020; 9:E1983. [PMID: 32872338 PMCID: PMC7565274 DOI: 10.3390/cells9091983] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Twenty-five years ago, the first mammalian Transient Receptor Potential Canonical (TRPC) channel was cloned, opening the vast horizon of the TRPC field. Today, we know that there are seven TRPC channels (TRPC1-7). TRPCs exhibit the highest protein sequence similarity to the Drosophila melanogaster TRP channels. Similar to Drosophila TRPs, TRPCs are localized to the plasma membrane and are activated in a G-protein-coupled receptor-phospholipase C-dependent manner. TRPCs may also be stimulated in a store-operated manner, via receptor tyrosine kinases, or by lysophospholipids, hypoosmotic solutions, and mechanical stimuli. Activated TRPCs allow the influx of Ca2+ and monovalent alkali cations into the cytosol of cells, leading to cell depolarization and rising intracellular Ca2+ concentration. TRPCs are involved in the continually growing number of cell functions. Furthermore, mutations in the TRPC6 gene are associated with hereditary diseases, such as focal segmental glomerulosclerosis. The most important recent breakthrough in TRPC research was the solving of cryo-EM structures of TRPC3, TRPC4, TRPC5, and TRPC6. These structural data shed light on the molecular mechanisms underlying TRPCs' functional properties and propelled the development of new modulators of the channels. This review provides a historical overview of the major advances in the TRPC field focusing on the role of gene knockouts and pharmacological tools.
Collapse
Affiliation(s)
- Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Gagandeep Sooch
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Isaac S. Demaree
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Fletcher A. White
- The Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G. Obukhov
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Zhang J, Liu H, Li J, Lou L, Zhang S, Feng D, Feng X. Exposure to deltamethrin in adolescent mice induced thyroid dysfunction and behavioral disorders. CHEMOSPHERE 2020; 241:125118. [PMID: 31683416 DOI: 10.1016/j.chemosphere.2019.125118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Deltamethrin (DM) has become one of the most widely used insecticides in the world due to its low toxicity, high efficiency and low persistence in soil. However, it is still unknown whether DM exposure has any effects on the Hypothalamic-Pituitary-Thyroid (HPT) axis in adolescent mice. In this study, the open field test and circadian activity test showed that DM exposure increased activity. There was no significant difference between the groups in the light/dark box test and nest building test. Forced swimming test showed that after 6 and 12 mg kg-1 DM exposure 28 days, the immobility time was increased and the swimming time was reduced. After 6 mg kg-1 DM treatment, the thyroid stimulating hormone (TSH) content increased, and thyrotropin releasing hormone (TRH), triiodothyronine (T3) and thyroxine (T4) decreased. After exposure to 6 and 12 mg kg-1 DM, mRNA levels of HPT axis-related genes were destroyed. The histological examination showed that, the DM groups mice thyroid tissues appeared expanded thyroid follicles, scanty colloid and hyperplastic thyroid cells. Western blot results showed that the expression level of tyrosine hydroxylase (TH) protein decreased and the content of dopamine transporter (DAT) protein increased in DM treated mice striatum. Collectively, our results indicated that DM exposure could induce thyroid dysfunction and behavioral disorders in adolescent mice.
Collapse
Affiliation(s)
- Jingwen Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300071, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China
| | - Haoyue Liu
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Jiangning Li
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Lixiang Lou
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Shaozhi Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Daofu Feng
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Xizeng Feng
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300071, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
12
|
|
13
|
Wang D, Yu H, Xu B, Xu H, Zhang Z, Ren X, Yuan J, Liu J, Guo Y, Spencer PS, Yang X. TRPC1 Deletion Causes Striatal Neuronal Cell Apoptosis and Proteomic Alterations in Mice. Front Aging Neurosci 2018; 10:72. [PMID: 29615894 PMCID: PMC5870053 DOI: 10.3389/fnagi.2018.00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/05/2018] [Indexed: 12/26/2022] Open
Abstract
Transient receptor potential channel 1 (TRPC1) is widely expressed throughout the nervous system, while its biological role remains unclear. In this study, we showed that TRPC1 deletion caused striatal neuronal loss and significantly increased TUNEL-positive and 8-hydroxy-2′-deoxyguanosine (8-OHdG) staining in the striatum. Proteomic analysis by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry (MS) revealed a total of 51 differentially expressed proteins (26 increased and 25 decreased) in the stratum of TRPC1 knockout (TRPC1−/−) mice compared to that of wild type (WT) mice. Bioinformatics analysis showed these dysregulated proteins included: oxidative stress-related proteins, synaptic proteins, endoplasmic reticulum (ER) stress-related proteins and apoptosis-related proteins. STRING analysis showed these differential proteins have a well-established interaction network. Based on the proteomic data, we revealed by Western-blot analysis that TRPC1 deletion caused ER stress as evidenced by the dysregulation of GRP78 and PERK activation-related signaling pathway, and elevated oxidative stress as suggested by increased 8-OHdG staining, increased NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUV2) and decreased protein deglycase (DJ-1), two oxidative stress-related proteins. In addition, we also demonstrated that TRPC1 deletion led to significantly increased apoptosis in striatum with concurrent decrease in both 14–3–3Z and dynamin-1 (D2 dopamine (DA) receptor binding), two apoptosis-related proteins. Taken together, we concluded that TRPC1 deletion might cause striatal neuronal apoptosis by disturbing multiple biological processes (i.e., ER stress, oxidative stress and apoptosis-related signaling). These data suggest that TRPC1 may be a key player in the regulation of striatal cellular survival and death.
Collapse
Affiliation(s)
- Dian Wang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Haitao Yu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Benhong Xu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hua Xu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou, Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Xiaohu Ren
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianhui Yuan
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yi Guo
- Department of Neurology, Second Clinical College, Jinan University, Shenzhen, China
| | - Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|